

 1

Parallel Iterative Solvers for Unstructured Grids using
a Directive/MPI Hybrid Programming Model for the

GeoFEM Platform on SMP Cluster Architectures
Kengo Nakajima(1) and Hiroshi Okuda(2)

(1) Department of Computational Earth Sciences, Research Organization for Information Sci-
ence and Technology (RIST), Tokyo, Japan (e-mail: nakajima@tokyo.rist.or.jp, phone: +81-3-
3712-5321, fax: +81-3-3712-5552) (2) Department of Quantum Engineering and Systems Sci-
ence, The University of Tokyo, Tokyo, Japan (e-mail: okuda@q.t.u-tokyo.ac.jp, phone: +81-3-
5841-7426, fax: +81-3-3818-3455)

Abstract
In this paper, an efficient parallel iterative method for unstructured grids devel-
oped by the authors for shared memory symmetric multiprocessor (SMP) cluster
architectures on the GeoFEM platform is presented. The method is based on a 3-
level hybrid parallel programming model, including message passing for inter-
SMP node communication, loop directives for intra-SMP node parallelization and
vectorization for each processing element (PE). Simple 3D elastic linear prob-
lems with more than 108 DOF have been solved by 3X3 block ICCG(0) with addi-
tive Schwarz domain decomposition and PDJDS/CM-RCM reordering on 16 SMP
nodes of a Hitachi SR8000 parallel computer, achieving performance of 20
GFLOPS. The PDJDS/CM-RCM reordering method provides excellent vector and
parallel performance in SMP nodes, and is essential for parallelization of for-
ward/backward substitution in IC/ILU factorization with global data dependency.
The developed method was also tested on an NEC SX-4 and attained 969
MFLOPS (48.5% of peak performance) using a single processor. The additive
Schwarz domain decomposition method provides robustness for the GeoFEM
parallel iterative solvers with localized preconditioning.

1. Introduction

In recent years, shared memory symmetric multiprocessor (SMP) cluster architecture has become
very popular for massively parallel computers. For example, all Accelerated Strategic Computing
Initiative (ASCI) machines have adopted this type of architecture[1].

In 1997, the Science and Technology Agency of Japan (now, the Ministry of Education,
Culture, Sports, Science and Technology, Japan) began a 5-year project to develop a new super-
computer, the Earth Simulator[2]. The goal is the development of both hardware and software for
earth science simulations. The Earth Simulator has SMP cluster architecture and consists of 640
SMP nodes, where each SMP node consists of 8 vector processors. The present study was con-
ducted as part of the research toward developing a parallel finite-element platform for solid earth
simulation, named GeoFEM[3].

In this architecture, loop directives + message passing style hybrid programming model
appears to be very effective when message passing such as MPI[4] is used in inter-SMP node
communication, and when intra-SMP node parallelization is guided by loop directives such as
OpenMP directives[5]. A significant amount of research on this issue has been conducted in recent
2 or 3 years[6][7], but most studies have focused on applications involving structured grids such as
the NAS Parallel Benchmarks (NPB)[8], with very few examples for unstructured grids.

 2

In this study, parallel iterative methods on unstructured grids for SMP cluster architecture
have been developed for a Hitachi SR8000[9] parallel computer at the University of Tokyo[10]. A
parallel programming model with the following 3-level hierarchy has been developed :

• Inter-SMP node MPI
• Intra-SMP node Compiler directives for parallelization
• Individual PE Compiler directives for vectorization/pseudo vectorization[9]

The entire domain is partitioned into distributed local data sets[3], and each partition is assigned to
one SMP node (Fig. 1).

In order to achieve efficient parallel/vector computation for applications with unstructured
grids, the following 3 issues are critical :

• Local operation and no global dependency
• Continuous memory access
• Sufficiently long loops

A special reordering technique proposed by Washio et. al.[11][12] has been integrated with parallel
iterative solvers with localized preconditioning developed in the GeoFEM project[3] in order to
attain local operation, no global dependency, continuous memory access and sufficiently long
loops.

In the following part of this paper, we give an overview of GeoFEM's parallel iterative
solvers, local data structure, reordering techniques for parallel and vector computation on SMP
nodes and the Hitachi SR8000 hardware system, and present the results for an application to 3D
solid mechanics.

Fig. 1 Parallel FEM computation on SMP cluster architecture.
Each partition corresponds to an SMP node

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

Node-1Node-0

Node-3Node-2

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

Node-0 Node-1

Node-2 Node-3

 3

2. Parallel Iterative Solvers in GeoFEM

2.1 Localized Preconditioning
The incomplete lower-upper (ILU)/Cholesky (IC) factorization method is one of the most popular
preconditioning techniques for accelerating the convergence of Krylov iterative methods. Among
ILU preconditioners, ILU(0), which does not allow fill-in beyond the original non-zero pattern, is
the most commonly used. Backward/forward substitution (BFS) is repeated in each iteration. BFS
requires global data dependency, and this type of operation is not suitable for parallel processing
in which the locality is of utmost importance.

Most preconditioned iterative processes are a combination of the following :

• Matrix-vector products
• Inner dot products
• DAXPY (αx+y) operations[13] and vector scaling
• Preconditioning operations

The first 3 operations can be parallelized relatively easily[13]. In general, preconditioning opera-
tions (i.e., BFS) represent almost 50 % of the total computation if ILU(0) is implemented as the
preconditioner. Therefore, a high degree of parallelization is essential for the BFS operation.

Localized ILU(0) is a pseudo ILU(0) preconditioner that is suitable for parallel processors.
This method is not a global method, rather, it is a local method on each processor or domain. The
ILU(0) operation is performed for each processor by zeroing out matrix components located
outside the processor domain. This localized ILU(0) provides data locality on each processor and
good parallelization because no inter-processor communications occur during ILU(0) operation.

However, localized ILU(0) is not as powerful as the global preconditioner. Generally, the
convergence rate worsens as the number of processors and domains increases[14][15]. At the critical
end, if the number of processors is equal to the number of the degrees of freedom (DOF), this
method performs identically to diagonal scaling.

2.2 Additive Schwarz Domain Decomposition
In order to stabilize localized ILU(0) preconditioning, additive Schwarz domain decomposition
(ASDD) for overlapped regions[16] has been introduced. The procedure is as follows :

(1) Global preconditioning rMz = is performed where M is a preconditioning matrix and r
and z are vectors.

(2) If the entire domain is divided into 2 domains Ω1 and Ω2 , such as in Fig. 2(a), the precondi-
tioning matrix is solved locally via localized preconditioning according to :

222111

11 , Ω
−
ΩΩΩ

−
ΩΩ == rMzrMz

(3) After the local preconditioned matrices are solved, the effects of overlapping regions Γ1
and Γ2 are introduced by the following global nesting correction (Fig. 2(b)):

)(1111
11111111

−
ΓΓ

−
ΩΩΩ

−
Ω

−
ΩΩ −−+= nnnn zMzMrMzz

)(1111
22222222

−
ΓΓ

−
ΩΩΩ

−
Ω

−
ΩΩ −−+= nnnn zMzMrMzz

 where n denotes the number of cycles of the additive Schwarz domain decomposition.
(4) Repeat steps (2) and (3) until convergence

Table 1 shows the effect of ASDD for a solid mechanics example with 3×443 DOF. Computa-
tions were performed on a Hitachi SR2201 at the University of Tokyo with 1 ASDD cycle per
iteration. Without ASDD, the number of iterations for convergence increases according to the
number of partitions. In contrast, when ASDD is introduced, the number of iterations until con-
vergence remains constant, although the computation time for a single iteration increases.

 (a) Local operation (b) Global nesting correction

Fig. 2 Operations in ASDD for 2 domains

Table 1. Effect of ASDD for solid mechanics with 3×443 DOF on a Hitachi SR2201.

PE # Ite

1 2
2 2
4 2
8 2
16 2
32 2
64 2
Number o

2.3 Distributed Data S
A proper definition of the
ciency of parallel comput
node-based with overlapp
one SMP node in this stud

Communication am
communications in struct
required to design both th
GeoFEM, the entire regio
following local data :

• Nodes originally
• Elements that inc
• All nodes that for
• The communicat
• Boundary conditi

Nodes are classified into

Ω1 Ω2 Ω1 Ω2

Γ1 Γ２

Overlapped
Regions

 NO Additive Schwarz
 4

r. # Sec. Speedup I
04 233.7 -
53 143.6 1.63
59 74.3 3.15
64 36.8 6.36
62 17.4 13.52
68 9.6 24.24
74 6.6 35.68
f ASDD cycle/iteration = 1, Co

tructures
 layout of the distributed data s
ations with unstructured meshe
ing elements[4][11]. As mentione
y.

ong partitions (SMP nodes) occ
ured finite-difference grids are
e local data structure and comm
n is partitioned in a node-based

assigned to the partition
lude the assigned nodes
m elements but are located out

ion table for sending and receiv
ons and material properties

the following 3 categories from

 WITH Additive Schwarz
ter.# Sec. Speedup
144 325.6 -
144 163.1 1.99
145 82.4 3.95
146 39.7 8.21
144 18.7 17.33
147 10.2 31.80
150 6.5 50.07
nvergence Criteria ε=10-8

tructures is very important for the effi-
s. GeoFEM's local data structures are
d before, each partition is assigned to

urs during computation. Subroutines for
provided by MPI. However, users are
unications for unstructured grids. In
 manner and each partition contains the

side of the partition
ing data

 the viewpoint of message passing :

 5

• Internal nodes (originally assigned nodes)
• External nodes (nodes that form the element in the partition but are located outside of the

partition)
• Boundary nodes (external nodes of other partitions)

Communication tables between neighboring partitions are also included in the local data. Values
on boundary nodes in the partitions are sent to the neighboring partitions and are received as ex-
ternal nodes at the destination partition.

This data structure, as described in Fig. 3, provides excellent parallel efficiency[15].

Fig. 3 Example of GeoFEM distributed local data structure by node-based partitioning with
overlapping elements at partition interfaces

3. Reordering Methods for Parallel/Vector Performance Using SMP
Nodes

As shown in Fig. 1, the entire domain is partitioned into local data sets and each local data set
corresponds to one SMP node.

3.1 Cyclic Multicolor – Reverse Cuthil McKee Reordering
In order to achieve efficient parallel/vector computation for applications with unstructured grids,
the following 3 issues are critical :

• Local operations and no global dependency
• Continuous memory access
• Sufficiently long loops

PE#0 PE#1

PE#2 PE#3

PE#1

PE#3
PE#2

PE#0

For unstructured grids, in which data and memory access patterns are very irregular, the reorder-
ing technique is very effective for achieving high parallel and vector performance. The popular
reordering methods are hyperplane/reverse Cuthil-McKee (RCM) and multicoloring [17]. In both
methods, elements located on the same hyperplane (or classified in the same color) are independ-
ent. Therefore, parallel operation is possible for the elements in the same hyperplane/color and
the number of elements in the same hyperplane/color should be as large as possible in order to
obtain high granularity for parallel computation or sufficiently large loop length for vectorization.

Hyperplane/RCM (Fig. 4(a)) reordering provides fast convergence of IC/ILU-
preconditioned Krylov iterative solvers, yet with irregular hyperplane size. For example in Fig.
4(a), the 1st hyperplane is of size 1, while the 8th hyperplane is of size 8. In contrast,
multicoloring provides a uniform element number in each color (Fig. 4(b)). However, it is widely
known that the convergence of IC/ILU-preconditioned Krylov iterative solvers is rather slow.
Convergence can be improved by increasing the number of colors, but this reduces the number of
elements in each color.

The solution for this trade-off is cyclic multicoloring (CM) on hyperplane/RCM [11]. In this
method, the hyperplanes are renumbered in a cyclic manner. Figure 4(c) shows an example of
CM-RCM reordering. In this case, there are 4 colors ; the 1st, 5th, 9th and 13th hyperplanes in
Fig. 3(a) are classified into the 1st color. There are 16 elements in each color.

In CM-RCM, the number of colors should be large enough to ensure that elements in the
same color are independent.

 (a) Hyperplane/RCM (b) Multicoloring : 4 colors (c) CM-RCM : 4 colors

Fig. 4 Example of hyperplane/RCM, multicoloring and CM-RCM reordering for 2D geometry

3.2 DJDS Reordering
The compressed row storage (CRS) [13] matrix storage format is highly memory-efficient, how-
ever the innermost loop is relatively short due to matrix-vector operations as follows :

1 2
2 3

3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
8 9 10 11 12 13
9 10 11 12 13 14
10 11 12 13 14 158 9

7 8
6 7
5 6
4 5
3 4

1 2
2 3

3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
8 9 10 11 12 13
9 10 11 12 13 14
10 11 12 13 14 158 9

7 8
6 7
5 6
4 5
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4
do i= 1, N
do j= 1, NU(i)
(operations)
F(i)= F(i) + A(k1)*X(k2)

enddo
enddo
 6

The following loop exchange is then effective for obtaining a sufficiently long innermost loop :

Descendin
involves pe
elements o
plane does
access can

3.3 Distr
The 1D arr
and vector
SMP node
node, the D
ing, called

do j= 1, NUmax
do i= 1, N
(operations)
F(i)= F(i) + A(k1)*X(k2)

enddo
enddo
 7

g-order jagged diagonal storage (DJDS) [12] is suitable for this type of operation and
rmuting rows into an order of decreasing number of non-zeros, as in Fig. 5(a). As

n the same hyperplane are independent, performing this permutation inside a hyper-
 not affect results. Thus, a 1D array of matrix coefficients with continuous memory
be obtained, as shown in Fig. 5(b).

(a) Permutation of rows into order of decreasing number of non-zeros

(b) 1D array of matrix coefficient

Fig. 5 DJDS reordering for efficient vector/parallel processing

ibution over SMP Nodes : Parallel DJDS Reordering
ay of matrix coefficients with continuous memory access is suitable for both parallel
computing. The loops for this type of array are easily distributed to each PE in an
via loop directives. In order to balance the computational load across PEs in the SMP
JDS array should be reordered again in cyclic manner. The procedure for this reorder-
parallel PDJDS (PDJDS) is described in Fig. 6 :

 8

 (a) (b)

Fig. 6 PDJDS reordering for load-balanced parallel processing in an SMP node : Example with 4
PEs per SMP node (a) Cyclic reordering (b) 1D array assigned to each PE after reordering and
load-balancing.

3.4 Summary of Reordering Methods
The reordering procedures for increasing parallel/vector performance of the SMP cluster architec-
ture described in this section are summarized as follows :

(1) RCM reordering on the original local matrix for independent sets.
(2) CM reordering to obtain loops whose length is sufficiently long and uniform.
(3) DJDS reordering for efficient vector processing, producing 1D arrays of coefficients with

continuous memory access.
(4) Cyclic reordering for load-balancing among PEs on an SMP node.
(5) PDJDS/CM-RCM reordering is complete.

The typical loop structure of the matrix-vector operations for PDJDS /CM-RCM reordered matri-
ces based on the pseudo-vector and parallel directives of the Hitachi SR8000 is described in the
following :

do col= 1, COLORtot
do j= 1, NUmax(col)

*POPTION, INDEP : Parallelized in SMP node
do pe= 1, SMP_PE_tot
iS= NstartU(col,j,pe)
iE= NendU (col,j,pe)

*VOPTION, INDEP : Vecorized for each PE
do i= iS, iE
(operations)

enddo
enddo

enddo
enddo

PE#0
PE#1

PE#2
PE#3

 9

4. Hitachi SR8000

The Hitachi SR8000 is a distributed-memory parallel system with 4 to 128 configurable nodes.
The nodes are connected by a high-speed multidimensional crossbar network and each node con-
sists of multiple (8) microprocessors (IPs). These IPs perform high-speed operation simultane-
ously via the cooperative microprocessor (COMPAS) feature[9].

In this study, the 128-node system at the Computing Center of the University of Tokyo was
employed. Each node provides 8 GFLOPS peak performance, and the total peak performance is
approximately 1 TFLOPS[10].

4.1 Cooperative microprocessors (COMPAS)[9]
This functionality provides high-speed simultaneous activation of multiple processors in a node.
Each microprocessor in the node executes one of the threads into which the original program is
divided. The compiler automatically performs parallelization in the node, allowing the user to
code data without being aware of hardware architecture. Parallelization of vector operations sim-
plifies conversion from the standard vector operations.

4.2 Pseudo-Vectorization[9]
High-speed numerical computations in the microprocessor are achieved by pseudo-vectorization.
Each microprocessor in a node pipelines data from memory without interrupting subsequent
instructions. Therefore, high-speed large-scale computing is possible by supplying a large amount
of data to the computing element from memory.

Generally, a RISC microprocessor-based machine has a cache memory between the proces-
sor and the main memory for high-speed data transmission to the processor, thereby increasing
performance. For numerical calculation programs such as FORTRAN, however, the cache mem-
ory cannot be fully utilized because a large range of array data is defined and referenced through
loops, eventually lowering performance.

As a solution to this performance reduction, the SR8000 provides pseudo-vector processing
for high-speed transmission of data from the memory to the processor. Pseudo-vector processing
generates an object program that processes the data referenced in a loop in one of the following
ways.

• The data is loaded in advance in a floating-point register, and loading is completed while the

loop that references the data is performing calculations from previous iterations. (preload op-
timizing)

• The data is transferred is advance into a memory cache, and the transfer is completed while
the loop that references the data is performing calculations from previous iterations. (prefetch
optimizing)

5. Examples

The proposed methods were applied to large-scale 3D solid mechanics example cases, as de-
scribed in Fig. 7, which represent linear elastic problems with homogeneous material property
and boundary conditions. Each element is a cube with unit edge length, and each node has 3 DOF.
therefore there are 3×Nx×Ny×Nz DOF in total for the problem.

For this problem, 3×3 Block ICCG(0) with PDJDS/MC-RCM reordering is applied with
full LU factorization for each 3×3 diagonal block. One ASDD operation is applied to each itera-
tion.

Vector performance was evaluated on an NEC SX-4 (JAERI/CCSE) and a Hitachi SR2201
(University of Tokyo), and SMP parallel performance was tested on the Hitachi SR8000. In each

 10

case, the number of colors was set to 99, corresponding to an average vector length of (total
number of FEM nodes) / (number of PEs or SMP nodes × 99 × NPE) where NPE = 1 for SX-4
and SR2201, and NPE=8 for SR8000.

Fig. 7 Problem definition and boundary conditions for 3D solid mechanics example cases. Linear
elastic problem with homogeneous material property and boundary conditions. Each element is
cube with unit edge length. Problem has 3×Nx×Ny×Nz DOF in total.

5.1 Vector/Vector Parallel Performance
Before computation on the Hitachi SR8000, vector performance was evaluated on an NEC SX-4
and Hitachi SR2201. Parallelization for SMP nodes was not applied ; matrices are therefore reor-
dered by DJDS/CM-RCM.

An example including 413 nodes (206,763 DOF) was solved using 1 processor of the NEC
SX-4, achieving 969 MFLOPS performance for the linear solver component with peak perform-
ance of 2 GFLOPS (48.5% of peak performance).

Evaluations for parallel computing were conducted on the Hitachi SR2201 at the University
of Tokyo[10]. Pseudo vectorization can also be applied on the SR2201, and each PE performs as a
vector processor. Figure 8 shows the GFLOPS rate and work ratio (real computation time/elapsed
execution time including communication) for various problem sizes. In these computations, the
problem size for 1 PE was fixed. The largest case was 27,168,372 DOF on 252 PEs. A perform-
ance of 16.2 GFLOPS was achieved. Each processor is capable of 300 MFLOPS peak perform-
ance, and the total peak performance of the system was 75.6 GFLOPS with 252 PEs. The 16.2
GFLOPS performance then corresponds to 21.4% of the peak performance. Figure 8(b) shows
that the work ratio is higher than 90% if the problem size for 1 PE is sufficiently large, more than
24,000 DOF in this case.

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-dirrection @ z=Zmin

Ny-1

Nx-1

Nz-1

 11

80

85

90

95

100

0 32 64 96 128 160 192 224 256
PE #

W
or

k
Ra

tio
 (%

)

0.0

5.0

10.0

15.0

20.0

0 32 64 96 128 160 192 224 256
PE #

G
FL

O
P

S

(a) PE# ~ GFLOPS rate relationship

(b) PE# ~ Work ratio relationship

Fig.8 GFLOPS rate and work ratio for various problem sizes on Hitachi SR2201 with
DJDS/CM-RCM reordering. Problem size/PE is fixed. Largest case is 27,168,372 DOF on
252 PEs.

(3×333 = 107,811)DOFs /PE (3×203 = 24,000) (3×153 = 10,125)

 12

5.2 SMP Parallel Performance
The following cases were tested on the Hitachi SR8000 :

(1) The increase in speed for fixed problem size (3×1283 DOF) using between 1 and 16 SMP
nodes.

(2) Communication/synchronization overhead for intra-SMP node parallellization for various
problem sizes using 1 SMP node.

(3) Effect of matrix storage and reordering for various problem sizes using 1 SMP node.
(4) Performance evaluation for various problem sizes using 1 to 16 SMP nodes

Figure 9 shows the results of (1). In this example, the size of the entire problem was fixed

at 3×1283 (6,291,456) DOF, and the increase in speed was evaluated for 1 to 16 SMP nodes. The
number of iterations for convergence (ε = 10-8) was 333 (1-node), 337 (2-nodes), 338 (4-nodes),
341 (8-nodes) and 347 (16-nodes), indicating that the number of iterations remains almost con-
stant as the number of nodes increases. This is due to the ASDD. In this case, there is a superlin-
ear speedup of convergence as the number of processors increases for the 2-, 4-, and 8-node cases.
Speedup rate at 16 SMP nodes was 14.2, which corresponds to the 88.8% of the linear (ideal)
speedup.

Figure 10 shows the results of (2). Communication/synchronization overhead occurs for
parallel processing in each SMP node. The work ratio was measured for various problem sizes
from 3×163 (12,288) DOF to 3×1283 (6,291,456) DOF on 1 SMP node. Measurements were made
using the XCLOCK system subroutine of the Hitachi compiler[9]. The results show that overhead
is more than 30% for the smallest problem size, and less than 10% for the problem size of 3×403
(192,000) DOF (24,000 DOF/PE) and less than 5% for 3×643 (786,432) DOF (98,304 DOF/PE).
According to these results, communication/synchronization overhead for intra-SMP node com-
munication is almost negligible if the problem size is sufficiently large.

Figure 11 shows the results of (3), demonstrating the effect of reordering. In this case, the
following 3 cases were compared :

• PDJDS/CM-RCM reordering
• Parallel descending-order compressed row storage (PDCRS) /CM-RCM reordering
• CRS without reordering

PDCRS/CM-RCM reordering is identical to PDJDS/CM-RCM except for the storage of matrices
in a CRS manner after permutation of rows into the order of decreasing number of non-zeros,
where the length of the innermost loop is shorter than that for PDJDS. The elapsed execution
time was measured for various problem sizes from 3×163 (12,288) DOF to 3×1283 (6,291,456)
DOF on 1 SMP node. PDCRS is faster than PDJDS for smaller problems, but PDJDS outper-
forms PDCRS for larger problems as a result of pseudo vectorization. The performance of
PDJDS decreases if the problem size is larger than 106 DOF, whereas this curve would be flat for
vector processors. Therefore, this decrease in performance is due to pseudo vectorization and the
performance of the compiler in Hitachi SR8001. The cases without reordering exhibit very poor
performance. Parallel computation is impossible for forward/backward substitution (FBS) in the
IC factorization process even in the simple geometry examined in this study. This FBS process
represents about 50% of the total computation time. If this process is not parallelized, the per-
formance reaches only about 20% of that with reordering. The number of iterations for conver-
gence is also larger for cases without reordering, as shown in Table 2.

Figure 12 shows the results of (4). This figure can be compared with Fig. 8 for the Hitachi
SR2201. The problem size is fixed for one SMP node and the number of nodes was varied be-

tween 1 and 16. The largest problem size was 16×3×1283 (100,663,296) DOF, for which the per-
formance was about 20 GFLOPS, corresponding to 15.6% of the total peak performance of the 16
SMP nodes. Figure 12(b) shows that the performance at small problem sizes per SMP node
(3×323=98,304 DOF), was almost 50% of that for the larger problems.

0.0

4.0

8.0

12.0

16.0

0 4 8 12 16
SMP-Node #

S
pe

ed
 U

P

Fig. 9 Relationship between number of SMP nodes and the speedup on the Hitachi
SR8000 with DJDS/CM-RCM reordering. The total problem size is fixed at 3×1283

(6,291,456) DOF. Speedup rate for 16 SMP nodes is 14.2. A super-linear effect is ob-
served for the 2-, 4- and 8-node cases.
 13

Fig. 10 Work ratio for various problem sizes on the Hitachi SR8000 with 1 SMP node
woth PDJDS/CM-RCM reordering. The work ratio is more than 90% if the problem size
is 3×403 (192,000) DOF (24,000 DOF/PE).

60

65

70

75

80

85

90

95

100

1.E+04 1.E+05 1.E+06 1.E+07
DOF #

W
or

k
R

at
io

 (%
)

 14

Table 2. Effect of coefficient matrix storage method and reordering for various problem sizes on

the Hitachi SR8000 with 1 SMP node. Number of iterations for convergence ε=10-8

DOF #

With Reor-

dering

Without Re-

ordering

3x163= 12,288 44 59
3x323= 98,304 85 116
3x403= 192,000 106 144
3x503= 375,000 132 180
3x403= 786,432 168 230

Fig. 11 Effect of coefficient matrix storage method and reordering for various problem
sizes on the Hitachi SR8000 with 1 SMP node. The performance of the solver without reor-
dering is very low due to synchronization overhead during forward/backward substitution
for the IC factorization. PDCRS/CM-RCM performs better than PDJDS/CM-RCM for small
problems, but performs worse for larger problems due to short innermost loops. The
performance of PDJDS/CM-RCM decreases at problem sizes larger than 106 DOF as a
result of pseudo-vector processing of the Hitachi SR8000.

PDJDS/CM-RCM PDCRS/CM-RCM CRS no re-ordering

0.00

0.50

1.00

1.50

2.00

1.E+04 1.E+05 1.E+06 1.E+07
DOF #

G
FL

O
P

S

 15

0.0

5.0

10.0

15.0

20.0

25.0

0 4 8 12 16
SMP-Node #

G
FL

O
P

S

(a) SMP-Node#~DOF# relationship

(b) SMP-Node#~GFLOPS rate relationship

Fig. 12 Problem size and GFLOPS rate for various problem sizes on the Hitachi SR8000.
Problem Size/PE is fixed. Largest case is 100,663,296 DOF on 16 SMP nodes

(128 PEs). Maximum performance is 20.1 GFLOPS (Peak Performance = 128 GFLOPS)

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

0 4 8 12 16
SMP-Node #

D
O

F
#

(3×323 = 98,304)DOFs /SMP-Node (3×643 = 786,432)
(3×803 = 1,536,000) (3×1283 = 6,291,456)

 16

6. Conclusion

In this study, an efficient parallel iterative method for unstructured grids was developed for SMP
cluster architectures on the GeoFEM platform using loop directives + message passing type par-
allel programming model with the following 3 level hierarchy :

• Inter-SMP node MPI
• Intra-SMP node Compiler directives for parallelization
• Individual PE Compiler directives for vectorization/pseudo vectorization

Simple 3D elastic linear problems with more than 108 DOF were solved by 3×3 block ICCG(0)
with additive Schwarz domain decomposition and PDJDS/CM-RCM reordering on 16 SMP
nodes of a Hitachi SR8000, achieving performance of 20 GFLOPS. PDJDS/CM-RCM reordering
provides excellent vector and parallel performance in SMP nodes. Without reordering, parallel
processing of forward/backward substitution in IC/ILU factorization was impossible due to
global data dependency even in the simple examples in this study. Communica-
tion/synchronization overhead in a SMP node is less than 10% if the problem size is 3×403

(192,000) DOF (24,000 DOF/PE) or larger.
The proposed method was also tested on an NEC SX-4, achieving performance of 969

MFLOPS (48.5% of peak performance) for a problem with 2×105 DOF using a single processor.
Vector/parallel efficiency was evaluated on a Hitachi SR2201 with pseudo vectorization for vari-
ous problem sizes. The largest case was 2.72×107 DOF on 252 PEs at 16.2 GFLOPS (21.4% of
peak performance). The work ratio for parallel computing was found to be higher than 90% if the
problem size for 1 PE was sufficiently large, more than 24,000 DOF in this case.

Additive Schwarz domain decomposition was applied to GeoFEM's parallel iterative
solvers with localized preconditioning, providing robustness with respect to the localized precon-
ditioning. The number of iterations for convergence remains constant even if the number of parti-
tion increases for fixed-size problems.

In this study, an effective hybrid parallel programming model for SMP cluster architecture
was developed, yet high computational performance was not realized (16% of peak performance).
Therefore, the authors intend to further optimize the methods, particularly with respect to single
PE performance. Future study will also include :

• porting the methods to other SMP cluster hardware, and
• applying the methods to real-world problems with more complicated geometries.

Acknowledgments

This study is a part of the Solid Earth Platform for Large-Scale Computation project funded by
the Ministry of Education, Culture, Sports, Science and Technology, Japan through Special Pro-
moting Funds of Science & Technology.

Furthermore the authors would like to thank Professor Yasumasa Kanada (Computing Cen-
ter, The University of Tokyo) for discussions on high performance computing, Drs. Shun Doi and
Takumi Washio (NEC C&C Research Laboratory) for discussions on preconditioning methods
and Mr. Shingo Kudo (Yokohama National University) for his helpful advice on Hitachi SR8000
system.

 17

References

[1] Accelerated Strategic Computing Initiative (ASCI) Web Site : http://www.llnl.gov/asci/
[2] Earth Simulator Research and Development Center Web Site : http://www.es.jamstec.go.jp/
[3] GeoFEM Web Site : http://geofem.tokyo.rist.or.jp/
[4] MPI Web Site : http://www.mpi.org
[5] OpenMP Web Site : http//www.openmp.org
[6] Falgout, R. and Jones, J. : "Multigrid on Massively Parallel Architectures", Sixth European

Multigrid Conference, Ghent, Belgium, September 27-30, 1999.
[7] Cappelo, F. and Etiemble, D. :"MPI versus MPI+OpenMP on the IBM SP for the NAS

Benchmarks", SC2000 Technical Paper, Dallas, Texas, 2000.
[8] NPB (NAS Parallel Benchmarks) Web Site :

http://www.nas.nasa.gov/Research/Software/swdescription.html#NPB
[9] Hitachi SR8000 Web Site : http://www.hitachi.co.jp/Prod/comp/hpc/foruser/sr8000/
[10] Computing Center, The University of Tokyo Web Site : http://www.cc.u-tokyo.ac.jp/
[11] Washio, T., Maruyama, K., Osoda, T., Shimizu, F. and Doi, S. : "Blocking and reordering

to achieve highly parallel robust ILU preconditioners", RIKEN Symposium on Linear Alge-
bra and its Applications, The Institute of Physical and Chemical Research, 1999, pp.42-49.

[12] Washio, T., Maruyama, K., Osoda, T., Shimizu, F. and Doi, S. : "Efficient implementations
of block sparse matrix operations on shared memory vector machines", SNA2000 : The
Fourth International Conference on Supercomputing in Nuclear Applications, 2000.

[13] Barrett, R., Bery, M., Chan, T.F., Donato, J., Dongarra, J.J., Eijkhout, V., Pozo, R., Romine,
C. and van der Vorst, H. : Templates for the Solution of Linear Systems : Building Blocks
for Iterative Methods, SIAM, 1994.

[14] Nakajima, K., Okuda, H. : "Parallel Iterative Solvers with Localized ILU Preconditioning
for Unstructured Grids on Workstation Clusters", International Journal for Computational
Fluid Dynamics 12 (1999) pp.315-322

[15] Garatani, K., Nakamura, H., Okuda, H., Yagawa, G. : "GeoFEM : High Performance Paral-
lel FEM for Solid Earth", HPCN Europe 1999, Amsterdam, The Netherlands, Lecture
Notes in Computer Science 1593 (1999) pp.133-140

[16] Smith, B., Bjorstad, P. and Gropp, W. : Domain Decomposition, Parallel Multilevel Meth-
ods for Elliptic Partial Differential Equations, Cambridge Press, 1996.

[17] Saad, Y. : Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.

	1. Introduction
	2. Parallel Iterative Solvers in GeoFEM
	2.1 Localized Preconditioning
	2.2 Additive Schwarz Domain Decomposition
	2.3 Distributed Data Structures

	3. Reordering Methods for Parallel/Vector Performance Using SMP...
	3.1 Cyclic Multicolor ? Reverse Cuthil McKee Reordering
	3.2 DJDS Reordering
	3.3 Distribution over SMP Nodes : Parallel DJDS Reordering
	3.4 Summary of Reordering Methods

	4. Hitachi SR8000
	4.1 Cooperative microprocessors (COMPAS)[9]
	4.2 Pseudo-Vectorization[9]

	5. Examples
	5.1 Vector/Vector Parallel Performance
	5.2 SMP Parallel Performance

	6. Conclusion
	Acknowledgments
	�References

