
 

  1

Parallel Iterative Solvers for Unstructured Grids using 
a Directive/MPI Hybrid Programming Model for the 

GeoFEM Platform on SMP Cluster Architectures 
Kengo Nakajima(1) and Hiroshi Okuda(2) 

(1) Department of Computational Earth Sciences, Research Organization for Information Sci-
ence and Technology (RIST), Tokyo, Japan (e-mail: nakajima@tokyo.rist.or.jp, phone: +81-3-
3712-5321, fax: +81-3-3712-5552) (2) Department of Quantum Engineering and Systems Sci-
ence, The University of Tokyo, Tokyo, Japan ( e-mail: okuda@q.t.u-tokyo.ac.jp, phone: +81-3-
5841-7426, fax: +81-3-3818-3455) 

Abstract 
In this paper, an efficient parallel iterative method for unstructured grids devel-
oped by the authors for shared memory symmetric multiprocessor (SMP) cluster 
architectures on the GeoFEM platform is presented. The method is based on a 3-
level hybrid parallel programming model, including message passing for inter-
SMP node communication, loop directives for intra-SMP node parallelization and 
vectorization for each processing element (PE). Simple 3D elastic linear prob-
lems with more than 108 DOF have been solved by 3X3 block ICCG(0) with addi-
tive Schwarz domain decomposition and PDJDS/CM-RCM reordering on 16 SMP 
nodes of a Hitachi SR8000 parallel computer, achieving performance of 20 
GFLOPS. The PDJDS/CM-RCM reordering method provides excellent vector and 
parallel performance in SMP nodes, and is essential for parallelization of for-
ward/backward substitution in IC/ILU factorization with global data dependency. 
The developed method was also tested on an NEC SX-4 and attained 969 
MFLOPS (48.5% of peak performance) using a single processor. The additive 
Schwarz domain decomposition method provides robustness for the GeoFEM 
parallel iterative solvers with localized preconditioning. 

1. Introduction 

In recent years, shared memory symmetric multiprocessor (SMP) cluster architecture has become 
very popular for massively parallel computers. For example, all Accelerated Strategic Computing 
Initiative (ASCI) machines have adopted this type of architecture[1].  

In 1997, the Science and Technology Agency of Japan (now, the Ministry of Education, 
Culture, Sports, Science and Technology, Japan) began a 5-year project to develop a new super-
computer, the Earth Simulator[2]. The goal is the development of both hardware and software for 
earth science simulations. The Earth Simulator has SMP cluster architecture and consists of 640 
SMP nodes, where each SMP node consists of 8 vector processors. The present study was con-
ducted as part of the research toward developing a parallel finite-element platform for solid earth 
simulation, named GeoFEM[3].  

In this architecture, loop directives + message passing style hybrid programming model 
appears to be very effective when message passing such as MPI[4] is used in inter-SMP node 
communication, and when intra-SMP node parallelization is guided by loop directives such as 
OpenMP directives[5]. A significant amount of research on this issue has been conducted in recent 
2 or 3 years[6][7], but most studies have focused on applications involving structured grids such as 
the NAS Parallel Benchmarks (NPB)[8], with very few examples for unstructured grids. 
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In this study, parallel iterative methods on unstructured grids for SMP cluster architecture 
have been developed for a Hitachi SR8000[9] parallel computer at the University of Tokyo[10]. A 
parallel programming model with the following 3-level hierarchy has been developed :   
  

• Inter-SMP node MPI 
• Intra-SMP node Compiler directives for parallelization 
• Individual PE  Compiler directives for vectorization/pseudo vectorization[9] 

  
The entire domain is partitioned into distributed local data sets[3], and each partition is assigned to 
one SMP node (Fig. 1). 

In order to achieve efficient parallel/vector computation for applications with unstructured 
grids, the following 3 issues are critical :  
  

• Local operation and no global dependency 
• Continuous memory access 
• Sufficiently long loops 

  
A special reordering technique proposed by Washio et. al.[11][12] has been integrated with parallel 
iterative solvers with localized preconditioning developed in the GeoFEM project[3] in order to 
attain local operation, no global dependency, continuous memory access and sufficiently long 
loops. 

In the following part of this paper, we give an overview of GeoFEM's parallel iterative 
solvers, local data structure, reordering techniques for parallel and vector computation on SMP 
nodes and the Hitachi SR8000 hardware system, and present the results for an application to 3D 
solid mechanics. 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Fig. 1   Parallel FEM computation on SMP cluster architecture. 
Each partition corresponds to an SMP node 
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2. Parallel Iterative Solvers in GeoFEM 

2.1   Localized Preconditioning 
The incomplete lower-upper (ILU)/Cholesky (IC) factorization method is one of the most popular 
preconditioning techniques for accelerating the convergence of Krylov iterative methods. Among 
ILU preconditioners, ILU(0), which does not allow fill-in beyond the original non-zero pattern, is 
the most commonly used. Backward/forward substitution (BFS) is repeated in each iteration. BFS 
requires global data dependency, and this type of operation is not suitable for parallel processing 
in which the locality is of utmost importance. 

Most preconditioned iterative processes are a combination of the following : 
  

• Matrix-vector products 
• Inner dot products 
• DAXPY (αx+y) operations[13] and vector scaling 
• Preconditioning operations 

  
The first 3 operations can be parallelized relatively easily[13]. In general, preconditioning opera-
tions (i.e., BFS) represent almost 50 % of the total computation if ILU(0) is implemented as the 
preconditioner. Therefore, a high degree of parallelization is essential for the BFS operation. 

Localized ILU(0) is a pseudo ILU(0) preconditioner that is suitable for parallel processors. 
This method is not a global method, rather, it is a local method on each processor or domain. The 
ILU(0) operation is performed for each processor by zeroing out matrix components located 
outside the processor domain. This localized ILU(0) provides data locality on each processor and 
good parallelization because no inter-processor communications occur during ILU(0) operation. 

However, localized ILU(0) is not as powerful as the global preconditioner. Generally, the 
convergence rate worsens as the number of processors and domains increases[14][15]. At the critical 
end, if the number of processors is equal to the number of the degrees of freedom (DOF), this 
method performs identically to diagonal scaling. 

2.2   Additive Schwarz Domain Decomposition 
In order to stabilize localized ILU(0) preconditioning, additive Schwarz domain decomposition 
(ASDD) for overlapped regions[16] has been introduced. The procedure is as follows : 
  

(1) Global preconditioning rMz =  is performed where M is a preconditioning matrix and r 
and z are vectors. 

(2) If the entire domain is divided into 2 domains Ω1 and Ω2 , such as in Fig. 2(a), the precondi-
tioning matrix is solved locally via localized preconditioning according to : 
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(3) After the local preconditioned matrices are solved, the effects of overlapping regions Γ1 
and Γ2 are introduced by the following global nesting correction (Fig. 2(b)): 
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 where n denotes the number of cycles of the additive Schwarz domain decomposition. 
(4) Repeat steps (2) and (3) until convergence   
  



 

 

Table 1 shows the effect of ASDD for a solid mechanics example with 3×443 DOF. Computa-
tions were performed on a Hitachi SR2201 at the University of Tokyo with 1 ASDD cycle per 
iteration. Without ASDD, the number of iterations for convergence increases according to the 
number of partitions. In contrast, when ASDD is introduced, the number of iterations until con-
vergence remains constant, although the computation time for a single iteration increases. 
  
  
  
  
  
  
  
  
  
                        (a) Local operation                          (b) Global nesting correction 

  
Fig. 2  Operations in ASDD for 2 domains 

  

Table 1. Effect of ASDD for solid mechanics with 3×443 DOF on a Hitachi SR2201. 
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• Internal nodes (originally assigned nodes) 
• External nodes (nodes that form the element in the partition but are located outside of the 

partition) 
• Boundary nodes (external nodes of other partitions) 

  
Communication tables between neighboring partitions are also included in the local data. Values 
on boundary nodes in the partitions are sent to the neighboring partitions and are received as ex-
ternal nodes at the destination partition. 

This data structure, as described in Fig. 3, provides excellent parallel efficiency[15].  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Fig. 3  Example of GeoFEM distributed local data structure by node-based partitioning with 
overlapping elements at partition interfaces 

3. Reordering Methods for Parallel/Vector Performance Using SMP 
Nodes 

As shown in Fig. 1, the entire domain is partitioned into local data sets and each local data set 
corresponds to one SMP node. 

3.1   Cyclic Multicolor – Reverse Cuthil McKee Reordering 
In order to achieve efficient parallel/vector computation for applications with unstructured grids, 
the following 3 issues are critical :  
  

• Local operations and no global dependency 
• Continuous memory access 
• Sufficiently long loops 

  

PE#0 PE#1

PE#2 PE#3

PE#1

PE#3
PE#2

PE#0



 

 

For unstructured grids, in which data and memory access patterns are very irregular, the reorder-
ing technique is very effective for achieving high parallel and vector performance. The popular 
reordering methods are hyperplane/reverse Cuthil-McKee (RCM) and multicoloring [17]. In both 
methods, elements located on the same hyperplane (or classified in the same color) are independ-
ent. Therefore, parallel operation is possible for the elements in the same hyperplane/color and 
the number of elements in the same hyperplane/color should be as large as possible in order to 
obtain high granularity for parallel computation or sufficiently large loop length for vectorization. 

Hyperplane/RCM (Fig. 4(a)) reordering provides fast convergence of IC/ILU-
preconditioned Krylov iterative solvers, yet with irregular hyperplane size. For example in Fig. 
4(a), the 1st hyperplane is of size 1, while the 8th hyperplane is of size 8. In contrast, 
multicoloring provides a uniform element number in each color (Fig. 4(b)). However, it is widely 
known that the convergence of IC/ILU-preconditioned Krylov iterative solvers is rather slow. 
Convergence can be improved by increasing the number of colors, but this reduces the number of 
elements in each color. 

The solution for this trade-off is cyclic multicoloring (CM) on hyperplane/RCM [11]. In this 
method, the hyperplanes are renumbered in a cyclic manner. Figure 4(c) shows an example of 
CM-RCM reordering. In this case, there are 4 colors ; the 1st, 5th, 9th and 13th hyperplanes in 
Fig. 3(a) are classified into the 1st color. There are 16 elements in each color. 

In CM-RCM, the number of colors should be large enough to ensure that elements in the 
same color are independent. 
  
  
  
  
  
  
  
  
  
  
  
  
  
          (a) Hyperplane/RCM            (b) Multicoloring : 4 colors            (c) CM-RCM : 4 colors 
  
Fig. 4   Example of hyperplane/RCM, multicoloring and CM-RCM reordering for 2D geometry 

3.2   DJDS Reordering 
The compressed row storage (CRS) [13] matrix storage format is highly memory-efficient, how-
ever the innermost loop is relatively short due to matrix-vector operations as follows : 
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do i= 1, N
do j= 1, NU(i)
(operations)
F(i)= F(i) + A(k1)*X(k2)

enddo
enddo
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The following loop exchange is then effective for obtaining a sufficiently long innermost loop : 
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do j= 1, NUmax
do i= 1, N
(operations)
F(i)= F(i) + A(k1)*X(k2)

enddo
enddo
 7

g-order jagged diagonal storage (DJDS) [12] is suitable for this type of operation and 
rmuting rows into an order of decreasing number of non-zeros, as in Fig. 5(a). As 

n the same hyperplane are independent, performing this permutation inside a hyper-
 not affect results. Thus, a 1D array of matrix coefficients with continuous memory 
be obtained, as shown in Fig. 5(b). 

(a) Permutation of rows into order of decreasing number of non-zeros 

(b) 1D array of matrix coefficient 

Fig. 5  DJDS reordering for efficient vector/parallel processing 

ibution over SMP Nodes : Parallel DJDS Reordering 
ay of matrix coefficients with continuous memory access is suitable for both parallel 
computing. The loops for this type of array are easily distributed to each PE in an 
via loop directives. In order to balance the computational load across PEs in the SMP 
JDS array should be reordered again in cyclic manner. The procedure for this reorder-
parallel PDJDS (PDJDS) is described in Fig. 6 : 
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                                              (a)                                                                       (b)  
  
Fig. 6  PDJDS reordering for load-balanced parallel processing in an SMP node : Example with 4 
PEs per SMP node (a) Cyclic reordering (b) 1D array assigned to each PE after reordering and 
load-balancing. 

  

3.4   Summary of Reordering Methods 
The reordering procedures for increasing parallel/vector performance of the SMP cluster architec-
ture described in this section are summarized as follows : 
  

(1) RCM reordering on the original local matrix for independent sets. 
(2) CM reordering to obtain loops whose length is sufficiently long and uniform. 
(3) DJDS reordering for efficient vector processing, producing 1D arrays of coefficients with 

continuous memory access. 
(4) Cyclic reordering for load-balancing among PEs on an SMP node. 
(5) PDJDS/CM-RCM reordering is complete. 

  
The typical loop structure of the matrix-vector operations for PDJDS /CM-RCM reordered matri-
ces based on the pseudo-vector and parallel directives of the Hitachi SR8000 is described in the 
following : 
  
  
  
  
  
  
  
  
  
  
  
  
  

do col= 1, COLORtot
do j= 1, NUmax(col)

*POPTION, INDEP : Parallelized in SMP node
do pe= 1, SMP_PE_tot
iS= NstartU(col,j,pe)
iE= NendU (col,j,pe)

*VOPTION, INDEP : Vecorized for each PE
do i= iS, iE
(operations)

enddo
enddo

enddo
enddo 

PE#0
PE#1

PE#2
PE#3
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4. Hitachi SR8000 

The Hitachi SR8000 is a distributed-memory parallel system with 4 to 128 configurable nodes. 
The nodes are connected by a high-speed multidimensional crossbar network and each node con-
sists of multiple (8) microprocessors (IPs). These IPs perform high-speed operation simultane-
ously via the cooperative microprocessor (COMPAS) feature[9]. 

In this study, the 128-node system at the Computing Center of the University of Tokyo was 
employed. Each node provides 8 GFLOPS peak performance, and the total peak performance is 
approximately 1 TFLOPS[10]. 

4.1   Cooperative microprocessors (COMPAS)[9] 
This functionality provides high-speed simultaneous activation of multiple processors in a node. 
Each microprocessor in the node executes one of the threads into which the original program is 
divided. The compiler automatically performs parallelization in the node, allowing the user to 
code data without being aware of hardware architecture. Parallelization of vector operations sim-
plifies conversion from the standard vector operations. 

4.2   Pseudo-Vectorization[9] 
High-speed numerical computations in the microprocessor are achieved by pseudo-vectorization. 
Each microprocessor in a node pipelines data from memory without interrupting subsequent 
instructions. Therefore, high-speed large-scale computing is possible by supplying a large amount 
of data to the computing element from memory. 

Generally, a RISC microprocessor-based machine has a cache memory between the proces-
sor and the main memory for high-speed data transmission to the processor, thereby increasing 
performance. For numerical calculation programs such as FORTRAN, however, the cache mem-
ory cannot be fully utilized because a large range of array data is defined and referenced through 
loops, eventually lowering performance. 

As a solution to this performance reduction, the SR8000 provides pseudo-vector processing 
for high-speed transmission of data from the memory to the processor. Pseudo-vector processing 
generates an object program that processes the data referenced in a loop in one of the following 
ways. 
  
• The data is loaded in advance in a floating-point register, and loading is completed while the 

loop that references the data is performing calculations from previous iterations. (preload op-
timizing)  

• The data is transferred is advance into a memory cache, and the transfer is completed while 
the loop that references the data is performing calculations from previous iterations. (prefetch 
optimizing) 

5. Examples 

The proposed methods were applied to large-scale 3D solid mechanics example cases, as de-
scribed in Fig. 7, which represent linear elastic problems with homogeneous material property 
and boundary conditions. Each element is a cube with unit edge length, and each node has 3 DOF. 
therefore there are 3×Nx×Ny×Nz DOF in total for the problem. 

For this problem, 3×3 Block ICCG(0) with PDJDS/MC-RCM reordering is applied with 
full LU factorization for each 3×3 diagonal block. One ASDD operation is applied to each itera-
tion. 

Vector performance was evaluated on an NEC SX-4 (JAERI/CCSE) and a Hitachi SR2201 
(University of Tokyo), and SMP parallel performance was tested on the Hitachi SR8000. In each 
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case, the number of colors was set to 99, corresponding to an average vector length of (total 
number of FEM nodes) / (number of PEs or SMP nodes × 99 × NPE) where NPE = 1 for SX-4 
and SR2201, and NPE=8 for SR8000. 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Fig. 7  Problem definition and boundary conditions for 3D solid mechanics example cases. Linear 
elastic problem with homogeneous material property and boundary conditions. Each element is 
cube with unit edge length. Problem has 3×Nx×Ny×Nz DOF in total. 

5.1   Vector/Vector Parallel Performance 
Before computation on the Hitachi SR8000, vector performance was evaluated on an NEC SX-4 
and Hitachi SR2201. Parallelization for SMP nodes was not applied ; matrices are therefore reor-
dered by DJDS/CM-RCM. 

An example including 413 nodes (206,763 DOF) was solved using 1 processor of the NEC 
SX-4, achieving 969 MFLOPS performance for the linear solver component with peak perform-
ance of 2 GFLOPS (48.5% of peak performance). 

Evaluations for parallel computing were conducted on the Hitachi SR2201 at the University 
of Tokyo[10]. Pseudo vectorization can also be applied on the SR2201, and each PE performs as a 
vector processor. Figure 8 shows the GFLOPS rate and work ratio (real computation time/elapsed 
execution time including communication) for various problem sizes. In these computations, the 
problem size for 1 PE was fixed. The largest case was 27,168,372 DOF on 252 PEs. A perform-
ance of 16.2 GFLOPS was achieved. Each processor is capable of 300 MFLOPS peak perform-
ance, and the total peak performance of the system was 75.6 GFLOPS with 252 PEs. The 16.2 
GFLOPS performance then corresponds to 21.4% of the peak performance. Figure 8(b) shows 
that the work ratio is higher than 90% if the problem size for 1 PE is sufficiently large, more than 
24,000 DOF in this case. 
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Fig.8   GFLOPS rate and work ratio for various problem sizes on Hitachi SR2201 with
DJDS/CM-RCM reordering. Problem size/PE is fixed. Largest case is 27,168,372 DOF on
252 PEs. 
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5.2   SMP Parallel Performance 
The following cases were tested on the Hitachi SR8000 : 
  

(1) The increase in speed for fixed problem size (3×1283 DOF) using between 1 and 16 SMP 
nodes. 

(2) Communication/synchronization overhead for intra-SMP node parallellization for various 
problem sizes using 1 SMP node. 

(3) Effect of matrix storage and reordering for various problem sizes using 1 SMP node. 
(4) Performance evaluation for various problem sizes using 1 to 16 SMP nodes 

  
Figure 9 shows the results of (1). In this example, the size of the entire problem was fixed 

at 3×1283 (6,291,456) DOF, and the increase in speed was evaluated for 1 to 16 SMP nodes. The 
number of iterations for convergence (ε = 10-8) was 333 (1-node), 337 (2-nodes), 338 (4-nodes), 
341 (8-nodes) and 347 (16-nodes), indicating that the number of iterations remains almost con-
stant as the number of nodes increases. This is due to the ASDD. In this case, there is a superlin-
ear speedup of convergence as the number of processors increases for the 2-, 4-, and 8-node cases. 
Speedup rate at 16 SMP nodes was 14.2, which corresponds to the 88.8% of the linear (ideal) 
speedup. 

Figure 10 shows the results of (2). Communication/synchronization overhead occurs for 
parallel processing in each SMP node. The work ratio was measured for various problem sizes 
from 3×163 (12,288) DOF to 3×1283 (6,291,456) DOF on 1 SMP node. Measurements were made 
using the XCLOCK system subroutine of the Hitachi compiler[9]. The results show that overhead 
is more than 30% for the smallest problem size, and less than 10% for the problem size of 3×403 
(192,000) DOF (24,000 DOF/PE) and less than 5% for 3×643 (786,432) DOF (98,304 DOF/PE). 
According to these results, communication/synchronization overhead for intra-SMP node com-
munication is almost negligible if the problem size is sufficiently large.  

Figure 11 shows the results of (3), demonstrating the effect of reordering. In this case, the 
following 3 cases were compared : 
  

• PDJDS/CM-RCM reordering 
• Parallel descending-order compressed row storage (PDCRS) /CM-RCM reordering 
• CRS without reordering 

  
PDCRS/CM-RCM reordering is identical to PDJDS/CM-RCM except for the storage of matrices 
in a CRS manner after permutation of rows into the order of decreasing number of non-zeros, 
where the length of the innermost loop is shorter than that for PDJDS. The elapsed execution 
time was measured for various problem sizes from 3×163 (12,288) DOF to 3×1283 (6,291,456) 
DOF on 1 SMP node. PDCRS is faster than PDJDS for smaller problems, but PDJDS outper-
forms PDCRS for larger problems as a result of pseudo vectorization. The performance of 
PDJDS decreases if the problem size is larger than 106 DOF, whereas this curve would be flat for 
vector processors. Therefore, this decrease in performance is due to pseudo vectorization and the 
performance of the compiler in Hitachi SR8001. The cases without reordering exhibit very poor 
performance. Parallel computation is impossible for forward/backward substitution (FBS) in the 
IC factorization process even in the simple geometry examined in this study. This FBS process 
represents about 50% of the total computation time. If this process is not parallelized, the per-
formance reaches only about 20% of that with reordering. The number of iterations for conver-
gence is also larger for cases without reordering, as shown in Table 2. 

Figure 12 shows the results of (4). This figure can be compared with Fig. 8 for the Hitachi 
SR2201. The problem size is fixed for one SMP node and the number of nodes was varied be-



 

 

tween 1 and 16. The largest problem size was 16×3×1283 (100,663,296) DOF, for which the per-
formance was about 20 GFLOPS, corresponding to 15.6% of the total peak performance of the 16 
SMP nodes. Figure 12(b) shows that the performance at small problem sizes per SMP node 
(3×323=98,304 DOF), was almost 50% of that for the larger problems. 
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Fig. 9    Relationship between number of SMP nodes and the speedup on the Hitachi
SR8000 with DJDS/CM-RCM reordering. The total problem size is fixed at 3×1283

(6,291,456) DOF. Speedup rate for 16 SMP nodes is 14.2. A super-linear effect is ob-
served for the 2-, 4- and 8-node cases. 
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Fig. 10   Work ratio for various problem sizes on the Hitachi SR8000 with 1 SMP node
woth PDJDS/CM-RCM reordering. The work ratio is more than 90% if the problem size
is 3×403 (192,000) DOF (24,000 DOF/PE). 
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Table 2. Effect of coefficient matrix storage method and reordering for various problem sizes on 

the Hitachi SR8000 with 1 SMP node. Number of iterations for convergence ε=10-8 
 

DOF # 
 

 
With Reor-

dering 

 
Without Re-

ordering 
 

3x163=   12,288 44 59 
3x323=   98,304 85 116 
3x403= 192,000 106 144 
3x503= 375,000 132 180 
3x403= 786,432 168 230 

  
  

Fig. 11    Effect of coefficient matrix storage method and reordering for various problem
sizes on the Hitachi SR8000 with 1 SMP node. The performance of the solver without reor-
dering is very low due to synchronization overhead during forward/backward substitution
for the IC factorization. PDCRS/CM-RCM performs better than PDJDS/CM-RCM for small
problems, but performs worse for larger problems due to short innermost loops. The
performance of PDJDS/CM-RCM decreases at problem sizes larger than 106 DOF as a
result of pseudo-vector processing of the Hitachi SR8000. 
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6. Conclusion 

In this study, an efficient parallel iterative method for unstructured grids was developed for SMP 
cluster architectures on the GeoFEM platform using loop directives + message passing type par-
allel programming model with the following 3 level hierarchy : 
  

• Inter-SMP node MPI 
• Intra-SMP node Compiler directives for parallelization 
• Individual PE  Compiler directives for vectorization/pseudo vectorization 

  
Simple 3D elastic linear problems with more than 108 DOF were solved by 3×3 block ICCG(0) 
with additive Schwarz domain decomposition and PDJDS/CM-RCM reordering on 16 SMP 
nodes of a Hitachi SR8000, achieving performance of 20 GFLOPS. PDJDS/CM-RCM reordering 
provides excellent vector and parallel performance in SMP nodes. Without reordering, parallel 
processing of forward/backward substitution in IC/ILU factorization was impossible due to 
global data dependency even in the simple examples in this study. Communica-
tion/synchronization overhead in a SMP node is less than 10% if the problem size is 3×403 

(192,000) DOF (24,000 DOF/PE) or larger. 
The proposed method was also tested on an NEC SX-4, achieving performance of 969 

MFLOPS (48.5% of peak performance) for a problem with 2×105 DOF using a single processor. 
Vector/parallel efficiency was evaluated on a Hitachi SR2201 with pseudo vectorization for vari-
ous problem sizes. The largest case was 2.72×107 DOF on 252 PEs at 16.2 GFLOPS (21.4% of 
peak performance). The work ratio for parallel computing was found to be higher than 90% if the 
problem size for 1 PE was sufficiently large, more than 24,000 DOF in this case. 

Additive Schwarz domain decomposition was applied to GeoFEM's parallel iterative 
solvers with localized preconditioning, providing robustness with respect to the localized precon-
ditioning. The number of iterations for convergence remains constant even if the number of parti-
tion increases for fixed-size problems. 

In this study, an effective hybrid parallel programming model for SMP cluster architecture 
was developed, yet high computational performance was not realized (16% of peak performance). 
Therefore, the authors intend to further optimize the methods, particularly with respect to single 
PE performance. Future study will also include : 
  

• porting the methods to other SMP cluster hardware, and 
• applying the methods to real-world problems with more complicated geometries. 
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