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Abstract 
 
Dissipative particle dynamics (DPD) and its generalization – the fluid particle model (FPM) - represent 

the “fluid particle” approach for simulating fluid-like behavior in the mesoscale. Unlike particles from 

molecular dynamics (MD) method, the “fluid particle” can be viewed as a “droplet” consisting of liquid 

molecules. In FPM, “fluid particles” interact by both central and non-central, short-range forces with 

conservative, dissipative and Brownian character. In comparison to MD, FPM method in 3-D requires two 

to three times more memory load and three times more communication overhead. Computational load per 

step per particle is comparable to MD due to the shorter interaction range allowed between “fluid 

particles” than between MD atoms. The classical linked-cells technique and decomposing the 

computational box into strips allow for rapid modifications of the code and for implementing non-cubic 

computational boxes. We show tha t the efficiency of the FPM code depends strongly on the number of 

particles simulated, geometry of the box, and the computer architecture. We give a few examples from 

long FPM simulations involving up to 8 million fluid particles and 32 processors. Results from FPM 

simulations in 3-D of the phase separation in binary fluid and dispersion of colloidal slab are presented. 

Scaling law for symmetric quench in phase separation has been properly reconstructed. We show also that 

the microstructure of dispersed fluid depends strongly on the contrast between kinematic viscosities of this 

fluid phase and the bulk phase. This FPM code can be applied for simulating mesoscopic flow dynamics 

in capillary pipes or critical flow phenomena in narrow blood vessels. 
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1 Introduction 
 
Dynamical processes occurring in the mesoscopic fluids involve many disparate spatio-temporal scales, 

from microscopic interactions of discrete particles, thermal fluctuations, multiphase mixing and large-

scale disturbances. The implementations of these well-known computational techniques such as:  

1. molecular dynamics (MD), used in in large-scale simulations [1-7],  

2. finite element methods (FEM), employed in direct numerical simulations (DNS) [8-10], 

are still too demanding and, in many cases, they are not adequate for resolving fine enough features at the 

mesoscale.  

In the last decade we have witnessed the rapid growth in new approaches for modelling multi-

scale phenomena. They are the grid techniques (Lattice-Boltzmann Gas- LBG, cellular automata [11,12] 

and the meshless fluid particle methods (DPD-dissipative particle dynamics [13] SPH- smoothed particle 

hydrodynamics, [14,15], direct simulation Monte-Carlo [16]). The fluid particle can be viewed physically 

as a “droplet” consisting of liquid molecules with an internal structure and with some internal degrees of 

freedom.  

The fluid particle methods have at least four important advantages over the grid techniques. 

1. The dynamics of fluid particles develop over continuum space in real time, thus allowing for realistic 

visualization and physical understanding. 

2. Within the context of cross-scaling systems they are homogeneous with both microscopic molecular 

dynamics and macroscopic smooth particle hydrodynamics techniques [17]. The transition from 

discrete to continuum model is not necessary.  

3. The methods employing fluid particles are also homogeneous within the context of solid-liquid 

simulations for which both solid and liquid are represented by particles [18,19]. 

4. They are also homogeneous from implementation point of view. Well-known sequential and parallel 

algorithms from MD simulations can be employed directly.  

 

In [19-23] we demonstrate that the dissipative particle dynamics (DPD) [13] - the method employing fluid 

particles - fits very well for simulating multi-resolution structures of complex fluids . Typical examples of 

complex fluids with large molecular structure include miscellar solutions, microemulsions and colloidal 

suspensions such as blood, ink, milk, fog, paints, magma melts with long silicate chains, and waste 

products [24].  

For complex fluids the gap in the spatio-temporal scales between the smallest microstructures and 

the largest structures is much smaller than for simple fluids. In [19,22,23] we show that by using moderate 

number of particles we can simulate in two dimensions multi-resolution structures ranging from micelles, 

micellar arrays, colloidal agglomerates and large-scale instabilities induced by the global flow. For 
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realistic modeling of multi-resolution structures in three dimensions, the large-scale simulations involving 

hundreds of processors working in parallel are necessary for covering the same spatio-temporal scales, as 

those employed in current high-resolution 2-D simulations. 

Fluid particle model (FPM) [17] is a generalization of dissipative particle dynamics method. The 

FPM method is computationally more intensive than DPD and MD for a constant interaction range. 

However, FPM has an advantage over DPD for larger scales, in which the fluid particles are adequately 

large and can interact only with their closest neighbors. In such a case DPD is less efficient because many 

more particles than for FPM should be involved for creating a drag between the DPD particles. Therefore, 

we can expect that FPM will enable the eventual simulation of complex fluids in 3-D, with reasonable  

resources of parallel systems, which are operating in the multi-job mode. 

First, we will describe the FPM model. Then we present a parallel algorithm for FPM and discuss 

its efficiency. We then define the boundary conditions of the code. Next, the paralle l clustering procedure 

for detection of multi-resolution structures is presented. We then show the results of tests from the FPM 

simulations of phase separation in binary mixture and dispersion of colloidal slab in an elongated 

computational box. Finally, we summarize our findings and discuss the prospects of employing the FPM 

parallel algorithm in realistic large-scale simulations, such as flow in constricted blood vessels [25]. 

 
 
2. Fluid particle model 
 
The equations of fluid dynamics describe the motion of mass in both time and space. Particle methods are 

based on the idea of simulating a fluid flow as a flow of particles, which interact by short-range forces. 

The total mass is subdivided into a finite number of small mass packets, which are called particles. Their 

structure is described by particles mass distribution φ i>0. The particles can move independently of each 

other. The total mass density is given by: 
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For point-like particles, φ i is the Dirac delta function. The temporal evolution of the particle system is then 

described by the equations of motion for the particle position r(t). Fluid particle model (FPM) described 

here, differs from dissipative particle  dynamics (DPD) by Hoogerbrugge and Koelman [13,17,26]. The 

fluid particles can rotate in space and should be understood as comparatively big mass packets, though 

they are still particles in the sense of statistical mechanics. The forces of interaction between the particles 

are pair forces of a finite range, unlike in smoothed particle dynamics (SPH) [14,15], and a broad class of 

particle methods [27] where they are derived in a canonical manner from the force laws of continuum 
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mechanics and are directly based on a regularized stress tensor. SPH cannot be applied to the study of 

mesoscopic system in the Brownian realm, because the implementation of Lagrangian fluctuating 

hydrodynamics with SPH is not a trivial problem. 

The fluid particles [17] are represented by their centers of mass, which posses several attributes, as 

mass mi, position ri,  translational and angular velocities and type. The “droplets” interact with each other 

by forces dependent on the type of particles. This type of interaction is a sum of conservative force FC, 

two dissipative components FT and FR and the Brownian forceF~ , that is: 
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The Fij force components are defined by: 
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where: 

rij – is a distance between particles i and j,  rij = ri – rj is a vector pointing from particle i to particle j and 

e ij=rij/rij, D – is the model dimension, dt – is the timestep, γ - scaling factor for dissipation forces, ω - 

angular velocity, dWS, dWA, tr[dW]1  - are respectively the symmetric, antisymmeric and trace diagonal 

random matrices of independent Wiener increments and A(r), B(r), C(r), ( ) ( ) ( )rCrBrA
~

,
~

,
~

,V’(r) – 

functions dependent on the separation distance r=rij.  Tij – is dimensionless matrix given by:  

 

( ) ( ) ijijijijij rBrA ee1T +=                                                                 (7) 

1 – is the unit matrix. 

As shown in Español  [17], the single component FPM system yields the Gibbs distribution as the steady-

state solution to the Fokker-Planck equation under the condition of detailed balance, i.e.,  

mTkB ⋅= γσ 22                                                                        (8) 

where: T – is the temperature of particle system, k B – the Boltzmann constant. 

As a consequence, it obeys the fluctuation dissipation theorem, which defines the relationship between the 

normalized weight functions, which are chosen such that: 
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For the dissipative particle dynamics (DPD) method A(r)=0, consequently ( ) ( ) ( )rCrBrA ~,~,~
=0 and 

V’(r)∝B(r), which means that all the DPD forces are central. 

The non-central force in FPM, which is proportional to the difference between particle velocities, 

introduces an additional drag lacking in the DPD model. The non-central force results also in additional 

rotational friction given by Eq.(5).  

The temporal evolution of the particle ensemble obeys the Newtonian laws of motion: 
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The FPM method can predict the transport properties of the fluid, thus allowing one to adjus t the model 

parameters by using the equations of continuum limit for the partial pressure P [13]: 
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and formulas in kinetic theory [17] for respectively bulk viscosity νb, shear viscosity νS and rotational 

viscosity νR: 
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The kinetic theory for FPM has been developed for deriving transport coefficients by assuming that 

conservative forces are absent. For non-zero pressures, the transport coefficients computed from Eqs.[13-
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15] can be used as the first approximation in an iterative procedure, which matches the coefficients of the 

FPM forces. 

Unlike in SPH - the angular momentum is conserved exactly in FPM. The model can be 

physically interpreted as a Lagrangian discretization of the non-linearly fluctuating hydrodynamic 

equations.        

 

3.  Numerical realization 

3.1 Decomposition of computational box 

 

We consider here an isothermal two-dimensional system, which consists of M particles. The particle 

system is simulated within a rectangular box. The particles of uniform or various types can be distributed 

randomly in the box, i.e., this multi-component system can be perfectly mixed initially, or separated by a 

sharp interface (stratified, circle, rectangular, random shape). The particles defined by mass mi, position ri, 

velocity v i and angular velocity ωi interact with each other via a two-body, short ranged forces given by 

Eqs.(3-6). 

We assume that the weight functions (Eqs.(6-7)) satisfy the conditions imposed. Due to the choice 

allowed by the model in selecting the weight functions, we assume that: 
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where, rcut – is a cut-off radius, which defines the range of  FPM particle interactions. For rij>rcut, Fij=0. 

The first assumption is recommended in [17]. We postulate the rest of weight functions the same as in 

DPD [13,26]. Due to additional drag between particles caused by the non-central interactions, we can 

reduce the computational load by assuming that the interaction range is shorter than for DPD fluid. 

As shown in Fig.1, the box is divided onto cubic cells of the edge size lC~rcut. For multi-

component fluid with different interaction ranges we assume that lC~maxk(rcut,k), where k  means the kind 

of interaction. The forces are computed by using O(M) order link-list scheme [28]. The force on a given 

particle includes contribution from all the particles that are closer than rcut and which are located within 

the cell containing the given particle or within the adjacent cell (see Fig.1).  

Parallel computing requires decomposing the computation into subtasks and mapping them onto 

multiple processors. The total volume of the box is divided into P overlapping subsystems of equal 

volume, and each subsystem is assigned to a single processor in a P processors array. By using SPMD 

paradigm (single program multiple data), commonly used for MD code parallelization, each processor 
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follows an identical predetermined sequence to calculate the forces on the particles within assigned 

domain.  

Among many parallel implementations of molecular dynamics code [1,3,5,6,29] two approaches for 

particles redistribution between processors are employed.  

1. The box is sliced along one coordinate and divided up onto identical sub-boxes (see Fig.1). 

2. The system is partitioned into a mesh of sub-boxes in x, y and z directions. 

The particle positions and velocities from cells, which are situated on the boundaries between processor 

domains, are copied to the neighboring processor (see Fig.1). Thus the number of particles located in the 

boundary cells defines the communication overhead. Let us assume that: 

1. The system is confined in a box elongated in z direction and the x,y cross-section of the box is a 

square of unit area.  

2. The number of processors P, the system size and the length of the box Lz>>1 are constant.   

3. The box is partitioned along z-axis onto processor domains.  

For this case, the communication overhead tstrips, which is proportional to the area of the interface between 

processor domains, is constant and equal to 1. Let us assume that the box is partitioned additionally into n2 

-mesh of identical sub-boxes on x,y plane. The communication cost tbox for n>1 is proportional to the area 

of walls (only half of them) of a single sub-box and is equal to 2Lz/(P/n2)⋅1/n + 1/n 2. For sufficiently long 

boxes with L>>1 the ratio of two overheads ϕ=tbox/tstrips=[2Lz/(P/n2)]⋅1/n + 1/n2 is greater than 1. This 

means that  the communication overhead is lower - and consequently calculation communication ratio 

higher - for the first method consisting in slicing the box onto strips along z coordinate. The value of ϕ  is 

less than one for more regular computational boxes, e.g., a cubic computational box for which P∼n3 and 

Lz=1. In this case the second partition method dividing the box onto cubic sub-domains is better.  

Slicing the box along the z-axis considerably simplifies the routing of messages and enables sending 

them in unblocking way. Each processor sends the message only in one direction to its closest neighbor. 

The load balancing is easier and consists in shifting the boundaries of processor domains along one 

direction, while for the second method the load balancing schemes are very complex requiring irregular 

mesh.  In Fig.2 we present the sequence of computation and communication procedures invoked in 

parallel implementation of FPM code.  

Many parallel implementations of molecular dynamics codes employ neighbor tables for each particle 

for speeding-up the evaluation of forces. This increases considerably the memory requirements, 

communication overheads and makes the code more complex. Fluid particle model (FPM) has two-four 

times greater memory requirements than codes for molecular dynamics. Besides the positions and forces 

in highly optimized parallel codes for large-scale MD [3] (minimum 6 arrays), additional arrays must be 

allocated such as: the angular and translational velocitie s, torques and replicated arrays for velocities 



 8 

needed for integrating Newtonian equations of motion (see Eqs.(21-24)), that is, minimum 24 arrays. 

Moreover, the random number generator is invoked 4 times for computation of Brownian forces for each 

pair of interacting particles.  

Therefore, the speed-up expected from application of neighbor tables can be compromised due to the 

effect of frequent cache misses resulting from its overload. The particles from boundary cells “cached” on 

the neighboring processors and those migrating from one processor to another must be updated every 

timestep (see Fig.2). Unlike in MD, the FPM forces (see Eqs.3-6) depend not only on the particle positions 

but also on translational and angular velocities. Moreover, besides reaction forces, the reaction torques 

must be updated. Thus, the communication overhead is almost three times greater for FPM than for MD. 

Because FPM fluid particle interacts only with their closest neighbors, the number of interactions per 

particles is smaller by factor of 4.5 than for a standard MD code. However, the number of arithmetic 

operations involved for evaluation of FPM interactions is greater, at least by the same factor, than for 

calculating the Lennard-Jones forces in MD code. Thus, we may expect that computational load per 

particle should be similar for these two cases.  Summarizing, the high memory load in FPM will result in: 

1. greater communication overhead, 

2. more frequent occurrence of cache misses, 

than in standard implementations of MD method in multiprocessor environment (e.g., in [3,5]). 

 

3.2 Temporal evolution of fluid particles 
 
Integration of the Newtonian equations of motion in the fluid particle model is more complex than in MD 

and DPD codes. From Eqs.(3-6,10-11) we note that the forces and torques depend not only on particle 

positions (as in MD) and translational velocity (as in DPD case) but also on angular velocities. Moreover, 

due to the random Brownian force, the equation of motion are stochastic differential equations (SDE). 

Numerical integration of SDE by using classical Verlet scheme [30] generates large numerical errors [31] 

and artifacts, e.g., resulting in unacceptable temperature drift with simulation time. Therefore,very small 

timesteps should be used to obtain a reasonable approximation to the thermodynamical quantities. On the 

other hand, predictor-corrector numerical schemes are both very time and memory consuming, which for 

high memory load for FPM will result in additional overheads. Therefore, we have decided to employ  

extrapolation schemes, which we used successfully in our 2-D MD-DPD and MD-FPM codes [19]. The 

schemes are as follows:                   
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To assure the numerical stability of the particle system, Eq.(11) representing the conservation of angular 

momentum is integrated by using the scheme of order o(∆t4) (see Eq.(20)). The coordinates of vectors 

?v ~,~  in Eqs.(19,21) are extrapolated by using Adams-Bashfoth o(∆t2) scheme (see Eqs(22)).  

The size of the timestep ∆t should be estimated from the characteristic time scales for both 

rotational and translational motion. The mean collision time τcol defines the time scale for the translational 

motion, which is given by: 

rel
col v

λτ =                                                                         (24)   

where <vrel> is a relative velocity, λ- is the characteristic length scale, which is equal to the average 

distance between particles.  

Both the quality and numerical stability of the model can be estimated from the temporal behavior 

of the thermodynamic temperature Tth and dimensionless pressure δ=kB⋅T/(P/n). As shown in Fig.3, the 

temperature Tth of the system, computed as the average kinetic energy of the FPM particle systems, 

fluctuates no more than 1.5% percent. Its average differs from the temperature T assumed (computed from 

detailed balance Eq.(8)) on about 0.1%. For comparison, at the similar simulation conditions (but in 2-D) 

and the same timestep, the equilibrium temperature Tth for DPD simulation of phase separation obtained 

in [31] is roughly twice its input value. The temperature drift (upward or downward, depending on the 

hardware and compiler used) caused by the round-off error, which is apparent for large number of 

timesteps, we have greatly reduced by using 64 bit compiler. The value of δ, which represents the 

reciprocal of partial pressure Pth of FPM fluid computed from the viral theorem [30], can also be 

approximated accurately by the Eq.(12) (see Fig.3). 
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3.3 Boundary conditions 
 
Periodic boundary conditions (PBC) simulate the system of unlimited number of interacting particles by 

limited number of interacting lattices where each of them stands for a particle and its replicas. When the 

distance between a particle and its nearest image is too short, long wavelength phenomena are cut and 

their energy is passed to the shorter waves, which go through the box generating numerical artifacts. 

Moreover, the commonly used computational box shape, such as rectangular prism, makes the system 

highly anisotropic. In [32,33] the minimum image convention is presented for non-cubic boxes such as 

truncated octahedron, rhombic dedocahedron and hexagonal prism. In spite of the more symmetric 

geometry and savings in CPU time due to increase of the nearest image distance, the non-cubic boxes are 

still not popular in particle simulations. There are at least two basic problems with non-cubic boxes for 

simulating large particles ensembles.  

 

1. Non-cubic boxes involve non-cubic cells in the linked-cells algorithm. This makes the code very 

clumsy (especially in 3-D) due to greater number of walls, edges and vortices in non-cubic cells 

than for cubic ones, thus involving complicated nearest image convention schemes [33]. 

2. Domain decomposition is difficult for non-cubic boxes.  

 

In [34], a method for uniformization of the periodic box shape for small particle system was presented. As 

shown in Figs.4a,b, the periodic box can be divided onto two, black and white, rectangles of the same size. 

Unlike for the periodic square, the box replicas are shifted creating checker board picture (see Fig.4). For 

properly selected box sizes Lx, Ly and Lz one can reproduce different shapes. For example, the periodic 

hexagon can be simulated assuming that Lx/Ly=1/√3 (see Fig.4a) while the box with Lx=1, Ly=1 and 

Lz=2 (see Fig.4b) corresponds to periodic rhombic dodecahedron [34].   

In Fig.5 we compare the largest circles inscribed in a hexagonal and square boxes of the same 

area, which diameter represent the distance between a particle and its nearest image. Diameter of the circle 

inscribed in hexagon is about 7% greater than in the square. In three dimensions, the sphere inscribed in a 

rhombic dodecahedron is 15% larger than the largest sphere inscribed in a cubic box of the same volume. 

For keeping the same distance between the particles and their nearest images, one can employ periodic 

rhombic dodecahedron with particle ensemble 40% smaller than those for the cubic box.  

The possibility of application of linked-lists method with cubic cells for non-cubic periodic boxes 

is the great advantage of using the checker-board PBC. Below we present the translation scheme for 

renumbering the cell coordinates: Nx, Ny and Nz, from the border of the computational box by replicating 

periodic rombic dodecahedron.  
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ix = INT ( (float(Nx)/N) +1)    -  1 
iy = INT ( (float(Ny)/N) +1)    -  1 
iz = INT ( (float(Nz)/N) +1)    +  INT ( float (Nz)/N) – INT (float(Nz)/(2*N)) – 2 
iz = iz * [(abs(ix) + abs (iy) +abs(iz) – 1 ) mod 2] 
 
Nx = Nx – N*ix 
Ny = Ny – N*iy 
Nz = Nz – N*iz 
 
The parallel code for the checker board periodic boundary conditions is relatively easy to implement by 

assuming that the box is decomposed by segmenting it along x or y coordinate. For boxes elongated in z 

direction, such the decomposition will increase communication time due to thin layers of domains and 

larger interface area between neighboring processor domains.  Slicing the box along z-axis (see Fig4b) 

may generate even more serious problems with communication. The processors will communicate not 

only with their neighboring processors, as it is for periodic rectangle shown in Fig.1, but also with the 

distant processors. In this situation, communication time may depend strongly on the architecture and 

memory access time of the parallel system.  

 For simulating the flow in an elongated and periodic capillary, we have employed the hexagonal 

prism PBC shown in Fig.4a. The checker board PBC are realized only on x,y plane. This preserves more 

circular shape of the capillary section than for a periodic rectangular prism and allows us to employ the 

same strategy of domain decomposition as shown in Fig.1. We simulate the box with circular section in 

x,y plane with reflecting or dissipative boundaries in x and y directions by filling white space in Fig.5 with 

heavy or motionless particles. 

 
3.4 Clustering procedure  
 
The patterns created in macrosopic flows, for which a homogeneous physical process dominates in 

multiple spatio-temporal scales, have typically self-similar fractal structures. In [19-23] we show that the 

strong heterogeneities of the flow in the mesoscale co-produce complex multiresolution patterns [24]. The 

creation of micelles, colloidal arrays, colloidal agglomerates and large-scale instabilities in fluid are the 

consequence of the competition between two coupled non-linear processes: global motion of particle 

ensembles and local interactions between particles. These multiscale structures are complex due to the 

inflexibility of the description level with varying scale of observation. The detection of particle clusters 

for controlling their temporal behavior represents a very important aspect in visualizing and extracting the 

complex patterns. 
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We have solved the problem for detecting clusters by using efficient O(M) algorithm inscribed in 

parallel structure of FPM code. The algorithm is based on the mutual nearest neighborhood (MNN) 

concept.  The algorithm is outlined as follows: 

 

1. Find the list Li of K nearest neighbors j of each particle i in Rclust  radius and sort out the list in 

ascending order according to the distance between i and j particles. Thus Li(k )=j and k  is the position 

of the particle j in the list. This procedure can be performed in parallel along with computation of 

forces in FPM code. To reduce the communication overhead, we use the parallel clustering algorithm 

off-line after simulation. 

2. Assuming that Li(k)=j and Lj(m)=i, compute MNN(i,j) distances defined as: MNN(i,j) =m+k . The 

maximum MNN distance is less than 2K. 

3. Begin a classical agglomerative clustering algorithm (e.g., nearest linkage [35]) with the linked-lists 

concept, starting from the smallest MNN(i,j)=2 value. 

4. This is terminated upon reaching the greatest value of MNN.   

 

The value of  Rclust should be somewhat larger than the spacing between particles in aggregates (Rclust 

≈0.2-0.3× rcut), and K value should be between 3-8. In Fig.6 we show the clusters of complicated shape 

from non-linear aggregation process. This event is detected by using MNN algorithm [35].  

 
 
3.5 Tests for computational efficiency 
 
The FPM code was written in FORTRAN 95 and was implemented on the MPI interface for both the IBM 

SP and SGI/Origin 3800 platforms. We performed our tests on IBM SP with WinterHawk+ nodes 

consisting of 4 Power3+/375MHz processors with 4GB of memory per node. For comparison we present 

the benchmarks for SGI/Origin 3800 system with R14000/500 CPUs.  

Our tests were performed in production run mode, sharing communication switch with other users. 

The maximum number of nodes we use was 8 (4 CPUs per node) both for IBM SP and for SGI/Origin 

3800. The timings obtained for parallel jobs we compare with the CPU time measured for the serial 

version of the FPM code. The periodic rectangular prism was decomposed along z axis (see Fig.1). The 

test parameters are summarized in Table 1. 

In Fig.7a we depict the CPU times and speed-ups obtained for fixed number of particles 

(M=1,048,576). The speed-ups for parallel runs refer to the CPU time per step per particle measured for 

the serial version of the FPM code. Each point on the plots represents the average from ten runs and the 

first 100 timesteps of simulation. The superlinear speed-up observed in Fig.7a results directly from the 
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cache. For pfpm0 and pfpm0_origin runs, the box is very thin. By increasing the number of processors, 

the fraction of computations involving cache increases (the number of cache misses decreases). The cache 

effect is more distinct for IBM SP machine with Power3+ CPUs, whose cache size is smaller (4MB) than 

that of the R14000 processor (8MB).  

Making the computational box wider in x,y plane and proportionally shorter in z direction (in 

pfpm1 the number of cells remains the same as in pfpm0) the communication overhead increases 

proportionally to the increase of the interface area between processor domains. Moreover, the cache 

misses become more frequent. Because the particles that are the physical neighbors should also be closer 

one another in the computer memory, to avoid frequent cache misses the particles are renumbered every 

some period of time. In result the particles residing in the same cell have consecutive numbers. However, 

the gap between particle numbers still exists for the particles from different cells. This is due to the 

sequential numbering of particles in domains. Let us assume that the particles are numbered first along x, 

then y and finally z directions. By increasing 4 times the sizes of computational box in x,y plane, the gap 

between particle numbers from the ne ighboring cells in z-direction increases also 4 times. Thus, the 

respective r, v and ω coordinates of two interacting particles from these cells can be very distant in 

memory generating cache misses.  

For 32 processors we observe a decrease in the speed-up for all the tests. This is caused by the 

small number of cell layers residing in processor domains and the degradation of 

computation/communication ratio. When decomposition goes along the shorter side of the box (fpmy), 

this overhead is much larger.  

 In Fig.7b we compare the two scalable runs performed on IBM SP and SGI/Origin 3800 

computers. The number of particles increases proportionally to the number of CPUs, from 500,000 to 16 

millions on 32 processors. The computational box increases only in one (z) direction. This keeps the 

communication overhead constant, due to unblocking and bi-directional communication between domains. 

For larger number of CPUs than 8, we observed the rapid degradation of code performance on IBM SP 

machine. This may come from communication delay between processors belonging to different IBM SP 

frames, which involve switches between the frames. The network is shared between other users. The 

machine remains very busy. Thus communication between processors from different frames (supernodes) 

may be much slower than in a single node or inside the frame.  

From Fig.7b we find that our code runs more than 2 times faster on a single R14000/500 processor 

than on Power3+/375. This effect can be a combination of two factors: greater peak performance of MIPS 

processor (1 Gflops, i.e., about 30% more than Power3) attained by implementing a new MIPS-IV 64-bits 

instruction set and aggressive optimization strategy of f90 compiler. We expect, however, that the second 

factor is crucial in the case of FPM model. As shown in [43], for parallel version of clustering procedure it 



 14 

appeared that IBM SP is two times faster than SGI/Origin 3800 in spite of a slower clock speed. However, 

in the case of clustering the code has much modest memory requirements and is much simpler than for 

FPM model, which involves time consuming floating point computations of interparticle forces and many 

nested loops. 

For the number of nodes greater than 2, the FPM code achieves better scalability with the number 

of CPUs on SGI/Origin 3800 than on IBM SP. This difference is not observed for parallel clustering [43] 

involving only 10% of memory requirements and communication bandwidth of those demanded by the 

FPM code. Therefore, better scalability of FPM code on SGI/Origin 3800 must be the consequence of 

faster communication between nodes on the SGI machine than on IBM SP. IBM SP is a distributed 

memory machine, while SGI/Origin 3800 is ccNUMA (cache coherent non uniform memory access) 

machine with virtual shared memory and with highly optimized distant memory calls. They must be 

optimized due to the calls to the slow, distant memory are the main source of the overheads on ccNUMA 

systems. The FPM code, which employs MPI communication interface, uses both the high memory 

bandwidth of ccNUMA architecture and the procedures which forces locality of the data by placing 

neighboring domains on neighboring processors. However, for very long boxes, the calls to distant 

memory from extreme processors, can produce overheads observed in Fig.7b.  

 
5. Simulation results 
 
In the FPM code we employ dimensionless program units collected in Table 2. We set arbitrary partial 

pressure P - defined in Eq.(12) - divided by the number density n, as a reference point for computing the 

energy unit δ. Larger value of δ means the greater contribution of thermal fluctuations. The scaling 

coefficient Π for conservative FPM forces (Eqs.3,18) can be computed directly from Eqs.(12). It is 

responsible for the compressibility of FPM fluid and is chosen such that the FPM particle system exhibits 

liquid ordering (see [21]).  The scaling factor for dissipative forces (Eq.4,5) is computed from the value of 

Ω (see Table 2), which stands for the dimensionless kinematic viscosity of FPM particle system [36]. This 

value represent the ratio of the time taken by a particle covering rcut distance at the thermal velocity c and 

the time γ-1 associated with friction. The value of σ - scaling factor for Brownian forces - is computed 

from the detailed balance equations Eqs.(8). 

We present here sampling simulation results obtained by using FPM parallel code from: 

1. Phase separation (symmetric quench) in binary fluid. 

2. Dispersion of colloidal slab in an elongated pipe. 

 
4.1 Phase separation 
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The growth kinetics of binary immiscible fluid and phase separation in two dimensions have been 

investigated with dissipative particle dynamics by Coveney and Novik [31]) and Dzwinel and Yuen [21]. 

It was shown that time-dependent growth of average domain size R(t) in two dimensions, follows 

algebraic growth laws of the form R(t)=tβ where β=1/2 for Brownian regime and 2/3 for inertial regime. 

In the absence of Brownian diffusion of interfaces and droplets the growth proceeds by the Lifshitz-

Slyozov mechanism [37]  and the power-low index β is set to 1/3.  

We have simulated two immiscible FPM particle fluids in 3-D assuming that the particles are 

perfectly mixed at the beginning of simulation. We define [21] the immiscibility factor to be ∆P=P1-P1,2 

where P1=P2 are the partial pressures in fluid 1 and 2 respectively. The value of P1,2 denotes the pressure 

computed from Eq.(12) for scaling factor Π1,2 of conservative forces between two types of particles 

representing different fluids. Important property of detailed balance for multi-component DPD particle 

ensemble is satisfied as for one-component system [38]. Here we presume that this is also valid for the 

FPM. In Table3 we display the principal physical and numerical parameters employed in the simulations.  

As we have depicted in Fig.8, in 3-D FPM the lamellar phase resulting from the Lifshitz-Slyozov 

mechanism (β =1/3) [31,37] can be observed in the initial stages of separation. The lamellas are destroyed 

quickly by the thermal fluctuations. The value of β changes to 1 for the diffusive regime and β =2/3 for an 

average domain size greater than hydrodynamic length. From FPM simulation of phase separation - shown 

in Fig.9 - we have obtained the three regimes and additional one with β =1/2, which was observed before, 

but only in two dimensions. 

 

4.2 Dispersion of colloidal slab 
 
The principal parameters for the simulations of the slab accelerated in the periodic hexagonal prism, 

elongated in z direction are presented in Table. 4. The particle system consists of two types of particles 

with the same size. The particles forming initially a rectangular slab are accelerated in a solvent, which is 

made up of particles, which are 5 times lighter.  

In Fig.10 we present the snapshots from FPM simulations and the results from clustering, which 

reveal cluster structures creating during dispersion. As shown in Fig.11, this structure changes depending 

on the viscosity contrast between slab ΩS and bulk of fluid ΩS. The slab shape resembles a comet in 

appearance for ΩB=10 and ΩS=100 with the dense cluster in the tip and the tail consisting of smaller 

structures.  

For ΩB=ΩS=100, the head of slab becomes distinctly smaller and clusters create the streaks at the 

end of the tail. In the case of higher viscosity in the bulk fluid (ΩB=100 and ΩS=10), the head of slab 
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disappears and smaller clusters collectively create long streaks by the large shear developed along the flow 

field. 

 
 
5  Conclusions  
 
Fluid particle model (FPM) is a very interesting physical paradigm, which can be used successfully for 

simulating mesoscopic fluid dynamics. The deployment of fluid particles in realistic 3-D cross-scaling 

simulations requires resolving a few fundamental issues.  

 

1. Scale matching - matching particle interactions to the properties of simulated fluid in the 

spatio-temporal scale under interest. 

2. Coupling – combining particles of different types and length-scale (e.g., defining interactions 

between them) 

3. Scales bridging – defining the rules of splitting fluid particles into particles from larger to 

smaller spatio-temporal scale and combining them vice versa. The problem with multiple 

timestepping should be solved.  

4. Implementation – efficient numerical implementation of the model in a parallel 

environment. 

 

In the paper we have discussed the last item. For investigating the structures of multiple scales created in 

complex fluids, the problems of coupling and bridging can be partly overcome by the bottom-up approach. 

This approach involves millions of particles and an efficient parallel code for simulating their temporal 

evolution.   

We have proposed here an algorithm for parallel implementation of the fluid particle model 

(FPM) and we have presented the results of its implementation on the two parallel platforms of different 

architecture. We have used distributed memory IBM SP machine and ccNUMA SGI/Origin 3800 system. 

We have shown that due to much greater memory load than in classical parallel MD codes, the optimal 

use of cache memory becomes crucial for obtaining efficient scalability of the parallel FPM code on the 

IBM SP machine. Moreover, the slow communication between distant processors – assigned to the 

extreme domains in an elongated computational box - results in a bad scalability of the code for the 

number of nodes greater than 2 (i.e. 8 CPUs). The ccNUMA architecture of SGI/Origin 3800 appeared to 

be more efficient than the IBM SP due to the different organization of the cache and a faster memory 

access. We have obtained the speedup of 26 on 32 processors of SGI/Origin 3800. Further increase of 

efficiency can be achieved by optimizing distant memory calls between domains located at the two ends 
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of the elongated box. Our code executed on R14000/500 processor is more than 2 times faster than on 

Power3+/375. This result is somewhat surprising in light of a higher peak performance of the Power3+ 

resulting from its 4-way architecture. In order to speed-up the calculations on IBM SP by reducing cache 

misses, the particles that are the physical neighbors should also be close to one another in the operational 

memory. Better scalability can be obtained by renumbering the particles in the neighboring cells and by 

splitting up the loop in which the forces are evaluated.  

However, constant tuning of the code can make it too complicated for rapid modifications because 

of adjustment to the physics. This can increase considerably the design and testing time. Our parallel code 

can be employed for production runs involving reasonable computational resources, i.e., up to 32 

processors simulating about 20 million particles in 5,000-10,000 timesteps.  

 The FPM code can be applied for simulating vascular fluid flow in capillary pipes [39] or blood 

flow in small vessels. A periodic grid of long boxes fits well for modeling the flow in bunch of capillary 

pipes carrying fluid by employing capillary forces. Blood flow in small vessels during a rapid heart-attack 

or a rapid stroke developed by deep vein thrombosis require more complicated boundary conditions. The 

computational boxes should have more complex shapes and also elastic boundaries. In this connection the 

checker-board boundary conditions are helpful for reducing the superfluous space. 

The axisymmetric pulsatile flows and flows subject to acceleration in blood vessels have been investigated 

both experimentally and numerically for a long time (see e.g. [10,39–42]) by using Navier-Stokes 

equations with proper substitution of the blood rheological properties. Up to now, there has not been much 

progress made in the field concerning the flow interactions between the microstructural dynamics and the 

larger-scale flow. The modelling of the dispersion of drugs and thrombosis along tiny blood vessels 

demands a completely different approach.  

Parallel implementation of the fluid particle model is also a good starting point for simulating the physical 

and chemical processes involving nano to mesoscale structures, which are essential to critical phenomena 

that govern the trapping and release of nutrients, contaminants and pathogens, such as anthrax . 
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Figure captions 
 
Fig.1 The box decomposition onto cells and processor domains. 

Fig.2 The sequence of computation and communication procedures invoked in FPM parallel code. 

Fig.3 Dimensionless pressure δ=kBT/(P/n) and thermodynamic temperature Tth of the FPM particle 

system in 3-D (number of particles M=1.3×105) with time. The initial values for δ=0.021 (in 

dimensionless units) and for an assumed temperature T=100 K. 

Fig.4 a) Checker-board periodic boundary conditions in 2-D. Computational box simulating the hexagonal 

periodic boundary conditions along with its replicas are depicted.  

b) Checker board periodic boundary conditions in 3-D. Computational box of side lengths Lx=1, Ly=1 

and Lz=2 represents periodic boundary conditions for rhombic dodecahedron (see [34]). The domain 

decomposition onto CPU units is shown. The arrows show the communication paths among the 

processors. 

Fig.5 The largest circle inscribed in a hexagonal box compared to the largest circle inscribed in a square 

box of the same area. 

Fig.6 The result of clustering procedure detecting colloidal agglomerates in 2-D. The largest cluster is 

shown in black. 

Fig.7 Speed-ups and CPU time per step per particle for benchmark on IBM SP and SGI/Origin 3800.  

Fig.8 Two snapshots from 3-D FPM simulation of phase separation in binary fluid involving 8 million 

FPM particles. Cross-sections are depicted. A) lammelar phase at t=400 (β=1/3) B) the regime with β=1/2, 

at t=4000.  

Fig.9 The growth of average domain size in time in symmetric quench.  

Fig.10 The snapshots from FPM simulation of a slab accelerated in the particle fluid. Only the slab is 

shown. The contrast in viscosity between slab and solvent is 10:1. The pictures from a) comes from Data 

Explorer and show droplet’s surface. In the following figures the raw particle positions are shown. 

Multiresolution structures are detected from the clustering procedure. The light gray tip of slab is the 

largest cluster extracted. The blue particles create the smallest clusters (consisting of at most 2 particles). 

The red particles represent medium scale clusters, i.e., the streaks are created due to shear. In solvent (c) 

low density cluster is shown in blue. This situation can be applied to flow in narrow blood vessels. 

Fig.11 Different viscosity contrast between solvent ΩB and a slab ΩS. a) ΩB=10, ΩS=100 b) ΩB=ΩS=100 

c) ΩB=100, ΩS=10. The first three pictures come from Data Explorer and show clusters surface. The 

pictures on the right depict the multi-scale features extracted with the clustering MNN algorithm. These 

situations can be applied to flow in narrow blood vessels. 
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Tables 
 
 
 
 
 
 
 
 
Table 1. Parameters of the efficiency tests. Number of particles in a single unit cell is equal to 4. 

 
Test Number of 

particles M  
Namber of cells in 
x,y and z direction 

Number of 
processors P=2k 

Platform 

Serial FPM, sfpm 1,048576 64×64×64 1 IBM SP, 
Origin 3800 

Parallel FPM pfpm1 1,048576 64×64×64 2-32 IBM SP 
Parallel FPM pfpm0 

pfpmp_origin0 
1,048576 32×32×256 2-16 IBM SP, 

Origin 3800 
Parallel FPM pfpmy 1,048576 32×256×32 2-16 IBM SP 

Scalable parallel FPM 
spfpm_ibm2-4-8-16-32 

1,048576 to 
16,777216 

64×64×64×P/2 2-32 IBM SP 

Scalable parallel FPM 
spfpm_origin2-4-8-16-32 

1,048576 to 
16,777216 

64×64×64×P/2 2-32 Origin 3800 

 
 

Table.2.  Program units 
VALUE UNIT 

Length λ 
 

the average distance between the neighboring fluid particles λ = 1 
 

Mass m 
 

dimensionless - mass of the lightest fluid particle  m = 1 
 

Time ∆t 
 

in tref=λ/c where c2= k BT/m 
λ -unit of length 

Energy δ  in k BT/(P /n) where P-partial pressure defined in Eq.(12) 

Viscosity Ω crcut ⋅=Ω 3/γ  where γ is the scaling factor of dissipative forces 
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Table.3.  Principal physical and numerical parameters employed in FPM simulation of phase separation in 
3-D 

 

General parameters  Values 
kBT /(P/n) 0.015 

Number density n 1.0  
(per cube of volume λ3) 

Viscosity (in Ω) 25 
∆P/P=P1-P1,2/P 5% 

Number of particles 8.2×106 
∆t (in tref) 0.01 

Cut-off radius rcut (in λ) 2.0  
Computational box periodic rhombic dodecahedron  
Box size (in cells) 80×80×160 

 
 

 
 
 
 

Table.4.  Principal physical and numerical parameters employed in FPM simulation of dispersion of 
colloidal slab.  

General parameters  Values 
kBT /(P/n) 0.015 

g (λ/∆t2) (accel.) 10  

Particle masses mSLAB=5, mSOLVENT=1 
Number density n 1.0  

(per cube of volume λ3) 
Viscosity (in Ω) 10 and 100  
∆P/P=P1-P1,2/P 5% 

Number of particles: Total:   1.76×106 
 Solvent:1.49×106  Slab:    171,000 

∆t (in tref) 0.01 
Cut-off radius rcut (in λ) 1.58  

Computational box periodic hexagonal prism   
Box size (in cells) 44×50×200 
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Fig.2 
 
 
 
 
 
 
PARALLEL LOOP 
 
 For all  P = 1, N 
 
  SENDfrom_P-1_to_P_particles_from_boundary_cells ( Nkind?,?r ,,

rrr
); 

  Compute_INTERACTIONS_in_P ( ijij NF
rr

, ); 
 

  SENDfrom_P_to_P-1_reactions_on_boundary_particles_in -P-1 ( ijij NF
rr

, ); 

  Update_INTERACTIONS_for_boundary_particles_in-P-1 ( ijij NF
rr

, ); 
 
  MOVE_particles_in_P ( ?,?r

rrr
, ); 

 
  SENDfrom_P_to_P-1_outcoming_particles ( Nkind?,?r ,,

rrr
); 

  SENDfrom_P-1_to_P_incoming_particles ( Nkind?,?r ,,
rrr

); 
  SEND_totals_from_P_to_master_processor (Virial, Ekin, etc.); 
 
 endfor 
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Fig.3 
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Fig.4 
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Fig.5 
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Fig.6 
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Fig.7a 
 

10 20 30
Number of processors

10

20

30
S

pe
ed

-u
p

1

10

100

Ti
m

e 
pe

r 
st

ep
 p

er
 p

ar
tic

le
 (i

n 
m

ic
ro

se
co

n
ds

)Test symbol

pfmp0

pfmp1

pfmpy

pfmp_origin0

 
 

Fig.7b 
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