
PoLAPACK: Parallel Factorization Routines

with Algorithmic Blocking

Jaeyoung Choi

School of Computing

Soongsil University

1-1, Sangdo-Dong, Dongjak-Ku

Seoul 156-743, KOREA

choi@comp.soongsil.ac.kr

Abstract

LU, QR, and Cholesky factorizations are the most widely used methods for solving dense

linear systems of equations, and have been extensively studied and implemented on vector

and parallel computers. Most of these factorization routines are implemented with block-

partitioned algorithms in order to perform matrix-matrix operations, that is, to obtain the

highest performance by maximizing reuse of data in the upper levels of memory, such as

cache. Since parallel computers have di�erent performance ratios of computation and com-

munication, the optimal computational block sizes are di�erent from one another to generate

the maximumperformance of an algorithm. Therefore, the data matrix should be distributed

with the machine speci�c optimal block size before the computation. Too small or large a

block size makes getting good performance on a machine nearly impossible. In such a case,

getting a better performance may require a complete redistribution of the data matrix.

In this paper, we present parallel LU, QR, and Cholesky factorization routines with an

\algorithmic blocking" on 2-dimensional block cyclic data distribution. With the algorithmic

blocking, it is possible to obtain the near optimal performance irrespective of the physical

block size. The routines are implemented on the Intel Paragon and the SGI/Cray T3E and

compared with the corresponding ScaLAPACK factorization routines.

1. Introduction

In many linear algebra algorithms the distribution of work may become uneven as the al-

gorithm proceeds, for example as in LU factorization algorithm [8, 11], in which rows and

columns are successively eliminated from the computation. The way in which a matrix is

distributed over the processors has a major impact on the load balance and communication

characteristics of a parallel algorithm, and hence largely determines its performance and

scalability.

The two-dimensional block cyclic data distribution [9, 14], in which matrix blocks sepa-

rated by a �xed stride in the row and column directions are assigned to the same processor,

has been used as a general purpose basic data distribution for parallel linear algebra soft-

ware libraries because of its scalability and load balance properties. And most of the parallel

version of algorithms have been implemented on the two-dimensional block cyclic data dis-

tribution [5, 18].

Since parallel computers have di�erent performance ratios of computation and commu-

nication, the optimal computational block sizes are di�erent from one another to generate

the maximum performance of an algorithm. The data matrix should be distributed with the

machine speci�c optimal block size before the computation. Too small or large a block size

makes getting good performance on a machine nearly impossible. In such case, getting a

better performance may require a complete redistribution of the data matrix.

The matrix multiplication, C (C +A �B, might be the most fundamental operation

in linear algebra. Several parallel matrix multiplication algorithms have been proposed on

the two-dimensional block-cyclic data distribution [1, 6, 10, 13, 17]. High performance,

scalability, and simplicity of the parallel matrix multiplication schemes using rank-k updates

has been demonstrated [1, 17]. It is assumed that the data matrices are distributed on the

two-dimensional block cyclic data distribution and the column block size of A and the row

block size of B are k. However getting a good performance when the block size is very

small or very large is di�cult, since the computation are not e�ectively overlapped with

the communication. The LCM (Least Common Multiple) concept [10] has been introduced

to DIMMA [6] to use a computationally optimal block size irrespective of the physically

distributed block size for the parallel matrix multiplication. In DIMMA, if the physical

block size is smaller than the optimal block size, the small blocks are combined into a larger

block. And if the physical block size is larger than the optimal block size, the block is divided

into smaller pieces. This is the \algorithmic blocking" strategy.

There have been several e�orts to develop parallel factorization algorithms with the algo-

rithmic blocking on distributed-memory concurrent computers. Lichtenstein and Johnsson

[16] developed and implemented block-cyclic order elimination algorithms for LU and QR

factorization on the Connection Machine CM-200. They used a cyclic order elimination on

a block data distribution, the only scheme that the Connection Machine system compilers

supported.

P. Bangalore [3] has tried to develop a data distribution-independent LU factorization

algorithm. He recomposed computational panels to obtain a computationally optimal block

size, but followed the original matrix ordering. According to the results, the performance

is superior to the other case, in which the matrix is redistributed when the block size is

very small. He used a tree-type communication scheme to make computational panels from

several columns of processors. However, using a pipelined communication scheme, if possible,

which overlaps communication and computation e�ectively, would be more e�cient.

The actual algorithm which is selected at runtime depending on input data and machine

parameters is called \polyalgorithms" [4]. We are developing \PoLAPACK" (Poly LAPACK)

factorization routines, in which computers select the optimal block size at run time accord-

ing to machine characteristics and size of data matrix. In this paper, we expanded and

generalized the idea in [16]. We developed and implemented parallel LU, QR, and Cholesky

factorization routines with the algorithmic blocking on the 2-dimensional block cyclic data

distribution. With PoLAPACK, it is always possible to have the near optimal performance

of LU, QR, and Cholesky factorization routines on distributed-memory computers irrespec-

tive of the physical data-distribution on distributed-memory concurrent computers if all of

the processors have the same size of submatrices.

The PoLAPACK factorization routines are implemented based on ScaLAPACK, but the

internals are very di�erent. ScaLAPACK uses global parameters, but PoLAPACK uses both

global and local parameters because of the computational complexity to compute indices,

which represent the current row and column of processors, and the global size of the matrix

as well as local sizes of submatrices in each processor to be computed. Currently the PoLA-

PACK factorization routines are implemented based on the block cyclic data distribution,

but it is also possible to apply the idea to other decompositions.

The PoLAPACK LU, QR, and Cholesky factorization routines are implemented on the

Intel Paragon computer at Samsung Advanced Institute of Technology, and on the Cray T3E

at KORDIC Supercomputing Center, Korea. And their performance is compared with that

of the corresponding ScaLAPACK factorization routines.

2. PoLAPACK LU Factorization Algorithm

The basic LU factorization routine is to �nd the solution vector x after applying LU factor-

ization to A from the following linear equation

Ax = b:

After converting A to P � A = L � U , compute y from Ly = b0, where U � x = y and

P � b = b0. And compute x.

Most of the LU factorization algorithms including LAPACK [2] and ScaLAPACK [8]

�nd the solution vector x after computing the factorization of P � A = L � U . And in the

ScaLAPACK factorization routines, a column of processors performs a factorization on its

own column of blocks, and broadcasts it to others. Then all of processors update the rest of

the data matrix. The basic unit of the computation is the physical size of the block, with

which the data matrix is already distributed over processors.

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

1.5

2.0

2.5
Nb=8,5

Nb=20

Nb=50

Nb=1

Matrix Size, N

G
fl

op
s

Figure 1: Performance of ScaLAPACK LU factorization routine on an 8 � 8 Intel Paragon

We measured the performance the ScaLAPACK LU factorization routine and its solution

routine with various block sizes on the Intel Paragon. Figure 1 shows the performance on an

8 � 8 processor grid from N = 1; 000 to 10,000 with block sizes of Nb = 1; 5; 8; 20; and 50.

It shows that the near optimal performance is obtained when Nb = 8, and almost the same

but slightly slower when Nb = 5. The performance deteriorated by 2-3% when Nb = 20, 13%

when Nb = 50, and more than 45% when Nb = 1. If the data matrix is distributed with

Nb = 1, it may be much more e�cient to perform the factorization after redistributing the

data matrix with the optimal block size of Nopt = 8.

In ScaLAPACK, the performance of the algorithm is greatly a�ected by the block size.

However the PoLAPACK LU factorization is implemented with the concept of algorithmic

blocking and always shows the best performance of Nopt = 8 irrespective of physical block

sizes.

If a data matrix A is decomposed over 2-dimensional p � q processors with the block

cyclic data distribution, it may be possible to regard the matrix A being decomposed along

the row and column directions of processors. Then the new decomposition along the row and

column directions are the same as applying permutation matrices from the left and the right,

respectively. One step further. If we want to compute a matrix with a di�erent block size,

we may need to redistribute the matrix, and we can assume that the redistributed matrix

is of the form Pp �A � P
T
q , where Pp and Pq are permutation matrices. It may be possible to

avoid redistributing the matrix physically if the new computation doesn't follow the given

ordering of the matrix A. That is, by assuming that the given matrix A is redistributed with

a new optimal block size and the resulting matrix is Pp �A �P
T
q , it is now possible to apply the

factorization to A with the optimal block size for the computation. And this factorization

will show the same performance regardless of the physical block sizes if each processor gets

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3 4 5 6 7

(a) Nopt = Nb

 0
 1
 2
 3
 4
 5
 6
 7

 0 1 2 3 4 5 6 7

(b) Nopt = 2 · Nb

Figure 2: The order of block to be computed in PoLAPACK. The darkest area is computed

�rst. (a) when the optimal block size is the same as the physical block size (Nopt = Nb), (b)

when the optimal block size is twice the physical block size (Nopt = 2 �Nb).

the same size of the submatrix of A. These statements are illustrated with the following

equations,

(PpAP T
q) � (Pqx) = Pp � b: (1)

Let A1 = PpAP T
q , and x1 = Pq x. After factorizing P1A1 = P1 � (PpAP

T
q) = L1 � U1,

then we compute the solution vector x. The above equation Eq. 1 is transformed as follows:

L1 � U1 � (Pqx) = L1 � U1 � x1 = P1 � (Ppb) = b1:

Then, y1 is computed from

L1 � y1 = b1; (2)

and x1 is computed from

U1 � x1 = y1: (3)

Finally the solution vector x is computed from

Pq � x = x1: (4)

The computations are performed with A and b in place with the optimal block size, and

x is computed with Pq as in Eq. 4. But we want Pp �x rather than x in order to make x have

the same physical data distribution as b. That is, it is required to compute

Pp � x = Pp � P
T
q � x1: (5)

Assume that we have a 24 � 24 block matrix A is distributed with a block size of Nb

over a 2 � 3 processor grid as in Figure 2. When the optimal block size is the same as

(a) 12 x 12 blocks on 2 x 3 processes (b) 9 x 9 blocks on 2 x 3 processes

p

p p p

0

1

2

3 6 9 1 4 7 112 5 810

0

4

6

8

10

3

5

7

9

11

1

2

3

4

5

6

pp
 0 1 2

 5 4 3

p p

p p p

p

0 3 6 1 4 7 2 5 8

0

2

4

6

8

1

3

1

2

3

4
5

6

5

7

 0

 3

 1 2

 5 4

Figure 3: Computational Procedure in PoLAPACK. Matrices of 12 � 12 and 9 � 9 blocks

are distributed on 2� 3 processors with Nopt = Nb and Nopt = 2 �Nb, respectively.

the physical block size (i.e., Nopt = Nb), the computational ordering of the PoLAPACK

is the same as that of the ScaLAPACK as in Figure 2(a). However, if the optimal block

size is twice the physical block size (i.e., Nopt = 2 � Nb), the PoLAPACK routine computes

with two columns of blocks, A(:; 0) and A(:; 3), and two rows of blocks, A(0; :) and A(2; :)

at the �rst step as in Figure 2(b). But those two columns and rows of blocks belong to

the same column and row of processors, respectively. In this example, the computational

orderings of the row and column blocks have been changed (0; 2); (1; 3); (4; 6); (5; 7); � � �, and

(0; 3); (1; 4); (2; 5); (6; 9); (7; 10); � � �, respectively. And the new orderings are obtained by

multiplying Pp to A from the left and P T
q from the right. This procedure isn't involved with

any physical data redistribution.

3. Implementation of PoLAPACK LU Factorization

The PoLAPACK LU factorization routine is composed of three parts: LU factorization,

triangular solver, and redistribution of the solution vector. We will describe the details of

each part.

3.1. LU Factorization

We implemented the right-looking version of the LAPACK LU factorization routines, DGETRF,

DGETF2, DLAMAX, DLAPIV, DLASWP, and DGETRS as the corresponding PoLA-

PACK LU factorization routines, PoDGETRF, PoDGETF2, PoDLAMAX, PoDLAPIV,

PoDLASWP, and PoDGETRS, respectively. And we partially implemented the Level 2 and

Level 3 BLAS routines, DGER, DGEMM, and DTRSM, as the corresponding PoLAPACK

BLAS routines, PoDGER, PoDGEMM, and PoDTRSM, respectively.

1
4

7

2
5

8

3
6

9

1
4

6
8

2
5

7
9

3

p(0) pp(1) (2)

p pp(3) (4) (5)

p pp(6) (7) (8)

p(0) p(1) p(2)

p(3) p(4) p(5)

p(6) p(7) p(8)

(a) when Nb=1 & Nopt=1 (b)when Nb=4 but Nopt=1

Figure 4: A snapshot of PoLAPACK solver. A matrix T of 9 � 9 blocks is distributed on

3 � 3 processors with Nb = 1 and Nb = 4, respectively, while the optimal computational

block size for both cases is Nopt = 1.

Figure 3 shows the computational procedure of the PoLAPACK LU factorization. It is

assumed that a matrix A of 12 � 12 blocks is distributed over a 2 � 3 processor grid as in

Figure 3(a), and the LU routine computes 2 blocks at a time (imagine Nb = 4 and Nopt = 8).

Since the routine follows the 2-D block cyclic ordering, the positions of the diagonal blocks

are regularly changed by incrementing one column and one row of processors at each step.

However, if A is 9 � 9 blocks as in Figure 3(b), the next diagonal block of A(5; 6) on p(3)
is A(7; 7) on p(4), not on p(1). Then the next block is A(8; 8) on p(2). The computational

procedure of the PoLAPACK is very complicated.

In the PoLAPACK, it is di�cult to directly compute the local sizes of data from the

global size of the remaining data matrix. And during the middle of the computation, a

row and a column of processors may have no data at all to compute the factorization. It is

necessary for each processor to keep the local sizes of data in each processor.

3.2. Triangular Solver

We implemented the Li and Coleman's algorithm [15] on a two dimensional processor grid for

the PoLAPACK routines, PoDTRSM. The 2-dimensional version of the algorithm is already

implemented in the PBLAS routine, PDTRSM [7]. But the implementation of PoDTRSM

is much more complicated since the diagonal block may not be located regularly if p is not

equal to q as in Figure 3.

If p is equal to q, the implementation is still complicated. Figure 4(a) shows a snapshot

of the Li and Coleman's algorithm from the processors point-of-view, where 9 � 9 blocks of

an upper triangular matrix T are distributed over a 3�3 processor grid with Nb = Nopt = 1.

Let's look over the details of the algorithm to solve x = T n b.

At �rst, the last block at p(8) computes x(9) from T (9; 9) and b(9). Processors in the last

column update 2 blocks - actually p(2) and p(5) update b(7) and b(8), respectively - and send

them to their left processors. The rest of b (b(1 : 6)) is updated later. At the second step,

p(4) computes x(8) from T (8; 8) and b(8), the latter is received from p(5). While p(1) receives

b(7) from p(2), updates it, and sends it to p(0), p(7) updates a temporal b(6) and sends it to

p(6).

Figure 4(b) shows the same size of the matrix distribution T with Nb = 4, but it is

assumed that the matrix T is derived with an optimal block size Nopt = 1. So the solution

routine has to solve the triangular equations of Eq. 2 and Eq. 3 with Nopt = 1. The �rst two

rows and the �rst two columns of processors have 4 rows and 4 columns of T , respectively,

while the last row and the last column have 1 row and 1 column, respectively. Since Nopt = 1,

the computation starts from p(4), which computes x(9). Then p(1) and p(4) update b(8) and

b(7), respectively, and send them to their left. The rest of b (b(1 : 6)) is updated later. At the

next step, p(0) computes x(8) from T (8; 8) and b(8), the latter is received from p(1). While

p(3) receives b(7) from p(4), updates it, and sends it to the left p(5), p(0) updates a temporal

b(6) and sends it to its left p(2). However p(2) and p(5) don't have their own data to update

or compute at the current step, and hand them over to their left without touching the data.

The PoLAPACK solver has to comply with this kind of all abnormal cases.

3.3. Solution Vector Redistribution

It may be necessary to redistribute the temporary solution vector x1 to Pp � P
T
q � x1 in order

to get Ppx as in Eq. 5. However, if p is equal to q, then Pp becomes Pq, and Pp �P
T
q �x1 = x1,

therefore, the redistribution is not necessary. But if p is not equal to q, the redistribution of

x1 is required to get the solution x with the same data distribution as the right hand vector

b. And if p and q are relatively prime, then the problem is changed to all-to-all personalized

communication.

Figure 5 shows a case of the physical block sizeNb = 1 and the optimal block sizeNopt = 2

on a 2� 3 processor grid. Originally the vector b is distributed with Nb = 1 as the ordering

on the left of Figure 5. But the temporary solution vector x1 is distributed as the ordering

on the right after the computation with Nopt = 2. The result is the same as a vector on the

left is transposed twice { at �rst transposed with Nb = 1 to the vector on the top, then later

transposed with Nopt = 2 to the vector on the right.

In PoLAPACK, it is necessary to redistribute the vector x1 to the same ordering of b if

p 6= q. If we transpose the vector x1 twice, it may be possible to get x with the same ordering

of b. However, all of the processors are involved in the redistribution process of the vector.

The pseudo code of the redistribution process of the solution vector is shown in Fig-

ure 6. At �rst, the column of processors, which holds the solution vector, computes the

data ordering in each processor and the relative position in each block. Then they transpose

their local data twice, where they only transpose the indices of data, not the real data. We

also exploit the LCM concept to simplify the redistribution. If the vector is distributed

with Nb and computed with Nopt on p � q processors, the computation is repeated with

p

p p p
1

2

0

4

6

8

10

3

5

7

9

11

1

2

3

4

5

6

pp
 0 1 2

 5 4 3

0 3 6 9 1 4 7 112 5 810

1

0

10

11

3

2

5

7

4

6

9

8

Figure 5: A snapshot of PoLAPACK solver. A matrix T of 9 � 9 blocks is distributed on

3 � 3 processors with Nb = 1 and Nb = 4, respectively, while the optimal computational

block size for both cases is Nopt = 1.

1. Compute the local & global indices of data in each processor

2. 1st transpose its indices of data (with Nopt)

(not transpose the real data)

3. 2nd transpose its indices of data (with Nb)

(not transpose the real data)

4. For i = 0 to p � 1

i) Copy & send data with indices to Pi+1

ii) Receive & move data with indices from Pi�1

Figure 6: The pseudocode of the solution vector redistribution.

LCMNUM = LCM(p; q) � LCM(Nb; Nopt).

3.4. PoLAPACK LU Result

We implemented the PoLAPACK LU factorization routine and measured its performance

on an 8 � 8 processor grid of the Intel Paragon. Figure 7 shows the performance of the

routine with the physical block sizes of Nb = 1; 5; 8; 20; and 50, but the optimal block size

of Nopt = 8. As shown in Figure 7, the performance lines are very close to the others and

always show nearly the maximum performance irrespective of the physical block sizes. Since

all processors don't have the same size of the submatrices of A with various block sizes,

some processors have more data to compute than others, which causes computational load

imbalance among processors and slight performance degradation. For example, the line with

a small white circle in Figure 7 shows the case of Nb = 50, in which processors in the �rst half

have more data to compute than processors in the second half if the matrix size N = 7; 000

or 9; 000.

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

1.5

2.0

2.5

Nb=1,5,8,20,50

Matrix Size, N

G
fl

op
s

Figure 7: Performance of PoLAPACK LU on an 8� 8 Intel Paragon

0 4000 8000 12000 16000 20000
0

5

10

15

20

25
Nb=60

Nb=36
Nb=24

Nb=6

Nb=1

Matrix Size, N

G
fl

op
s

0 4000 8000 12000 16000 20000
0

5

10

15

20

25

Nb=60, 1, 6, 24, 36

Matrix Size, N

G
fl

op
s

Figure 8: Performance of ScaLAPACK LU and PoLAPACK LU on an 8� 8 Cray T3E

4. PoLAPACK QR Factorization

The QR factorization is used to solve the least squares problem [12],

min
x2<

k Ax � b k2: (6)

Given an M � N matrix A, the QR factorization is computed by A = QR, where Q is

an M �M orthogonal matrix, and R is an M �N upper triangular matrix.

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Nb=6,8

Nb=20

Nb=50

Nb=1

Matrix Size, N

G
fl

op
s

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nb=1,6,8,20,50

Matrix Size, N

G
fl

op
s

Figure 9: Performance of ScaLAPACK QR and PoLAPACK QR on an 8� 8 Intel Paragon

0 4000 8000 12000 16000 20000
0

5

10

15

20

25

30

Nb=24

Nb=60
Nb=36

Nb=6

Nb=1

Matrix Size, N

G
fl

op
s

0 4000 8000 12000 16000 20000
0

5

10

15

20

25

30

Nb=1, 6, 24, 36, 60

Matrix Size, N

G
fl

op
s

Figure 10: Performance of ScaLAPACK QR and PoLAPACK QR on an 8� 8 Cray T3E

The PoLAPACK QR factorization and its solution of the factored matrix equations are

performed in a manner analogous to the PoLAPACK LU factorization and the solution of

the triangular systems. Eq. 6 is changed to

k Ax � b k2 = k (PpAP
T
q) � (Pqx) � Ppb k2

where Pp and Pq are permutation matrices. Let A2 = Pp �A �P
T
q , x2 = Pq x, and b2 = Pp b.

After factorizing A2 = PpAP
T
q to Q2 �R2, then we compute the solution vector x. The above

equation is transformed as follows:

k Q2 �R2 � (Pqx) � (Ppb) k2 = k Q2 �R2 � x2 � b2 k2: (7)

P0

P2 P3

P1

P1

(a) data distribution on a 2x2 processor grid (b) data movement on P1 before the computation

Figure 11: Data preservation of the lower triangular matrix by changing the computational

block size

If applying QT
2 to b2 to form b3, Eq. 7 is changed to

k R2 � x2 � QT
2 b2 k2 = k R2 � x2 � b3 k2;

where b3 = QT
2 b2. Then x2 is computed from

R2 � x2 = b3:

Finally the solution vector x is computed from

Pq � x = x2:

Again as in Eq. 5, we want Pp�x = PpP
T
q x2 to make x have the same physical data distribution

as b.

Figures 9 and 10 show the performance of the ScaLAPACK and PoLAPACK QR fac-

torizations and their solution on an 8 � 8 processor grid of the Intel Paragon and the Cray

T3E, respectively. Performance of the ScaLAPACK QR factorization routine depends on the

physical block size, and the best performance is obtained when Nb = 6 on an Intel Paragon,

and Nb = 24 on a Cray T3E. However the PoLAPACK QR factorization routine, which com-

putes with the optimal block size of Nopt, always shows nearly the maximum performance

independent of physical block sizes.

0 4000 8000 12000 16000 20000
0

5

10

15

20

25

Nb=60
Nb=36
Nb=24

Nb=6

Nb=1

Matrix Size, N

G
fl

op
s

0 4000 8000 12000 16000 20000
0

5

10

15

20

25

Nb= 1, 6, 24, 36, 60

Matrix Size, N

G
fl

op
s

Figure 12: Performance of ScaLAPACK and PoLAPACK Cholesky on an 8� 8 Cray T3E

5. PoLAPACK Cholesky Factorization

The Cholesky factorization factors an N �N , symmetric, positive-de�nite matrix A into the

product of a lower triangular matrix L and its transpose, i.e., A = LLT (or A = UTU , where

U is upper triangular). It is assumed that the lower triangular portion of A is stored in the

lower triangle of a two-dimensional array and that the computed elements of L overwrite the

given elements of A. If A is factored to L � LT , compute y with L � y = b, then compute x

from the following equation, LT � x = y.

Though A is symmetric, PpAP
T
q is not symmetric if p 6= q. That is, if PpAP

T
q is not

symmetric, it is impossible to exploit the algorithmic blocking technique to the Cholesky

factorization routine as used in the PoLAPACK LU and QR factorizations. If p 6= q, the

PoLAPACK Cholesky computes the factorization with the physical block size. That is, it

computes the factorization as the same way of the ScaLAPACK Cholesky routine. However,

it is possible to obtain the bene�t of algorithmic blocking for the limited case of p = q.

In the PoLAPACK Cholesky factorization, we compute PpAP
T
p = L3L

T
3 when p = q.

Then

(PpAP
T
p) � (Ppx) = L3L

T
3 � (Ppx) = Ppb = b4;

L3 � y3 = b4;

LT
3 � x3 = y3:

In the PoLAPACK Cholesky factorization, the redistribution of the solution vector is

omitted since p = q. However, for the symmetric matrix, the data is contained in only

the lower (or upper) triangular part of the matrix, and data in the other part should be

preserved after the computation. So it is necessary to use another trick in order to compute

the Cholesky factorization with the algorithmic blocking.

Figure 11 shows a case to compute the Cholesky factorization with Nb = 2 and Nopt = 3

on a 2� 2 processor grid. For the non-diagonal processors, such as p(1) and p(2), the original

data should be reallocated. For example, if the physical block size is 2 (Nb = 2), the data

is stored in the lightly shaded area. But for the optimal block size is 3 (Nopt = 3, the

data should be located in the dark gray area before the computation. p(1) should send the

lightly shaded area to p(2), and it should receive data in the non-overlapped area from p(2)
as in Figure 11(b). But, before moving the data, processors should save the original data

and restore them after the computation to preserve data in the other part of the triangular

matrix.

Figure 12 shows the performance of the ScaLAPACK and the PoLAPACK Cholesky

factorization and their solution on an 8 � 8 processor grid of the Cray T3E. Similarly, the

performance of the ScaLAPACK Cholesky factorization routine depends on the physical

block size. However the PoLAPACK Cholesky factorization routine, which computes with

the optimal block size of Nopt = 60, always shows the maximum performance.

6. Conclusions

Generally in most parallel factorization algorithms, a column of processors performs the

factorization on a column of blocks of A at a time, whose block size is already �xed, and

then the other processors update the rest of the matrix. If the block size is very small or very

large, then the processors can't show their optimal performance, and the data matrix may

be redistributed for a better performance. The computation follows the original ordering of

the matrix.

It may be faster and more e�cient to perform the computation, if possible, by combining

several columns of blocks if the block size is small, or by splitting a large column of blocks

if the block size is large. This is the main concept of algorithmic blocking. The PoLAPACK

factorization routines rearrange the ordering of the computation. They compute PpAP
T
q

instead of directly computing A. The computation proceeds with the optimal block size

without physically redistributing A. And the solution vector x is computed by solving

triangular systems, then converting x1 to PpP
T
q x1. The �nal rearrangement of the solution

vector can be omitted if p = q or Nb = Nopt.

According to the results of the ScaLAPACK and the PoLAPACK LU, QR, and Cholesky

factorization routines on the Intel Paragon and the Cray T3E, the ScaLAPACK factoriza-

tion routines have a large performance di�erence with di�erent values of Nb, however the

PoLAPACK factorizations always show a steady performance, which is the near optimal,

irrespective of the values of Nb. The routines we presented in this paper are developed based

on the block cyclic data distribution. This simple idea can be easily applied to the other

data distributions. But it is required to develop speci�c algorithms to rearrange the solution

vector for each distribution.

We will analyze the characteristics of the PoLAPACK routines, especially the PoLA-

PACK solver and the redistribution of the solution. And we intend to supply the complete

version of the PoLAPACK in the near future, which includes the three factorization routines

and supports all numeric data types.

7. References

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A High-Performance Matrix-

Multiplication Algorithm on a Distributed-Memory Parallel Computer Using Over-

lapped Communication. IBM Journal of Research and Development, 38(6):673{681,

1994.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A Portable Linear Algebra

Library for High-Performance Computers. In Proceedings of Supercomputing '90, pages

1{10. IEEE Press, 1990.

[3] P. V. Bangalore. The Data-Distribution-Independent Approach to Scalable Parallel

Libraries. 1995. Master Thesis, Mississippi State University.

[4] L. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. ScaLAPACK: A Portable

Linear Algebra Library for Distributed Memory Computers - Design Issues and Perfor-

mance. In Proceedings of SIAM Conference on Parallel Processing, 1997.

[5] L. Blackford, J. Choi, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. ScaLAPACK Users' Guide.

SIAM Press, Philadelphia, PA, 1997.

[6] J. Choi. A New Parallel Univeral Matrix Multiplication Algorithm on Distributed-

Memory Concurrent Computers. Concurrency: Practice and Experience, 10:655{670,

1998.

[7] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley.

A Proposal for a Set of Parallel Basic Linear Algebra Subprograms. LAPACK Working

Note 100, Technical Report CS-95-292, University of Tennessee, 1995.

[8] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley.

The Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factoriza-

tion Routines. Scienti�c Programming, 5:173{184, 1996.

[9] J. Choi, J. J. Dongarra, and D. W. Walker. The Design of Scalable Software Libraries

for Distributed Memory Concurrent Computers. In Proceedings of Environment and

Tools for Parallel Scienti�c Computing Workshop, (Saint Hilaire du Touvet, France),

pages 3{15. Elsevier Science Publishers, September 7-8, 1992.

[10] J. Choi, J. J. Dongarra, and D. W. Walker. PUMMA: Parallel Universal Matrix Mul-

tiplication Algorithms on Distributed Memory Concurrent Computers. Concurrency:

Practice and Experience, 6:543{570, 1994.

[11] J. J. Dongarra and S. Ostrouchov. LAPACK Block Factorization Algorithms on the

Intel iPSC/860. LAPACK Working Note 24, Technical Report CS-90-115, University

of Tennessee, October 1990.

[12] G. H. Golub and C. V. Van Loan. Matrix Computations. The Johns Hopkins University

Press, Baltimore, MD, 1989. Second Edition.

[13] S. Huss-Lederman, E. M. Jacobson, A. Tsao, and G. Zhang. Matrix Multiplication on

the Intel Touchstone Delta. Concurrency: Practice and Experience, 6:571{594, 1994.

[14] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing.

The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1994.

[15] G. Li and T. F. Coleman. A Parallel Triangular Solver for a Distributed-Memory

Multiprocessor. SIAM J. of Sci. Stat. Computing, 9:485{502, 1986.

[16] W. Lichtenstein and S. L. Johnsson. Block-Cyclic Dense Linear Algebra. SIAM J. of

Sci. Stat. Computing, 14(6):1259{1288, 1993.

[17] R. van de Geijn and J. Watts. SUMMA Scalable Universal Matrix Multiplication Al-

gorithm. LAPACK Working Note 99, Technical Report CS-95-286, University of Ten-

nessee, 1995.

[18] R. A. van de Geijn. Using PLAPACK. The MIT Press, Cambridge, 1997.

