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SUMMARY

There has been an increasing research interest in extending the use of Java towards

high-performance demanding applications such as scalable web servers, multimedia

applications, and large-scale scienti�c applications. However, given the low performance

of current Java implementations, these application domains pose new challenges to

both the application designer and systems developer. In this paper we describe and

classify several important proposals and environments that tackle Java's performance

bottlenecks in order to make the language an e�ective option for high-performance

computing. We further survey most signi�cant performance issues while exposing

the potential bene�ts and limitations of current solutions in such a way that a

framework for future research e�orts can be established. We show that most of the

proposed solutions can be classi�ed according to some combination of the three basic
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parameters: the model adopted for inter-process communication, language extensions,

and the implementation strategy. In addition, we examine other relevant issues, such as

interoperability, portability, and garbage collection.

key words: Java, parallel JVM implementation, high-performance computing, cluster computing

Introduction

Java [4] is an object-oriented programming language, developed by Sun Microsystems, which

incorporates features such as multithreading and primitives for concurrent programming.

One of its main objectives is to allow the portability of programs among di�erent hardware

and operating system platforms. This objective is portrayed by the known slogan "Write

once, run everywhere". The approach to reach this goal was the adoption of a standardized

supporting platform denominated Java Virtual Machine (JVM). The Java compiler generates

a platform independent pseudo-code, denominated bytecode, which can then be executed in

any computational environment (hardware & operating system) that supports a Java bytecode

interpreter, included in the standard JVM.

The price paid for the portability, achieved through interpretation, as could be expected,

is performance. Several e�orts intending to improve Java execution performance have been

made, such as the addition of just-in-time compilation support and other optimizations

techniques to Java execution environments [25]. Recent results [22] showed that optimized Java

code performs comparably to Fortran for some numerically-intensive regular computations.

However, these improvements were not enough to ensure that Java performs as well as
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JAVA FOR HIGH-PERFORMANCE COMPUTING 3

C. Nevertheless, numerous systems for high-performance computing based on the Java

environment have been proposed in recent years. The target applications of these systems are

those of large-scale computational nature, potentially requiring any combination of computers,

networks, I/O, and memory, as de�ned by the Java Grande Forum [26]. Examples of such

applications are data mining, satellite image processing, scalable web servers, and fundamental

physics. At �rst glance, the choice of Java seems paradoxical, since it is an interpreted language.

This single feature, however, was not enough to reduce the great interest in its use in the

development of high-performance computing environments.

Then, why to use Java for High-Performance Computing? Besides the portability and

interoperability achieved by a standard supporting environment, other features of the language

such as its object-oriented programming model, simplicity, robustness, multithreading support,

and automatic memory management are attractive enough to the development of software

projects, especially those intended to large and complex systems. Also, the language portability

has been decisive for its choice in projects that consider the use of idle computers, connected

to the Internet, to solve large computational problems [6, 9, 18]. In addition, the growing

popularity of the language helps to explain its use in the high-performance computing area.

In this paper we describe and classify some Java-based projects aiming directly or indirectly

at supporting the development of high-performance computing applications. For classi�cation

purposes, some parameters, including the inter-process communication model adopted, changes

introduced to the language, and how the environment was implemented, are taken into account.

Other relevant issues, such as the interoperability with other Java virtual machines, portability

and garbage collection algorithms will be also discussed when appropriate.
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The remainder of this paper is organized as follows. In section 2, we describe the basic support

for parallel computing/programming provided by Java, as well as some other features that

are relevant to understand the proposals here described. Readers that are familiar with Java's

concurrency features can skip this section. In section 3, we describe the parameters that we have

selected and that were used to classify the selected proposals. In section 4, we describe the Java

environments and mechanisms for supporting high-performance computing that were included

in this survey. Section 5 presents a classi�cation of the systems, based on the parameters

described in section 3. Section 6 concludes this work.

The Java Language

Although Java is a relatively recent language, introduced in 1992, the ideas underlying

the language are not new [47]: Its object model has borrowed the interface concept from

Objective-C, single inheritance from Smalltalk, and some other features from Self and

C++. Multithreading support can be found in some C and C++ libraries, and the Java

synchronization model was created in the early 70s. The portability, obtained from the

code interpretation, is not new; Basic, Smalltalk and other languages had already used this

approach.

Why Java became so popular, if it did not bring anything substantially original? Two

reasons seem to have contributed to its success. First, Java is a subset of an already known

and widespread language, C++, incorporating multithreading, synchronization, and network

communication, without relying on external libraries. Second, and perhaps the main reason,

is the provision of features designed to help the development of Internet applications - the
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JAVA FOR HIGH-PERFORMANCE COMPUTING 5

language integration to browsers, and its portability are very convenient for applications that

should run on an inherently heterogeneous network.

Since the proposals described in this survey make many references to Java's memory model, as

well as to its support for parallel programming and communication, we describe these features

in the next sections.

Multithreading and Synchronization

Programming with threads in Java is more immediate than with languages as C and C++. This

happens because Java already provides a native parallel programming model, that includes

support for multithreading in the language. The package java.lang provides a Thread class

that supports methods to initiate, execute, stop and verify the state of a thread. To declare a

thread, for instance, the programmer just inherits the Thread class using the clause extends,

as showed in the line 1 of the Code 1, and supplies a run method, which will be invoked when

the thread execution starts. The examples in this section are related to a matrix multiplication

algorithm.

01 class mmultThread extends Thread implements GlobalVariables f

02 private parameter t p;

03

04 mmultThread (parameter t arg) f

05 p = arg;

06 g

07
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08 void mult(int size, int row, int column, matrix t MA, matrix t MB,

09 matrix t MC) f

10 int position;

11 MC.matrix[row][column] = 0;

12 for(position = 0; position < size; position++)

13 MC.matrix[row][column] = MC.matrix[row][column] +

14 (MA.matrix[row][position]* MB.matrix[position][column]);

15 g

16

17 public void run() f

18 mult(p.size, p.Arow, p.Bcol, p.MA, p.MB, p.MC);

19 /* we use a barrier here just to illustrate the use of synchronization

20 primitives, but it is not necessary. A call to join() is more

21 eÆcient - see subsection 2.2 */

22 try f bar.barrier(); g

23 catch (InterruptedException e) fg

24 g

25 g

Code 1 - A fragment of matrix multiplication code. Each thread multiplies a row by a

column. To declare a thread, the class must inherit the Thread class and supply a run

method (line 17) that will be invoked when the thread execution starts.
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The creation of a thread follows the same pattern of object creation in Java, using the new

operator. To start the execution of a thread, the start method of the Thread class must be

invoked. The example in Code 2 shows how to create and to start a thread. Methods for

suspending, stopping, continuing the execution of a thread, and assigning priorities to it are

also available.

01 public class Mmult f

02

03 public static void main(String args[]) f

04 /* declare variables, initialize or read matrix values */ ...

05 /* Process matrix, by row and column. Create a thread to process

06 each element in the resulting matrix */

07 num threads = 0;

08 for(row = 0; row < size; row++) f

09 for (column = 0; column < size; column++) f

10 /* set parameter p */

11 threads[num threads] = new mmultThread(p);

12 threads[num threads].start();

13 num threads++;

14 g

15 g

16 * Print results */

17 g
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18 g

Code 2 - Another example of matrix multiplication in which a thread is created (line 12),

which multiplies each row by a column of the matrix. The thread is then started (line 13).

Besides multithreading, the language also includes a set of synchronization primitives. Those

primitives are based on an adaptation of the classic monitor paradigm proposed in [24].

The standard semantics of Java allows the methods of a class to execute concurrently. The

synchronized reserved word can be associated to given methods in order to specify that they

cannot execute concurrently. Then, these methods can only execute in a mutual-exclusion

fashion according to the monitor paradigm. The example (see code 3), extracted from [31],

shows a barrier class, which uses a barrier method that is synchronized, indicating that it

cannot be executed concurrently. It would also be possible to declare a synchronized block

inside the barrier method. Note that the barrier mechanism was used here just to illustrate

the use of the synchronization primitive; in fact Java supports a join primitive that would

provide a more eÆcient implementation.

01 class Barrier f

02

03 protected �nal int parties;

04 protected int count; // parties currently being waited for

05 protected int resets = 0; // times barrier has been tripped

06

07 Barrier(int c) f count = parties = c; g

08
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09 synchronized int barrier() throws InterruptedException f

10 int index = {count;

11 if (index > 0) f // not yet tripped

12 int r = resets; // wait until next reset

13 do f wait(); g while (resets == r);

14 g

15 else f // trip

16 count = parties; // reset count for next time

17 ++resets;

18 notifyAll(); // cause all other parties to resume

19 g

20 return index;

21 g

22 g

Code 3 - The Barrier class code. The method barrier cannot execute concurrently: it is

guaranteed with the use of synchronized reserved word (line 09).

As has been identi�ed by the Application and Concurrency Work Group of the Java Grande

Forum [27], thread synchronization introduces a potential performance bottleneck (see also

next sub-section), which ultimately prevent Java applications with large number of threads to

scale.
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Figure 1. The internal architecture of the Java Virtual Machine's Memory

The JVM Memory Model

The JVM speci�es the interaction model between threads and the main memory, by de�ning

an abstract memory system (AMS), a set of memory operations, and a set of rules for these

operations. The main memory stores all program variables and is shared by the JVM threads

(refer to Figure 1). Each thread operates strictly on its local memory, so that variables have to

be copied �rst from main memory to the thread's local memory before any computation can

be carried out. Similarly, local results become accessible to other threads only after they are

copied back to main memory. Variables are referred to as master or working copy depending

on whether they are located in main or local memory, respectively. The copying between main

and local memory, and vice-versa, adds a speci�c overhead to thread operation.

The replication of variables in local memories introduces a potential memory coherence

hazard since di�erent threads can observe di�erent values for the same variable. The JVM
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JAVA FOR HIGH-PERFORMANCE COMPUTING 11

o�ers two synchronization primitives, called monitorenter and monitorexit to enforce memory

consistency. The primitives support blocks of code declared as synchronized. In brief, the

model requires that upon a monitorexit operation, the running thread updates the master

copies with corresponding working copy values that the thread has modi�ed. After executing

a monitorenter operation a thread should either initialize its work copies or assign the master

values to them. The only exceptions are variables declared as volatile, to which JVM imposes

the sequential consistency model. The memory management model is transparent to the

programmer and is implemented by the compiler, which automatically generates the code

that transfers data values between main memory and thread local memory.

Communication

Java o�ers a rich set of tools and APIs for communication. Sockets, Remote Method Invocation

(RMI), and an Object Request Broker (ORB) are available. In this section, we will describe

RMI in detail, looking at the main aspects related to its use in high-performance applications.

RMI and Serialization

Java's distributed object model de�nes a remote object as an object that allows its methods to

be invoked from other JVMs running on di�erent machines interconnected by a communication

network. A remote object is fully described using Java's object interface to de�ne the methods

that the remote object supports. The Remote Method Invocation (RMI) is the mechanism

that allows a method to be invoked in a remote object interface (see Figure 2). This technique

allows local and remote methods to be invoked using the same syntax.
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In order to use RMI, the programmer must structure his/her application obeying the

client/server paradigm, whereby a remote object represents the server and the client

corresponds to the object that invokes the method. In addition, a simple programming recipe

that includes inheriting a special Remote class and using some standard methods in the

application code must be followed. A standard Java tool, rmic, is used to automatically

generate a stub (auxiliary code), which works as a local representative or proxy of the remote

object to the client. The Java 2 SDK implementation of RMI uses reection to implement the

connection between RMI and the remote service object. In classic RPC implementations, the

skeleton �gure performs this role. For a method invocation, the stub establishes the connection

with the remote JVM, marshals the invocation parameters, waits for the method invocation

to complete, unmarshals all results or exceptions, and returns the outcome to the invoker.

The arguments sent to or the values returned from a remote object can be any serializable

object. This includes primitive types, remote objects, and non-remote Java objects that

implement the java.io.Serializable interface. The RMI system dynamically loads classes,

associated to parameters, or return values, which are not available locally. Parameters are

always passed by reference if they refer to remote objects; otherwise they are passed by copy.

In case of objects passed by copy, it is necessary to execute a serialization operation that

transforms objects into arrays of bytes, including all instance variables of primitive and non-

primitive types declared by the objects. For non-primitive types, the complete reference graph

is serialized, even if it is cyclic.
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Figure 2. The RMI protocol

The RMI de�nition enables the target JVM to know in advance the argument types of the

JVM calls. Given that the RMI supports polymorphismy , the type of each argument can be

any subtype of the arguments declared by the method. Thus, the byte array representation

must also incorporate the information about the serialized types. Therefore, any RMI that

passes objects by value must also declare their types. Note that this time-consuming process

is unnecessary for many scienti�c applications and may degrade the application performance.

Programmers are free to write their own marshaling and unmarshaling routines, which will

be invoked by the serialization mechanism. However, programmers often prefer to use the

serialization methods automatically generated by the compiler. These methods use a structural

yThe use of any superclass of the subclass to refer to the instance of the subtype.
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reectionz mechanism, which provides the appropriate byte array representation and �nds

dynamically the type of each object. In spite of simplifying the programmer's task and o�ering

greater exibility in programming, this model introduces a large overhead due to the great

number of operations that have to be executed dynamically, which can limit its use in high-

performance applications.

The Java memory model includes an automatic garbage collection capability. The programmer

does not need to worry about de-allocating objects that stop being referenced in a system.

Similarly, in case of remote objects, the RMI mechanism also implements garbage collection

in order to de-allocate remote objects that have been not referenced any longer.

Other Aspects

RMI imposes the use of standard socket-based communication protocols, thus preventing

the choice of new high-performance network protocols, such as VIA [50] and Fast Messages

[41]. The inclusion of an open communication facility to the JVM, e.g., using computational

reection techniques, would add exibility to RMI communication. In this way, a programmer

would be able to con�gure the communication protocol most suitable for a given application

[33].

Also, it would be useful the addition of collective communication in the language, such

as scatter and gather, all gather, and all-to-all. Java already has the multicast collective

zStructural Reection can be de�ned as the "ability of a language to provide a complete rei�cation of both the

program currently executed as well as a complete rei�cation of its abstract data types".
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communication implemented via sockets, but an implementation of this pattern in the context

of a high-performance communication support would be useful.

Classi�cation parameters

Three basic issues are relevant to the design and implementation of a Java environment for

high-performance computing: (a) the model adopted for inter-process communication; (b)

modi�cations introduced to the languages' semantics and syntax; and (c) implementation

strategy. Explicitly or implicitly they appear as distinguishing features in the surveyed

proposals. Such features allow us to consistently divide the works we surveyed, producing

a clear classi�cation of alternatives that have been explored so far.

The way in which processes communicate is an important issue for implementing an e�ective

environment for high-performance computing. Three approaches can be used for inter-process

communication namely, distributed shared memory, message passing, or a combination of both.

Parallel programs have evolved using message passing libraries, such as the Parallel Virtual

Machine (PVM) [20] and the Message Passing Interface (MPI) [39], as their main method of

communication. In this case the programmer is responsible for data communication among

the nodes running an application. In distributed shared memory (DSM) systems processes

share data transparently across node boundaries; data faulting, location, and movement is

handled by the underlying system. Treadmarks [30] and HLRC [53] are examples of state-

of-the-art software DSM systems. Other aspects such as communication transparency to the

programmer, conformity with the language syntax, as well as the overall achieved performance

are determined by the mechanism adopted for inter-process communication.
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The second issue refers to how modifying the language impacts the overall environment from

the programmer's point of view. We assume that a change becomes visible to the programmer

if the new environment supports a feature in a di�erent way from Java's original speci�cation.

If the system does not introduce any modi�cation to both the original semantics and syntax

of the language, or even if only few small changes are made, programmer adaptation to the

new system is easier, and code reuse is also improved. Features such as automatic memory

management, de�nition of new-reserved words, and whether access to remote objects is

transparent are related to this issue.

The last issue is related to the strategy adopted for the environment implementation,

which a�ects code portability and environment performance. This survey has identi�ed �ve

main approaches: (a) the use of a pre-compiler; (b) modi�cation of the Java compiler; (c)

modi�cation of the JVM; (d) extensions based on libraries written in Java; and (e) the use of

native functions of a particular environment.

Further issues, including garbage collection, interoperability with other Java virtual machines,

and portability are also important. The �rst is particularly important, since the language

speci�cation assumes the existence of an automatic storage management system; this garbage

collection mechanism has to work transparently for local and remote objects. For example,

the RMI mechanism has to garbage collect remote objects that have been not referenced any

longer. If garbage collection is ignored, the system can potentially run out of memory, since

there is no statement in the language for de-allocating memory explicitly. Interoperability and

portability are desirable features not directly dependent of the basic language design. However,

these three issues are directly related to engineering options taken in the implementation of
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the classi�cation parameters considered in this survey. Although they are not included as the

main classi�cation parameters of this paper, we show how the surveyed proposals tackle these

issues.

Environments
In this section we describe several proposals aiming at transforming Java into an eÆcient

environment for high-performance computing. Some of them tackle speci�c performance

bottlenecks, such as the high costs associated to the standard Java communication

mechanism. Other proposals are more comprehensive, trying to o�er an integrated solution for

application support. Whenever possible, the described proposals are grouped according to the

parameters introduced in the last section. If a proposal uses more than a technique in their

implementations, we consider the most signi�cant one for classi�cation purposes. Nevertheless,

in section 5 we make a crossover comparison taking into account all the techniques used in

each of the proposals discussed before.

This section has two parts. Section 4.1 presents works that use the Distributed Shared Memory

model for inter-process communication, whereas section 4.2 describes works that use the

message passing model. In each section, we divide works according to their implementation

strategy and within each strategy we categorize works based on the modi�cations they

introduce to the language's semantics and syntax. At the end of each part, we summarize

the reported works.
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Inter-process Communication using The Distributed Shared-Memory Model

Java's Semantics / Syntax Unmodi�ed

Changes to the JVM

This section presents systems that provide the shared-memory abstraction, through changes

made to the internals of the basic JVM, transparently, i.e., without modifying either the

semantics or the syntax of Java. Two systems fall on this class: MultiJav [12], and cJVM

[1, 2, 3].

MultiJav

One of the main objectives of MultiJav is to maintain the portability of the Java language,

allowing its use in heterogeneous hardware platforms. The MultiJav's approach is to implement

itself the distributed shared-memory (DSM) model into Java by modifying the JVM, while

using Java constructs to support concurrency, thus avoiding changing the language de�nition.

Sharing is object-based in MultiJav. An apparent shortcoming of MultiJav is that all the

objects are potentially shared, since the programmer cannot declare which objects are to

be shared. However, the MultiJav runtime system through an analysis of the load/store

instructions of the bytecode being executed can detect automatically which objects should be

shared, catering for their consistent usage. This technique seems to be the main contribution

of the work. Di�erent threads are permitted to access variables of a same object. Thus a

signi�cant amount of false sharing may occur. MultiJav uses a multiple-read / multiple-write

protocol to alleviate the potential false sharing.
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A MultiJav program begins execution in one virtual machine, named root, but spawned threads

can migrate to another machine, afterwards. In order to attain to the standard Java semantics,

monitors are global to all the sites that participate in a computation. Thus, each participating

site contains queues with local threads and requesting threads, which represent the threads of

higher priority in remote sites that requested access to the monitor. The changes in objects

are detected at execution time through the use of a di�-like mechanism [30], and updates are

recorded and disseminated at synchronization points.

Some implementation issues in MultiJav are still open. For instance, the use of MultiJav

in heterogeneous systems requires a full implementation of the support mechanisms on each

target platform in order to allow heterogeneity, but the authors do not estimate the e�orts

required for such a task. Also, the overheads that the adopted synchronization management

mechanism introduces are unclear. Unfortunately, a performance analysis is not available for

MultiJav, perhaps because has not been implemented yet.

cJVM

cJVM [1, 2, 3] has been developed at IBM Haifa Research Laboratory in Israel. cJVM supports

the idea of single system image (SSI) in which a collection of processes can execute in a

distributed fashion with each process running on a di�erent node. To implement the SSI

illusion, cJVM uses the proxy design pattern [19].

In cJVM (see Figure 3) a new object is always created in the node where the request was

executed �rst. Every object has one master copy that is located in the node where the object

is created; objects from other nodes that access this object use a proxy.

Copyright c 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{6

Prepared using cpeauth.cls



20 M. LOBOSCO, C. AMORIM AND O. LOQUES

Figure 3. The master copy (MC) of object C was created at host 1 since it was the �rst node to make

reference to this object. Object B accesses object C through C's proxy. The proxy then forwards the

method invocation to the MC of the object C.

Aiming at performance optimization, during class loading, its associate methods are classi�ed

according to the way they access the object �elds. Thereafter, the classi�cation helps to choose

the most eÆcient proxy implementation for each method. Three proxy types are supported:

(a) standard proxy which transfers all the operations to the master copy; (b) read-only proxy

which applies the operations locally, based on the fact that it is guaranteed to access only

�elds that never change, so the proxy can replicate and maintain these �elds; and (c) proxy

that locally invokes methods without state, since these are methods that do not access object

�elds.

The introduction of proxies and redirection of methods make the execution stack to be

distributed among multiple threads across di�erent machines. Thus, to ensure that programs

execute correctly, cJVM treats Java calls that access the heap in a special manner. The bytecode

that accesses the heap is modi�ed so that cJVM can determine whether accesses to the data

are local or remote to the node where the bytecode is executed. If data is remote, the necessary
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remote accesses are carried out. In order to support both remote accesses and redirection of

methods, each cJVM process contains a group of threads that are responsible for receiving

and serving such requests.

cJVM also modi�ed the semantics of the new opcode, allowing the creation of threads in remote

nodes. If the parameter for this opcode is a class that implements Runnable, then the new

bytecode is rewritten, as the pseudo bytecode remote new. This pseudo bytecode, when executed,

determines the best node to create a new Runnable object. A pluggable load balancing function

makes the choice of the best node. Notice that the thread creation approach di�ers from the

one used for object creation, which creates the object in the node where the request was

executed �rst.

The Portable Business Object Benchmark (pBOB) was used to evaluate performance of cJVM

against that of Sun JDK1.2. pBOB was inspired on the TPC-C benchmarks [46] and consists

of N warehouses composite objects that represent customers, stock items, orders, etc., which

concurrently execute transactions against their warehouses. The results showed speed-up of

3.2 for four nodes, but on considering that the application is highly parallel a linear speed-up

or so should be expected. The hardware platform used in the experiments was not described.

Further performance studies are needed, especially for other classes of application, such as

those described in [26].

Modi�cation of Java's Semantics / Syntax

Changes to the JVM

Java/DSM
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Java/DSM [52] under development at Rice University was the �rst proposal to support a

shared-memory abstraction on top of a heterogeneous network of workstations. The main idea

behind Java/DSM is to execute an instance of JVM in each machine that participates in

the computation by using a system that combines Java portability with TreadMarks [30], a

software DSM library, which enables the JVM to be extended across the network.

Java/DSM is similar to the systems presented in the last subsection (e.g., MultiJav), except for

the changes to Java's semantics. In contrast to those systems, the heap is allocated in the shared

memory area as shown in Figure 4, which is created with the use of TreadMarks, and classes

read by the JVM also are allocated automatically in the shared memory. Two restrictions are

imposed to the programmer: (a) a thread cannot migrate between machines; and (b) thread's

location is not transparent. The �rst restriction hinders dynamic load balancing activities,

preventing thread's migration from overloaded processors to idle ones, whereas the second

restriction requires the programmer to be aware of thread's location.

Java/DSM extends the Boehm and Weiser collector [8], which is a distinguishing contribution

of the work. The garbage collector of each machine maintains two lists; one containing remote

references for objects created locally (export list), and other keeping references to remote

objects (import list). The lists contain an estimate of the actual cross-machine reference set,

which are used only for garbage collection purposes. Before a message is sent to other machine,

the runtime DSM support invokes the garbage collector that inspects the message contents, in

order to verify if it contains valid references to local objects and references that are identi�ed

are inserted in the export list. Likewise, incoming messages are inspected and references to

remote objects are collected and inserted in the import list. Garbage collection is performed
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Figure 4. The heap in Java/DSM is shared among all Java/DSM nodes.

using a weighted reference counting algorithm to decide when a reference can be discarded

of the export list. For most of the time, each machine independently executes the garbage

collection, although some synchronization operations are required once a while in order to

take care of cyclic structures.

Since Java/DSM is intended to work on a heterogeneous hardware platform, data conversion is

required. For data conversion, the data type is �rst identi�ed, which in turn determines the form

from which the conversion should be done. In order to perform object identi�cation eÆciently,

Java/DSM requires that only objects of the same size can be allocated in a given page. In

addition, an extra �eld, which contains a pointer to the handle, is added to the object's body.

Note that the Java standard object representation includes only two components: the handle

and the body. The handle contains a pointer to the structure that stores type information of

all the �elds, and also a pointer to the body. Java/DSM adds a back pointer from the body

to the handle. These modi�cations simplify the task of locating the descriptor of each object's

type. More speci�cally, given any address, Java/DSM can promptly identify the page number

and know the size of the objects the page contains. Once it is found the beginning of the object
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to which the address belongs to, the back pointer can be followed to discover the object's type,

which in turn allows the conversion to proceed quickly.

So far, Java/DSM's attempt to provide a heterogeneous software DSM has not been fully

achieved. Although preliminary comparison between Java/DSM and standard Java RMI was

reported in [52] using an experimental distributed spreadsheet with support for collaborative

work, the results were super�cially described without presenting any performance �gures.

Changes to the Compiler

Jackal

Jackal [49], from Vrije University in The Netherlands, implements a software DSM abstraction

on a cluster through a special run time support and an associate compiler. The compiler,

which generates native code, is also used to make optimizations, such as data prefetching.

Jackal required some semantics change to Java, however.

The Jackal runtime system implements a cache coherence protocol for the memory units,

called regions, which are de�ned as either objects or �xed-size array partitions. The coherence

protocol is based on self-invalidation, which every time a thread reaches a synchronization

point it invalidates its own data, ensuring the coherence of subsequent accesses. Although

such protocol is simple it can invalidate data that will not be touched by any other node, thus

adding unnecessary overheads to the coherence mechanism. To implement the self-invalidation

protocol, each thread maintains a control list of the areas accessed for reading and writing

since the last synchronization point. At synchronization points, cached copies in the list are

invalidated and modi�ed regions are sent to their original locations.
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Jackal uses a home-based coherence protocol in which the home nodes allocate regions and

requests for regions are sent to their corresponding homes. To avoid unnecessary address

translation, each area refers to the same virtual address across the machines. The compiler

generates an access validation every time a �eld of either an object or an element of an array

is accessed. This veri�cation determines whether or not the region referenced by a pointer

contains a valid local copy. In the case of detecting an invalid access, the runtime system

contacts the home node, requests a copy of the area, and stores the received copy in the same

address location it is kept in the home node.

Jackal implements both local and global garbage collection based on the mark-and-sweep

protocol. When a node is out-of-memory, it executes a local garbage collection. As long as the

collection is made locally, no synchronization is necessary. However, the local garbage collector

(GC) cannot discard objects that are referenced by other objects in remote nodes. When the

amount of this kind of objects becomes suÆciently large, the local GC algorithm may not

be able to release enough memory, and the global GC phase is started. The main cost of the

global GC is due to the amount of communication and synchronization among the involved

nodes.

Jackal provides a memory model that di�ers from the Java standard. In Jackal, it is taken

for granted that programs: (a) are race-condition free; (b) have suÆcient synchronization

declarations for concurrent read/write accesses to objects or arrays; and (c) apply such

synchronization declarations to the whole object or array.

A micro benchmark was executed to measure the overhead of garbage collection, including

access validation plus latency and throughput of object transfers. All tests were run on a
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cluster of 200MHz Pentium-Pros, running Linux, connected by a Myrinet network, using LFC

[7] as the communication layer. The results showed that the local GC performance was worse

than that of JDK whereas the relative overhead for the global GC was less than 5%. The access

veri�cation code added an overhead of 14% approximately. For transferring small objects, the

average latency was 35.2 �s and throughput varied from 3.9 Mbyte/s to 24 Mbyte/s, depending

on whether the compiler activates prefetching or not. Other benchmarks were also executed:

SOR, Ray-tracing, and a Web server. The results showed that prefetching as generated by the

compiler contributes signi�cantly to the reduction of SOR execution time and in Ray-tracing,

both the runtime system and garbage collection generated a large overhead. The results from

the Web server were not made available.

Using Java Library

This section presents systems that provide the shared-memory abstraction through the

implementation of a Java library that modi�es either the semantics or/and the syntax of

the language. Two systems fall in this category: Charlotte [28] and Aleph [23], from Brown

University.

Charlotte

Programs in Charlotte alternate sequential and parallel steps. The application has a manager

that executes the sequential steps and controls execution of the parallel steps (de�ned with

parBegin() and parEnd() constructs). In the parallel steps, routines are de�ned and distributed

to the workers, which are applets executing in browsers. At the end of each parallel step, a

barrier synchronizes all the running routines.
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The memory in Charlotte is logically partitioned into private and shared segments. The shared

memory has concurrent-read, exclusive-write semantics and is implemented at the data type

level, with Charlotte classes corresponding to the primitive types. The access to the shared

data is made through special methods: get() and set(). In Charlotte, sharing is object-based.

In a read access, if it is detected that an item is invalid then a new copy is requested to the

object manager. In a write access, the object is marked as updated so that all of the modi�ed

objects are sent back to the manager at the end of the routine execution.

Read accesses can take a long time to request data to the manager, especially in environments

with high communication latency. In order to reduce read overhead, every read operation

retrieves a group of objects from the manager instead of one. It is up to the programmer,

with the use of appropriate annotations, to give Charlotte some information of which data

will be really used by a routine. This procedure is also adopted for write operations. The

annotations for accessing groups of data resemble read / write operations used in the message-

passing approach; the di�erence is that the data does not need to be explicitly read / write

using primitives like send/receive. Charlotte allows the veri�cation of annotations at runtime.

In this case, even if the programmer makes incorrect annotations in the code, the program

may continue to work correctly. The overhead of this veri�cation can be transferred to the

compiler. The use of annotations may be e�ective on improving performance of an application

and it is the main contribution of the proposal. However, to take advantage of annotations, a

good knowledge of the application is required from the programmer. Moreover, it is unclear if

irregular applications could get a signi�cant bene�t from such an approach.
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The Charlotte author suggested additional optimizations: since the manager knows the data

that is currently valid for each worker, it can allocate to a given work routines that operate on

the data already owned by that worker, thus minimizing the amount of extra data to be moved

around. Another possible optimization is to keep intact all local data stored in a worker at the

end of a parallel step (instead of invalidating the data, as Charlotte does), and overwrite this

data with new values only when necessary. The programmer can declare shared variables as

not modi�able in order to help the implementation of this cache-like optimization. Charlotte

also provides fault-tolerance and a mechanism for adaptive parallelism.

In [28] execution times for a matrix multiplication application are presented, and results for

several versions of Charlotte are compared with a version of the code for the same application

based on message passing. The results indicate that, for the version of Charlotte that does

not verify annotations during execution time, assuming that the compiler could do it, yields

execution times that are competitive with message passing implementation.

Aleph

A distributed Aleph program executes on a number of logical processors, called Processing

Elements (PE). Each PE is a JVM with its own address space. Aleph allows threads to start in

remote processors, and to communicate with shared objects (with transparent synchronization

and caching) or using message passing, including also an option for reliable orderly multicast.

To share objects, Aleph provides the class GlobalObject, which allows PE's to share any

serializable object. In order to use a global object the programmer should explicitly invoke

open(), which also sets the object's access mode. A release() method is available to explicitly
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Figure 5. The Arrow Protocol. Each processor element (PE) uses a pointer to indicate the path that

must be followed to reach a given object. If a PE points to itself, either the object is located within

the PE or it will be shortly moved to it (represented by the square in the picture). If the link points

to another PE, then the object belongs to a tree's component.

release global objects. The methods of GlobalObject class invoke the directory manager, which

is a system object in charge of maintaining the replicated copies of distributed shared objects.

Aleph implements three di�erent directory protocols: home-based, the arrow protocol, and a

hybrid protocol, which is a combination of both. In the case of the home-based protocol, an

object can have both a single read/write copy and multiple read-only copies. Aleph introduces

the arrow protocol (see Figure 5), which works on a spanning tree covering all the PEs. Each

PE keeps a pointer, called arrow, which points either to itself or to one of its neighbors on

the PE's tree. If a PE points to itself, then either the object is located in or it will be shortly
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moved to that PE. Otherwise, if the link points to another PE, then the object belongs to a

component of the tree. Informally, it can be said that, if the PE is not owner of an object,

it knows in which direction the object can be found. The hybrid protocol assumes that each

object has a home that only knows the last PE that requested the object.

Aleph also permits the program to use the message-passing approach. Messages in Aleph

are loosely modeled on active messages [16] where each message encompasses a method and

its arguments, which is invoked on message arrivals. New classes of messages are de�ned

by extending the abstract class aleph.Message. The programmer must provide then a run()

method, which will be called at the receiver upon message arrival.

Results are presented for the three directory-based protocols on executing an application that

evaluates the time needed for a group of machines to increment a shared counter. An equivalent

comparison is also made for applications including Cholesky, Ray-tracing, and TSP (Traveling

Salesman Problem). The results are presented qualitatively using bar graphs, without showing

performance �gures or performance comparison against sequential algorithms, which limit the

analysis. The use of a library to implement the environment may suggest poor performance;

especially when compared to those implementations that either modify the JVM or rely on

compiler support.

Summary

MultiJav, cJVM, Java/DSM, Jackal, Charlotte, and Aleph chose the distributed-shared

memory (DSM) model as their main approach for inter-process communication. However,

Charlotte and Aleph have some particularities: Charlotte gives to the programmer the option
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of using annotations that resemble read / write operations of the message-passing model. Aleph

also permits message passing, although the DSM model is the main focus of the work.

MultiJav keeps unchanged Java's semantics and syntax, despite of introducing the distributed

shared memory model by modifying the JVM. Such an approach o�ers two advantages: (a)

the potential of reusing standard JVM code, and (b) application performance is better than

using Java library. MultiJav o�ers also an automatic mechanism for detecting shared data.

The disadvantages of MultiJav are (a) lack of interoperability with others implementations,

and (b) less portability when compared to library implementations.

In comparison with MultiJav, Java/DSM has two disadvantages: (a) Thread's location is

not transparent; and (b) threads cannot migrate, which prevents dynamic load balancing.

Unfortunately, both Java/DSM and MultiJav have not presented any performance results, so

far.

cJVM is similar to MultiJav since that both keep unchanged the Java's semantics / syntax and

extend the JVM to support DSM. However, they di�er in the way that DSM is implemented.

cJVM prefers the proxy design pattern (PDP) [19] to implement the Single System Image

abstraction. In the PDP model, there is just one instance of object (called master) for all the

hosts that participate in the computation. All the other hosts access the master copy through

proxies. Note that a shortcoming of cJVM is that object master copies may become potential

JVM bottlenecks. MultiJav allows multiple copies of instances of objects to coexist, uses a

diÆng mechanism to detect changes made to the objects at execution time, and disseminates

updates at synchronization points. Java/DSM uses the TreadMarks software DSM library that
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implements also a similar diÆng mechanism. An interesting feature of cJVM is that it enables

the programmer to control system load by o�ering an attachable load balancing function.

Jackal combines an extended Java compiler and run-time support to implement the DSM

abstraction. The Jackal compiler inserts code for access validation every time an object or

array is accessed. Performance results were reported and showed that access validation is an

expensive operation, causing overheads near 14%. Another source of signi�cant overhead in

Jackal is the use of self-invalidation protocol in which data are invalidated even if data have

not been modi�ed by any other node. Also, Jackal's new memory model is also arguable.

By implementing DSM using Java library, Charlotte and Aleph have some pros and cons. For

instance, both favor program portability over performance loss when compared with MultiJav,

cJVM, or Java/DSM. In addition, Charlotte o�ers to the programmer the option of using

annotations in the code to improve performance, which may be e�ective depending on the

programmer's knowledge of the application, whereas Aleph introduces the arrow directory-

based protocol. Overall, both works reported few performance results, thus it is important

that more experiments be carried out before any conclusion can be withdraw from those

proposed environments. Indeed, Challote might investigate whether regular applications can

bene�t or not from annotations, and Aleph's authors might investigate how well the arrow

protocol and its hybrid version perform across several classes of applications.

Inter- process Communication using the Message Passing Model

Java's Semantics / Syntax Unmodi�ed

Using Native Library
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mpiJava

The mpiJava [5], from NPAC at Syracuse University, is a Java interface for existing MPI

[39] implementations. mpiJava is made relatively simple by using Java wrappers from the

Java Native Interfacex (JNI) to make MPI calls. However, Java requires modi�cations to both

syntax and semantics of several MPI functions. For instance, send and receive functions can

only transfer single-dimension arrays of primitive data types. Similarly, the argument list of

some functions requires some changes to accommodate the fact that in Java arguments cannot

be passed by reference in Java.

Some MPI functions omitted the argument that indicates the array size, since this can be

obtained through the Java's length method. The MPI destructor function is called by the

Java's �nalize method, except for Comm and Request, which have explicit Free members. The

introduction of explicit calls to a method that releases memory breaks up the Java's memory

management semantics, since the programmer must explicitly free the allocated memory.

Some experimental results, using both models of shared memory and distributed memory, show

that mpiJava adds a fairly low overhead when compared with native implementations. This

result is partly due to the fact that the performance comparisons measured execution time of

native code against that of interpreted code, and therefore the performance di�erence can be

attributed mostly to the JVM. The results were obtained using both: (a) WMPI, a Windows-

xJNI is a programming interface for writing Java native methods (methods used by a Java program but written

in a di�erent language) and embedding the Java virtual machine into native applications.
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based implementation of MPI, running on two dual processor (P6 200MHz) Windows NT 4

workstations with 128 Mbytes of DRAM, and (b) a Solaris version of MPICH, running on

two dual processor (200MHz Ultrasparc) Solaris workstations with 256Mbytes of DRAM. The

mpiJava overhead under WMPI was about 100 ms whereas the MPICH overhead was between

250 and 300 �s, that is signi�cantly lower.

Java-to-C Interface Generator (JCI)

The Java-to-C Interface Generator (JCI) [21] has been developed at IBM T. J. Watson

Research Center. JCI is a Java interface generator to C similar to Java Native Interface.

Although JCI is not intended to be an environment for high-performance computing, Java

programmers can use JCI to bene�t from native libraries such as MPI, to improve performance

in high performance applications. The input to JCI is a header �le that contains prototypes of

C functions provided by the native library. JCI then generates �les with stubs for C functions,

declarations of Java native methods, and scripts for compilation. JCI allows Java programmers

to use native library packages, such as MPI and the ScaLAPACK linear algebra package.

Some restrictions of mpiJava are not found in JCI, or they can be eliminated using some

methods and functions that are available in the JCI tool kit. For example, JCI can create a

mapping between absolute and relative C's addresses; JCI.ptr is a method similar to the C's

operator & which is generated by JCI. Derived types, like MPI TYPE STRUCT, can also

be used provided that they follow the data layout as described in the language speci�cation.

In case of multidimensional arrays, the programmer needs to adapt such structures to one-

dimensional arrays.
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Java's array of arrays is de�ned as an array of pointers to array objects instead of a contiguous

two-dimensional array. Actually, an array in Java is described using MPI TYPE INDEXED

rather than MPI TYPE contiguous, as it would be in C. However, the programmer has to

reallocate arrays in memory in order to make them contiguous, before they can be passed

to native functions. The reallocation overhead can be high for large arrays, so JCI designers

represent matrices as one-dimensional arrays.

In order to pass array blocks, with blocks beginning at certain indexes, as parameters in

function calls, which is not possible under Java, JCI creates the method JCI.section (array,

index).

A performance comparison was carried out between C and Fortran-77 code and Java linked

with native libraries using two benchmarks: IS, from the NAS suite, written in C, and

MATMUL, from the PARKBENCH suite, written in Fortran-77. The IS benchmark runs

on two di�erent platforms: (a) a Fujitsu AP3000 (Ultrasparc 167 MHz nodes); and (b) an

IBM SP2 system (120 MHz P2SC processors) using a IBM's port of JDK 1.0.2D, the IBM

Java compiler hpcj, which generates native RS/6000 code, and Toba 1.0.b6, which translates

Java bytecode into C. The MATMUL benchmark runs on a Spark workstation cluster and on

an IBM SP2 system (66 MHz Power2 \thin1" nodes). The results showed that Fortran-based

MATMUL outperforms Java from 5% to 10% whereas Java -based IS were twice slower than C

versions. The explanation is that in MATMUL most of the performance-sensitive calculations

were performed by the native code.

A lot of works describe Java binds either to MPI or to PVM, and can also be placed in

current section (interprocess communication using message passing, Java's syntax / semantics
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unmodi�ed, use of native library). JPVM [17] presents a simple front-end to PVM. JPVM [45] is

an interface that was developed using features of native methods and allows Java applications

to use PVM. MPIJ [15] is a Java-based implementation of MPI integrated with DOGMA

(Distributed Object Group Metacomputing Architecture). JMPI [14] is an MPI environment

built on top of JPVM [42]. JavaWMPI [37] is a MPI version built on MPI for Windows.

Changes to Java's Semantics / Syntax Changes

Changing the Compiler

Manta

Manta [48, 35, 40] is a Java system for high-performance computing that uses a native compiler

to translate from Java directly to executable code. A disadvantage of Manta is that some

changes were introduced to the semantics and syntax of Java.

Besides compilation, Manta tackles three main sources of Java's overheads: serialization, RMI

streams and dispatch, and the network protocol. For serialization, Java uses a structural

reection mechanism to determine at run time the type of each parameter passed within

remote calls. The idea behind Manta is that most of serialization/un-serialization codes must

be generated at compile time, thus reducing the overheads of dynamic inspection. Manta's

protocol for serialization has also some scope for optimization. For example, in case of an

array of primitive types, a direct copy from memory to a message bu�er is made, avoiding the

traversal of the whole array. A hashtable is also used to keep serialized objects (the hashtable is

created only if parameters in remote calls are objects). Whenever a replicated object is found
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Figure 6. The structures of Sun (leftmost) and Manta RMI protocol. Layers in dark denote compiled

code.

the hashtable is accessed. Manta attempts to improve program performance by decreasing the

number of layers used originally in the RMI protocol, so that fewer operations are required

for parameter copy and method calls. As an example, the parameters of a remote invocation

are directly copied to a bu�er, while in the RMI protocol several copies need to be made.

Another important factor that contributes to Manta's better performance is the fact that

Manta's runtime system is written in C, while all the Java RMI layers are mostly interpreted.

Figure 6 compares the layer's organization of the protocols. Finally, RMI uses the TCP/IP

protocol while Manta relies on a more eÆcient protocol. Manta's choice was for Panda, a user's

level communication library that has independent interfaces to both the hardware and network
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protocol. For the Manta tests using the Myrinet switch, Panda was implemented on top of

LFC [7].

In Manta, the computation nodes use an optimized RMI protocol for communication that

might cause interoperability problems with other JVMs since Manta has modi�ed the original

Java protocol. Furthermore, RMI methods can be polymorphic, so Manta must be able to

receive and send bytecodes in order to interoperate with other Java virtual machines. Given

that the Manta compiler generates native code, using the optimized protocol among Manta

machines and the standard RMI between Manta and other Java virtual machines can solve

the interoperability problem. The Manta' solution to the polymorphism problem is to let the

compiler generate both bytecodes and native code. The former is placed in a HTTP server,

allowing remote JVMs to access them. In case of receiving bytecodes from a remote JVM, the

received bytecode is dynamically compiled to object code, and soon after the object code is

linked to the application, using the operating system's dynamic linking interface dlopen().

The RMI protocol and the garbage collector work together by maintaining the reference paths

made by the computation nodes. Manta uses a local garbage collector based on the mark-

and-sweep algorithm [38]. Each computation node executes its local garbage collector, using

a dedicated thread that is activated by either the runtime system or the user. A distributed

garbage collection is implemented across the local garbage collectors, using the mechanism of

reference counting [13] for remote objects.

The performance impact of all the above optimizations appears when Manta is compared with

JDK. For the simplest remote call without any input parameters or result, the Manta latency
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is 35.2 �s{ against 1210.14 �sk and 1719.87 �s5 for JDK w/o JIT, respectively. The JDK

versions 1.1.3 and 1.1.6 were used when running without JIT and with JIT, respectively. This

result is overestimated because Manta and JDK used di�erent switches (Myrinet in Manta

x Fast Ethernet in JDK) with signi�cant di�erence in both latency and e�ective bandwidth

delivered to the application.

Manta alsoshows performance results for TSP (Traveling Sales Person), SOR (Sucessive Over

Relaxation) and IDA* (Iterative Deepening A*) benchmarks, which were widely favorable to

Manta when compared with JDK performance. In [40] are also reported uses of Manta in

metacomputing applications.

Manta modi�ed the syntax of Java by introducing the reserved word remote, which permits the

programmer indicate which classes can be remotely invoked, and replace the language standard

mechanism that requires the inheritance of the class java.rmi.server.Unicast.RemoteObject.

This new operator provides support to the creation of objects in remote machines. These

syntax modi�cations prevent Manta from reusing code written for other Java machines.

Other characteristics limit the use of Manta, too. For instance, some of Java's characteristics

were omitted to optimize the RMI protocol, by arguing that they could reduce performance and

were not necessary for high-performance computing. The shortcomings of such an argument

are twofold: the programmer cannot reuse old code, and he/she has to adapt to the Manta

programming style. Another restriction is that all processes that participate in the computation

{Running on a 200MHz Pentium Pro, 128Mb of memory, connected by 1.2Gbit/sec Myrinet running BSD/OS

3.0.

kRunning on 300MHz Ultrasparc running Solaris 2.5.1 connected by 100Mbit/s Fast Ethernet.
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should start at the same time. Furthermore, Manta does not support the heterogeneity and

safety of the Java model.

Using a Pre-compiler

JDPE (Java Dates Parallel Extensions) [51] and JavaParty [42] propose semantics and syntax

changes to Java and developed a pre-compiler to support the changes they introduced. The

message passing approach is used to enable inter-process communication.

JDPE

JDPE focus on the potential bene�ts of including some characteristics of High-Performance

Fortran, such as the distributed array model, array intrinsic functions, and libraries, which

could make Java an attractive language for programming in the SPMD model.

JDPE provides distributed arrays as language primitive and distributed control constructs to

facilitate access to the elements of a local array. Under this model, programmers need not

to know the physical location of any particular array element. To do so, JDPE introduces

three new classes: Group, which de�nes a group of processes to which the elements of an array

are distributed; Range, which describes the extent and mapping of an array dimension to the

dimension of processes; in other words, Range maps an interval of integers to the dimension

of processes according to a given distribution function; Location, which is an abstract element

of Range, hence Range can be considered as a group of Locations. In addition, there still exist

the new two classes: Subrange and Subgroup, which de�ne sub-ranges in the Range and Group

objects, respectively. A distributed array is declared using the symbols "[[" and "]]" and by

passing objects of the class Group and Range, or their subclasses, as parameters.
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Three control operators, namely at, on, and over, enable distributed execution where each

process executes correctly a particular subset of a distributed array. JDPE's active process

construct de�nes the group of processes that share an active thread of control which can

be explicitly established through the control operator on, for example, on (p) f...g. In the

construct body, the group of active processes is changed to the p group, and all the operations

on the distributed arrays are executed on this active p group. The at operator is similar to on,

except that its body is executed only in the processor that is the owner of a speci�c location.

As an illustration, consider the following piece of code: Location i = x[13]; at (i) f...g, the

commands within the body of at are executed in the processor that owns the location 13 of

the array x. The over operator implements a distributed parallel loop.

Collective communication libraries are supplied to the JPDE programmer to ease his task of

controlling the data movement in a distributed environment. Some basic Library commands

are described, as follows. The copy command allows elements of a distributed array to be

copied to another array, independently of the distribution format. The remap command copies

a group of elements and redistributes them to another distributed array. The elements can

be distributed to the same group of processes or distributed to a di�erent group. The shift

command moves a certain amount of elements of a given dimension either in a cyclic or o�-edge

way. The writeHalo command supports ghost regions in the communication, allowing reducing

the amount of memory copies and communication traÆc during collective communication.

Communication is deadlock free and new communication libraries can be integrated to the

supplied library. The JDPE environment comprises a pre-compiler and runtime libraries.
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Cholesky and Jacobi applications were used for performance evaluation purposes, but the

performance results reported are unclear.

JavaParty

JavaParty [42] supports distributed parallel programming in heterogeneous clusters by

extending Java with a pre-processor and a run time system. JavaParty implements a shared

address space in such way that local and remote accesses to both methods and variables are

identical.

The main alteration to the language was the introduction of a new reserved word, called remote.

Remote allows programmers to indicate which classes and threads should be distributed across

machines within a cluster. It is not necessary, however, to indicate in which machine an object

will reside, nor the communication mechanisms between objects. The run time system and

compiler are responsible for this work, as well as, for dealing with of network exceptions

caused by the communication system. The distribution of objects and threads is implemented

by the run time system using the strategy �� design pattern, which could be also modi�ed at

run time.

The run time system implements load balancing, network partition, and monitoring of

interactions between objects. In this way, the run time system, or even the programmer,

can migrate objects to increase their locality. This issue is completely ignored by the Java

execution environment. Indeed, if one of two objects invokes a method at the other using

��The Strategy design pattern is a behavioral pattern that provides a way to select from multiple, related

algorithms to accomplish a task.
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RMI, Java activates the RMI mechanism even if they share the same machine. In contrast,

JavaParty will check the object location and a local method invocation will be made. The local

method invocation takes 0.7�s against 2.8ms of a RMI invocation, thus the penalty for using

RMI unnecessarily is very high, up to 4000 times slower.

Another alteration introduced to the language is the permission for methods and static

variables to be remotely accessed, which is not allowed with RMI. JavaParty's pre-compiler

generates two classes for each remote object that declares static items: one that maps instance

variables and instance methods, and another for class variables and class methods (static).

A third class is generated to give the programmers transparent access to the two generated

classes; this class has the same name and interface of the class originally declared by the

programmer.

The JavaParty work reports no performance results and gives examples to illustrate only how

the compiler generates code for static methods and variables.

Using a Java Library

Java//

Java// [10], developed at the INRIA in France, is a Java library for sequential, distributed, and

multithread programming, which requires no modi�cations to the Java execution environment.
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Java// resorts to concepts such as rei�cation from Computational Reectionyy and Proxy

Design Patterns [19] in order to facilitate its implementation.

In respect to the object vision, both Java// and Java support passive objects but only Java//

supports active objects (threads and actors), thus changing the semantics of the standard Java

object. An active object is composed of an object as declared by the programmer, and a body,

that is the associated object that owns the queue of pending method invocations for an object.

Java// o�ers three mechanisms to declare active objects: (a) calls to the Java//.newActive

method, which extended the new functionality to allow the declaration of active objects; (b)

calls to Java//.turnActive which transforms a passive object already declared into an active

object. Note that both Java//.newActive and Java//.turnActive give to the programmer the

option of creation of the object in a remote node. The third mechanism implements the Active

interface.

To implement active objects, the designers of Java// created a new mechanism based on two

components: (a) a request queue for each object, where pending invocations can be stored;

and (b) a thread for managing the queue. The object, which is the owner of a request queue,

is denominated Body. Pending requests are executed asynchronously, and the execution order

depends on the selected synchronization policy. The body object follows the FIFO behavior if

the programmer provides no policy.

yyBehavioral (or Computational) Reection can be de�ned as "the ability of the language to provide a complete

rei�cation of its own semantics (processor) as well as a complete rei�cation of the data it uses to execute the

current program".
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The concept of future object is applied for inter-object synchronization. A future object is

simply an object created to make possible an immediate return from a method invocation. In

this way, the thread that made the invocation can continue its execution as long as it needs not

to invoke methods in the returned object, otherwise the invoking thread blocks automatically.

This concept is transparent to the programmer, so no change to the invoking thread is required.

A future object is created whenever a method is invoked in an active object. This principle is

known as wait-by-necessity, and it is data-driven synchronized. In some situations, however,

this synchronization type is not used, for example, when the return type is either primitive or

�nal. There are situations in which the synchronization is not directly tied up to the invocation

of a method within an object. In such cases, two other methods are available: Javall.wait(obj),

which explicitly waits for the object obj and javall.isAwaited(obj), which returns a boolean

value which indicates whether the object obj is awaited or not. The latter method allows a

thread to carry out any useful task instead of keep waiting for the object obj.

For each class, Java// centralizes intra-object synchronization within a special method called

live. If the class does not provide this method, the Body queue manager uses its own standard

live method, which obeys the FIFO policy. If a class implements Active (to turn an object

active), the programmer can overwrite the standard policy provided, by managing explicitly

the request queue through the methods serveOldest(), serveOldest(method met), serveOldestBu

(method met), and waitARequest() implemented by the Body. For implicit synchronization the

method forbid (method, condition) is used, which works as a guard, impeding the access to

the method method when the condition condition is true.
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For illustration purpose, two applications, namely matrix multiplication and a collaborative

application that uses a Ray-trace algorithm, were described though performance results were

not presented.

UKA-Serialization and KaRMI

Serialization and Java RMI are two main sources of overheads that UKA-Serialization and

KaRMI [43] approaches attempt to reduce, respectively. Although similar to Manta objectives,

these approaches are radically new in the sense that no compiler support is required and the

resulting code is portable since UKA and KaRMI are written entirely in Java. The central

idea is that programmers replace both the serialization mechanism and the remote invocation

of the language by library calls that implement several optimizations to improve performance.

UKA-Serialization tackles the serialization problem in four di�erent fronts: type coding,

internal bu�ering, bu�er accessibility, and maintaining type information upon hashtable reset.

The type-coding problem happens because Java has to keep enough information on persistent

objects stored in disks so that the objects can be retrieved afterwards, even if the bytecode used

originally to instantiate objects has been discarded. In general, parallel programs executing on

clusters do not require high degree of persistence, because object's lifetimes are often shorter

or equal to the task execution time and that all nodes in a cluster have access to the same

bytecode, through the common �le system. Given that the UKA-Serialization uses a textual

form to represent classes and packages, the type coding is simpli�ed and the serialization

performance is improved signi�cantly.
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Each remote method invocation should begin with a clean hashtable in such a way that

objects that are re-transmitted will hold their new states. For implementing this property,

two alternatives can be used, either creating a new serialization object for each method

invocation or calling the reset method in the serialization object. The e�ect of both is to clean

the information of all objects that were previously transmitted, including type information.

The UKA-Serialization thus creates a new reset method, which cleans only the hashtable,

maintaining the type information una�ected.

The implementation of serialization in JDK presents some problems related to the use of

bu�ers. First, JDK implements bu�ered streams on top of TCP-IP sockets and no bu�ering

strategy is implemented in the receiver, thus it ignores the number of bytes required to perform

marshaling operations to objects. The authors argue that this approach is too general since

it does not explore any knowledge about the number of bytes of the object representation.

In contrast, the UKA-Serialization handles the bu�er internally so as to take advantage of

the object representation. Moreover, the optimized bu�ering strategy reads all the bytes of an

object at once.

Second, bu�er access is ineÆcient in that JDK bu�ers are external, thus if a programmer wants

to write directly into a bu�er he/she must use special writing functions, which causes overheads.

The UKA-Serialization itself implements the required bu�ering, thus avoiding additional

method invocation. By making the bu�er public, UKA-Serialization enables marshaling

routines to write data straight to the bu�er.

KaRMI tries to improve performance of the Java RMI through several optimizations. For

instance, a clean interface between RMI layers was elaborated which o�ers two advantages: (a)
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the RMI invocation requires just two additional invocations; and (b) eÆcient implementation

of the transport layer could be made. As a result, each KaRMI remote call creates just one

object against 26 objects in the RMI. Similarly, KaRMI executes native code when interacting

with device-drivers, whereas RMI makes two calls to native methods for each argument or

return values di�erent from void, and more �ve native calls for each remote invocation.

The results show that UKA-Serialization reduces object serialization time from 76% up to 96%,

when compared with JDK serialization. For KaRMI, three classes of benchmarks were used:

(a) kernels that test RMI calls between two nodes; (b) kernels that test the overload of the

server from calls issued by several clients; and (c) speci�c applications, such as the Hamming

problem, ParaÆn Generation, and SOR. The benchmarks were executed on two di�erent

hardware platforms: (a) two PC Pentium II 350Mz, running Windows NT 4.0 Workstation,

isolated from the LAN, and connected to each other by Ethernet, JDK1.2 (JIT enabled); and

(b) a cluster of 8 DECs Alpha 500MHz, running Digital UNIX, connected by Fast Ethernet,

JDK1.1.6 (regular JIT). For small size arrays, the results show that KaRMI outperforms RMI

from 41% up to 84%. However, for large size arrays (e.g., 5000 elements), their performance

is equivalent. Unfortunately, the authors do not compare their results with similar works that

have been described in the literature.

Some restrictions apply to both UKA-Serialization and KaRMI. If the computation needs

persistent objects, the serialization optimization cannot be applied. Programs that use socket

factory or port numbers are not supported due to the restructuring of interfaces promoted by

KaRMI. Other minor restrictions are imposed too.

Using Native Libraries
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Javia

VIA (Virtual Architecture Interface) is an emerging industry standard developed at Cornell

University for user-level network interface and Javia [11] is a VIA interface for Java. VIA allows

programmers to explicitly manage resources (e.g., bu�ers and DMA) of the network interface to

directly transfer data to/from bu�ers located in the user's address space. Although Javia is not

a complete proposal, it can be integrated to an environment for high-performance computing.

Javia consists of a group of Java classes that implement an interface with a native library. The

Java classes o�er interfaces to commercial VIA implementations and are accessed through the

native library. Javia proposes two levels of interfaces for VIA. The �rst level, denominated

Javia-I, manages the bu�ers used by VIA using native code, therefore hiding them from Java.

Javia-I adds a copy operation on data transmission and reception, since the data should

be moved from Java arrays to the bu�ers executing native code and vice-versa. On data

transmission the copy operation can be optimized through array declaration made on the

y. Two types of calls are available: synchronous and asynchronous. An advantage of Javia-

I is portability, as it can be implemented in any JVM that supports either the JNI native

interface or similar. Experimental results show that Javia-I is only 10% to 15% slower than the

equivalent C code, when running on two-450MHz Pentium-II Windows 2000 beta3, using two

Giganet 1.25Gbps GNN1000 interfaces cards connected through a Giganet GNX5000 (version

A) switch.

The second level, Javia-II, permits the programmer to manage directly the communication

bu�ers, so that application's speci�c information can be exploited to implement better

bu�ering policy. The management is made using the viBu�er class and its methods, which

Copyright c 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{6

Prepared using cpeauth.cls



50 M. LOBOSCO, C. AMORIM AND O. LOQUES

provide only asynchronous primitives. This class is allocated out of the Java heap and is

not a�ected by the garbage collector. Such bu�ers are accessed in a fashion similar to the

Java's primitive arrays, allowing Java applications to directly transmit and receive arrays and

eliminating the need of additional bu�ers within native code. However, the programmer must

explicitly de-allocate the bu�ers after using them. It could be argued that such bu�ers violate

Java safety, because a programmer can waste all the memory space by simply forgetting to de-

allocate the bu�ers. The authors assume this is not a new problem since the language does not

provide any mechanism to prevent that from occurring. A shortcoming of such an argument

is that a program that allocates memory inde�nitely is potentially incorrect whereas a Javia

program that does not de-allocate the bu�ers thus leading to a situation of insuÆcient memory

could be correct if Java's memory management semantics is followed. In spite of this, Javia-II

can be a valuable resource for communication-critical applications. Benchmarks results showed

that Javia-II performance is on average 1% slower than C for message sizes larger than 8k bytes

when running on the same platform described above.

Summary

mpiJava, JCI, Manta, JDPE, JavaParty, Java//, UKA-Serialization, KaRMI, and Javia have

chosen message-passing as the model for inter-process communication.

mpiJava is a Java interface for existing MPI implementations, which requires several

modi�cations to both syntax and semantics of several MPI functions. JCI is an interface

generator from Java to C that allows programmers to bene�t from existing native libraries such

as MPI; besides JCI has fewer restrictions than mpiJava. In addition, preliminary performance
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results suggest that JCI outperforms mpiJava, however, this is only a partial conclusion as the

results are not directly comparable given that they were obtained using di�erent platforms

and benchmarks.

JPDE introduced the SPMD model into Java. JDPE provides classes to work with distributed

arrays and distributed control constructs that enable each process to execute a particular array

subset. JDPE also provides collective communication libraries to control the data movements.

Some of the collective communication library are attractive and could be integrated to Java.

JavaParty introduces a new reserved word, remote that indicates which classes and threads

should be distributed across machines within a cluster. JavaParty run time system implements

load balancing, network partition, and monitoring of interactions between objects. In this way

JavaParty is similar to cJVM, since both give to the programmer the option to control load

balancing in the system. Another interesting characteristic of JavaParty is the permission for

methods and static variables to be remotely accessed, which is not allowed within traditional

RMI. Regrettably, JavaParty does not present any performance result.

Java// introduces three new concepts to the language: (a) active object; (b) future object;

and (c) new methods for intra-object and inter-object synchronization, which facilitate object

synchronization. The concepts behind future objects and proposed synchronization methods

are powerful enough to deserve inclusion into the language. On the other hand, Java// did not

present any performance evaluation.

Manta translates Java directly to executable code and tackles three main sources of Java's

overhead: (a) serialization; (b) RMI streams and dispatch; and (c) network protocol. The

performance comparison between Manta with the original JDK is mostly favorable to Manta.
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Moreover, Manta should also outperform all the other systems presented in this work. Despite

of modifying the RMI protocol, Manta can interoperate with other Java Virtual Machines.

However, Manta has some disadvantages: (a) some Java's characteristics are omitted in order

to optimize Manta's implementation; (b) all the processes that participate in computations

should start at the same time; and (c) some Java features such as portability and robustness

that make it attractive for developing large and complex systems are not presented in Manta.

UKA-Serialization and KaRMI cope with serialization and RMI, which Manta identi�es as two

main sources of Java's overheads. Nevertheless, UKA-Serialization and KaRMI use a di�erent

implementation approach in that no compiler support is required and all the code is written

in Java. In this way, the code becomes portable and can be used in other platforms.

Javia is another attempt to tackle the low performance of Java communication. Javia

performance was excellent just 1% slower than C for the benchmarks tested. However,

the programmer must manage the memory allocated for communication, thus violating the

automatic memory management of Java.

Classi�cation

Table 1 summarizes all the proposals and environments described so far, using the classi�cation

parameters established in section 3.

Works in the semantics & syntactic column refer to the language changes that can be seen by

the programmer. Note that our classi�cation of cJVM considers the fact that the change in

the new opcode is transparent to the programmer.
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As described in this paper, the majority of the proposals modify the semantics and/or the

syntax of the language. This happens because: (a) they add new capabilities to Java, such

as Aleph's declaration of global objects; (b) They try to ease the programmer's task, such as

Manta's and JavaParty's remote keyword; or (c) some project decision has forced the semantics

/ syntax to change, such as Javia's need of an explicit bu�er de-allocation by the programmer.

Only four of the surveyed systems do not change Javas semantics & syntax. Two of them,

cJVM and MultiJav, transparently modify the JVM; the mpiJava library uses JNI in its

implementation, so that JNI is not exposed to the user; and the JCI, which is a JNI-like

mechanism usually familiar to the programmer.

Most of the systems use the message-passing model for inter-process communication, since

this model is more widespread than the shared-memory one for high-performance computing.

However, in a Java context, it can be argued that the latter is more natural because the

thread model, which assumes a memory shared among all the threads in the Java Virtual

Machine, already expresses it. Besides, existing multithreaded programs can potentially run

without modi�cations on a distributed shared-memory environment. Nevertheless, a potential

disadvantage of DSM is that often this model performs worse than the message-passing model.

Some systems we described, namely Aleph and Charlotte, adopt multiple approaches in their

implementation for inter-process communication. Aleph's inter-process communication o�ers

both shared-memory and message passing options. Although Charlotte is focused primary

on shared memory, the optional annotations that can be made in the code resemble the

message-passing approach. Moreover, in the majority of the systems described in this paper

the programmer can use message passing within a shared memory environment, since libraries
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and communication mechanisms, like socket and RMI, are also available. However, in our

classi�cation we were restricted to the main inter-process communication the author focused.

Interoperability with other virtual machines is intimately related to the approach that is

chosen for environment implementation. If the proposal is implemented through a library,

the interoperability with other JVM implementations is possible. On the other hand, if the

proposal is implemented through the modi�cation of the JVM or the creation of a new compiler,

the interoperability is potentially unfeasible. Indeed, Manta implementation uses a modi�ed

compiler that can generate either optimized native code or standard Java bytecode, the latter

capability caters for interoperability with standard machines. Thus, excluding Manta, Table 1

shows that the systems that do not provide interoperability modify the JVM or the compiler.

As stated in section 3, automatic storage management is also an important issue for supporting

a distributed Java execution environment. Similar to the interoperability case, garbage

collection is also related to the approach chosen for the environment implementation. Again, if

the proposal is implemented through a library, the garbage collection is automatically done by

the JVM. On the other hand, if the proposal is implemented through the modi�cation of the

JVM, probably the original garbage collection must be modi�ed too. Some of the environments

do not mention how they treat the garbage collection issue. In the table, such systems are

indicated by a question mark. Usually, we can see that systems that are implemented as

libraries do not modify the JVM's algorithm. The only exception is Javia, which implements

its own garbage collection algorithm.
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Concluding Remarks

In this paper we have described and classi�ed recent Java-based proposals for high-performance

computing. Our classi�cation scheme has taken into account some critical parameters, such

as the adopted model for inter-process communication, changes introduced to the semantics

and syntax of Java, and how each speci�c implementation has been carried out. We consider

that a change becomes visible to the programmer if the proposed environment introduces a

new feature or modi�es a feature that the Java framework already provides. Further related

issues, such as the interoperability with other Java virtual machines, portability, and garbage

collection algorithms have been also treated.

The majority of the proposed systems described in this work has chosen to modify the

semantics and/or the syntax of the language using the message-passing model for inter-process

communication. Nevertheless, there is no clear trend about how proposals are implemented.

In principle, the developing of a Java-based system for high performance computing should

not incur in the modi�cation of the characteristics of the language that turned it popular

and widely used. The use of a compiler that translates Java code into native code is

an interesting solution to improve performance. Although this impairs portability, just-in

time compilation, or approaches like that used by Manta, can improve performance while

maintaining the code portability. In addition, modi�cations in the language could be acceptable

if the performance improvement is notable. For example, Manta tackles Java's serialization

problem in an interesting way, passing all the overhead of dynamic inspection to the compiler.

The introduction of new features in the language could also be interesting, such as the addition

of a message passing library following MPI or PVM styles. Finally, we suggest that one can
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take advantage of the extra information that is available for free in the byte code, and in the

virtual machine interpreter state, in order to optimize the execution of parallel applications.

We have also pointed out some potential Java issues that can a�ect the performance of high-

performance applications. More speci�cally, (a) the performance of thread synchronization

primitives; (b) the data serialization operation for communication, which determines at run-

time the type of the parameters to be transmitted, therefore adding a considerable but

unnecessary communication overhead; (c) the use of standard socket-based communication

protocols, thus preventing the choice of new high-performance network protocols; (d) run-

time checks for null-pointer and array bounds performed by the JVM; (e) dynamic nature

of execution, which prevents optimizations; and (f) the way multidimensional arrays are

implemented in Java: as n-dimensional rectangular collections of elements, which makes alias

disambiguation diÆcult, also preventing optimizations [22].

A general concern is the lack of performance measures related to the vast majority of the

proposals. This might be explained due to the fact that the systems are mostly either basic

proposals or started the implementation recently. Unfortunately, even systems which are in

a relatively advanced implementation stage, and have reported some potentially interesting

experimental results, tend to use their own benchmarks in an ad-hoc fashion. This fact makes

diÆcult more meaningful comparison between their �ndings.

Therefore, we expect that future works in this research area promote the use of a common

benchmark suite, particularly the one that has been developed by the Java Grande Forum

Application and ConcurrencyWorking Group [26]. This benchmark is divided in three sections:

(a) low-level operations; (b) kernels of application, such as FFT and SOR; and (c) large
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scale applications, such as Ray-tracer and Monte Carlo simulation. Additional benchmarks

to measure the associate costs of thread synchronization and remote communication should

also be developed. For example, it would be useful to measure the costs of write and read

operations between thread's working memory and the main memory as well as the contention

during accesses to the main memory. Furthermore, it would be valuable the addition of Internet

related kernels and applications to the benchmark, since Java has been broadly used in the

Internet.
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Table I. Classi�cation

Environment Seman./Syntactic Implementation Inter-process Other Issues
/ Proposal Changes Communication Interop. Garbage

Collect

MultiJav No JVM
Modi�cation

Shared Memory No ?

Charlotte Yes (use of parBe-
gin() and parEnd()
constructs)

Java Library Hybrid Yes JVM-
based

Java/DSM Yes (threads location) JVM
Modi�cation

Shared Memory No New

Aleph Yes (object de�nition
and access, active
messages)

Java Library Shared Memory
or Message Pass-
ing

Yes JVM-
based

cJVM No (Internally: modi�-
cation of new opcode
semantic; a new object
and memory model)

JVM
Modi�cation

Shared Memory No ?

Manta Yes (new reserved
word remote, Java
security model
unsupported)

New Compiler Message Passing Yes ?

Jackal Yes (new memory
model)

New Compiler Shared Memory No New

mpiJava No Native Library Message Passing Yes JVM-
based

JCI No Native Library Message Passing Yes JVM-
based

JDPE Yes (distributed array,
new reserved words:
on, at and over)

Pre-compiler and
Java Library

Message Passing Yes JVM-
based

Java// Yes (di�erent object
view, synchronization,
asynchronous call)

Java Library Message Passing Yes JVM-
based

Javia Yes (bu�er de-
allocation)

Native and Java
Library

Message Passing Yes New

JavaParty Yes (new reserved
word, remote)

Pre-compiler and
JVM
Modi�cation

Message Passing No ?

UKA-
Serialization
and KaRMI

Yes (persistent objec-
t unsupported, socket
factory or port num-
bers)

Java Library Message Passing No JVM-
based
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