
Parallelization of a Large-Scale Computational
Earthquake Simulation Program

K.F. Tiampo(1), J.B. Rundle(2), P. Hopper(1), J. Sá Martins(1), S. Gross(1), and S.
McGinnis(1)

(CIRES, University of Colorado, Boulder, CO USA (e-mail: kristy@fractal.colorado.edu;

phone: +01-303-492-4779); (2) Dept. of Physics, Colorado Center for Chaos &
Complexity, CIRES, University of Colorado, Boulder, CO, 80309, USA, and

Distinguished Visiting Scientist, Jet Propulsion Laboratory, Pasadena, CA, 91125, USA

(email: rundle@cires.colorado.edu; phone +01-303-492-4779).

Abstract

Here we detail both the methods and preliminary results of first efforts to
parallelize three General Earthquake Model (GEM)-related codes: 1) a
relatively simple data mining procedure based on a Genetic Algorithm; 2)
a mean-field slider block model, and 3) the Virtual California simulation
of GEM. These preliminary results, using a simple, heterogeneous system
of processors, existing freeware, and an extremely low initial cost in both
manpower and hardware dollars, motivate us to more ambitious work with
considerably larger-scale computer earthquake simulations of southern
California. The GEM computational problem, which is essentially a
Monte Carlo simulation, is well suited to optimization on parallel
computers, and we outline how we are proceeding in implementing this
new software architecture.

1.0Introduction

 With the increasing availability of computer and network hardware, accompanied

by decreasing cost and ever increasing processor speed, the construction of parallel

computational systems from off- the-shelf components, in lieu of purchasing CPU time on

expensive supercomputers, has become ever more practical and attractive. In this paper

we describe a preliminary attempt to adapt existing C code for parallel computing on a

simple, heterogeneous processor system, the benefits of such an implementation, and our

future plans to parallelize a large-scale computer earthquake simulation of southern

California, the Virtual California simulation of the General Earthquake Model (GEM)

project.

2.0 Parallelization Methods

2.1 Hardware

The term "Beowulf class systems" has come to describe, in general, multi-

computer architecture that supports parallel computing [1]. While not true in every case,

it frequently consists of a server node, and multiple client nodes connected via Ethernet

or other network components. These networks can range from a small set of machines

connected through Ethernet cable and a switch, as in our present case, to a large number

(on the order of hundreds) of Linux processors connected via fast switches, as in our

future plans [1].

 Our current hardware consists of a heterogeneous mix of eight stand-alone PCs,

with CPU speeds ranging from 266 MHz to 1 GHz, connected by an Asante FriendlyNet

FS3208, supplying 10 BaseT internally. These machines all run some version of the

Linux operating system, depending upon their age.

 Future plans are to implement our parallelized codes on either a large-scale

Beouwulf cluster, or the Maui MHPCC symmetric multi-processor (SMP)

supercomputer. A Beouwulf cluster, CoSMIC, is currently under construction by the

Physics department at the University of Colorado, and will consist of 352 dual processor

800 MHz Pentium IIIs, each with 512 Mbytes of RAM and an ≈ 10 Gbyte disk,

configured as an integrated set of subclusters each consisting of 32 dual processors.

Eight subclusters will be networked using fast Ethernet, each on their own fast Ethernet

switch, effectively isolating them from most network traffic. There will also be three

subclusters networked using Myrinet, resulting in a 96-node cluster optimized for multi-

node applications. The 10 Gbyte disks will provide both short-term storage, as well as

swap space, and will contain any local operating system and software. Long term storage

will be provide by 3.6 Tbytes of disk space, consisting of 9 RAID devices installed in

three file servers, and backed up to a DLT7000 tape drive. This system is designed to

provide both large-scale, load balanced serial or parallel computations in conjunction

with low cost localized scientific visualization.

2.2 Software

 Parallelization can be described as either implicit or explicit. Implicit methods

are those where the compiler, examples of which include those provided by FORTRAN

90, High Performance FORTRAN (HPF), and others, determines the parallelism.

Explicit methods are those where the user determines the parallelism. In this case, the

user modifies the computer source code specifically for a parallel computer, adding

messages using Parallel Virtual Machine (PVM) or Message Passing Interface (MPI), or

POSIX threads [1]. For our initial attempts, we opted for explicit parallelization only.

2.2.1 PVM

 PVM is a portable, freeware message-passing library, obtainable via

http://www.epm.ornl.gov/pvm/pvm_home.html, which supports single-processor and

SMP machines as well as clusters of linked machines. Its primary advantage is that it

works across a variety of different types of processors, networks, and configurations.

This ability to interface over heterogeneous clusters may be offset by the significant

overhead associated with the message handling [2,3].

2.2.2 MPI

 MPI is the new official standard for message passing, available at

http://www.mcs.anl.gov:80/mpi. While MPI includes a number of features that go beyond

the basic message-passing model of PVM, such as remote memory access (RMA) and

parallel file I/O, these make it necessary to learn a new language in order to be

implemented. In addition, MPI is better suited to either a massively parallel processor

(MPP), or a cluster of nearly identical machines [2,4].

3.0 Trial Parallelization

 After having studied the options above, we determined to run a trial attempt at

parallelism using our existing system, as described above, and by modifying a C program

which has been employed for data mining and geophysical inversions for a number of

years. The program is a genetic algorithm (GA) inversion code. Genetic algorithms are

notoriously parallelizable, and conversion of the code to a parallel implementation

provided an opportunity to test the difficulty level of the conversion as well as to

benchmark the potential timesavings associated with such a heterogeneous network.

Many geophysical optimization problems are nonlinear and result in objective

functions with a rough fitness landscape and several local minima. Consequently, local

optimization techniques, e.g., linearized matrix inversion, steepest descent, conjugate

gradients, etc. can converge prematurely to a local minimum. Genetic algorithms have

proven themselves an attractive global search tool suitable for the irregular, multimodal

fitness functions typically observed in nonlinear optimization problems in the physical

sciences.

In general, geophysical inverse problems involve employing large quantities of

measured data, in conjunction with an efficient computational algorithm that explores the

model space to find the global minimum associated with the optimal model parameters.

In a GA, the parameters to be inverted for are coded as genes, and a large population of

potential solutions for these genes is searched for the optimal solution. After starting with

an initial range of models, the fitness of each solution is measured by a quantitative

objective function. The fittest members of each population then are combined using

probabilistic transition rules to form a new offspring population. This procedure is

repeated through a large number of generations until the best solution is obtained, based

on the fitness measure [5]. It has been demonstrated that those members of the population

with a fitness greater than the average fitness of the population itself will increase in

number exponentially, effectively accelerating the convergence of the inversion process

[6,7,8]. Our program, shown schematically in Figure 1, employs a random number

generator to produce an initial set of 100 potential values for each of the model

parameters, which are then coded as genes. One gene for each model parameter is

assigned to a particular member of that initial population, creating 100 potential solutions

to the inversion problem. These members are ranked, from best to worst, according to an

external fitness function. The members with the lowest chi-square value are the fittest and

are selected to contribute to the next generation. After completion of both crossover and

mutation, the population is reevaluated as above. Crossover is the mechanism that

provides the recombination of parents into new offspring; random mutation of the genes

ensures genetic richness. The process is repeated over subsequent generations, exploiting

information in past generations to search the parameter space with improved

performance. Note that, depending upon the particular circumstances of the geophysical

inversion, the number of parameters or genes, parameter ranges, crossover and mutation

rates, and population size can vary widely (for details and examples, see references 9

through 12).

As shown schematically in Figure 1, the GA must evaluate 100 members of the

population, using the fitness function, for each generation. In the original program, this

operation is performed in serial, but if performed in parallel, there is a significant

potential for faster performance.

3.1 GA Inversion Code

 Parallelizing the GA code requires modifications to the main program in the

evaluation module, and in the fitness function itself (see Figure 1). We opted to use PVM

for the message passing, due to the heterogeneity of our networked system [13]. The

programming modifications and debugging took approximately one day, performed by

someone familiar with the GA. The PVM additions are relatively simple, constituting

less than 100 lines of code. The pseudocode version of the parallelization procedure can

be found in Appendix A, showing first the original serial version, followed by the revised

parallel implementation.

3.1.2 Results

 Table 1 shows the results for various configurations of a two-processor system.

Koch is an 800 MHz machine, while Richter has a 266 MHz processor. We

benchmarked both the fitness function for a spherical point source, as well as a fitness

function for an ellipsoidal point source, which takes a substantially longer processor time

to run. We ran each GA inversion on each machine singly, and then on both machines

using PVM. One variation on the two-processor configuration is that we compared the

results using one machine as the master, with the other as a slave, and then reversed

them. The average CPU time, in seconds, is shown for a thousand-generation run.

 The results in Table 1 show a significant increase in runtime savings for two

processors over one, with the greatest increase coming if Koch, the faster machine, is

used as the master. A greater percentage in timesavings is accomplished for the elliptical

source, the fitness function which takes a much greater time to run. These results for

what is a somewhat extemporaneous attempt at parallelization, with an investment of

only a few hours time, and using a heterogeneous mixture of machines inside a relatively

slow switch which can be purchased today for less than $100, leads us to optimistically

view our future attempts to parallelize the GEM computer simulation for California.

3.2 Mean Field Slider Block Model

As the ultimate goal for this work is the parallelization of Virtual California, a

cellular automata type computer model, we also set about parallelizing a simple and

popular model of this kind, the mean field slider block model. Recognizing that MPI,

currently without shared memory, was the most practical and likely application in the

near future, the parallelization was done in MPI, using three workstations, including one

dual 800 MHz processor, and two additional 1 GHz processors, connected by a faster, D-

Link, eight port, 100Mb switch.

This program simulates a homogeneous but noisy driven and dissipative threshold

system, with "infinite" interaction range. In this model, sites in a square lattice or grid of

sites represent asperities in a tectonic fault, or blocks in an array of interconnected blocks.

Each block is uniformly coupled to all other blocks in the lattice by springs - hence the

"infinite" range. Motion of the blocks is avoided by using a spatially homogeneous static

friction. Each block is also connected to a loader plate, and the system is loaded

homogeneously in space and uniformly in time by increasing the stress on each block at a

constant rate. When the stress on one block reaches the friction threshold, this block - the

initiator - fails and slips until its stress reaches a uniform residual stress, with some

random noise added to it, and dumps part of the stress drop it undergoes on the rest of the

lattice. Because of this added stress, some other block(s) may reach the stress threshold,

and will fail in its turn; the whole cycle of stress drop on the failed block(s) and its

redistribution among the other blocks continues until all the blocks have stresses below

the threshold. The collection of all the failures triggered by a single initiator is the

model's equivalent of an earthquake. Each avalanche of failures is considered to be one

iteration, and simulations are usually run for at least several million iterations, on lattices

with typically 10
5
 sites.

Models with these characteristics, with either short range or long-range couplings,

have been extensively used in the last decade or so to study the effects of the basic

physical ingredients on the statistics of the sequence of avalanches they generate [14-16].

It has been shown that, when conveniently tuned, they are able to reproduce either scaling

behavior of the Gutenberg-Richter kind or the characteristic event regime observed in

some natural faults [17,18]. Investigations on the origins and physical mechanisms

underlying the scaling behavior and its possible connections with nucleation processes

were made possible by simulations of long range versions of these models [19,20]. The

code we work with has been highly optimized and makes extensive use of linked lists to

avoid unnecessary lattice sweeps - a detailed account of the optimization algorithms used

was published in Ref. [21].

The version of the code tailored for parallelization, rjbmpi, is schematically

illustrated in Appendix B, for both its serial and parallel versions. Using Koch as the

master, and the two faster processors as the slaves, the implemented parallelization

yielded results more than three times faster than the original serial code. While

significantly larger amounts of data would have to be passed from master to slave, the

similarities between the two models lead us to conclude that, if implemented with care,

significant runtime savings could be achieved through the parallelization of the Virtual

California model.

4.0 Computational Structure of the Earthquake Simulation
Problem

The GEM computational model for the numerical simulation of earthquakes,

Virtual California, involves a layered series of codes whose structure we now describe.

Although at present the simulation and data mining analysis are written as a set of C and

FORTRAN 77 codes, the problem is essentially a Monte Carlo simulation and therefore

well suited to optimization on a parallel computer system.

4.1 Model Physics

We first begin with a description of the physics that we simulate. General

methods for carrying out the network simulations have been discussed in refs. [22,23,24].

Briefly, one defines a fault geometry in an elastic medium, computes the stress Greens

functions (i.e., stress transfer coefficients), assigns frictional properties to each fault, then

drives the system via the slip deficit (defined below). The elastic interactions produce

mean field dynamics in the simulations [22]. We focus here on the major horizontally

slipping strike-slip (horizontal motion) faults in southern California that produce the most

frequent and largest magnitude events. We used the tabulation of strike slip faults and

fault properties as published in ref [23]. All major faults in southern California, together

with the major historic earthquakes, are shown in Figure 2. Figure 3 shows our model

fault network. Each fault was assigned a uniform depth of 20 km, the maximum depth of

earthquakes in California, and was subdivided into segments having a horizontal scale

size of approximately 10 km each.

 Several friction laws are described in the literature, including Coulomb failure

[25], slip-dependent or velocity-dependent friction [26], and rate-and-state [27]. Here we

use a parameterization of recent laboratory friction experiments [28,29], in which the

stiffness of the loading machine is low enough to allow for unstable stick-slip when a

failure threshold σF(V) is reached, where σF(V) is a weak (logarithmic) function of the

load point velocity V. Sudden slip then occurs in which the stress decreases to the level

of a residual stress σR(V), again a weak function of V. Stable precursory slip,

characterized by a leakage parameter α, is observed to occur whose velocity increases

with stress level, reaching a magnitude of a few percent of the driving load point velocity

just prior to failure at σ = σF(V). For the simplest model that describes this frictional

physics displayed in the experiments, we find that

2

ss

VT
s2

=α , (1)

where V is the plate velocity as before, T is the average interval between sudden unstable

slip events, and sss is the total stable slip that occurs during T. The fraction of stable to

total slip that occurs in a laboratory experiment or on a fault is in principle observable,

and has in fact been tabulated for a variety of faults in California [25]. The observable

quantity σF(V) - σR(V) determines the magnitude of the unstable slip. Thus the

important parameters of the model that describes laboratory friction can be readily set by

either laboratory or field observations.

4.2 Computational Structure

 The Virtual California simulation of the GEM project is a Monte Carlo, cellular

automaton version of a Langevin-type dynamics. The actual geometric structure of the

fault system in California can be implemented as a coarse-grained mesh of fault segments

embedded in a layered elastic half space. The various pieces of the fault segments

interact by means of elastic interactions. Parameters for the friction law must be

specified on each of the fault segments, together with the long-term rate of slip, V(xi), on

the segment centered at xi.

 The implementation of the model is carried out in three layers of codes, beginning

with two data files. The first data file, Fault_Data.d, contains the basic geometry of the

N fault segments, specifically the coordinates of each of the four corners of the fault

segments. This data file also contains the long-term rate of slip V(xi) for each of the

segments. A second data file, Fault_Friction.d, contains the average recurrence time

intervals Ti between unstable slip events on the ith segment, as well as values of α for

each segment.

 These two data files are used, together with standard methods [23] from elasticity

theory to compute the stress Green's functions (stress transfer coefficients) by code

SG_Compute.c. Since the form of the elastic stress transfer coefficients is known

analytically, the computations performed by SG_Compute.c are simply function

evaluations. The output from this code is contained within a data file SG_Coefficients.d,

and is a set of N2 stress transfer coefficients (including the self-stress term) for all of the

fault segments, where N is the number of fault segments. These stress transfer

coefficients, together with the fault slip rate data in Fault_Data.d and friction data in

Fault_Friction.d, are then used as the basic inputs to the earthquake simulation code

EQ_Simulator.c, which computes the stress evolution on each fault patch for a given

time. The latter is essentially a Monte Carlo algorithm that encodes the CA Langevin

dynamics, assuming a random component during each unstable fault slip event. The

equations for the slip on the ith fault segment are:

 () (){ } ()()*
iiiFii

i

ii sVtFtt1
Kdt

ds
φ−−ε−−δη++α

σ∆
= (2)

 ∑

 −σ

j jstjVijT=i (3)

where ∆σi = σi - σ
R

i, Tij is the matrix of stress transfer coefficients, ∑=
j

iji TK , and

F((Vt - s
i
) - ϕi

*) is an odd nonlinear function of s with amplitude ε i and parameter ϕi
*

[23]. The parameter tF is any time t at which σi(t) ≥ σi
F, δ is the Dirac delta function, and

η is a random noise ("overshoot" or "undershoot"). The nonlinear function

F((Vt - s
i
) - ϕi

*) is present because all of the eigenvalues of the linear part of (2) are

negative, and therefore the physics has an instability similar to a Peierls instability [30].

Physically, the functions F((Vt - s
i
) - ϕi

*) and parameters ϕi
* correspond to a potential

well on a high-dimensional rough energy landscape upon which the system evolves. The

set of N parameters {ϕi
* } represent a fixed point about which the system fluctuates. This

physical picture has been established through the use of simulations that demonstrate that

the mean field dynamics of the model, a result of the long-range elastic interactions,

induces local ergodicity [31,32]. The exact form of F((Vt - s
i
) - ϕi

*) is unimportant, since

small fluctuations about {ϕ
i

*} are controlled by the first nonlinear term in F((Vt - s
i
) -

ϕi
*), which is always cubic.

 The output from EQ_Simulator.c is a record of the slip events and stress history

of the dynamics for a fixed time period, and we can call it EQ_History_01.d. The "01"

denotes the fact that EQ_History_01.d can be input back into EQ_Simulator.c as an

initial condition to produce a second earthquake history file EQ_History_02.d which

continues the dynamical evolution of the fault system to later times. Once the output data

files EQ_History_xx.d have been computed, their data can be displayed in various ways,

for example by a general visualization code EQ_Visualize.pro written in IDL or other

script.

In addition to slip histories, deformation that would be expected on the surface of

the half space can be computed; this deformation could in principal be observed via GPS

or satellite radar interferometry. To enable this calculation, kinematic Green's functions

must be computed via a code KG_Compute.c that produces an output file

KG_Coefficients.d. This data file is then used in a code EQ_Deformation.c to compute

the surface deformation file Surface_Deformation.d , which is then used as input to the

general visualization code EQ_Visualize.pro.

The flow diagram for this set of computation, simulation, and visualization codes

is shown in the Figure 4. Examples of the visualized output from these codes can be

found in ref. [33].

4.3 Parallelization Procedures

We begin by schematically illustrating the structure of the two codes, 1)

SG_Compute.c and 2) EQ_Simulator.c, as they exist for serial computation, in

Appendix C. We then show (again schematically) how these codes are adapted to

parallel computation. For the parallel implementation, we will assume that the

multiprocessor is an SMP system. The codes KG_Compute.c and EQ_Deformation.c

are similarly structured and modified. Again, N is the number of fault segments.

5.0 Conclusions

The promising results from the parallelization of both a genetic algorithm

program and a slider block model, using a simple, heterogeneous processor system,

existing freeware, and at an extremely low cost of both manpower and hardware dollars,

encourage us to more ambitious work with the large-scale computer earthquake

simulation of southern California, the Virtual California simulation of the General

Earthquake Model (GEM) project. Although we anticipate that the individual

calculations will remain small enough for the processor memory, one issue, associated

with the amount and variety of information that might have to be passed from master to

slave appears to be the greatest problem yet to be solved. However, there are potential

solutions such as data consolidation and stored or shared memory. As a result, we

believe that conversion of the GEM computational problem, which is essentially a Monte

Carlo simulation, is well suited to optimization on parallel computers such as the Maui

MHPCC SMP machine or a Beowulf Linux cluster.

Appendix A - Genetic Algorithm Program Code

A.1 Serial

A.1.1 Main Program (Inversion.c)

 main():

 initialize_random_genes()

 WHILE best_fitness() < target

 select_top_hundred(genes)

 breed_new_population(genes)

 FOREACH gene

 evaluate_fitness(gene)

 END FOREACH

 END WHILE

A.1.2 Fitness Function (Fit.c)

 evaluate_fitness():

 locs[] = read_observation_locations()

 real_deform[] = read_observed_data()

 source_parameters = F(gene)

 model_deform[] = calculate_displacements(locs[], source_parameters)

 FOREACH loc

 chisq += (model_deform[loc] - real_deform[loc]))**2

 END FOREACH

 return fitness = exp(-chisq)

 A.2 Parallel

 A.2.1 Master (Inversion Program)

 main():

 initialize_random_genes()

 WHILE best_fitness() < target

 select_top_hundred(genes)

 breed_new_population(genes)

 DO
 IF receive_ready_message()
 pack_gene_into_message()
 send_message_to_slave_process()

 ++outstanding
 END IF
 IF outstanding && receive_finished_message()
 receive_fitness_message()
 unpack_fitness_from_message()
 --outstanding
 END IF

 UNTIL outstanding == 0 && num_evaluated == num_genes

 END DO

END WHILE

A.2.2 Slave (Fitness program)

 main():

 locs[] = read_observation_locations()

 real_deform[] = read_observed_data()

 LOOP FOREVER

 send_ready_message()

 receive_gene_message()

 unpack_source_parameters_from_message()

 model_deform[] = calcula te_displacements(locs[], source_parameters)

 FOREACH loc

 chisq += (model_deform[loc] - real_deform[loc]))**2

 END FOREACH

 fitness = exp(- chisq)

 pack_fitness_into_message()

 send_result_message()

 END LOOP

Appendix B - Mean Field Slider Block Model

B.1 Serial

BEGIN PROGRAM

 Initializes lattice with random stress values

 WHILE current_iteration < total_iterations

 Finds max stress in array

 Resets critical and residual stresses

 Initializes failing_sites list with initiator

 Avalanche()

 Computes averages

 Writes data to file

 END WHILE

 Avalanche():

 WHILE failing_sites list not empty

 Initializes next_failing list

 Computes stress drop for every site in the list AND

 Updates failing sites (subtract stress drop)

 Redistributes stress to all other sites:

 if stress on site larger than threshold, include in next_failing list

 Switches failing_sites and next_failing lists

 END WHILE

END PROGRAM

B.2 Parallel

B.2.1 Main, rjbmpi

BEGIN PROGRAM

 Assigns to each processor 1 / (number of processors) of lattice

 WHILE current_iteration < total_iterations

 Receives max stress and site index from each slave

 Finds maximum of these max stresses

 Broadcasts max stress and process containing it to all slaves

 Avalanche()

 Receives event totals from each slave

 Computes averages

 Writes data to file

 END WHILE

 Avalanche():

 WHILE (total number of failed sites > 0)

 Receives stress drop from each slave

 Sums all stress drops into total stress drop

 Broadcasts total stress drop to all slaves

 Receives number of failed sites from each slave

 Sums number of failed sites into total failed sites

 Broadcasts total number of failed sites

 END WHILE

END PROGRAM

B.2.2 Slave, rjbmpi

BEGIN PROGRAM

 Assigns to self 1 / (number of processors) of lattice

 Initializes local lattice with random stress values

 WHILE current_iteration < total_iterations

 Finds max stress in local lattice

 Sends local max stress and site index to master

 Receives global max stress and processor its on

 Avalanche()

 END WHILE

 Avalanche():

 WHILE (total number of failing sites > 0)

 Computes stress drop for every failing site in local lattice

 Sums stress drops for all failing sites into local stress drop

 Sends local stress drop to master

 Receives total stress drop from master

 Redistributes total stress drop to all sites in lattice AND

 Tests for new failing sites

 Sends number of failing sites to master

 Receives total number of failing sites

 END WHILE

END PROGRAM

Appendix C - Virtual California Program Code

C.1 Serial

C.1.1 Main, SG_Compute.c:

Procedure Main 'SG_Compute'

Procedure Stress_Greens_Function(N,N)

Main()

Read_fault_data()

/* Begin stress Green's function computation loop */

WHILE (j,i< number_of_patches)

/* Compute each stress transfer coefficient */

 Procedure Stress_Greens_Function(j,i)

END WHILE

Output_computed_Stress_Green's_Function()

end
 }

C.1.2 Main, EQ_Simulator.c:

Procedure Main 'EQ_Simulator';

/*Computes the state of stress on segment i at time t. */

Procedure Stress_State_Compute(N,s,Number_time_steps);

Main()

Read_fault_data()
Read_friction_data()
Read_Stress_Greens_Funtions()

WHILE (t < number_of_time_steps)

time = time + time_index * time_step;

 WHILE(N<number_of_segments)

 /* Compute new value of stress on segment i */

 Procedure Stress_State_Compute(i,time);

/* Check to see which segments have ? i(t) ? ? i
F */

 WHILE (any ? i(t) ? ? i

F)

 WHILE (i<N)

/* Update slip s(i) */
 s(i)= s(i) + ? ? i / Ki + random number;

END WHILE

 END WHILE

/* Record time and state of slip in EQ_History.d */

Output_computed_Stress_State()

 END WHILE
END WHILE

end

C.2 Parallel Code (Master/Slave)

C.2.1 Master - SG_Compute.c

/*Computes the stress transferred from fault i to fault j when fault i slips by a unit
amount. */

Main():

Read_fault_data()

WHILE (N < number_of_patches)

 DO
 IF receive_ready_message()
 Pack_location_id_of_segment()
 Send_message_to_slave()
 ++outstanding
 ENDIF
 IF outstanding && receive_finish_message()
 Receive_Stress_Green's_Function()
 Unpack_Stress_Green's_Function()
 --outstanding
 ENDIF

 UNTIL outstanding == 0 && num_evaluated =N

 END DO

END WHILE

C.2.2 Slave - SG_Compute.c

Main():

Locs[]=read_in_faultgeometry_data()
Parameters[]=read_in_sourceparameters()

LOOP FOREVER

 Send_ready_message()
 Receive_fault_message()
 Unpack_location_index

Stress_Green's_Functions =
Calculate_Stress_Green's_Functions(Locs[],Parameters[])

 Pack_Stress_Green's_Function_into_message()
 Send_result_message()

END LOOP

C.2.3 Master, EQ_Simulator.c

/*Computes the state of stress on segment i at time t. */

Main():

Read_fault_data()
Read_friction_data()
Read_Stress_Greens_Funtions()

WHILE (t < number_of_time_steps)

 WHILE(N<number_of_segments)

 IF Stress(N) > Failure_stress

 DO

IF receive_ready_message()
 Pack_slip_rates()
 Pack_Friction_Parameters()
 Pack_Stress_Green's_Functions()
 Send_message_to_slave()
 ++outstanding
 ENDIF

IF outstanding && receive_finish_message()
 Receive_Stress_State()
 Unpack_Stress_State()
 --outstanding
 ENDIF

 END DO
 Check_stress_state_on_each _segment()

END IF
END WHILE

 UNTIL outstanding == 0 && time_steps ==T

END WHILE

C.2.3 Slave, EQ_Simulator.c

Main():

Locs[]=read_in_faultgeometry_data()
Parameters[]=read_in_sourceparameters()

LOOP FOREVER

 Send_ready_message()
 Receive_stress_message()
 Unpack_ slip_rates()
 Unpack_Friction_Parameters()
 Unpack_Stress_Green's_Functions ()

Stress_State =
Calculate_Stress_State(Slip_rate[],Friction[],Green's_Function)

 Pack_Stress_State_into_message()
 Send_result_message()

END LOOP

Figure 1: Flow chart, genetic algorithm inversion program.

Figure 2: Historic seismicity, southern California (Southern California Earthquake
Center, http://www.scecdc.scec.org/clickmap.html).

Figure 3: Map of the 215 fault segments used in the implementation of the Virtual
California simulation.
Only the strike slip faults are represented in this simplified model.

Data Files:
Fault_Data.d
Fault_Friction.d

SG_Compute.c KG_Compute.c

EQ_Deformation.c EQ_Simulator.c

EQ_History_xx.d

EQ_Visualize.pro

Figure 4: Flow diagram for parallelization of Virtual California earthquake
simulation program. Green's functions in KG_Compute.c and SG_Compute.c
are used to calculate the input to EQ_Deformation.c and EQ_Simulator.c, where
the deformation and earthquake slip histories are computed, respectively.

FUNCTION RICHTER RICHTER TO KOCH KOCH KOCH TO RICHTER

SPHERE 3940 1025 545 420

ELLIPSE 6300 1220 830 625

TABLE 1: Time, in seconds, to process 1000 generations with
the processors listed. "Richter to Koch" means that the
master process was resident on Richter and there were two
slave processes, one on Richter and one on Koch.

References

[1] J. Radajewski and D. Eadline, Linux Beowulf How-To,
www.ibiblio.org/mdw/HOWTO/Beowulf-HOWTO.html (1998).
[2] H. Dietz, Parallel Processing How-To,
www.ibiblio.org/mdw/HOWTO/Parallel-Processing-HOWTO.html (1998).
[3] PVM website, www.epm.ornl.gov/pvm/pvm_home.html.
[4] MPI website, www.unix.mcs.anl.gov/mpi/.
[5] Z. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, New York, NY (1992).
[6] J.H. Holland, Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge, MA (1975).
[7] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley, Reading, MA (1989).
[8] M. Mitchell, Proc. First Int. Conf. Artificial Life. Paris, France,
245 (1992).
[9] T.T. Yu, J. Fernandez, and J.B. Rundle, Comp. and Geo., 24, 173 (1998).
[10] J. Bhattacharyya, A.F. Sheehan, K.F. Tiampo, and J.B. Rundle, BSSA, 89, 202
(1998).
[11] K.F. Tiampo, J.B. Rundle, J. Fernandez, and J.Langbein, J. Vol.
Geoth. Res., 102, 199 (2000).
 [12] J. Fernandez, K.F. Tiampo, G. Jentzsch, M. Charco, and J.B. Rundle, GRL, 28,
2349 (2001).
[13] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM:
Parallel Virtual Machine - A Users' Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge, MA (1994).
[14] S.R. Brown, C.H. Scholz, and J.B. Rundle, Geophys. Res. Lett., 18, 215 (1991); J.B.
Rundle and D.D. Jackson, Bull. Seismol. Soc. Am., 67, 1363 (1977).
[15] Z. Olami, H.J.S. Feder, and K. Christensen, Phys. Rev. Lett., 68, 1244 (1992).
[16] C.G. Sammis and S.W. Smith, Pure Appl. Geophys., 155, 307 (1999).
[17] K. Dahmen, D. Ertas, and Y. Ben-Zion, Phys. Rev. E, 58, 1494 (1998).
[18] J.S. Sá Martins, J.B. Rundle, M. Anghel, and W. Klein, e-print cond-mat/0101343,
submitted (2001).
[19] W. Klein, M. Anghel, C.D. Ferguson, J.B. Rundle, and J.S. Sá Martins, in
Geocomplexity and the Physics of Earthquakes, ed. JB Rundle, DL Turcotte and W.
Klein (Amer. Geophys. Un., Washington DC, 2000).
[20] M. Anghel, W. Klein, J.B. Rundle, and J.S. Sá Martins, e-print cond-mat/0002459,
submitted (2001).
[21] E.F. Preston, J.S. Sá Martins, J.B. Rundle, M. Anghel, and W. Klein, Comp. Sci.
Eng., 2, 34 (2000).
[22] J.B. Rundle, W. Klein, K.F. Tiampo and S.J. Gross, Phys. Rev. E, 61, 2418 (2000).
[23] J.B. Rundle, J. Geophys. Res., 93, 6255 (1988).
[24] S.N. Ward, Bull. Seism. Soc. Am., 90, 370 (2000).

[25] J. Deng and L.R. Sykes, J. Geophys. Res., 102, 9859 (1997).
[26] B.N.J. Persson, Sliding Friction, Physical Principles and Applications (Springer-
Verlag, Berlin, 1998).
[27] J. Dieterich, J. Geophys. Res., 84, 2161 (1979).
[28] T.E. Tullis, Proc. Nat. Acad. Sci., 93, 3803 (1996).
[29] S. L. Karner and C. Marone, in GeoComplexity and the Physics of Earthquakes, ed.
JB Rundle, DL Turcotte and W. Klein (Amer. Geophys. Un., Washington DC, 2000)
[30] See for example, R. Peierls, Phys. Rev., 54, 918 (1934).
[31] Rundle, J.B., W. Klein, S. Gross, and D.L. Turcotte, Phys. Rev. Lett., 75, 1658-1661
(1995).
[32] W. Klein, JB Rundle and CD Ferguson, Phys. Rev. Lett., 78, 3793 (1997).
[33] J.B. Rundle, P.B. Rundle, W. Klein, J.S. Sá Martins, K. F. Tiampo, A. Donnellan,
 and L. H. Kellogg, PAGEOPH, submitted.

