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Abstract 

 
Here we detail both the methods and preliminary results of first efforts to 
parallelize three General Earthquake Model (GEM)-related codes: 1) a 
relatively simple data mining procedure based on a Genetic Algorithm; 2) 
a mean-field slider block model, and 3) the Virtual California simulation 
of GEM.  These preliminary results, using a simple, heterogeneous system 
of processors, existing freeware, and an extremely low initial cost in both 
manpower and hardware dollars, motivate us to more ambitious work with 
considerably larger-scale computer earthquake simulations of southern 
California.  The GEM computational problem, which is essentially a 
Monte Carlo simulation, is well suited to optimization on parallel 
computers, and we outline how we are proceeding in implementing this 
new software architecture. 

 
 

1.0Introduction 
 
 With the increasing availability of computer and network hardware, accompanied 

by decreasing cost and ever increasing processor speed, the construction of parallel 

computational systems from off- the-shelf components, in lieu of purchasing CPU time on 

expensive supercomputers, has become ever more practical and attractive.  In this paper 

we describe a preliminary attempt to adapt existing C code for parallel computing on a 

simple, heterogeneous processor system, the benefits of such an implementation, and our 

future plans to parallelize a large-scale computer earthquake simulation of southern 



California, the Virtual California simulation of the General Earthquake Model (GEM) 

project. 

2.0 Parallelization Methods 
 
2.1 Hardware 
 

The term "Beowulf class systems" has come to describe, in general, multi-

computer architecture that supports parallel computing [1].  While not true in every case, 

it frequently consists of a server node, and multiple client nodes connected via Ethernet 

or other network components.  These networks can range from a small set of machines 

connected through Ethernet cable and a switch, as in our present case, to a large number 

(on the order of hundreds) of Linux processors connected via fast switches, as in our 

future plans [1].   

 Our current hardware consists of a heterogeneous mix of eight stand-alone PCs, 

with CPU speeds ranging from 266 MHz to 1 GHz, connected by an Asante FriendlyNet 

FS3208, supplying 10 BaseT internally.  These machines all run some version of the 

Linux operating system, depending upon their age. 

 Future plans are to implement our parallelized codes on either a large-scale 

Beouwulf cluster, or the Maui MHPCC symmetric multi-processor (SMP) 

supercomputer.  A Beouwulf cluster, CoSMIC, is currently under construction by the 

Physics department at the University of Colorado, and will consist of 352 dual processor 

800 MHz Pentium IIIs, each with 512 Mbytes of RAM and an ≈ 10 Gbyte disk, 

configured as an integrated set of subclusters each consisting of 32 dual processors.  

Eight subclusters will be networked using fast Ethernet, each on their own fast Ethernet 

switch, effectively isolating them from most network traffic.  There will also be three 



subclusters networked using Myrinet, resulting in a 96-node cluster optimized for multi-

node applications.  The 10 Gbyte disks will provide both short-term storage, as well as 

swap space, and will contain any local operating system and software.  Long term storage 

will be provide by 3.6 Tbytes of disk space, consisting of 9 RAID devices installed in 

three file servers, and backed up to a DLT7000 tape drive.  This system is designed to 

provide both large-scale, load balanced serial or parallel computations in conjunction 

with low cost localized scientific visualization. 

 

2.2 Software 
 
 Parallelization can be described as either implicit or explicit.  Implicit methods 

are those where the compiler, examples of which include those provided by FORTRAN 

90, High Performance FORTRAN (HPF), and others, determines the parallelism.  

Explicit methods are those where the user determines the parallelism.  In this case, the 

user modifies the computer source code specifically for a parallel computer, adding 

messages using Parallel Virtual Machine (PVM) or Message Passing Interface (MPI), or 

POSIX threads [1].  For our initial attempts, we opted for explicit parallelization only. 

2.2.1 PVM 
   
 PVM is a portable, freeware message-passing library, obtainable via 

http://www.epm.ornl.gov/pvm/pvm_home.html, which supports single-processor and 

SMP machines as well as clusters of linked machines.  Its primary advantage is that it 

works across a variety of different types of processors, networks, and configurations.  

This ability to interface over heterogeneous clusters may be offset by the significant 

overhead associated with the message handling [2,3]. 



2.2.2 MPI 
 
 MPI is the new official standard for message passing, available at 

http://www.mcs.anl.gov:80/mpi. While MPI includes a number of features that go beyond 

the basic message-passing model of PVM, such as remote memory access (RMA) and 

parallel file I/O, these make it necessary to learn a new language in order to be 

implemented.  In addition, MPI is better suited to either a massively parallel processor 

(MPP), or a cluster of nearly identical machines [2,4]. 

3.0 Trial Parallelization 
 
 After having studied the options above, we determined to run a trial attempt at 

parallelism using our existing system, as described above, and by modifying a C program 

which has been employed for data mining and geophysical inversions for a number of 

years. The program is a genetic algorithm (GA) inversion code.  Genetic algorithms are 

notoriously parallelizable, and conversion of the code to a parallel implementation 

provided an opportunity to test the difficulty level of the conversion as well as to 

benchmark the potential timesavings associated with such a heterogeneous network. 

Many geophysical optimization problems are nonlinear and result in objective 

functions with a rough fitness landscape and several local minima. Consequently, local 

optimization techniques, e.g., linearized matrix inversion, steepest descent, conjugate 

gradients, etc. can converge prematurely to a local minimum. Genetic algorithms have 

proven themselves an attractive global search tool suitable for the irregular, multimodal 

fitness functions typically observed in nonlinear optimization problems in the physical 

sciences. 



In general, geophysical inverse problems involve employing large quantities of 

measured data, in conjunction with an efficient computational algorithm that explores the 

model space to find the global minimum associated with the optimal model parameters. 

In a GA, the parameters to be inverted for are coded as genes, and a large population of 

potential solutions for these genes is searched for the optimal solution. After starting with 

an initial range of models, the fitness of each solution is measured by a quantitative 

objective function. The fittest members of each population then are combined using 

probabilistic transition rules to form a new offspring population. This procedure is 

repeated through a large number of generations until the best solution is obtained, based 

on the fitness measure [5]. It has been demonstrated that those members of the population 

with a fitness greater than the average fitness of the population itself will increase in 

number exponentially, effectively accelerating the convergence of the inversion process 

[6,7,8]. Our program, shown schematically in Figure 1, employs a random number 

generator to produce an initial set of 100 potential values for each of the model 

parameters, which are then coded as genes. One gene for each model parameter is 

assigned to a particular member of that initial population, creating 100 potential solutions 

to the inversion problem. These members are ranked, from best to worst, according to an 

external fitness function. The members with the lowest chi-square value are the fittest and 

are selected to contribute to the next generation. After completion of both crossover and 

mutation, the population is reevaluated as above.  Crossover is the mechanism that 

provides the recombination of parents into new offspring; random mutation of the genes 

ensures genetic richness.  The process is repeated over subsequent generations, exploiting 

information in past generations to search the parameter space with improved 



performance.  Note that, depending upon the particular circumstances of the geophysical 

inversion, the number of parameters or genes, parameter ranges, crossover and mutation 

rates, and population size can vary widely (for details and examples, see references 9 

through 12). 

As shown schematically in Figure 1, the GA must evaluate 100 members of the 

population, using the fitness function, for each generation.  In the original program, this 

operation is performed in serial, but if performed in parallel, there is a significant 

potential for faster performance. 

 

3.1 GA Inversion Code 
 
 Parallelizing the GA code requires modifications to the main program in the 

evaluation module, and in the fitness function itself (see Figure 1).  We opted to use PVM 

for the message passing, due to the heterogeneity of our networked system [13].  The 

programming modifications and debugging took approximately one day, performed by 

someone familiar with the GA.  The PVM additions are relatively simple, constituting 

less than 100 lines of code.  The pseudocode version of the parallelization procedure can 

be found in Appendix A, showing first the original serial version, followed by the revised 

parallel implementation. 

   

3.1.2 Results 
 
 Table 1 shows the results for various configurations of a two-processor system.  

Koch is an 800 MHz machine, while Richter has a 266 MHz processor.  We 

benchmarked both the fitness function for a spherical point source, as well as a fitness 



function for an ellipsoidal point source, which takes a substantially longer processor time 

to run.  We ran each GA inversion on each machine singly, and then on both machines 

using PVM.  One variation on the two-processor configuration is that we compared the 

results using one machine as the master, with the other as a slave, and then reversed 

them.  The average CPU time, in seconds, is shown for a thousand-generation run. 

 The results in Table 1 show a significant increase in runtime savings for two 

processors over one, with the greatest increase coming if Koch, the faster machine, is 

used as the master.  A greater percentage in timesavings is accomplished for the elliptical 

source, the fitness function which takes a much greater time to run.  These results for 

what is a somewhat extemporaneous attempt at parallelization, with an investment of 

only a few hours time, and using a heterogeneous mixture of machines inside a relatively 

slow switch which can be purchased today for less than $100, leads us to optimistically 

view our future attempts to parallelize the GEM computer simulation for California. 

3.2 Mean Field Slider Block Model 
 

As the ultimate goal for this work is the parallelization of Virtual California, a 

cellular automata type computer model, we also set about parallelizing a simple and 

popular model of this kind, the mean field slider block model.  Recognizing that MPI, 

currently without shared memory, was the most practical and likely application in the 

near future, the parallelization was done in MPI, using three workstations, including one 

dual 800 MHz processor, and two additional 1 GHz processors, connected by a faster, D-

Link, eight port, 100Mb switch.  



This program simulates a homogeneous but noisy driven and dissipative threshold 

system, with "infinite" interaction range.  In this model, sites in a square lattice or grid of 

sites represent asperities in a tectonic fault, or blocks in an array of interconnected blocks. 

Each block is uniformly coupled to all other blocks in the lattice by springs - hence the 

"infinite" range. Motion of the blocks is avoided by using a spatially homogeneous static 

friction. Each block is also connected to a loader plate, and the system is loaded 

homogeneously in space and uniformly in time by increasing the stress on each block at a 

constant rate. When the stress on one block reaches the friction threshold, this block - the 

initiator - fails and slips until its stress reaches a uniform residual stress, with some 

random noise added to it, and dumps part of the stress drop it undergoes on the rest of the 

lattice. Because of this added stress, some other block(s) may reach the stress threshold, 

and will fail in its turn; the whole cycle of stress drop on the failed block(s) and its 

redistribution among the other blocks continues until all the blocks have stresses below 

the threshold. The collection of all the failures triggered by a single initiator is the 

model's equivalent of an earthquake. Each avalanche of failures is considered to be one 

iteration, and simulations are usually run for at least several million iterations, on lattices 

with typically 10
5
 sites. 

Models with these characteristics, with either short range or long-range couplings, 

have been extensively used in the last decade or so to study the effects of the basic 

physical ingredients on the statistics of the sequence of avalanches they generate [14-16]. 

It has been shown that, when conveniently tuned, they are able to reproduce either scaling 

behavior of the Gutenberg-Richter kind or the characteristic event regime observed in 

some natural faults [17,18]. Investigations on the origins and physical mechanisms 



underlying the scaling behavior and its possible connections with nucleation processes 

were made possible by simulations of long range versions of these models [19,20]. The 

code we work with has been highly optimized and makes extensive use of linked lists to 

avoid unnecessary lattice sweeps - a detailed account of the optimization algorithms used 

was published in Ref. [21]. 

The version of the code tailored for parallelization, rjbmpi, is schematically 

illustrated in Appendix B, for both its serial and parallel versions.  Using Koch as the 

master, and the two faster processors as the slaves, the implemented parallelization 

yielded results more than three times faster than the original serial code.  While 

significantly larger amounts of data would have to be passed from master to slave, the 

similarities between the two models lead us to conclude that, if implemented with care, 

significant runtime savings could be achieved through the parallelization of the Virtual 

California model. 

4.0 Computational Structure of the Earthquake Simulation 
Problem 
 

The GEM computational model for the numerical simulation of earthquakes, 

Virtual California, involves a layered series of codes whose structure we now describe.  

Although at present the simulation and data mining analysis are written as a set of C and 

FORTRAN 77 codes, the problem is essentially a Monte Carlo simulation and therefore 

well suited to optimization on a parallel computer system.  

 

4.1 Model Physics 
 



We first begin with a description of the physics that we simulate.  General 

methods for carrying out the network simulations have been discussed in refs. [22,23,24].  

Briefly, one defines a fault geometry in an elastic medium, computes the stress Greens 

functions (i.e., stress transfer coefficients), assigns frictional properties to each fault, then 

drives the system via the slip deficit (defined below).  The elastic interactions produce 

mean field dynamics in the simulations [22].  We focus here on the major horizontally 

slipping strike-slip (horizontal motion) faults in southern California that produce the most 

frequent and largest magnitude events.  We used the tabulation of strike slip faults and 

fault properties as published in ref [23].  All major faults in southern California, together 

with the major historic earthquakes, are shown in Figure 2.  Figure 3 shows our model 

fault network.  Each fault was assigned a uniform depth of 20 km, the maximum depth of 

earthquakes in California, and was subdivided into segments having a horizontal scale 

size of approximately 10 km each. 

 Several friction laws are described in the literature, including Coulomb failure 

[25], slip-dependent or velocity-dependent friction [26], and rate-and-state [27].  Here we 

use a parameterization of recent laboratory friction experiments [28,29], in which the 

stiffness of the loading machine is low enough to allow for unstable stick-slip when a 

failure threshold σF(V) is reached, where σF(V) is a weak (logarithmic) function of the 

load point velocity V.  Sudden slip then occurs in which the stress decreases to the level 

of a residual stress σR(V), again a weak function of V.  Stable precursory slip, 

characterized by a leakage parameter α, is observed to occur whose velocity increases 

with stress level, reaching a magnitude of a few percent of the driving load point velocity 



just prior to failure at σ =  σF(V).  For the simplest model that describes this frictional 

physics displayed in the experiments, we find that  

 
2
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VT
s2

=α ,         (1) 

where V is the plate velocity as before, T is the average interval between sudden unstable 

slip events, and sss is the total stable slip that occurs during T.  The fraction of stable to 

total slip that occurs in a laboratory experiment or on a fault is in principle observable, 

and has in fact been tabulated for a variety of faults in California [25].  The observable 

quantity σF(V) - σR(V) determines the magnitude of the unstable slip.  Thus the 

important parameters of the model that describes laboratory friction can be readily set by 

either laboratory or field observations.   

 

4.2 Computational Structure 
 
 The Virtual California simulation of the GEM project is a Monte Carlo, cellular 

automaton version of a Langevin-type dynamics.  The actual geometric structure of the 

fault system in California can be implemented as a coarse-grained mesh of fault segments 

embedded in a layered elastic half space.  The various pieces of the fault segments 

interact by means of elastic interactions.  Parameters for the friction law must be 

specified on each of the fault segments, together with the long-term rate of slip, V(xi), on 

the segment centered at xi.   

 The implementation of the model is carried out in three layers of codes, beginning 

with two data files.  The first data file, Fault_Data.d, contains the basic geometry of the 

N fault segments, specifically the coordinates of each of the four corners of the fault 



segments.  This data file also contains the long-term rate of slip V(xi)  for each of the 

segments.  A second data file, Fault_Friction.d, contains the average recurrence time 

intervals Ti between unstable slip events on the ith segment, as well as values of α for 

each segment. 

 These two data files are used, together with standard methods [23] from elasticity 

theory to compute the stress Green's functions (stress transfer coefficients) by code 

SG_Compute.c.  Since the form of the elastic stress transfer coefficients is known 

analytically, the computations performed by SG_Compute.c are simply function 

evaluations.  The output from this code is contained within a data file SG_Coefficients.d, 

and is a set of N2 stress transfer coefficients (including the self-stress term) for all of the 

fault segments, where N is the number of fault segments.  These stress transfer 

coefficients, together with the fault slip rate data in Fault_Data.d and friction data in 

Fault_Friction.d, are then used as the basic inputs to the earthquake simulation code 

EQ_Simulator.c, which computes the stress evolution on each fault patch for a given 

time.  The latter is essentially a Monte Carlo algorithm that encodes the CA Langevin 

dynamics, assuming a random component during each unstable fault slip event.  The 

equations for the slip on the ith fault segment are: 
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where ∆σi  =  σi - σ
R

i, Tij is the matrix of stress transfer coefficients, ∑=
j

iji TK , and 

F((Vt - s
i
) - ϕi

*) is an odd nonlinear function of s with amplitude ε i and parameter ϕi
* 

[23].  The parameter tF is any time t at which σi(t)  ≥ σi
F, δ is the Dirac delta function, and 

η is a random noise ("overshoot" or "undershoot").  The nonlinear function  

F((Vt - s
i
) - ϕi

*) is present because all of the eigenvalues of the linear part of (2) are 

negative, and therefore the physics has an instability similar to a Peierls instability [30].  

Physically, the functions F((Vt - s
i
) - ϕi

*)  and parameters ϕi
* correspond to a potential 

well on a high-dimensional rough energy landscape upon which the system evolves.  The 

set of N parameters {ϕi
* } represent a fixed point about which the system fluctuates.  This 

physical picture has been established through the use of simulations that demonstrate that 

the mean field dynamics of the model, a result of the long-range elastic interactions, 

induces local ergodicity [31,32].  The exact form of F((Vt - s
i
) - ϕi

*) is unimportant, since 

small fluctuations about {ϕ
i

*} are controlled by the first nonlinear term in F((Vt - s
i
) - 

ϕi
*), which is always cubic. 

 The output from EQ_Simulator.c is a record of the slip events and stress history 

of the dynamics for a fixed time period, and we can call it EQ_History_01.d. The "01" 

denotes the fact that EQ_History_01.d can be input back into EQ_Simulator.c as an 

initial condition to produce a second earthquake history file EQ_History_02.d which 

continues the dynamical evolution of the fault system to later times.  Once the output data 

files EQ_History_xx.d have been computed, their data can be displayed in various ways, 



for example by a general visualization code EQ_Visualize.pro written in IDL or other 

script.  

In addition to slip histories, deformation that would be expected on the surface of 

the half space can be computed; this deformation could in principal be observed via GPS 

or satellite radar interferometry.  To enable this calculation, kinematic Green's functions 

must be computed via a code KG_Compute.c that produces an output file 

KG_Coefficients.d.  This data file is then used in a code EQ_Deformation.c to compute 

the surface deformation file Surface_Deformation.d , which is then used as input to the 

general visualization code EQ_Visualize.pro.   

The flow diagram for this set of computation, simulation, and visualization codes 

is shown in the Figure 4.  Examples of the visualized output from these codes can be 

found in ref. [33]. 

 

4.3 Parallelization Procedures 
 

We begin by schematically illustrating the structure of the two codes, 1) 

SG_Compute.c and 2) EQ_Simulator.c, as they exist for serial computation, in 

Appendix C.  We then show (again schematically) how these codes are adapted to 

parallel computation.  For the parallel implementation, we will assume that the 

multiprocessor is an SMP system.  The codes KG_Compute.c and EQ_Deformation.c 

are similarly structured and modified.  Again, N is the number of fault segments. 

5.0 Conclusions 
 



The promising results from the parallelization of both a genetic algorithm 

program and a slider block model, using a simple, heterogeneous processor system, 

existing freeware, and at an extremely low cost of both manpower and hardware dollars, 

encourage us to more ambitious work with the large-scale computer earthquake 

simulation of southern California, the Virtual California simulation of the General 

Earthquake Model (GEM) project.  Although we anticipate that the individual 

calculations will remain small enough for the processor memory, one issue, associated 

with the amount and variety of information that might have to be passed from master to 

slave appears to be the greatest problem yet to be solved.  However, there are potential 

solutions such as data consolidation and stored or shared memory.  As a result, we 

believe that conversion of the GEM computational problem, which is essentially a Monte 

Carlo simulation, is well suited to optimization on parallel computers such as the Maui 

MHPCC SMP machine or a Beowulf Linux cluster.     

Appendix A - Genetic Algorithm Program Code 

A.1 Serial 

A.1.1 Main Program (Inversion.c) 
 
  main(): 
   
  initialize_random_genes() 
   
  WHILE best_fitness() < target 
   
   select_top_hundred(genes) 
   
   breed_new_population(genes) 
   
   FOREACH gene 
   
    evaluate_fitness(gene) 



   
   END FOREACH 
   
  END WHILE 
   

A.1.2 Fitness Function (Fit.c) 
   
  evaluate_fitness(): 
   
  locs[] = read_observation_locations() 
   
  real_deform[] = read_observed_data() 
   
  source_parameters = F(gene) 
   
  model_deform[] = calculate_displacements(locs[], source_parameters) 
      
  FOREACH loc 
   
   chisq += (model_deform[loc] - real_deform[loc]) )**2 
   
  END FOREACH 
   
  return fitness = exp(-chisq ) 
    

 A.2 Parallel   
 

 A.2.1  Master (Inversion Program) 
   
  main(): 
   
  initialize_random_genes() 
   
  WHILE best_fitness() < target 
   
   select_top_hundred(genes) 
   
   breed_new_population(genes) 
   
   DO 
    IF receive_ready_message() 
     pack_gene_into_message() 
     send_message_to_slave_process() 



     ++outstanding 
    END IF 
    IF outstanding && receive_finished_message() 
     receive_fitness_message() 
     unpack_fitness_from_message() 
     --outstanding 
    END IF 
   
   UNTIL outstanding == 0 && num_evaluated == num_genes 
   
   END DO 
   
END WHILE 

A.2.2  Slave (Fitness program) 
   
  main(): 
   
  locs[] = read_observation_locations() 
   
  real_deform[] = read_observed_data() 
   
  LOOP FOREVER 
   
   send_ready_message() 
   
   receive_gene_message() 
   
   unpack_source_parameters_from_message() 
   
   model_deform[] = calcula te_displacements(locs[], source_parameters) 
      
   FOREACH loc 
   
    chisq += ( model_deform[loc] - real_deform[loc]) )**2 
   
   END FOREACH 
   
   fitness = exp(- chisq ) 
   
   pack_fitness_into_message() 
   
   send_result_message() 
   
  END LOOP 



 

Appendix B - Mean Field Slider Block Model 
 

B.1 Serial  
 
BEGIN PROGRAM 

  Initializes lattice with random stress values 

  WHILE current_iteration < total_iterations 

 Finds max stress in array 

 Resets critical and residual stresses 

 Initializes failing_sites list with initiator 

 Avalanche() 

 Computes averages 

 Writes data to file 

  END WHILE 

 

  Avalanche(): 

  WHILE failing_sites list not empty 

 Initializes next_failing list 

 Computes stress drop for every site in the list AND 

  Updates failing sites (subtract stress drop) 

 Redistributes stress to all other sites:  

  if stress on site larger than threshold, include in next_failing list  

 Switches failing_sites and next_failing lists 

  END WHILE 



END PROGRAM 

B.2 Parallel  
 

B.2.1 Main, rjbmpi  
 

BEGIN PROGRAM 

  Assigns to each processor 1 / (number of processors) of lattice 

  WHILE current_iteration < total_iterations 

 Receives max stress and site index from each slave 

 Finds maximum of these max stresses 

 Broadcasts max stress and process containing it to all slaves 

 Avalanche() 

 Receives event totals from each slave 

 Computes averages 

 Writes data to file 

  END WHILE 

 
  Avalanche(): 

    WHILE ( total number of failed sites > 0 ) 

 Receives stress drop from each slave 

 Sums all stress drops into total stress drop 

 Broadcasts total stress drop to all slaves 

 Receives number of failed sites from each slave 

 Sums number of failed sites into total failed sites 



 Broadcasts total number of failed sites 

    END WHILE 

END PROGRAM 

B.2.2 Slave, rjbmpi  
 

BEGIN PROGRAM 

  Assigns to self 1 / (number of processors) of lattice 

  Initializes local lattice with random stress values 

  WHILE current_iteration < total_iterations 

 Finds max stress in local lattice 

 Sends local max stress and site index to master 

 Receives global max stress and processor its on 

 Avalanche() 

  END WHILE 

   

  Avalanche(): 

    WHILE ( total number of failing sites > 0 ) 

 Computes stress drop for every failing site in local lattice 

 Sums stress drops for all failing sites into local stress drop 

 Sends local stress drop to master 

 Receives total stress drop from master 

 Redistributes total stress drop to all sites in lattice AND 

  Tests for new failing sites 



 Sends number of failing sites to master 

 Receives total number of failing sites 

    END WHILE 

END PROGRAM 

Appendix C - Virtual California Program Code 

C.1 Serial 

C.1.1 Main, SG_Compute.c:   
 
Procedure Main 'SG_Compute' 
 
Procedure Stress_Greens_Function(N,N) 
     
Main() 
 
Read_fault_data() 
 
/*  Begin stress Green's function computation loop */ 
 
WHILE (j,i< number_of_patches) 
  
/*  Compute each stress transfer coefficient  */ 
 
   Procedure Stress_Greens_Function(j,i) 
 
END WHILE 
  
Output_computed_Stress_Green's_Function() 
 
end  
 } 
 
 

C.1.2 Main, EQ_Simulator.c: 
 
Procedure Main 'EQ_Simulator'; 
 
/*Computes the state of stress on segment i at time t. */ 
 



Procedure Stress_State_Compute(N,s,Number_time_steps); 
     
Main() 
 
Read_fault_data() 
Read_friction_data() 
Read_Stress_Greens_Funtions() 
 
 
WHILE (t < number_of_time_steps) 
 

time = time + time_index * time_step; 
 
 WHILE(N<number_of_segments) 
  
 /*  Compute new value of stress on segment i */ 
 
  Procedure Stress_State_Compute(i,time); 
 

/*  Check to see which segments have ? i(t)  ?  ? i
F  */ 

 
  WHILE (any ? i(t)  ?  ? i

F ) 
    
   WHILE (i<N) 
     

/*      Update slip s(i) */ 
    s(i)= s(i) +  ? ? i / Ki   +  random number; 
 

END WHILE 
 

  END WHILE  
 

/*   Record time and state of slip in EQ_History.d  */ 
 

Output_computed_Stress_State() 
 

 END WHILE 
END WHILE    
 
end 
 

C.2 Parallel Code (Master/Slave) 
 



C.2.1 Master - SG_Compute.c 
 
/*Computes the stress transferred from fault i to fault  j when fault i slips by a unit 
amount. */ 
     
Main(): 
 
Read_fault_data() 
 
WHILE (N < number_of_patches) 
 
 DO  
  IF receive_ready_message() 
   Pack_location_id_of_segment() 
   Send_message_to_slave() 
   ++outstanding 
  ENDIF 
  IF outstanding && receive_finish_message() 
   Receive_Stress_Green's_Function() 
   Unpack_Stress_Green's_Function() 
   --outstanding 
  ENDIF 
  
 UNTIL outstanding == 0 && num_evaluated =N 
 
 END DO 
 
END WHILE 

C.2.2 Slave - SG_Compute.c 
 
Main(): 
 
Locs[]=read_in_faultgeometry_data() 
Parameters[]=read_in_sourceparameters() 
 
LOOP FOREVER 
 
 Send_ready_message() 
 Receive_fault_message() 
 Unpack_location_index 

Stress_Green's_Functions = 
Calculate_Stress_Green's_Functions(Locs[],Parameters[]) 
 

 Pack_Stress_Green's_Function_into_message() 
 Send_result_message() 



 
END LOOP 

 

C.2.3 Master, EQ_Simulator.c 
 
/*Computes the state of stress on segment i at time t. */ 
     
Main(): 
 
Read_fault_data() 
Read_friction_data() 
Read_Stress_Greens_Funtions() 
 
WHILE (t < number_of_time_steps) 
 
 WHILE(N<number_of_segments) 
 
 IF Stress(N) > Failure_stress 
 
  DO  

IF receive_ready_message() 
    Pack_slip_rates() 
    Pack_Friction_Parameters() 
    Pack_Stress_Green's_Functions() 
    Send_message_to_slave() 
    ++outstanding 
   ENDIF 

IF outstanding && receive_finish_message() 
    Receive_Stress_State() 
    Unpack_Stress_State() 
    --outstanding 
   ENDIF 
   

 END DO 
  Check_stress_state_on_each _segment() 
  

END IF 
END WHILE 

 
 UNTIL outstanding == 0 && time_steps ==T 
 
END WHILE 
 



C.2.3 Slave, EQ_Simulator.c 
 
Main(): 
 
Locs[]=read_in_faultgeometry_data() 
Parameters[]=read_in_sourceparameters() 
 
LOOP FOREVER 
 
 Send_ready_message() 
 Receive_stress_message() 
 Unpack_ slip_rates() 
 Unpack_Friction_Parameters() 
 Unpack_Stress_Green's_Functions () 

Stress_State = 
Calculate_Stress_State(Slip_rate[],Friction[],Green's_Function) 

 Pack_Stress_State_into_message() 
 Send_result_message() 
 
END LOOP 
 

 



 
 
 
 

 
 
Figure 1:  Flow chart, genetic algorithm inversion program. 
 



 
 
Figure 2:  Historic seismicity, southern California (Southern California Earthquake 
Center, http://www.scecdc.scec.org/clickmap.html).  
 



 
 
Figure 3:  Map of the 215 fault segments used in the implementation of the Virtual 
California simulation.  
Only the strike slip faults are represented in this simplified model. 

 



 

Data Files:   
Fault_Data.d 
Fault_Friction.d 

SG_Compute.c KG_Compute.c 

EQ_Deformation.c EQ_Simulator.c 

EQ_History_xx.d 

EQ_Visualize.pro 



Figure 4:  Flow diagram for parallelization of Virtual California earthquake 
simulation program.  Green's functions in KG_Compute.c and SG_Compute.c 
are used to calculate the input to EQ_Deformation.c and EQ_Simulator.c, where 
the deformation and earthquake slip histories are computed, respectively. 

FUNCTION RICHTER RICHTER TO KOCH KOCH KOCH TO RICHTER

SPHERE 3940 1025 545 420

ELLIPSE 6300 1220 830 625

TABLE 1:  Time, in seconds, to process 1000 generations with
the processors listed. "Richter to Koch" means that the
master process was resident on Richter and there were two
slave processes, one on Richter and one on Koch.
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