
CONCURRENCY|PRACTICE AND EXPERIENCE

Concurrency: Pract. Exper. 2001; ???:1{21 Prepared using cpeauth.cls [Version: 2000/05/12 v2.0]

Type safety in the JVM:

some problems in

Java 2 SDK 1.2 and proposed

solutions

Alessandro Coglio1,�,y and Allen Goldberg2,z

1 Kestrel Institutex, 3260 Hillview Avenue, Palo Alto, CA 94304, USA
2 Shoulders Corporation, 800 El Camino Real, Mountain View, CA 94040, USA

SUMMARY

In the course of our work in developing formal speci�cations for components of the
JVM, we have uncovered subtle bugs in the bytecode veri�er of Sun's Java 2 SDK
1.2. These bugs, which lead to type safety violations, relate to the naming of reference
types. Under certain circumstances, these names can be spoofed through delegating class
loaders. These aws expose some inaccuracies and ambiguities in the JVM speci�cation.
We propose several solutions to all of these bugs. In particular, we propose a general

solution that makes use of subtype loading constraints. Such constraints complement
the equality loading constraints introduced in the Java 2 Platform, and are posted by
the bytecode veri�er when checking assignment compatibility of class types. By posting
constraints instead of resolving and loading classes, the bytecode veri�er in our solution
has a cleaner interface with the rest of the JVM, and allows lazier loading. We sketch
some excerpts of our mathematical formalization of this approach and of its type safety
results.

key words: Java; JVM; type safety; bugs

1. INTRODUCTION

We are currently developing mathematical speci�cations for critical components of the JVM,

including the bytecode veri�er [1, 3, 7, 8] and the class loading mechanisms [9]. A major goal

of such e�orts is to formally analyze the JVM in order to increase con�dence in its correctness.

�Correspondence to: Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304, USA
yE-mail: coglio@kestrel.edu
zE-mail: agoldberg@shoulderscorp.com
xURL: http://www.kestrel.edu

Received ???

Copyright c 2001 John Wiley & Sons, Ltd. Revised ???

Accepted ???



2 A. COGLIO AND A. GOLDBERG

That involves verifying that the existing mechanisms exhibit desired properties, or identifying

aws and proposing �xes. Another major goal of ours is to derive implementations of some

JVM components using Specware [11], a system developed at Kestrel Institute, that supports

provably correct, compositional development of software from formal speci�cations through

re�nement. We have used Specware to develop a complete bytecode veri�er. These formally-

derived components can serve, among other uses, as high-assurance reference implementations

against which hand-written implementations can be tested (following the approach of the

Kimera Project [4]).

In the course of our formalization e�orts, we have uncovered subtle bugs in Sun's Java 2

SDK 1.2 [12] that lead to type safety violations. These bugs are in the bytecode veri�er and

relate to the naming of reference types. We found that in certain circumstances these names

can be spoofed by suitable use of delegating class loaders. Since the JVM speci�cation [6]

is written in informal English prose, we cannot crisply characterize these bugs as errors in

the speci�cation or errors in one or more implementations. However, some of these bugs are

consistent with a reasonable interpretation of the speci�cation. We have veri�ed that the bugs

exist in SDK 1.2, on both Solaris and Windows NT. Some are �xed in SDK 1.3 [13] in an

\indirect" way, by restricting access to system packages. We have also veri�ed these bugs in

Symantec's Java version 1.2.2.Symc. We propose several �xes for all the bugs, including a

more general approach that has additional advantages, such as lazier class loading and cleaner

interface between the bytecode veri�er and the rest of the JVM.

This paper shows that formal studies can help �nd and �x bugs in real-world, existing

systems. Our experience, in this and other projects, is that aws, inadequacies, etc. are often

uncovered during the formalization process itself, before attempting to verify any property.

The reason is that constructing mathematical models encourages a deeper understanding of

the entities under consideration, enabling the detection of problems. Attempting to state and

prove desired properties of the constructed mathematical models often unveils further problems

and subtleties.

The remainder of this paper is organized as follows. The next section provides background

about the JVM, in particular class loading and bytecode veri�cation. Section 3 describes the

bugs we found, including the source code that exhibits them. Section 4 proposes solutions to

the bugs. Section 5 presents related work, while Section 6 concludes.

2. BACKGROUND

The JVM supports dynamic, lazy loading of classes. Lazy loading is desirable because it

improves the response time of an applet or application and reduces memory usage. In fact,

execution can start after loading just a few classes. The other classes are loaded on demand if

and when they are needed.

Classes in the JVM are loaded by means of class loaders. A class loader is an instance of

the abstract class java.lang.ClassLoader, which can be subclassed to implement arbitrary

loading policies. The JVM also includes a built-in system class loader, used to start up the

machine and to load system classes.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



TYPE SAFETY PROBLEMS IN JAVA 2 SDK 1.2 3

Each class has a fully quali�ed name (FQN ), constituted by a package name followed by

a simple name (e.g., java.util.HashSet). A class references other classes (e.g., to invoke

methods) symbolically, using their FQNs. Eventually, symbolic references are resolved to actual

classes, i.e., instances of class java.lang.Class. When the JVM needs to resolve a FQN N, it

invokes the loadClass methods of java.lang.ClassLoader upon a class loader L (chosen as

explained later), with N as argument. If the method does not throw an exception it returns a

class C, the result of resolution. L is called an initiating loader of class C. The JVM maintains

a loaded class cache recording initiating loaders for all the classes loaded by the machine. The

cache is looked up each time the JVM needs to resolve a FQN N through an initiating loader

L; if the cache records a class C with FQN N and initiating loader L, then C is the result of

resolution. Otherwise, loadClass is invoked and the cache updated, as described above. This

enforces the constraint that resolving a FQN N through a loader L always results in the same

class C. Therefore, as in [6] and [5], we use the notation NL to denote the unique class with

FQN N and initiating loader L.

Loading a class into the JVM consists of two steps: (1) fetching a byte array that represents

the class in classfile format; and (2) creating an instance of java.lang.Class from the

byte array. The second step can only be carried out by calling the defineClass method of

java.lang.ClassLoader upon a class loader L. This method calls internal JVM code that

checks the format of the byte array and creates the proper internal representation for the class,

returning a (new) class C (if an exception is not thrown). L is called a de�ning loader of class

C. The internal JVM code called by defineClass enforces the constraint that a loader L

cannot be used to create two classes with the same FQN. Therefore, as in [6] and [5], we use

the notation hN; Li to denote the unique class with FQN N and de�ning loader L. Note that,

while NL and NL
0

, with L 6= L0, may denote the same class, hN; Li and hN; L0i always denote
di�erent classes (created by di�erent invocations of defineClass).

The process of fetching a byte array in classfile format is carried out by the code in

loadClass. By overriding this method, arbitrary loading policies can be realized, including

fetching byte arrays over network connections, caching them, and even constructing or

instrumenting them on the y. Eventually, loadClassmay invoke defineClass, in which case

the resulting class has the same loader as both initiating and de�ning loader. Alternatively,

the code in loadClass may delegate the loading of some FQN to some other loader, e.g., the

system class loader. In this case, the initiating and de�ning loader di�er.

When a FQN referenced in a class C needs to be resolved, the de�ning loader of C is chosen

as an initiating loader for the class to be resolved.

The bytecode veri�er is in charge of checking, prior to executing the code in a class, that

the code satis�es certain properties. These properties, combined with certain run-time checks,

are intended to guarantee that the code is type-safe. Bytecode instructions operate on an

operand stack and some local variables. The bytecode veri�er attempts to assign, via a data

ow analysis, types to local variables and stack positions, for each instruction position in the

code. The type assignment must be consistent with the types required by the instructions and

with the operations they perform.

As explained above, a class in the JVM is identi�ed by a FQN plus a de�ning loader. In

particular, there can be distinct classes with the same FQN. However, the bytecode veri�er,

when verifying a class, essentially uses just FQNs. In a few cases, it resolves names and makes

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



4 A. COGLIO AND A. GOLDBERG

use of the java.lang.Class instances they resolve to. In particular, the bytecode veri�er

sometimes must merge, that is �nd the �rst common superclass of, two class names. The two

class names are resolved, thus loading the classes and their superclasses, and their ancestry

searched to �nd their �rst common superclass. The bytecode veri�er also resolves names to

check assignment compatibility (i.e., subtype relationship) between two class names.

The use of FQNs and occasional use of actual classes guarantee type safety only under

certain assumptions. Examples of these assumptions are the loading constraints introduced in

the Java 2 Platform [6, 5] to avoid the type safety problems arising precisely because of the

violation of the assumptions they enforce [10]. Simply stated, loading constraints ensure that

classes exchanging objects (through their methods and �elds) agree on the actual types (i.e.,

not only on the FQNs but also the loaders) of such objects.

As it turns out, the loading constraints introduced in [6, 5] do not cover all the assumptions

needed to guarantee type safety. For example, when checking a stack position that contains

the type (FQN) that results from merging two classes, the bytecode veri�er assumes that the

FQN in the stack position resolves to the actual �rst common superclass. Another example

occurs when checking type constraints for the invokespecial instruction: the bytecode

veri�er assumes that a FQN of any superclass of the current class resolves to the actual

superclass. Furthermore the bytecode veri�er assumes that the FQNs java.lang.Object and

java.lang.String resolve to the \usual" system classes. We will now show how it is possible

to construct programs where these assumptions are violated, thus causing name spoo�ng and

type safety failures.

3. DESCRIPTION OF THE BUGS

3.1. Spoo�ng the �rst common superclass

In [6, Sect. 4.9.2] it is described how, during data ow analysis of a method's code, the types

assigned to stack positions and local variables along di�erent control paths are merged. In

order to merge two distinct class names Sub1 and Sub2, the corresponding classes are loaded

by invoking the loadClass method of the de�ning loader L of the class whose method is

being veri�ed, with argument Sub1 �rst, then Sub2. Loading a class recursively causes all

of its superclasses to be loaded, if they have not already been loaded. The ancestry of the

classes Sub1L and Sub2L is then searched to �nd the �rst common superclass. If the �rst

common superclass found is hSup; L0i then the bytecode veri�er writes the FQN Sup in the

merged stack position. Suppose that, after the merging point, an instruction accesses a �eld

or method of a class named Sup in a �eld or method reference. Since the bytecode veri�er has

deduced that the stack position indeed contains a class with FQN Sup, the check for assignment

compatibility will succeed, as described in [6, Sect. 4.9.1]. This is correct only assuming that

SupL = hSup; L0i, i.e., that loading of FQN Sup initiated by L results in the actual superclass

of Sub1L and Sub2L.

However, such an assumption can be violated, as shown in the code in Figure 1. In the code

listings in this paper, when there is more than one class with the same FQN, we indicate their

de�ning loaders to disambiguate them.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



TYPE SAFETY PROBLEMS IN JAVA 2 SDK 1.2 5

public class <Sup,L0> {

public float f = 123.456f;

}

public class Sub1 extends Sup {}

public class Sub2 extends Sup {}

public class Merger {

static public void merge() {

Sub1 s1 = new Sub1();

Sub2 s2 = new Sub2();

Sup s;

if (s1 != null) s = s1; // this test just serves to

else s = s2; // create two merging paths

int i = s.f;

System.out.println("Field is " + i);

}

}

public class <Sup,L> {

public int f = 1;

}

public class Main {

public static void main(String argv[]) {

String[] undelNames = {"Merger", "Sup"};

Starter.go(undelNames, "Merger", "merge");

}

}

Figure 1. Program to spoof the �rst common superclass

The code for Starter is in the Appendix. Its method go creates an instance L of class

DelegatingLoader (also in the Appendix). A loader belonging to this class delegates the

loading of certain FQNs to the system class loader. The system class loader loads classes from

the current directory. Classes not delegated to the system are loaded from a subdirectory. This

delegating loader is a simple mechanism to load distinct classes with the same FQN, and thus

set up a circumstance where classes can be spoofed. The name of the subdirectory and the

array of undelegated FQNs (i.e., those loaded by the loader itself) are set when the loader

is constructed. The array of undelegated FQNs is passed as the �rst argument of go. Class

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



6 A. COGLIO AND A. GOLDBERG

hSup; L0i

hSub1; L0i

�������������

�����������
hMerger; Li�� ��

��

hSub2; L0i

�� ����������

����������

hSup; Li

Figure 2. Situation arranged by the program in Figure 1

Starter is used in the following examples as well, with its go method called with di�erent

arguments.

In this example, L loads Merger and Sup from dir. The situation depicted in Figure 2 is

thus arranged. L0 is the system class loader. An arrow from a class (identi�ed by its name

and de�ning loader) to another indicates that the source of the arrow resolves the FQN of the

target class to the target class. A double arrow indicates that the source is a direct subclass of

the target. This graphical representation makes it easy to understand the relationship among

classes and the delegation paths.

The code in class Starter, after creating L, uses it to load Merger and then uses the

reection APIs to invoke the merge method. The name of the class and the name of the

method are passed as the second and third argument of go. The use of reection is necessary

here because class Merger has been loaded by a user-de�ned class loader, thus it is \accessible"

as an instance of class java.lang.Class and not through a textual reference in the program.

The merge method creates two instances of hSub1; L0i and hSub2; L0i, whose loading is

initiated by L but carried out by L0. When the bytecode veri�er veri�es this method, it �nds

their �rst common superclass hSup; L0i. The integer �eld access to class Sup passes bytecode

veri�cation because Sup is the name of the �rst common superclass. However, when merge is

executed, Sup resolves to hSup; Li, which is di�erent from hSup; L0i.
On SDK 1.2, we obtain the output shown in Figure 3. Apparently, the implementation

chooses the same �eld layout for classes hSup; Li and hSup; L0i. Therefore, the 32-bit

representation of the single-precision oating point value 123.456 is accessed as the 32-bit

representation of the integer value 1,123,477,881. This is shown in the last line of output,

that is type safety has been violated: a oating point value has been accessed as an integer

value. The other lines of output show the loading requests received by L, and whether they

are delegated to L0 or handled by L itself.

3.2. Spoo�ng a superclass using invokespecial

One of the uses of the bytecode instruction invokespecial is to invoke superclass methods,

e.g., as the result of compiling Java code such as super.m(x,y). The di�erence between

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



TYPE SAFETY PROBLEMS IN JAVA 2 SDK 1.2 7

[Loaded java.lang.Object from system]

[Loaded Merger from dir/Merger.class (645 bytes)]

[Loaded java.lang.Throwable from system]

[Loaded Sub1 from system]

[Loaded Sub2 from system]

[Loaded Sup from dir/Sup.class (219 bytes)]

[Loaded java.lang.System from system]

[Loaded java.lang.StringBuffer from system]

[Loaded java.io.PrintStream from system]

Field is 1123477881

Figure 3. Output of the program in Figure 1

invokevirtual, which is the \normal" instruction for method invocation, and invokespecial

is that invokespecial uses a modi�ed dynamic dispatching strategy (see [6] for more

information). When verifying an invokespecial instruction in a class hSub; Li that references
a method in a non-immediate superclass hSupSup; L0i with the current class as the this

reference, the bytecode veri�er checks that the types (FQNs) assigned to stack positions

conform to the descriptor of the method. In particular, it checks that name Sub (assigned to

the this reference) is assignment-compatible with SupSup. Since hSupSup; L0i is a superclass

of hSub; Li, the bytecode veri�er passes the check. This is correct only assuming that

SupSupL = hSupSup; L0i, i.e., that hSub; Li resolves name SupSup to hSupSup; L0i.
This assumption can indeed be violated, as shown in the code in Figure 4. Class Main uses

the same class Starter of the previous example to create a loader L of class DelegatingLoader

that loads Sub and SupSup from dir, thus arranging the situation depicted in Figure 5.

The actual superclasses of hSub; Li are hSup; L0i and hSupSup; L0i. However, resolving

SupSup directly from hSub; Li results in hSupSup; Li, which is di�erent from hSupSup; L0i.
Note that the \intermediate" superclass hSup; L0i is needed to change loader from L to L0

along the path. When executing the invokespecial instruction, the reference to m is resolved

to method m in class hSupSup; Li, and, as speci�ed in [6, page 284], that method is invoked,

because hSupSup; Li is not a superclass of hSub; Li. On SDK 1.2, we obtain the output shown

in Figure 6, demonstrating a type safety violation.

3.3. Spoo�ng java.lang.Object

As previously mentioned, the bytecode veri�er loads classes to check assignment compatibility

between reference types with di�erent names. However, if the name of the assignment

target is java.lang.Object then the veri�er assumes the assignment is valid, since any

class is assignable to java.lang.Object. This is correct only assuming that the FQN

java.lang.Object resolves to the \usual" system class hjava:lang:Object; L0i, and not to

some other class unrelated to the assignment source.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



8 A. COGLIO AND A. GOLDBERG

public class <SupSup,L0> {

float f = 123.456f;

public void m() {}

}

public class Sup extends SupSup {}

public class Sub extends Sup {

static public void doInvSpec () {

Sub s = new Sub();

s.invSpec();

}

public void invSpec() {

super.m();

}

}

public class <SupSup,L> {

int f = 1;

public void m() {

System.out.println("Field is " + f);

}

}

public class Main {

public static void main(String argv[]) {

String[] undelNames = {"Sub", "SupSup"};

Starter.go(undelNames, "Sub", "doInvSpec");

}

}

Figure 4. Program to spoof a superclass using invokespecial

This assumption can be violated, as shown in the code in Figure 7. Class Main uses Starter

to create a loader L of class DelegatingLoader, which loads Sub and java.lang.Object from

dir, thus arranging the situation depicted in Figure 8.

When assign is executed, the newly created instance of Sub is assigned to

hjava:lang:Object; Li, thus producing, on SDK 1.2, the output shown in Figure 9.

Even though hjava:lang:Object; L0i is an indirect superclass of hjava:lang:Object; Li,
there is no circularity since they are distinct classes. The intermediate superclass Sup is needed

because resolving java.lang.Object from hjava:lang:Object; Li would result in itself.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



TYPE SAFETY PROBLEMS IN JAVA 2 SDK 1.2 9

hSupSup; L0i

hSup; L0i

��

hSupSup; Li hSub; Li��

��

Figure 5. Situation arranged by the program in Figure 4

[Loaded Sup from system]

[Loaded Sub from dir/Sub.class (336 bytes)]

[Loaded java.lang.Throwable from system]

[Loaded java.lang.Object from system]

[Loaded SupSup from dir/SupSup.class (574 bytes)]

[Loaded java.lang.System from system]

[Loaded java.lang.StringBuffer from system]

[Loaded java.io.PrintStream from system]

Field is 1123477881

Figure 6. Output of the program in Figure 4

3.4. Spoo�ng java.lang.String

The bytecode instruction ldc is used to load constants onto the operand stack. The

instruction's operand is an index into the class's constant pool that references an integer,

oating point, or string constant. In the case of a string constant, the symbolic reference is

resolved to a reference to the unique instance of the system's java.lang.String class whose

value is the string constant (the instance is unique because string constants from the constant

pool are interned). During data ow analysis, the bytecode veri�er infers a type with FQN

java.lang.String for the top of the stack after execution of ldc. This is correct only if

this FQN resolves to the \usual" system class hjava:lang:String; L0i, and not to some other

unrelated class.

Again, this assumption can be violated, as shown in the code in Figure 10. Class Main uses

class Starter to create a loader L of class DelegatingLoader, which loads StrLoader and

java.lang.String from dir, thus arranging the situation depicted in Figure 11.

When loadStr is executed, the �eld access gathers some content of the java.lang.String

object created for string "abc". The output on SDK 1.2 is shown in Figure 12.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



10 A. COGLIO AND A. GOLDBERG

public class Sup {}

public class Sub extends Sup {

public float f = 123.456f;

static public void assign() {

Sub s = new Sub();

java.lang.Object o = s;

int i = o.f;

System.out.println("Field is " + i);

}

}

public class <java.lang.Object,L> extends Sup {

public int f = 1;

}

public class Main {

public static void main(String argv[]) {

String[] undelNames = {"Sub", "java.lang.Object"};

Starter.go(undelNames, "Sub", "assign");

}

}

Figure 7. Program to spoof java.lang.Object

hSup; L0i

hjava:lang:Object; Li

���������������

�������������
hSub; Li��

��

Figure 8. Situation arranged by the program in Figure 7

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



TYPE SAFETY PROBLEMS IN JAVA 2 SDK 1.2 11

[Loaded Sup from system]

[Loaded Sub from dir/Sub.class (631 bytes)]

[Loaded java.lang.Throwable from system]

[Loaded java.lang.Object from dir/java/lang/Object.class (185 bytes)]

[Loaded java.lang.System from system]

[Loaded java.lang.StringBuffer from system]

[Loaded java.io.PrintStream from system]

Field is 1123477881

Figure 9. Output of the program in Figure 7

public class StrLoader {

public static void loadStr(){

java.lang.String s = "abc";

Printer.showSomeContent(s.f);

}

}

public class <java.lang.String,L> {

public int f = 1;

}

public class Printer {

static public void showSomeContent (int i) {

System.out.println("Some content is " + i);

}

}

public class Main {

public static void main(String argv[]) {

String[] undelNames = {"StrLoader", "java.lang.String"};

Starter.go(undelNames, "StrLoader", "loadStr");

}

}

Figure 10. Program to spoof java.lang.String

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



12 A. COGLIO AND A. GOLDBERG

hjava:lang:String; Li hStrLoader; Li�� �� hPrinter; L0i

Figure 11. Situation arranged by the program in Figure 10

[Loaded java.lang.Object from system]

[Loaded StrLoader from dir/StrLoader.class (356 bytes)]

[Loaded java.lang.Throwable from system]

[Loaded java.lang.String from dir/java/lang/String.class (235 bytes)]

[Loaded Printer from system]

Some content is -339094920

Figure 12. Output of the program in Figure 10

Note that without the class Printer the JVM would detect a loading constraint violation

involving the FQN java.lang.String when the method reference to println is resolved.

However, loading constraints do not catch the type violation exhibited by the program above,

because the string "abc" is not obtained from any other class's �eld or method, but internally

from the constant pool.

4. PROPOSED SOLUTIONS

4.1. Preventing spoo�ng of the �rst common superclass

The bug that allows spoo�ng the �rst common superclass may be interpreted as a bug in the

JVM speci�cation, rather than the implementation. Although [6] does not crisply state that

types are denoted by FQNs in the bytecode veri�er (it typically just talks about \reference

types"), that seems to be the intended meaning, or at least the most reasonable interpretation.

In any case, future editions of [6] should clarify this point. This bug also exists in SDK 1.3.

A possible solution to the problem is to keep information, when merging two FQNs Sub1

and Sub2, about the actual �rst common superclass hSup; L0i (not only its FQN Sup). So,

when checking assignment compatibility there can be no confusion between the class that is

the result of merging and the class SupL. Interestingly, inspection of the bytecode veri�er

code in SDK 1.2 shows that information about the actual �rst common superclass is indeed

maintained and accessible. However, it is not used to prevent this problem.

An alternative solution that avoids early loading of Sup by L is to introduce a loading

constraint SupL = SupL0 , added by the bytecode veri�er to the set of globally maintained

loading constraints. Indeed as we shall see all of these bugs can be avoided by using such

constraints.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



TYPE SAFETY PROBLEMS IN JAVA 2 SDK 1.2 13

4.2. Preventing spoo�ng of a superclass using invokespecial

The spoo�ng by means of invokespecial is an implementation bug. According to [6],

assignment compatibility should be checked by loading the actual classes and checking subtype

relationship. If this were done, the bytecode veri�er would detect the unsoundness of the

invocation of method m of hSupSup; Li over an instance of hSub; Li (which has hSupSup; L0i as
superclass). The obvious �x for the problem is to resolve SupSupL and use loaded classes, not

FQNs. A better alternative is to generate a loading constraint between the loaded superclass

and the reference to the superclass, namely SupSupL = SupSupL0 .

In SDK 1.3, running the example causes the JVM to terminate abnormally with a

segmentation fault on Solaris, and with an internal error on Windows NT. This happens

after the line about SupSup being loaded is printed on screen. The bytecode veri�er in SDK

1.3 is essentially the same of SDK 1.2. The abnormal termination appears to be originated

by some other code, probably some class loading code. In any case, this still exposes a bug in

SDK 1.3. However, we have not fully investigated its source.

4.3. Preventing spoo�ng of java.lang.Object

Similar to the solution above, the spoo�ng of java.lang.Object can be avoided by resolving

java.lang.Object and checking that it is a superclass of hSub; Li.
However, it is worth noting that [6] implies, more or less clearly, that java.lang.Object

denotes the class that is the root of the class hierarchy. On the other hand, [6] describes no

mechanisms (and no requirements) to ensure that this is the case. In SDK 1.3, the problem is

not �xed in the bytecode veri�er, but within the security components of the JVM. With SDK

1.3, a security exception is thrown, because of restricted access to the java.lang package. This

choice may be reasonable if a unique hierarchy and unique system classes are meant for any

JVM. There are arguments in favor of a more liberal notion (as mentioned in [10]) in which

system classes and multiple class hierarchies may be user-de�nable. In any case, the issue of

system classes certainly deserves further explanation and clari�cation in future editions of [6].

If we assume a single class hierarchy (and therefore a single java.lang.Object class), an

obvious measure to avoid the bug is to ensure that the FQN java.lang.Object resolves

to the usual, unique system class. A better alternative is to generate a loading constraint

java:lang:ObjectL = java:lang:ObjectL0 , where L is the de�ning loader of the class being

veri�ed and L0 is the system loader.

4.4. Preventing spoo�ng of java.lang.String

The confusion relating to java.lang.String can be prevented by resolving java.lang.String

and ensuring that it is indeed the \usual" system class, or by generating the loading constraint

java:lang:StringL = java:lang:StringL0 , where L is the de�ning loader of the class being

veri�ed and L0 is the system loader.

This bug brings to light inadequacies in the speci�cation [6], which does not explicitly

prohibit user-de�ned classes with name java.lang.String. As previously mentioned, since

the string constant is not passed to the methods as a parameter, no loading constraint is

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



14 A. COGLIO AND A. GOLDBERG

generated. The spoo�ng of java.lang.String is disallowed in SDK 1.3 through the same

security mechanism that disallows spoo�ng of java.lang.Object. The above discussion about

unique hierarchy and system classes applies here as well.

4.5. A more general solution

4.5.1. A new design for the bytecode veri�er

We have seen that the bytecode veri�er uses FQNs to denote classes (types) under the

assumption that a FQN resolves to a unique class. The bugs described in this paper are

based on violations of that assumption. In each case a loading constraint can be introduced

that ensures this assumption is correct. In the current SDK, the class loading mechanisms

generate constraints but the bytecode veri�er does not. The bytecode veri�er sometimes needs

to load classes to check assignment compatibility or to obtain the FQN of the �rst common

superclass of two classes. Since it is generally desirable to avoid loading classes until required

by execution, eliminating class loading by the bytecode veri�er is advantageous.

We now propose a design for the bytecode veri�er (and related parts of the JVM) that (1)

avoids premature loading and (2) provides a cleaner separation between bytecode veri�cation

and loading. This cleaner separation also promotes a better understanding of how bytecode

veri�cation and other mechanisms (such as loading constraints) cooperate to ensure type safety

in the JVM.

In the design we propose, the bytecode veri�er uniformly uses FQNs, never actual classes.

The intended disambiguation is that FQN N stands for class NL, where L is the de�ning loader

of the class under veri�cation (note that, at veri�cation time, class NL might not be present

in the JVM yet).

The bytecode veri�er never causes resolution (and loading) of any class. The result of merging

two FQNs is a set containing the two FQNs. More precisely, the bytecode veri�er uses (�nite)

sets of FQNs (and not just FQNs) as types for stack positions and local variables containing

reference types [1, 3, 7]. Initially (e.g., in the local variables containing method invocation

arguments) sets are singletons. Merging is set union. The meaning of a set of FQNs assigned

as the type of a local variable or stack position is that the local variable or stack position may

contain an instance of a class whose FQN is in the set. No relationship among the elements of

the set is intended.

When a set of FQNs is checked for assignment compatibility with a given FQN N, for each

element M of the set di�erent from N, a subtype loading constraint ML < NL is generated. The

meaning of such constraint is that class ML must be a subclass of class NL. The constraint

is added to the global state of the JVM, and checked for consistency with the loaded class

cache. If either class has not been loaded yet, the constraint is just recorded. Whenever the

loaded class cache is updated, it is checked for consistency with the current subtype loading

constraints.

This is very similar to the equality loading constraints of the form NL = NL
0

introduced in

the Java 2 Platform. In fact, subtype constraints complement equality constraints. Checking

the consistency of the loaded class cache and loading constraints that include both subtype

constraints and equality constraints is neither diÆcult nor ineÆcient. A na��ve algorithm will

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



TYPE SAFETY PROBLEMS IN JAVA 2 SDK 1.2 15

close transitively both subtype and equality constraints and then check that when the loaded

class cache is updated none of the constraints in the transitive closure is violated. An eÆcient

algorithm will use a union-�nd data structure to store equivalence classes of classes asserted

to be the same and track the asserted subtype dependencies of the equivalence classes.

In this design, the result of bytecode veri�cation of a class is therefore not simply a yes/no

answer, but also a set of subtype constraints that explicitly and clearly express the assumptions

made by the bytecode veri�er for certi�cation of the class. Furthermore, the bytecode veri�er

is a well-de�ned, purely functional component of the JVM that does not depend on the current

state of JVM data structures.

Our approach also allows a cleaner treatment of interface types in the bytecode veri�er.

Since an interface can have more than one superinterface, two given interfaces may not have a

unique �rst common superinterface. According to [6], the result of merging two interface FQNs

is therefore java.lang.Object, which is indeed a superclass of any interface. However, this

requires a special treatment of java.lang.Objectwhen checking its assignment compatibility

with an interface FQN: the bytecode veri�er just passes the check because java.lang.Object

might derive from merging interfaces, even though java.lang.Object itself is not assignment-

compatible with an interface. This \looseness" does not cause type unsafety because the

bytecode instruction invokeinterface performs a search of the methods declared in the

runtime class of the object on which it is executed. If no method matching the referenced

descriptor is found, an exception is thrown. This runtime check does not impose any additional

runtime penalty. Our scheme is cleaner in that it provides a uniform treatment of classes and

interfaces.

4.5.2. How the new design avoids the spoo�ng bugs

Let us now see how this design prevents spoo�ng the �rst common superclass. When verifying

the method merge, the creation (and initialization) of the two instances of class Sub1 and Sub2

has the e�ect of typing the local variables as fSub1g and fSub2g. After the merging point, the

type on top of the stack is fSub1; Sub2g. Since the bytecode instruction getfield references

class Sup, subtype constraints Sub1L < SupL and Sub2L < SupL are generated. When merge is

eventually executed, before the �eld is accessed all of Sub1L, Sub2L, and SupL will have been

loaded: since subtype constraints are violated, the JVM will throw an exception preventing

�eld resolution (and therefore access).

Let us now consider the spoo�ng of a superclass by means of invokespecial.When verifying

the method invSpec, the invokespecial instruction references class SupSup, and the top of

the stack is typed as fSubg. So, the subtype constraint SubL < SupSupL is generated. When

invSpec is eventually executed, before invokespecial is executed both SubL and SupSupL

will have been loaded: the inconsistency would make the JVM raise an exception and prevent

the method call.

Concerning the spoo�ng of java.lang.Object, during veri�cation of assign the subtype

constraint SubL < java:lang:ObjectL is generated. Its violation will raise an exception.

As already discussed the spoo�ng of java.lang.String is prevented by generating

an equality constraint java:lang:StringL0 = java:lang:StringL, which would cause an

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



16 A. COGLIO AND A. GOLDBERG

exception to be raised if it is not satis�ed. Note that subtype constraints do not directly

address the spoo�ng of java.lang.String: equality constraints are needed.

4.5.3. Formalization of the new design

The approach described above has been formalized in [9]. Such a paper provides a formal

speci�cation of an abstraction of the JVM and proves type safety results about it. Our JVM

speci�cation, while making several simpli�cations (e.g., only a few bytecode instructions are

considered and error exceptions cause termination), captures the essence of class loading and

bytecode veri�cation.

Concretely, we specify the JVM as a state machine. The state includes (models of) the

method call stack for one thread, the heap, the loaded class cache, as well as equality and

subtype loading constraints. Transitions in the machine include execution of some instructions

(e.g., method invocation and �eld access), resolution of classes, �elds, and methods, and calls

to user code to load classes (through the loadClassmethod). Our state machine is a defensive

one, i.e., transitions include type safety checks about objects having certain classes. According

to [6] the behavior of the JVM is unde�ned when such checks are not satis�ed. Therefore, our

main type safety result states that our state machine never halts because of the failure of any

of these type safety checks.

The following is the transition rule (GF) in our speci�cation, which formalizes the execution

of a getfield instruction:

cd(m)jp = get�eld(cn; fn; cn0)

hhp ; lc; cti
RF(c;cn;fn;cn0)

=) hhp 0
; lc

0
; ct 0i

cl(o) �lc
0 lc

0(ld (c); cn)

hstk ::hc;m; p; os ::o; lv i; hp; lc; cti =)
hstk ::hc;m; p + 1; os ::hp 0(o)(fn); lv i; hp 0

; lc
0
; ct 0i

(GF)

Without going into details, the rule asserts that if (1) the current instruction is a getfield,

(2) �eld resolution succeeds, and (3) the runtime class of the object target of the getfield

instruction is a subclass of the result of resolving cn from the current class (this is the type

safety check), then the object (reference) is removed from the top of the operand stack and

replaced by the value of the �eld. The tuple hc;m; p; os ::o; lvi constitutes the top frame of

the method call stack (the rest being stk), where c, m, and p are the current class, method,

and program counter. os ::o and lv are the current operand stack (with o at the top) and

local variables. Furthermore, hp, lc, and ct constitute the current heap, loaded class cache,

and loading constraints (both equality and subtype). The �eld resolution process results in

updated heap hp
0, loaded class cache lc0, and loading constraints ct 0. The updating is speci�ed

by other transition rules, which capture that �eld resolution requires class resolution �rst,

which may require loading (through a call to user code in a loadClass method). In fact, the

inherent mutual recursion between user code and internal JVM processing such as resolution,

is reected in our speci�cation by nested rules that link internal transitions with user code

transitions.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



TYPE SAFETY PROBLEMS IN JAVA 2 SDK 1.2 17

In order to prove our type safety results, we proceed as follows. First, we de�ne a notion of

valid states. Validity includes simple requirements such as closure of the heap with respect to

referenced objects, as well as a more interesting conformance property. Conformance means

that each value in the operand stack and local variables \matches" the type statically assigned

by the bytecode veri�er to the corresponding stack position or local variable (at the current

program point), and that each value in an object �eld \matches" the type of the �eld. However,

both the class types of �elds and the class types assigned by the bytecode veri�er consist of

FQNs only. Therefore, equality and subtype loading constraints are taken into account: for

example, an object with runtime class hN; Li conforms to a class hM; L0i if there are loading

constraints NL = NL
0

and NL
0

< ML
0

, even in case NL
0

has not been loaded yet.

Next, we prove a theorem stating that each transition from a valid state leads to a valid

state. This means that, starting from a valid initial state, validity is preserved throughout the

whole execution of our state machine. Finally, we prove that in valid states the type safety

conditions (such as the third condition in rule (GF) above) are always satis�ed. This means

that the only reason why our state machine can halt is either that there is no more code to

execute or that some other condition is not satis�ed. Each of these other conditions indeed

corresponds to checks actually performed by the JVM. An example is the second condition in

rule (GF): if �eld resolution in the JVM fails, an exception is thrown. In our model, the state

machine just halts.

5. RELATED WORK
Saraswat [10] reported bugs in the class loading mechanisms of Sun's JDK 1.1 [14], which

caused type safety violations using delegating class loaders. In order to �x those problems,

equality loading constraints were introduced [5]. Tozawa and Hagiya [15] reported type-safety

bugs in the bytecode veri�er of Sun's SDK 1.2, which partially overlap with the bugs reported

in this paper. The common bugs were discovered and reported independently.

Our idea of having a self-contained bytecode veri�er that generates subtype constraints �nds

its roots in earlier work by Goldberg [3] and is similar in spirit to Fong and Cameron's work

[2]. However, both papers do not consider multiple class loaders. Another di�erence is that

in those formalizations the bytecode veri�er generates, besides subtype constraints, additional

constraints, e.g. for �elds and methods referenced in the code being veri�ed. In the design

proposed in this paper only subtype constraints are generated because the others are checked

at runtime, as described in [6], without performance penalty or premature loading.

In [9] we provide a formal speci�cation of Java class loading. The formalization includes

equality and subtype constraints, as well as theorems stating that the constraints plus bytecode

veri�cation guarantee type safety. The focus of that paper is to provide formal results. The

focus of this paper is to expose bugs and propose solutions; subtype constraints constitute one

of the solutions to three of the bugs.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



18 A. COGLIO AND A. GOLDBERG

6. CONCLUSION

We have presented some bugs in the bytecode veri�er of SDK 1.2 that lead to type safety

violations. Some of these bugs expose inaccuracies or ambiguities in the JVM speci�cation [6].

We have proposed �xes for all such bugs, including a general approach with subtype constraints

that results in additional bene�ts, namely lazier loading and a cleaner interface between the

bytecode veri�er and the rest of the JVM.

These problems and solutions have been found in the course of our e�orts towards specifying

various components of the JVM. Therefore, this paper also shows how formal studies can enable

the discovery of problems and solutions in real-world systems.

Java and the JVM are perhaps the �rst language and platform in widespread use suÆciently

well-designed to be amenable to precise analysis. This paper, similarly to other work in the

�eld, aims at improving the understanding, assurance, and usability of the Java paradigm.

REFERENCES

1. Coglio A, Goldberg A, Qian Z. Towards a provably-correct implementation of the JVM bytecode veri�er.
In Proc. OOPSLA'98 Workshop on Formal Underpinnings of Java. 1998.

2. Fong PWL, Cameron R. Proof linking: an architecture for modular veri�cation of dynamically-linked
mobile code. In Proc. ACM SIGSOFT 6th International Symposium on the Foundations of Software
Engineering. 1998; 222{230.

3. Goldberg A. A speci�cation of Java loading and bytecode veri�cation. In Proc. 5th ACM Conference on
Computer and Communications Security. 1998.

4. G�un Sirer E, Grimm R, Bershad B. The Kimera Project page. http://kimera.cs.washington.edu
5. Liang S, Bracha G. Dynamic class loading in the JavaTM Virtual Machine. In Proc. 13th Conference on

Object-Oriented Programming, Systems, Languages, and Applications. ACM Press, 1998; 36{44.
6. Lindholm T, Yellin F. The JavaTM Virtual Machine Speci�cation (2nd edn). Addison-Wesley, 1999.
7. Qian Z. A formal speci�cation of JavaTM Virtual Machine instructions for objects, methods and

subroutines. In Formal Syntax and Semantics of JavaTM, Alves-Foss J (ed.). LNCS 1523, Springer-Verlag,
1998.

8. Qian Z. Standard �xpoint iteration for Java bytecode veri�cation. ACM Transactions on Programming
Languages and Systems 2000; 22(4):638{672.

9. Qian Z, Goldberg A, Coglio A. A formal speci�cation of Java class loading. In Proc. 15th Conference on
Object-Oriented Programming, Systems, Languages, and Applications. ACM Press, 2000; 325{336. Long
version available at http://www.kestrel.edu/java.

10. Saraswat V. Java is not type-safe. 1997. Available at http://www.research.att.com/vj/bug.html.
11. Srinivas Y, J�ullig R. Specware: formal support for composing software. In Proc. 3rd Conference on

Mathematics of Program Construction, Moeller B (ed.). LNCS 947, Springer-Verlag, 1995; 399{422.
12. Sun Microsystems. Java 2 SDK, Standard Edition, vers. 1.2. Available at http://java.sun.com.
13. Sun Microsystems. Java 2 SDK, Standard Edition, vers. 1.3. Available at http://java.sun.com.
14. Sun Microsystems. Java Development Kit, vers. 1.1. Available at http://java.sun.com.
15. Tozawa A, Hagiya M. Careful Analysis of Type Spoo�ng. In JIT'99 Java-Informations-Tage 1999. Springer

Verlag, 1999; 290{296.

APPENDIX: CODE SHARED BY THE EXAMPLES

The code for class Starter is shown in Figure 13. The code for class DelegatingLoader and

its (abstract) superclass LocalClassLoader, largely borrowed from [10], is shown in Figures

14 and 15.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



TYPE SAFETY PROBLEMS IN JAVA 2 SDK 1.2 19

class Starter {

public static void go (String[] undelNames,

String className,

String methodName) {

try {

DelegatingLoader loader =

new DelegatingLoader("dir/", undelNames);

Class c = loader.loadClass(className);

Object[] arg = {};

Class[] argClass = {};

c.getMethod(methodName, argClass).invoke(null, arg);

} catch (Exception e) {

System.out.println("Error " + e.toString() +

" in Main.main.");

e.printStackTrace();

}

}

}

Figure 13. Code for class Starter

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



20 A. COGLIO AND A. GOLDBERG

class DelegatingLoader extends LocalClassLoader {

private String[] undelegatedNames;

public DelegatingLoader (String dir, String[] undelNames) {

super(dir);

this.undelegatedNames = undelNames;

}

private boolean isUndelegatedName (String name) {

boolean found = false;

for (int i=0; i < undelegatedNames.length && !found; i++)

if (undelegatedNames[i].equals(name)) found = true;

return found;

}

public Class loadClass(String name)

throws ClassNotFoundException {

try {

Class prevLoaded = this.findLoadedClass(name);

if (prevLoaded != null)

return prevLoaded;

else if (isUndelegatedName(name))

return this.loadClassFromFile(name);

else {

System.out.println

("[Loaded " + name + " from system]");

return this.findSystemClass(name);

}

} catch (Exception e) {

System.out.println

("Exception " + e.toString() +

" while loading " + name + " in DelegatingLoader.");

throw new ClassNotFoundException();

}

}

}

Figure 14. Code for class DelegatingLoader

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls



TYPE SAFETY PROBLEMS IN JAVA 2 SDK 1.2 21

abstract class LocalClassLoader extends ClassLoader {

private String directory;

public LocalClassLoader (String dir) {

directory = dir;

}

protected Class loadClassFromFile(String name)

throws ClassNotFoundException, FileNotFoundException {

File target =

new File(directory + name.replace('.', '/') + ".class");

if (! target.exists()) throw new FileNotFoundException();

long bytecount = target.length();

byte [] buffer = new byte[(int) bytecount];

try {

FileInputStream f = new FileInputStream(target);

int readCount = f.read(buffer);

f.close();

Class c = defineClass(name, buffer, 0, (int) bytecount);

System.out.println

("[Loaded " + name + " from " +

target + " ("+ bytecount + " bytes)]");

return c;

} catch (Exception e) {

System.out.println("Aborting read: " + e.toString() +

" in LocalClassLoader.");

throw new ClassNotFoundException();

};

}

}

Figure 15. Code for class LocalClassLoader

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; ???:1{21

Prepared using cpeauth.cls


