
Object-Oriented Distributed Computing Based on

Remote Class Reference

Yan Huang1, David W. Walker, and Omer F. Rana
Department of Computer Science

Cardiff University
PO Box 916

Cardiff CF24 3XF
United Kingdom

{Yan.Huang,David,Omer}@cs.cf.ac.uk

Abstract

Java RMI and Jini provide effective mechanisms for implementing
a distributed computing system. Recently many numeral libraries have
been developed that take advantage of Java as an object-oriented and
portable language. The widely-used client-server method limits the
extent to which the benefits of the object-oriented approach can be
exploited because of the difficulties arising when a remote object is the
argument or return value of a remote or local method. In this paper
this problem is solved by introducing a data object that stores the
data structure of the remote object and related access methods. By
using this data object, the client can easily instantiate a remote object,
and use it as the argument or return value of either a local or remote
method.

1 Introduction

Java RMI and Jini extend the Java object model beyond a single Java vir-
tual machine (VM) so that object methods can be invoked remotely by other
VMs over the network. Java RMI[8] and Jini[3, 9] technology, and the porta-
bility of the Java language, make the Java language well-suited for scientific
network-based distributed computing[6, 13]. Several numeral libraries, such
as LAPACK[10], the BLAS[1], and LINPACK[11], which were originally
written in C or Fortran, have now been implemented in Java[2, 7]. The Java
interface to the commonly-used Message Passing Interface (MPI) makes par-
allel computing easier over networked Java VMs. These Java-based imple-
mentations automatically benefit from the objected-oriented programming
model that makes them robust, maintainable, and reusable[12].

1Corresponding author

1

The NetSolve[14] system, which is written in C, supports distributed
scientific computing through a traditional server-client model. Suppose, for
example, that a NetSolve client wishes to compute the inner product of two
double-precision vectors using the library routine ddot() which is installed
on a server2. The client sends a request to the server to do the computation.
After ddot() has been executed on the server the resulting scalar inner
product is returned to the client. In this scenario the numerical libraries are
in C or Fortran, which are not object-oriented languages, and the code and
the data are kept distinct. Both the client and server understand the vector
data type, although the routine ddot() needs to be installed only on the
server.
The situation is different for an objected-oriented client-server model.

Suppose we want to do the same thing as described above for NetSolve,
but using pure Java and RMI technology. In an objected-oriented world
everything is about objects, and the code and data are merged into a single
entity - an object. In this example, the vector data structure and the method
ddot() are included in an object called Vector. Vector.ddot() takes a
Vector as its argument, evaluates the dot product of the input Vector with
itself, and returns a value of data type double. In this scenario, both the
server and client must have the definition of Vector to ensure the remote
method invocation can be executed. This obviously will result in some
inconvenience and repeated work for the developer and the user.
This paper will focus on this problem of objected-oriented distributed

computing, and demonstrates an approach that solves it.

2 Limitations of Remote Object Invocation

Assume we have a class called Matrix and an instance of Matrix called
matrix. Consider the following two situations:

1. The client side has the definition of Matrix.

2. Matrix is defined on the server side but not on the client side. The
client can call its methods using remote method invocation.

An obvious difference between these two situations is in the first stan-
dalone case, the client has the definition of the class Matrix, but in the

2ddot() is used for simple illustrative purposes. The fact that it is O(n) in both com-
putation and data movement actually makes it a rather unsuitable candidate for remote
execution.

2

second distributed case it does not. In the distributed case, a client can get
a reference to the remote object, but there are several things that a client
application cannot do in a distributed environment[4]:

1. The client cannot control the construction of the remote object since
this is instantiated on the server.

2. The data elements in the remote object are inaccessible even if they
are public, unless there are public set() and get() methods defined
to expose them to other remote objects.

3. The client cannot call a method of a remote object if the method has
an instance of a remote class as one of its input parameters or its return
value. Here a “remote class” is a class whose definition is located in
another Java VM and so is not available locally to the client.

This paper addresses each of these difficulties. In Section 4, we describe
how “wrappers” can be used to control locally the construction of a remote
object. This approach converts a constructor into a normal public method.
The problems of accessing the data elements of a remote object, and of call-
ing a method of a remote object when it has an instance of a remote class
as an input parameters or the return value, is tackled in Section 5. Here
an additional class, known as a “data class”, is used to maintain a local
copy of the data state of the remote object. In Section 6 a description is
given of how Jini has been used to apply the ideas discussed in the preced-
ing sections to implement a truly object-oriented approach to programming
in a distributed heterogeneous environment. Some concluding remarks are
presented in Section 7.

3 An Example

In this section a simple example is given to illustrate the difficulties encoun-
tered if we want to take full advantage of a third-party class package located
on a remote host in a distributed computing environment.
The third-party package we will use is a Java matrix package called

JAMA[5]. We have simplified the code examples so they are easy to un-
derstand. Our simple example will use just two JAMA classes: Matrix and
LUDecomposition. The simplified class definitions of Matrix and LUDecom-

position are shown in Fig. 1.
In the non-distributed, standalone case, the user has the package in-

stalled on their machine, and their application code will be similar to that
shown in the piece of code in Fig. 2.

3

public class Matrix implements

java.io.Serializable {

private double[][] A;

public Matrix (double[][] A) {

...

//context of the constructor

}

public void Matrix(){}

public void setA(double[][] A) {

this.A=A;

}

public double[][] getA() {

return this.A;

}

public void print () {

...

//code for print out the matrix.

}

...

//Other public methods.

}

public class LUDecomposition implements

java.io.Serializable{

private double[][] LU;

public LUDecomposition (Matrix A) {

...

// LU decomposition A=LU. The results

are written into one array LU.

}

public LUDecomposition(){}

public void setLU(double [][] LU)

{this.LU = LU;}

public double[][] getLU(){return this.LU;}

public Matrix getL () {

...

//return the unit lower-triangular

}

public Matrix getU () {

...

//return the upper-triangular

}

...

//Other public methods.

}

Figure 1: Simplified code of Matrix and LUDecomposition.

public class SimpleExample{

public static Matrix matrixMaker(int n) {

double[][] A = new double[n][n];

for(int i=0; i<n; i++)

for(int j=0; j<n; j++)

M[i][j] = (i+j)%n;

return new Matrix(A);

}

public static void main(String argv[]){

Matrix M = matrixMaker(100);

LUDecomposition LU = new LUDecomposition(M);

Matrix L = LU.getL();

L.print();

}

Figure 2: A simple application executable only on a standalone machine

4

Everything works fine on a standalone machine, but difficulties arise
when we want to distribute the computation. In this case, the user wants
most of the computational work to be done on remote servers thereby reduc-
ing the load on the local client. Suppose the JAMA package is not installed
on the local client. There may be several reasons for this:

1. To save local storage space, or avoid having to install and maintain
multiple copies of the same code.

2. To save the time to download and install the package.

3. To keep secret the internal details of the implementation of the pack-
age, or to maintain control over the software.

Henceforth we shall assume that the JAMA package is installed on the
server but not on the client. Now we examine how the client can perform
remote computations on the server.

4 Using RMI and Jini for Remote Invocation

To use Java RMI or Jini to perform remote computations using JAMA we
need to build up the following classes:

The interface classes: IMatrix and ILUDecomposition.

The implementation classes: MatrixImpl and LUDecompositionImpl.

The distribution of all the necessary files is shown in Table 1.

Server Client

IMatrix.java IMatrix.java
ILUDecomposition.java ILUDecomposition.java

MatrixImpl.java SimpleExample.java
LUDecompositionImpl.java

Matrix.java
LUDecomposition.java

Table 1: Distribution of files between server and client.

The first thing we have to think about is how to instantiate a remote
object in this case. Both the classes for which we want to remotely obtain
an object have a non-trivial constructor. In Matrix, the constructor takes
an array as input and stores it into a private data element A. In LUDecom-

position, the constructor is the main part of the class in the sense that it

5

does most of the computing work - it takes a Matrix as input, computes its
LU decomposition, and obtains two matrices L and U as a result which are
stored in a data element: an array with L and U below and above the main
diagonal, respectively. In the Java distributed object model, the server side
instantiates the object, and a client is able to get a reference to this remote
object. Because the client sees only a stub for the original object and the
stub implements only the remote methods[15], the client can only invoke
the methods of the remote object; it cannot contribute to the construction
of the object. However, sometimes it is necessary for the client to build a
remote object using the data provided by the client, as in the example code:

double[][] A = new double[n][n];

...

return new Matrix(A);

The client code needs to build a remote object by passing an array
A. The way we solve this difficulty is to make the constructor callable
by the remote client by changing the constructor into a normal exposed
method. We want to avoid having to change the original code because
it may belong to a third party, so here the object implementation classes
MatrixImpl and LUDecompositionImpl are not derived directly from Matrix

and LUDecomposition by modifying their original code, but instead play
the role of “wrappers” for the original classes by taking an instance of the
remote class as a data element and then providing the interfaces to all the
public methods provided in the original classes.
An example of the wrapper (or implementation class)MatrixImpl for the

original class Matrix is shown in Fig. 3.

Public class MatrixImpl implements Imatrix {

Matrix itself;

public MatrixImpl(){}

public void MatrixConstructor(double[][]A) {this.itself = new Matrix(A);}

public void print () {this.itself.print();}

... //Other public methods

}

Figure 3: A wrapper class for Matrix.

In this code, the method MatrixConstructor(double[][] A) generates
an instance of Matrix by passing the input data of the method to the Matrix

constructor, and then stores the new matrix as a Matrix type data element
called itself. By calling this remote method, the client is able to build the

6

object as required. In fact, the remote object whose methods are exposed
here to a client is not an instance of Matrix any more, but an instance
of MatrixImpl, which has an instance of Matrix as its data member. The
architecture of this mode of use is described in Fig. 4, and the code is as
follows:

obj = ...; /*Assume the client gets a reference to

the remote object MatrixImpl.*/

double [][] A = ...; //assign value to array A

obj.MatrixConstructor(A);

obj.print();

Client

Matrix Object

Invocation of the constructor
method MatrixConstructor()

Invocation
Initiate

of other methods

Client

Server
Application

MatrixImpl Object

Figure 4: The client remotely controls the construction of a remote object.

Now consider the following line of code:

LUDecomposition LU = new LUDecomposition(M);

Here, M , a local instance of a remote class, is input to the constructor
of the server side object LUDecomposition. As in the earlier case of the
remote Matrix constructor, we build an instance of LUDecompositionImpl

which acts as a wrapper object for the real LUDecomposition object, or like a
bridge between the client and the actual object. Any action the client wishes
to perform on the real object will go through the wrapper object, and the
wrapper object in turn will initiate the operations on the real object. By
introducing the object LUDecompositionImpl, we change the code into the
following:

7

ILUDecomposition obj = ...;

// Get the reference to the remote Object of LUDecompositionImpl.

LUDecomposition LU = obj.LUDecompositionConstructor(M);

Now we are able to call a remote constructor remotely, but if we try to
compile the code, an error will occur because the Matrix and LUDecomposi-

tion classes cannot be found. We still have an unsolved problem – how do we
initiate a local instance of a remote class? In fact, it is impossible to initiate
a local instance of a remote class. We can only get an instance of a class
that is defined locally. So if the definitions of Matrix and LUDecomposition

are located remotely (i.e., on the server side) the client side cannot directly
instantiate them. We examine this problem in the next section.

5 Implementation of Remote Class References

In order to implement remote method invocation, both client and server
share an interface definition that specifies the remote interfaces of the remote
object, so the client is assumed to know about the exposed methods of the
remote class. We can change the constructor into a general public method
(see Section 4) making it callable as a normal remote method, so we can
assume the client side has all the interfaces of the exposed methods and the
constructor methods specified in its interface class. A general class contains
three parts – the data, the methods, and the constructors – so now the only
thing left in a remote class that is still unknown on the client side is the
data structure.
Suppose a client can quite easily find out the data structure defined in a

remote class so that it is possible to have the following class shared by both
client and server (see Fig. 5).

Public class MatrixData {

Private double[][] A;

Public MatrixData(){}

Public void setA(double[][] A){ this.A = A; }

Public double[][] getA(){ return this.A; }

}

Figure 5: A data class of class Matrix.

Comparing class MatrixData with class Matrix we see they contain the
same data structure, namely double[][] A, the public set and getmethods
to make the data accessible, and an empty constructor. As the name of the

8

class MatrixData suggests, the main purpose of this class is to define the
data structure of class Matrix. For the sake of convenience, we call this sort
of class a “data class”, and an instance of a data class a “data object”.
We need also to create a data class LUDecompositionData for the remote

class LUDecomposition.
Before we start to change the client application code, we need to add four

methods to the wrapper class file MatrixImple.java, as shown in Fig. 6.

public void MatrixConstructor(MatrixData dataobject){

This.itself = dataclassToRemoteclass(dataobject);

}

public Matrix dataclassToRemoteclass(MatrixData dataClass){

Matrix remoteClass = new Matrix();

remoteClass.setA(dataClass.getA);

return remoteClass;

}

public MatrixData remoteclassToDataclass(Matrix remoteClass){

MatrixData dataClass = new MatrixData();

dataClass.setA(remoteClass.getA);

return dataClass;

}

public MatrixData getDataObject(){

return this.remoteclassToDataclass(this.itself);

}

Figure 6: Four methods are added to MatrixImple.java

Methods dataclassToRemoteclass() and remoteclassToDataclass()
implement the data flow between the data object and its remote object.
MatrixConstrutor(Matrixdata dataobject) is used to construct a re-
mote object of typeMatrix by copying data from aMatrixData. GetDataObject()
returns a data object of type MatrixData by extracting data from a Matrix.
In addition, we need to add these interfaces to the interface class IMatrix

so the corresponding methods can be called remotely. Similarly, we need to
add the same methods to LUDecompositionImpl and ILUDecomposition.
Assume we have the following code in the original client application:

Matrix M = matrixMaker(100);

M.print();

The process necessary to make it work in a distributed way is described
in four steps.

1. In place of getting a local instance of a remote class we get a data
object of its data class:

9

MatrixData M = matrixMaker(100);

We need to change the definition of routine matrixMaker() so that its
return type is MatrixData, rather than Matrix.

2. We get a reference to the remote wrapper object, MatrixImpl, of the
Matrix by any remote object invocation technique, such as RMI or
Jini.

3. We transfer the data from data object M to the remote object by
calling remote method dataclassToRemoteclass(). Now the remote
object has the same data state as the data object.

4. We send a request to the remote object to invoke the method print().

Here the data object plays the role of a data state saver for the cor-
responding remote object. A remote object can have more than one data
object. If an application needs more than one remote object of the same
type, as happens quite often, several data objects are needed but only one re-
mote object is necessary. The single object can work like multiple objects by
copying data to and from its data objects. This reduces the network traffic
and the overhead of looking up the same service throughout the distributed
environment.
Next we consider the case in which an instance of a remote class is input

to, or returned from, a local or remote method:

Matrix M = matrixMaker(100);

LUDecomposition LU = new LUDecomposition(M);

Matrix L = LU.getL();

First we need to modify all the methods in the wrapper classes, which
take remote class type objects as their input or return value, by having all
the remote class type objects replaced by their data objects. In LUDecom-

position, these methods are changed into the definition in Fig. 7.
In this implementation, all the remote classes are wrapped inside the

wrapper classes, LUDecompositionImpl, and run on the server side. The
client only has to deal with the data objects of these remote classes, thereby
achieving the functionality of initiating a local instance of a remote class
without having its definition available locally. Figure 8 shows the data
transformations in the remote method invocation.

10

Public void LUDecompositionConstructor(MatrixData dataMatrix){

MatrixImpl wrapperObject = new MatrixImpl();

This.itself = new LUDecomposition(

wrapperObject.dataclassToRemoteclass(dataMatrix));

}

Public MatrixData getL(){

MatrixImpl wrapperObject = new MatrixImpl();

return wrapperObject.remoteclassToDataclass(this.itself.getL());

}

Public MatrixData getR(){

MatrixImpl wrapperObject = new MatrixImpl();

return wrapperObject.remoteclassToDataclass(this.itself.getR());

}

Figure 7: The modified methods in LUDecompositionImpl.

LUDecomposition

MatrixImpl

OutputInput

OutputInput

Output Input

Matrix

MatrixData

dataclassToRemoteclass() remoteclassToDataclass()

LUDecomposition() getL()

Figure 8: The transformation of objects in the remote method invocation.

11

6 A Client Application with Remote Class Refer-

encing

In implementing the approach described in this paper Jini is used to build
the distributed system.
So far we already have the following files: the interface definitions IMatrix.java

and ILUDecomposition.java; the implementation of the interfaces MatrixImpl.java
and LUDecompositionImpl.java; the data classes MatrixData.java and
LUDecompositionData.java; the original classes Matrix.java and LUDecomposition.java;
and, the application file SimpleExample.java. The distribution of the files
between a client and a server is shown in Table 2.

Server Client

IMatrix.java IMatrix.java
ILUDecomposition.java ILUDecomposition.java

MatrixData.java MatrixData.java
LUDecompositionData.java LUDecompositionData.java

MatrixImpl.java SimpleExample.java
LUDecompositionImpl.java

Matrix.java
LUDecomposition.java

Table 2: Distribution of files between server and client.

We used two Unix machines running Solaris 2.6 and a Windows 2000
machine in our implementation. The Jini lookup service was run on one
of the Unix machines, and the other Unix machine was used as the server
providing the matrix computing service. The Windows 2000 machine was
used as the client on which we initialize execution of the application. So on
this machine we just install the data classes and the interfaces and make
sure the original classes are not accessible to the client. We also executed
a standalone case so that we can compare the results between the stan-
dalone case and the distributed case. Both cases gave the same output
which indicates that the distributed case is running correctly, and that
the approach described in this paper actually works. The complete code
for the example application and instruction for its use are available from
http://www.cs.cf.ac.uk/User/Yan.Huang/research/remote.html.

12

7 Concluding Remarks

By introducing the concepts of the data object and data class a programmer
can build a true object-oriented distributed system without needing multiple
copies of the definition of the remote objects on both clients and servers.
There are also other benefits from the idea of using a data object to store
the data state of the remote object.

1. Space is saved on the client. When a remote class reference is needed
in a client application only one definition of the remote class is needed
on the server - the client just needs to have its data class which is
normally much smaller than the original class.

2. Space is saved throughout the network. If more than one client needs
the same remote class reference only one copy of the class is needed
on the server.

3. Network traffic is reduced. If a client needs more than one instance of
the remote class only one reference to the remote object is necessary.
In comparison with getting a reference to the remote object each time
when a new remote object of the same type is needed, this can save
the time spent looking for the service or object over the network.

We have demonstrated the feasibility of our approach by implementing a
truly object-oriented distributed system across heterogeneous hardware plat-
forms, operating systems, and software environments. Future work will de-
velop tools to automatically convert large numerical libraries for use in such
distributed environments, and will examine performance issues when our
approach is applied to computational science applications.

References

[1] BLAS (Basic Linear Algebra Subprograms), http://www.netlib.org/blas/.

[2] Ronald F. Boisvert and Jack J. Dongarra, “Developing Numerial Libraries in Java”,
ACM 1998 Workshop on Java for High-Performance Network Computing, March
1998.

[3] W. Keith Edwards, “Core JINI”, 2nd Edition, Prentice Hall PTR 2001.

[4] Daniel Hagimont and Fabienne Boyer, “A Configurable RMI Mechanism for sharing
Distributed Java Object” IEEE Internet Computing, Volume 5, Issue 1(2001), pp. 36–
43.

[5] JAMA: A Java Matrix Package, http://math.nist.gov/javanumerics/jama/.

[6] Java Distributed Object Model,
http://java.sun.com/products/jdk/1.1/docs/guide/rmi/spec/rmi-objmodel.doc.html.

13

[7] JavaNumerics, http://math.nist.gov/javanumerics/.

[8] Java Remote Method Invocation (RMI), http://java.sun.com/products/jdk/rmi/.

[9] Jini Network Technology, http://www.sun.com/jini/.

[10] LAPACK – Linear Algebra PACKage, http://www.netlib.org/lapack/.

[11] LINPACK, http://www.netlib.org/linpack/.

[12] Robert Martin, “OO Design Quality Metrics, An Analysis of Dependencies”,
http://www.ao.net/~juang/IntroJava/IntroJavaMain.html.

[13] Jose E. Moreira, Samuel P. Midkiff, and Manish Gupta, “From flop to megaflops:
Java for technical computing”, ACM Transactions on Programming Languages and
Systems Volume 22 , Issue 2 (2000), pp. 265-295.

[14] NetSolve, http://www.cs.utk.edu/netsolve/.

[15] RMI and Object Serialization Frequently Asked Questions,
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/faq.html.

14

