
-

high

n, rep-

tures of

rvice-

archi-

stbed to

of cli-

g sci-

ron-

es are

ervices,

om net-

uting

services
The Virtual Service Grid: An Architecture for Delivering High
End Network Services

Jon B. Weissman and Byoung-Dai Lee

Department of Computer Science and Engineering
University of Minnesota, Twin Cities

Minneapolis, MN 55455
WWW: www.cs.umn.edu/~jon

E-mail: {jon, blee}@cs.umn.edu

Abstract

This paper presents the design of a novel system architecture, Virtual Service Grid (VSG), for delivering

performance network services. The VSG is based on the concept of the Virtual Service which provides locatio

lication, and fault transparency to clients accessing remotely deployed high-end services. One of the novel fea

the Virtual Service is the ability to self-scale in response to client demand. The VSG exploits network- and se

information to make adaptive dynamic replica selection, creation, and deletion decisions. We describe the VSG

tecture, middleware, and replica management policies. We have deployed the VSG on a wide-area Internet te

evaluate its performance. The results indicate that the VSG can deliver efficient performance for a wide-range

ent workloads, both in terms of reduced response time, and in utilization of system resources.

1.0 Introduction

A large array of wide-area application technologies for distributed high-performance computing includin

entific problem-solving environments [7][8][18][19][23], computational Grids [12][14], and peer-to-peer envi

ments [9][16] are emerging. These technologies are beginning to support a model in which diverse servic

deployed in the network and made available to users and applications. In this paper, we focus on “high-end” s

services that require high communication, computation, or both. Services are highly heterogeneous ranging fr

work-intensive content-delivery (e.g. interactive visualization) to compute-intensive high-performance comp

(e.g. coupled supercomputing, remote equation solvers, or genomic servers), to everything in between. For

that have high client demand, scalability is crucial.
1

ng and

tion for

proxies

ompu-

stem of

as it

: local

a

e local

ad bal-

for high

he local

irrors

bottle-

st in a

at all if

itive to

e net-

ontent-

tion

to create

verage

ing access

iring or

the rep-

lled the

plica

gement

replica

. In addi-

static

can be
The most common solutions for providing scalable network services are caching and replication. Cachi

replication can promote greater reliability and improved performance as they each represent an alternate loca

the service. Caching is useful when the service requested is simply a retrieval of server contents, which Web

and clients routinely perform. However, caching has the fundamental limitation that it is tied to data and not c

tation. If the service requested requires significant specialized processing (e.g. remotely solve a specific sy

equations as in NetSolve [7]), then caching is not particularly helpful. Replication does not have this limitation

allows an arbitrary service to be performed by multiple service replicas. Two types of replication are common

and mirrored. Local replication uses a front-end service (e.g.www.cnn.com) that distributes the request to a replic

within the same site. The service is usually implemented by a cluster of machines and disk resources within th

site [13][25]. Most commonly the client requests are sent to the replicas in a round-robin fashion to achieve lo

ance. The advantage of this approach is that replication is transparent to the client and performance improves

demand services. The disadvantage is that it does not deal with network bottlenecks between a client and t

site. Mirrors address this issue by allowing a geographic multi-site distribution of replicas. The advantage of m

is that by positioning replicas at various places in the network it becomes possible to avoid single-site network

necks and to select replicas that may be closer to clients. However, it is difficult to determine which mirror is be

dynamic changing network, particularly if the services are heterogeneous. Network distance may not matter

the service is compute-intensive. Even if the service is network-sensitive, performance might be more sens

latency or bandwidth. For this reason, many systems leave replica selection to the client [34], or simply presum

work performance is all that matters [1][3][4][5][24]. This assumption is reasonable for Web page access and c

delivery networks but not when performance is dominated by computation. A final difficulty with both replica

schemes is that they are often ad-hoc, static, and added after-the-fact. Issues such as the number of replicas

and where to place them are not well understood. Typically, a fixed pool of replicas is created based on an a

expected degree of client access or worst-case assumptions. These systems are unable to adapt to a chang

pattern or network conditions. If the client load rapidly increases or decreases there is no mechanism for acqu

releasing replicas. In addition, if performance worsens due to a sudden congestion spike between a client and

lica, the client either must suffer poor performance or manually request a new replica.

This paper presents a novel scalable architecture for the reliable delivery of high-end network services ca

Virtual Service Grid (VSG). The VSG exploits network- and service-information to make adaptive dynamic re

selection, creation, and deletion decisions. We describe the VSG architecture, middleware, and replica mana

policies. The results indicate for two distinct workload patterns and three high-performance services, dynamic

selection achieves superior performance to standard approaches such as random and round-robin selection

tion, dynamic replication is shown to achieve both high resource utilization and low response time relative to

schemes. When dynamic replication is combined with a small amount of static pre-allocation, performance
2

eshold.

by the

ts such

cluding

perfor-

r cluster

chine is

a syn-

). The

A [26]

ht be

gion of

images,

dwidth

rocess-

images
further improved such that virtually all client requests achieve response time below a preset performance thr

The design on the VSG is based on five motivating scenarios that are described next.

2.0 Motivating Scenarios

Scenario #1: application-dependent server selection

We illustrate the first scenario with a numeric solver service that solves a system of equations provided

client (Figure 1). Such servers are common to several network-based scientific problem-solving environmen

as NetSolve [7] and Ninf [23]. Suppose that the solver service has replicas running across several machines, in

a very fast small PC cluster of 8 nodes, and a large parallel machine consisting of 256 mid-range PCs. The

mance of the solver service depends on the input equations. For small systems of equations, the smaller faste

performs best. For larger systems of equations, more parallelism can be extracted and the larger parallel ma

best.

Scenario #2: application- and network-dependent server selection

In the second scenario, a remote visualization service allows clients to interactively select a portion of

thetic aperture radar image at different resolutions by drawing a box around the region of interest (Figure 2

selected bytes are then delivered to the client. Examples of remote interactive visualization systems are SAR

and CMUs Dv project [21]. Typically, a client may begin by selecting a coarse low resolution image which mig

small in size (number of bytes), and then select increasingly finer regions of greater size in order to locate a re

interest. The performance of the visualization service depends on the size of the image requested. For small

the latency between the client and the replica may be the dominant factor, while for large images, the ban

between the client and the replica may be the dominant factor. If the server provides specialized filtering or p

ing of the images, then the compute power of the replica may also be important as in scenario #1, and if the

are on disk, disk performance may also be a factor.

solver

X1: solve(10 x 10, ...)

X2: solve(1K x 1K, ...)

R1

R2

X1

X2

Figure 1: Scenario 1. Client requests Xi stream into the virtualsolverservice. The requests Xi can be from
the same or multiple clients. Based on input parameters, requests are served by either replica R1 or R2.

parallel machine

cluster
3

mple,

e to

ccom-

esources

ance.

t the

(R

cenario

is R

the net-
Scenario #3: client storm/calm

A particular service has become very popular very suddenly and then demand begins to fall off. For exa

imagine the popularity ofwww.espn.com during the olympics orwww.microsoft.com after announcing the

availability of a critical software patch for windows version xyz. In this scenario, we would like the virtual servic

“scale itself” in proportion to the perceived workload. As the demand begins to heighten, capacity grows to a

modate the requests, and when demand declines, the capacity is released, freeing up valuable system r

(Figure 3).

Scenario #4: network and service adaptation

This scenario reflects the dynamic nature of the network in terms of communication and server perform

Suppose that in scenario #1, client X1 wishes to solve a large number of small equations and a queue is forming a

preferred server replica R2. In this case, it may be beneficial to send some of these requests to a different replica1)

because it may be less loaded, even if it does not offer the best runtime performance (Figure 4). Similarly, in s

#2, a client X1 is performing a series of latency-sensitive requests for image visualization. The preferred replica1

due to the smaller expected latency. However, suppose that during the middle of these requests, a link along

Figure 2: Scenario 2. Client requests Xi stream into the virtualvisualizeservice from one or more clients.
The latency sensitive request (X1) is served by a replica R1 that has the smallest latency to the client loca-
tion. In contrast, a bandwidth sensitive request is served by R2which has a higher bandwidth to X2, illus-
trated by the darker line.

visualize

X1: extract(25x50, 4 bits/element)

X2: extract(150x150, 32 bits/element)

R1

R2
X2

X1

Figure 3: Scenario 3. Virtual service responds to demand spike by dynamically creating replicas and then
removes replicas as demand reduces. Darker arrows indicate greater client demand.

.

.

.

low demand at time t1 high demand at time t2 low demand at time t3
4

ay be

r

ading at

ing on

ifficult

est. It is

ng the

al ser-

to vir-
work path from X1 to R1 becomes congested, dramatically increasing the communication time. In this case, it m

beneficial to send subsequent requests to R2. Similarly if the load on R1 were to suddenly increase to this client (o

other clients) it may also be preferable to use R2.

Scenario #5: fault transparency

In the final scenario suppose one or more replicas become unavailable either due to replica crash, overlo

the replica machine, or network outage. Ideally, the client should not be aware of such failures even if it is wait

a current request that has failed. Fault transparency is an extreme form of network adaptation, but it is more d

because here the adaptation boundary must be within a request, while in scenario #4 it is at the start of a requ

unacceptable if the client is blocked waiting on request that will never complete due to a failure that occurs duri

processing of the request (Figure 5).

3.0 Virtual Service Grid

To achieve this vision, the virtual service must be scalable, predictable, adaptive, and efficient. The virtu

vice is an abstraction of a network service that is being designed from first principles. The term is an analogy

solver

solve(100 x 100, ...) [r1]
R1

R2

Figure 4: Scenario 4. Requests r1 .. rN are generated; preferred replica is R2. As queue grows on R2,
requests begin to flow to R1.

solve(200 x 200, ...) [r2]...

r 1

r2
r3

[rn]

..., r6

r4
r5

solver

X1: solve(1K x 1K, ...)
R1

R2
X1

X1

Figure 5: Scenario 5. During processing of request X1, replica R1 goes down. System regenerates
request to replica R2.
5

of the

mem-

lication.

system

. But in

As with

through

pro-

calable

G sys-

esources

roxies

e. The

maker

a

a man-

me
tual memory of computer systems. Virtual memory creates the illusion that the user owns the entire memory

computer, while unbeknownst to the user, the operating system is smartly multiplexing, adapting, and sharing

ory among many applications. The degree of sharing is controlled so that its impact is undetectable to the app

User programs also do not directly manipulate physical memory address but virtual addresses which gives the

greater flexibility. The virtual service creates the illusion that the user has much service capacity as is needed

reality, server and network resources are finite, and must be multiplexed and shared across multiple clients.

virtual memory, client programs do not directly access specific replicas through network addresses, but rather

virtual addresses provided by the virtual service. The virtual service isstatelessto provide greater reliability and scal-

ability. Stateful virtual services are the subject of future work. Virtual services are contained with a VSG which

vides support for their execution. The VSG consists of three primary components: system architecture, s

information, and replica management.

3.1 VSG Architecture

The VSG architecture spans a mesh of sites within a wide-area network available to run replicas and VS

tem components. Each site contains a number of host machines. Replicas and VSG components run on host r

within the site. The VSG contains four components: replica managers (RM), group managers (GM), client p

(CP), and site managers (SM), Figure 6. The GM, RM, CP, and service replicas are specific to a virtual servic

SM can be used by different virtual services. The RM is the cornerstone of the virtual service. It is the decision-

for global replica selection, creation, and deletion, and tracks the location and status of all replicas. The GM islocal

decision-maker for replica management across a set of local clients. The CP is a local decision maker for replic

agement for a particular client.

Figure 6: The Virtual Service Grid (VSG). Three replicas (r1, r2, and r3) are running in two sites. An SM
(filled circle) is running at each VSG site. Two clients sites S3 and S4 each contain a GM that has cached sev-
eral replicas. Four clients are shown. On the right, the client proxy is expanded. The proxy runs on the sa
machine as the client and acts as a form ofvirtual addressfor the service.

RM
r1

S2

S1

r2 r3

C1

C2

C3

C4

GM1

S3

S4
r1

r2

GM2r1

r3

wide-area
network

replicas
client
proxyclient

GM

Ci
6

in the

ish to

g to a

twork

g the

proxy

rency.

dress

the abil-

rk con-

) or if a

o

es. The

timely

option is

the sys-

n pro-

s. The

y (to be

s desig-

for

ting

exam-

hresh-

over-

f each

ely the

ork to

etween a

ca. By

twork

paper,
The SM determines client-replica network performance between a remote site and a client site. Every site

VSG runs a SM. A VSG can be configured to contain any number of GMs depending on the clients that w

access virtual services. A client proxy is defined for each client with a group. Clients and their proxies belon

particular GM, established at configuration time. Clients and GMs may run on machines anywhere in the ne

including sites outside the VSG perimeter. A single RM is assumed. However, in very large VSGs, replicatin

RM may be necessary for scaling and protocols for maintaining consistency will be needed.

Each client service request is made to its proxy which in turn initiates the remote service request. The

also acts solely on behalf of the client, monitoring performance of prior requests, and providing fault transpa

On the first client request for a service, its proxy obtains a binding from the GM. The proxy provides a virtual ad

for the service and maps this virtual address onto one or more physical replica addresses. The proxy supports

ity to dynamically change a replica binding or re-selection. Re-selection is needed to adapt to changing netwo

ditions (scenario 4) or to select a different replica in response to a change in input parameters (scenarios 1-2

replica fails (scenario 5). As each client request passes through the proxy1, it makes a decision whether to continue t

use the current binding or to obtain a new one from the GM based on prior performance and current input valu

proxy can also provide fault transparency by monitoring the request. If the replica does not return a result in a

manner to the proxy (based on expected performance), it can re-issue the request to another replica. Another

to have the proxy automatically use several replicas in parallel for each client request (if n replicas are used,

tem can withstand n-1 faults). For stateless virtual services, this kind of replicated execution is a viable solutio

vided there are sufficient network resources.

The GM maintains a cache of replicas allocated to it by the RM over time that are used by the local proxie

cache simply stores the address of each replica and execution information provided by the replica periodicall

described shortly). Clients access replicas through their GM when making service requests. One of the GMs i

nated as theprimary for a replica. Each GM periodically updates the RM with the state information of all replicas

which it is the primary. The GM and CP off load much of the traffic that would otherwise reach the RM, promo

scalability. A GM can be configured to adopt its own local replica policies based on the needs of its clients. For

ple, a GM could decide to enforce admission control if the load on the local replicas is predicted to eclipse a t

old, or could request to acquire a new replica from the RM. Collectively, the GMs and the RMs will prevent

subscription of resources much like virtual memory prevents over-subscription of memory. The precise roles o

component in replica management are described in the next section.

Network performance from any client within the same GM to an outside site is assumed to be approximat

same. The GM interacts with the SM to perform periodic network probes to obtain a current picture of the netw

determine latency and bandwidth based on fixed-size message exchange. This communication is done only b

GM and a SM that is running a replica already cached by the GM, or to select a site for creating a new repli

structuring the network in terms of replica sites (controlled by SMs), and client sites (controlled by GMs), ne

1. In our current prototype, the client proxy does not yet provide fault transparency or re-selection. In the remainder of this
we use the term client and client proxy interchangeably.
7

hanisms

ients

enar-

odel for

in this

ide the

must

ation,

lient-

that

e times

itted to

hich

rovide

ulti-

an con-

ice exe-

replica
information can be collected in a scalable fashion. The alternative adopted by most Web server selection mec

is to form a network probe betweeneachclient and server replica. This scheme is not scalable to thousands of cl

and hundreds of server sites.

In this paper, we focus on those run-time aspects of the Virtual Service Grid critical to handling our five sc

ios. The VSG is presumed to contain all resources a-priori running the necessary system components. A m

negotiating for additional resources outside the perimeter of the VSG can be found in [31], but is not addressed

paper. In addition, practical problems relating to production deployment such as naming and security are outs

scope of this paper though many viable solutions to these problems are well-known [6][11][27].

3.2 Scalable Information

Information is the cornerstone of the virtual service. Virtual services do not exist in a vacuum, rather they

interact and collect information from the wide-area environment. In particular, policies for replica selection, cre

and deletion all depend on network and service time information. The primary metric we seek to minimize is c

perceived response time (Tresponse). The estimated response time for a service request with input parameters

would be delivered to the client in group G (a group is managed by the same GM) using replica Ri has three compo-

nents: service time, waiting time, and network time:Tresponse= Tserv+ Twait + Tnetwork. More formally (shown for a

specific service):

Tservis the time to execute a service request at a replica. Service replicas will record and store the servic

of each executed request over a time window in the past and track the current queue length for requests subm

the replica, but not yet executed. ForTwait, we must estimate the service times of other requests on the queue w

may depend upon their own input parameters (this is indicated by the * parameter). Replicas periodically p

TserviceandTwait to the groups that are using them. This information will be used to predict the service time and

mately, the response time, of future requests. If the service time depends on input parameters (e.g. thesolverin Figure

1), then the input parameters must be stored along with the service time. Using this information, the service c

struct a model that predicts the response time for a new request to a replica given the previous history of serv

cution times, the current queue length, and the amount of communication required between the client and the

to transmit inputs and outputs.

P

TresponseG R, i P,() Tserv G R, i P,() Twait Ri() Tnetwork G Ri, P,()+ +≈

Twait Ri() Qi Tserv G R, i *,()⋅=

Tnetwork G Ri, P,() LAT G Ri,() BW G Ri,()+ Dsize P()⋅= LAT/BW is the latency and

G to replica Ri and Dsize
is the amount of data
transmitted to/from the client

Qi is the queue length at Ri

bandwidth respectively from

(Eq. 1)

(Eq. 2)

(Eq. 3)
8

s will be

e cost

is net-

sition

lient is

n

as well.

rch has

mation

d uses

- if the

r more

en is a

replica

ched

licas

the

red one

for its

above a

rep-

che is

low a

algo-
When the request depends on input parameters that have not been seen earlier, estimation procedure

required. For example, if a replica has previously solved a 10x10 system in t1 time units, a 100x100 system in t2 units,

how long will it take to solve a 50x50 or 1000x1000 system? If t1 was 5 and t2 was 500 we might infer a quadratic

dependence (factor of 10, produces execution factor of 100). Alternatively, the virtual service itself may provid

estimation functions specific to the kind of service and its implementation. Now suppose that the response time

work-sensitive such as thevisualizeservice. The response time is not specific to a replica, but depends on the po

of the client relative to the replica. The time spent communicating to and from the replica as perceived by the c

the network time (Tnetwork). Because the amount of data transferred (Dsize) may depend on the input parameters, a

accurate estimate of the communication time requires an accurate estimate of the amount of data transferred

The virtual service must also be able to collect and estimate this kind of information. ForTserviceandTnetworkactual

runtime measurement will be required to adjust the predictions to amplify their accuracy. Some recent resea

confirmed that augmenting static prediction models with runtime estimation can lead to more accurate esti

[10][33] and is the approach we have adopted. In many cases, exact accuracy may not be required asrelative accu-

racywill be sufficient. To illustrate this concept, suppose the system is trying to decide between two replicas an

a model to predict the wait, service, and network time for either replica. Exact prediction may not be necessary

best replica is desired, then a relative prediction that can be used to rank the replicas is sufficient.

3.3 Dynamic Replica Management

3.3.1 Dynamic Replica Selection

Dynamic replica selection is the process by which the system selects a replica for a client to serve one o

requests. Dynamic replica selection introduces the following questions: which replica is served to a client? wh

replica replaced or re-selected? Replica selection begins as a local process. A client proxy in group G makes a

selection request to its local GM and the GM checks its replica cache first. The GM will first try to select a ca

replica offering the best relative end-to-end performance (where i ranges over the cached replicas):

The GM is periodically provided with replica and network information to calculate Eqs. 1-4. Since the rep

periodically update the GM with this information, it is likely that such information will be up-to-date. However,

best replica may not be good enough. The replicas may be overloaded or network conditions may have rende

or more unacceptable to the GM or to the proxy. Periodically, the GMs will compute the average response time

clients (the client proxy reports the actual response time for each request). If the average response time is

thresholdα for this group (each group may have its own threshold), then the GM may contact the RM for a new

lica. The decision made the by the GM is a local one. Acquiring a new replica also occurs when the GM’s ca

empty or stale. Similarly, when a replica has been underutilized for a period of time within a group that falls be

utilization thresholdβ, it can be released back to the RM. We describe a general framework (called the P-Q

rithm) for decidingwhen to acquire and release replicas in the next section.

Rbest mini= TresponseG Ri P, ,()
ÿ þ
� �
� �

(Eq. 4)
9

nowl-

i-

ted to

must

ld must

scussed

nspar-

apacity

aram-

ch

cli-

(to the

oped an

letion

a-

pe, and

ld vari-

verage

a. The

al

a

e apply

sing is

t t=6

s P

trol the

wering

will set

service
When a GM requests to acquire a new replica from the RM which one is selected? The RM has global k

edge of all replicas, bothshared(cached by multiple GMs) anddedicated(cached by a single GM). For shared repl

cas, the RM also knows which groups are currently using the replica. The RM will pick a replica that is predic

deliver performance below the client group’s threshold. If the replica is shared, the addition of this new group

not compromise the performance of the clients in the other groups using the replica (their performance thresho

not be exceeded). It is possible that no such replica exists and a new replica will have to be created (this is di

in the next section). The RM uses the cost equations (Eq. 1-4) to help make this decision.

3.3.2 Dynamic Replica Acquisition and Creation

When client demand increases rapidly (as illustrated in scenario 3), the virtual service abstraction must tra

ently scale to provide performance independent of client load. Dynamic replica creation is required to scale c

to increased demand2. The individual GMs decide when performance is unacceptable by selecting a threshold p

eterα. When the average response time grows aboveα, then the GM may request to acquire a new replica (whi

may or may not cause the RM to dynamically create a new replica). The thresholdα must be picked carefully - if it is

too low, the GM will be requesting new replicas from the RM frequently. On the other hand, if it is too high, then

ent performance may suffer. Since this is an expensive global operation that involves global communication

RM), and possibly dynamic replica creation, a more flexible mechanism has been developed. We have devel

algorithmic framework that is applicable to both dynamic replica acquisition/creation and replica release/de

called the P-Q algorithm.

The P-Q algorithm is given a threshold value (e.g.α), a threshold variable (e.g. response time), and two me

sured values: (1) p: number of consecutive time intervals with increasing (acquire) or decreasing (release) slo

(2) q: the number of consecutive time intervals that the threshold is exceeded regardless of slope of the thresho

able. The threshold variable is the average response time for all clients within a group (for acquire) and the a

utilization for all replicas used by a group (for release). In the latter case, the threshold is applied to each replic

constants P and Q are parameters of the algorithm such that (P≤Q). The algorithm is run at each discrete time interv

∆t. The P-Q algorithm reports “yes” (e.g. acquire), if (p≥P || q≥Q). The use of P is to enable a rapid response to

change in performance, but to prevent transient response. If the test on P fails, then rather than answer “no” w

the Q test which is more forgiving (e.g. the requirement that the slope be monotonically increasing or decrea

relaxed) but the bar is higher (Q>P). We illustrate the operation of the P-Q algorithm in Figure 5 (P=3, Q=5). A

and t=9, the algorithm triggers an acquire based on Q and P respectively. The minimum delay for a “yes” i∆t.

When a “yes” is returned, the algorithm resets the p and q counters. The parameters values for P and Q con

degree of pro-activity for replica management. Increasing the amount of pro-activity or aggressiveness (by lo

P or Q) also increases the likelihood of transient response. Similarly, more conservative replica management

2. The issue of how to replicate a service is specific to the service at-hand and is outside the scope of this paper. A virtual
will ultimately be able to use VSG services to transmit code and data to a remote site for replica instantiation.
10

n) to P

t for a

icks the

ystem is

ng the

quire

gorithm

perfor-

, would

l client

While

e P-Q

erhead.

quire

ifferent

ork? If

. If the
the values higher. We present results indicating the sensitivity of several metrics (response time and utilizatio

and Q, and the threshold, for several workloads.

If the P-Q algorithm reports “yes” then an acquire request will be sent to the RM. When an acquire reques

new replica reaches the RM, it examines the most recent state of the replicas as provided by the GMs and p

best available replica based on predicted response time (using Eq. 1-4). But in the case where the entire s

heavily loaded, it is possible that no available replica will offer acceptable performance to the current GM maki

acquire request. At this point, the RM will create a new replica and allocate it to the group making the ac

request. Since creation is an expensive operation (both in time and resources), it is important that the P-Q al

filter out possible acquire requests that result from transient loads. For example, assuming wide-area network

mance of 10 MB/s, a service that requires 1 GB of data and code to be transferred for dynamic replica creation

take at least 1.6 minutes (not to mention site resources required to run the replica). On the other hand, if globa

demand is increasing dramatically then the P-Q algorithm should not delay the replica creation substantially.

replica creation could introduce latency for the client group in the short run (e.g. 1.6 minutes as above), if th

predicts that demand is growing, subsequent requests will be handled more rapidly amortizing the creation ov

The GM maintains sufficient state to prevent race conditions on replica acquisition; it will not issue an ac

request while another is pending. However, the RM must be able to serve multiple acquire requests from d

groups concurrently in order to scale to high client demand across the multiple groups.

If the RM decides to create a replica, the next question is where should the replica be located in the netw

the service is highly network-sensitive, then the position of the replica relative to the group becomes important

Figure 7: The P-Q algorithm (P=3, Q=5). Example of algorithm for acquire/create. At t=6, the algorithm
reports “yes” since q≥Q, and at t=9, the algorithm reports “yes” since p≥P. The fluctuations after t=9 do not

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

α

time
11

he rep-

cquire

thresh-

ould be

solution

ed the

s will be

d by all

for allo-

not issue

) once

us if the

whether

capacity

ead of

asure

ization

cks

plied

a global

emand.

oup (an

ly if the

ecutive

param-

a

eplicas,

of the

d. When

aim its
service is not network-sensitive, then the location of the site matters less than the computational capability of t

lica machine. Which group should be the “target”? The simple solution is pick the group that issued the a

request. This is the current strategy. A different strategy would be to pick the group that has exceeded its local

old α by the largest amount and would thus appear to get the greatest near-term benefit. Another possibility w

to select the group that is expected to issue the greatest number of future requests. For this option, the simple

is to presume that the recent past is a good predictor of the future. The RM could pick the GM that has serv

greatest number of client requests over a recent time window and use this as the target group. These strategie

investigated in future work.

3.3.3 Dynamic Replica Release and Deletion

When demand declines, a group may choose to release a replica back to the RM. A replica that is release

groups (idle) is a candidate for deletion. Replica release and deletion allow system resources to be reclaimed

cation to other groups or services. Release is advantageous for two reasons: (1) once released, the group will

any requests to this replica which can promote the performance of other groups using the replica, and (2

released, the replica need not report its status to this group reducing overhead. Replica deletion is advantageo

resources are needed by other virtual services, or if the VSG owner is being charged for resources allocated

they are in active use or not. Before releasing a replica, care has to be taken to ensure that some amount of

will still be available to the GM. The release decision is exactly analogous to the acquire decision, but inst

response time, the threshold variable of interest is utilization of the replica for clients within this group. We me

the utilization as the number of requests per a fixed amount of time serviced by a replica. We compare this util

against a thresholdβ (here, falling below threshold is the trigger in contrast to acquire). Periodically, the GM che

on the possibility of releasing replicas in a manner similar to checking for acquisition. The P-Q algorithm is ap

against each replica with the determination of p based on a monotonically decreasing slope. Since release is

operation, we use the P-Q algorithm to prevent release of replicas to the RM based on a transient fall in d

More importantly, if release is done prematurely, it could result in either a subsequent acquire by the same gr

expensive operation) or could lead to premature deletion of a replica (also an expensive operation, especial

replica will need to be re-created soon after). The P-Q algorithm is given a threshold value (e.g.β) and uses two mea-

sured values: (1) p: number of consecutive time intervals with decreasing slope and (2) q: the number of cons

time intervals that the utilization is below threshold (regardless of slope). As before, the constants P and Q are

eters of the algorithm such that (P≤Q), and the algorithm is run at each discrete time interval∆t. The P-Q algorithm

reports “yes” (e.g. release), if (p≥P || q≥Q). However, in this case, if the algorithm reports “yes”, the replica is only

candidate for release. Only one replica at most is released in a given cycle of the algorithm. Of the candidate r

we release the replica that is least frequently used over the most recent time interval∆t. Note that each GM can set a

configurable parameter so that it controls the minimum number of replicas that it should maintain. More details

P-Q algorithm can be found in [20].

Replica deletion is needed when the virtual service has allocated more resources than is currently neede

a replica is idle (all groups have released it) for a period of time that exceeds a threshold, the RM can re-cl
12

num-

n runs

eighed

unts of

could be

d from

infra-

ct nam-

can be

r (RM),

it first

forma-

inding

ns the

e com-

M can

st during

at

he

part of

-

used to

esting

the capa-

a large
resources by deleting the replica. The RM is configured to maintain a minimum pool of idle replicas. When the

ber of idle replicas exceeds this limit, the replica that has been idle the longest is selected for deletion. Deletio

the risk that new replicas may be needed in the future if demand increases. However, this risk must be w

against the increased cost of holding resources for under-utilized replicas. This cost may include large amo

storage, memory, and possible CPU resources (even in an idle state) for service replicas. Such resources

made available to other services in large VSGs. In addition, the resources available to a VSG may be rente

resource providers, which may be charging for resources whether in active use or not.

4.0 Performance

4.1 VSG Prototype and Testbed

We have built a VSG prototype using the Legion system [14]. As an object-based distributed computing

structure, Legion provides fundamental services necessary for the VSG such as object creation/deletion, obje

ing and remote method invocation. Legion also provides a distributed network testbed in which our prototype

easily deployed across multiple sites. The prototype consists of four core components: Replication Manage

Group Manager (GM), Site Manager (SM), and Client Proxy (CP). When a client wants to access a service,

sends the request to the its CP. After receiving a request from the client, the CP contacts GM to get a binding in

tion of a local replica which is most likely to provide the best performance to the client. Once the CP acquires b

information for the best replica, it forwards the client request to the replica, waits for the return value and retur

result back to the client. In addition to forwarding client requests, the CP also reports the response time of th

pleted client requests to GM. With the response time reports from CPs within the same client group, the G

decide to acquire or release replicas as needed. Note that CPs are created when clients first enter VSG and la

the lifetime of the clients.

For the VSG prototype, we have implemented two different high-performance services:2D Matrix Multiplica-

tion ServiceandJacobi Iteration Solver Service (JIS).For the matrix service, we implemented two variations th

allow us to isolate the impact of communication vs. computation:MMS , which assumes all matrices are stored at t

replica server and thus requires no explicit communication (useful when the matrix product is to be used as

another remote computation, e.g. multiplying a chain of matrices), andMMSR, which assumes matrices will be com

municated between client and replica. The Jacobi iterative method is one of the simplest iterative techniques

solve systems of equations of the form Ax = b that generate a sequence of approximations to the solution vectorx. For

JIS, clients send n x n matrix, n-vector, and the number of iterations as input parameters3.

One of the important roles of GM is to find the best replica among its cached local replicas for the requ

clients. GM selects a best replica based on estimated response time. Response time is dependent on not only

bilities of the resources but also the characteristics of the service. For example, since MMS does not involve

3. We pass the number of iterations to experiment with varying computational time for the service
13

th pro-

me that

in the

riodi-

by send-

ck the

e accu-

other

ly accu-

e com-

fferent

he same

ication

ces that

sage size

st from

e RM

ile not

ry will

e replica

om the

type,
amount of data communication, the processing time dominates the response time, while for MMSR and JIS, bo

cessing time and data communication time should be taken into account to estimate the response time.

When services require a large amount of data communication such as in MMSR and JIS, the response ti

clients would experience is affected by the communication time significantly. Therefore, GM needs to mainta

current network status between the client group and its local replicas. To collect network information, GM pe

cally probes SMs with sample messages. Latency is computed by sending 8 bytes messages and bandwidth

ing 64 Kbyte messages, and measuring round-trip time from the SM to the GM. While this mechanism can tra

status of the network with modest consumption of system resources, it cannot predict the communication tim

rately for much larger messages in terms of absolute values, particularly on the commodity Internet. On the

hand, if the GM uses sample messages of the actual data size for bandwidth prediction, it can perform relative

rate prediction but this might consume a significant amount of system resources. To address this problem, w

bine these two strategies together. That is, the GM runs two different network probe processes with di

frequencies: 1) a network probe with 64 Kbyte message, and 2) a network probe with a sample message of t

size of actual data. Formally, the communication time is predicted as follows.

By making the frequency of 2) much less than that of 1), we can achieve both relatively accurate commun

time prediction and reasonable consumption of system resources. This strategy is feasible for fixed size servi

use a single (or small number of different) message sizes. For services that do not, we use the closest mes

that we have recorded and interpolate the predicted cost. When the RM receives a replica acquisition reque

GM, it first examines the pool of available replicas not currently used by the group making the request. Th

determines whether an existing replica can provide predicted performance below the group’s threshold wh

compromising the performing of other groups sharing the replica. To do this, we first assume that recent histo

be a good indicator of future requests. With this assumption, we use the average queue length of the candidat

to represent the future workload of the groups sharing the replica. We add to this the estimated workload fr

requesting group. It is a difficult task to accurately predict the future workload from the new group. In our proto

t : the last time when probe 1) is done

s : the last time when probe 2) is done

B(x) : comm. time measured with a 64 Kbyte message at time x

A(x) : comm. time mesaured with actual data at time x

Predicted Communication Time
A s()
B s()
----------- B t()×=
14

ecides

e of the

essing

average

plicas

r repli-

1). In

cted by

ivity. We

and sys-
we assume the new group will generate a new request in each time window. Therefore, we setRqueueto be 1 and

Qqueueto be the average queue length of the replica over the recent past.

If there is no replica that satisfies the above condition, then the RM creates a new replica. When the RM d

on the target host for the new replica, it considers the processing capability of the host, and the performanc

communication path if the service involves a large amount of data communication. For measuring the proc

capability, RM uses benchmarked data for hosts if they were not used before to host services. Otherwise, the

service time of other replicas that are running on the host is used. In the current prototype, we allow multiple re

on a single host. In general, the reported service time reflects any competition for the CPU whether from othe

cas or other processes4.

The Legion network contains a variety of distributed hosts with different relative processing power (Table

addition, the UTSA machines are connected into VSG via commodity Internet while other machines are conne

vBNS. Our testbed includes a diverse range of resources in terms of processing speed and network connect

now show that the VSG makes good use of the characteristics of system resources to improve performance

tem resource utilization.

4. A VSG can also be configured to limit a single replica per host.

α: the threshold of the requesting group

Squeue: estimated queue length by the sharing group

Squeue Rqueue+() Tserv× Tnetwork α≤+

Rqueue: estimated queue length by the requesting group
15

service

eate a

over-

impler

erheads

, the

nsmit

uests

osts. If

wever,
Table 1: VSG Testbed. Benchmark data is for a matrix multiply of 400x400 sized matrices.

4.2 Results

4.2.1 VSG Overhead

The first issue we examined was the overhead inherent to the VSG. The primary overheads include

object creation, deletion, and acquisition of binding information. If a new replica is required and the time to cr

new replica is significantly high, then the cost may outweigh the benefit. So it is important to characterize this

head. Furthermore, if the CP or GM takes too much time to acquire the binding information for a replica, then s

algorithms such as round-robin or random selection may be better. So, it is important to characterize the ov

inherent in dynamic replica management.

Binding information acquisition

The cost of acquiring binding information is shown in Figure 8. Since the GM is located in the client group

communication time between GM and client is very small. Since service replicas and the GM periodically tra

information in the background, there is no need for any additional information collection when binding req

arrive to the GM.

Service Object Creation and Deletion

When the RM decides to create new replicas, it first determines the best location among the available h

the services does not involve significant data communication the RM can immediately choose a best host. Ho

Host Name O/S Benchmarked Processing Time(ms)

University of California, Berkeley (UCB)

u6.cs.berkeley.edu SunOS 79193.893

u7.cs.berkeley.edu SunOS 78950.285

u8.cs.berkeley.edu SunOS 78241.115

u9.cs.berkeley.edu SunOS 79670.393

University of Minnesota (UMN)

juneau.cs.umn.edu Linux 11776.624

sitka.cs.umn.edu Linux 11687.796

University of Texas, San Antonio (UTSA)

fearless.cs.utsa.edu SunOS 28974.354

pandora.cs.utsa.edu SunOS 28877.360

wolf.cs.utsa.edu SunOS 27998.673

University of Virginia (UVA)

centurion172.cs.virginia.edu Linux 18049.087

centurion173.cs.virginia.edu Linux 18054.539

centurion174.cs.virginia.edu Linux 18032.441

centurion175.cs.virginia.edu Linux 18036.933

centurion176.cs.virginia.edu Linux 18040.933
16

etween

ica. In

to

, the

ime to

re 9,10).

binaries

erhead

cre-

Figure

nding,

mental

vice, we

n for

d). For
if the service requires a large amount of data communication, the RM determines the network performance b

the requesting client group and the new host by launching communication probes.

Once the RM decides where to host a new replica, it calls a Legion library function to create the new repl

Legion, theClassObjectis responsible for creating new objects. When theClassObjectreceives a new object creation

request, it first sends the binaries to aHostObjecton the target location if the target location was not used before

host objects of the same class. TheHostObjectthen creates a process for the service on the machine. Therefore

time to create new replicas consists of two parts: time for selecting a new location and Legion overhead (t

transfer binaries and create processes). The object creation overhead is dominated by Legion overhead (Figu

This is because large binaries must be transferred to the target location. We show results for JIS in which the

are 32 Mbytes for Linux and 20 Mbytes for Solaris. However, once the binaries are cached at a site, Legion ov

is reduced significantly. At this point, the time for collecting network information accounts for the bulk of the

ation overhead (Figure 10). When replicas are idle for a long time, RM deletes the replicas from the system (

11). To do so, the RM calls another Legion library function. All results shown in subsequent sections include bi

creation, and deletion overhead in the presented data.

4.2.2 Response Time Prediction

Accurate prediction of response time is the cornerstone of effective replica management. The experi

results show that response time prediction can be done with high accuracy. For each high performance ser

first describe the response time model used for prediction.

MMS/MMSR

A dominant factor in response time for MMS is processing time. For this reason, network informatio

latency only needs to be collected (to initiate the request and to receive an indication that the service is finishe

B inding T ime Overhead

0
10

20
30

40
50

60

UMN UTSA UVA

GM Lo cat io n

A
ve

ra
ge

B
in

di
ng

T
im

e(
m

s)

Figure 8: Binding overhead

R eplica C reat io n T ime(F irs t T ime)

0

10000

20000

30000

40000

50000

60000

70000

UMN UTSA UVA

R eplica Lo cat io n

A
ve

ra
ge

R
ep

lic
a

C
re

at
io

n
T

im
e(

m
s)

Time to Create Replica

Time to Probe SiteManager

Figure 9: Service Object creation time -first time

R eplica C reat io n T ime(Seco nd T ime)

0

2000

4000

6000

8000

10000

12000

UMN UTSA UVA

R eplica Lo cat io n

A
ve

ra
ge

R
ep

lic
a

C
re

at
io

n
T

im
e(

m
s)

Time to Create Replica

Time to Probe SiteManager

Figure 10: Service Object creation time - second time

R eplica D elet io n T ime

0

200

400

600

800

UMN UTSA UVA

R eplica Lo cat io n
A

ve
ra

ge
R

ep
lic

a
D

el
et

io
n

T
im

e(
m

s)
Figure 11: Service Object deletion time
17

mul-

corded

ends a

ly and

arge

idth is

atri-

. In our

e cases

n.

r poli-

SA and

y as the
MMSR, network information for bandwidth is needed (400x400 doubles is 1.2 MB of result data). Since matrix

tiplication takes O(n3) we computed the unit time for a service request as follows:

When a replica needs to report status information to the GMs, it returns the average of the unit time re

along with the snapshot of the wait queue. The GM predicts the response time as follows (Tnetwork is dominated by

latency for MMS and bandwidth for MMSR):

JIS

As in MMSR, the matrix and vector size are fixed for these experiments. For the experiment, each client s

400x400 matrix and vector of size 400. However, each client can choose the number of iterations random

hence, the service time can vary. To solve Ax = b, JIS runs the following computation for each iteration:

Since each iterations takes O(n2), we compute the unit service time as shown below. Since JIS includes a l

amount of data communication for sending parameters and returning results, communication time for bandw

also used.

Figure 12 shows response time prediction for MMS, MMSR, and JIS for both fixed size and variable size m

ces. For MMS, each client chooses matrix size randomly among 200x200, 300x300, 400x400 and 500x500

experiments, the GM predicted the response time in the vast majority of cases within a 10% accuracy. For thos

where accuracy was above 10%, the GM was still able to make effective ranking decisions for replica selectio

4.2.3 Selection Policy Comparison

The next question we investigated is whether prediction-based replica selection could outperform simple

cies such as round-robin and random selection. For this experiment, we created three replicas on UMN, UT

UVA sites, and clients are deployed in the UMN site. We compared the average response time of each strateg

Unit Time
Tserv

Matrix Size
3

------------------------------=

Tresponse Twait Matrix Size
3

Unit Time× Tnetwork+ +=

x i[] 1
A i i,[]
--------------- b i[] A i j,[]x j[]

j i≠
�–

� �
� �
� �

=

Twait k Matrix Size
2

Unit Time Tnetwork+××+

k : the number of iterations

Unit Time
Tserv

k Matrix Size
2×

---------------------------------------=

Tresponse=
18

gure 13

types.

plica that

without

eme, a

spread

hts the

and cli-

ing the

or the

variety

nerated

l cli-
number of clients increases. However, clients that use JIS can select the number of iterations randomly. As Fi

shows, prediction-based replica selection algorithm outperforms both round-robin and random for all service

In prediction-based selection, the GM was able to consider the characteristics of the resources and select a re

was predicted to provide the best performance. In round-robin and random selection, a replica is selected

regard for the capabilities of the replicas and the connectivity between replicas and client groups. In our sch

faster replica is more likely to receive requests, while in the other schemes, requests tend to be more even

throughout the system. As the number of clients increase, the performance gap begins to widen. This highlig

importance of using information when services are heterogeneous, have significant computational demands,

ent load is high.

4.2.4 Performance Comparison

The next issue we investigated was the performance of different replica management strategies, includ

dynamic scheme described earlier. We deployed clients on three different locations: UMN, UTSA and UVA. F

evaluation, we generated two workloads: “stair-shape” and “high-demand” to examine performance under a

of workload settings (Figure 14). Each point along the x-axis represents the number of total client requests ge

betweent andt-1 (in units of minutes). The high-demand workload is relatively static because the number of tota

Figure 12: Response Time Prediction for different service types

Response Time Prediction: MMS

0

20000

40000

60000

80000

100000

120000

1 9 17 25 33 41 49 57 65 73 81 89 97 10 113

Request Number

R
es

po
ns

e
T

im
e(

m
s)

Est imated Resp. Time

Actual Resp. Time

Response Time Prediction: MMSR

0

20000

40000

60000

80000

100000

120000

1 9 17 25 33 41 49 57 65 73 81 89 97 105

Request Number

R
es

po
ns

e
T

im
e(

m
s)

EstimatedResp.Time

Actual Resp.Time

Response Time Prediction: JIS

0

20000

40000

60000

80000

100000

120000

140000

160000

1 11 21 31 41 51 61 71 81 91

Request Number

R
es

po
ns

e
T

im
e(

m
s)

EstimatedResp.Time

Actual Resp.Time
19

work-

or each

e point

amic-

ted, it

s may

o

ent requests does not change significantly during the lifetime of the experiment. However, in the stair-shape

load, the number of clients requests varies over time to model both demand growth and decline. Note that f

experiment using the same workload model, the actual number of client requests generated at a certain tim

may not be the same, but the overall shape of the workload is the same.

We compared the performance of four different replica management schemes: Fully-Dynamic, Dyn

Hybrid, Static-2 and Static-8. In the fully-dynamic strategy, no replicas are pre-created. When the GM is crea

acquires an initial replica from the RM and always maintains at least one replica in its local cache. More replica

be created based on demand. Static-x represents a static pre-allocation ofx replicas created across multiple sites. N

Selection Policy Comparision for MMS

0

20000

40000

60000

80000

100000

120000

2 4 6 8 10 12 14 16

Number of Clients

A
ve

ra
ge

R
es

po
ns

e
T

im
e(

m
s)

Random
Round-Robin
Prediction-Based

Selection Policy Comparison for MMSR

0

10000

20000

30000

40000

50000

60000

70000

2 4 6 8

Number of Clients

A
ve

ra
ge

R
es

po
ns

e
T

im
e(

m
s)

Random
Round-Robin
Prediction-Based

Selection Policy Comparison for JIMS

0

20000

40000

60000

80000

100000

120000

2 4 6 8

Number Of Clients

A
ve

ra
ge

R
es

po
ns

e
T

im
e(

m
s)

Random
Round-Robin
Prediction-Based

Figure 13: Selection policy comparison for each service type

Sta ir-Shape W orkload

0

5

10

15

20

25

30

35

0 50 100 150 200

Time Frame(min)

N
um

be
r

of
R

eq
ue

st
s

Figure 14: Two different types of workloads for the experiments

High-Demand Workload

0

5

10

15

20

25

30

35

0 50 100 150

Time Frame(min)

N
um

be
r

of
R

eq
ue

st
s

20

allow

ey are

ice rep-

1 sec-

be 1)

nutes.

ure the

erfor-

perfor-

average
additional replicas will be created. In the dynamic-hybrid strategy, we statically pre-create 2 replicas and then

the system to dynamically replicate if necessary (the GM always maintains at least two replicas even if th

underutilized). In the prototype, the replica acquisition/release algorithms are run every 2 minutes and the serv

lica transmits its status every 10 seconds if it is dedicated to a single GM, otherwise it transmits its status every

ond to each GM that is using it. To predict communication time accurately, the GM for MMSR and JIS runs pro

every 2 minutes and probe 2) every 6 minutes. The GM for MMS runs a network probe for latency every 2 mi

We now present results for each workload in turn. For each workload we indicate the parameters used to config

GM for each service (Table 2,3). For different workloads, different parameters were selected to highlight the p

mance sensitivity to the selected parameters.

We now present results for the stair-shape and high-demand workloads. In each case, we present the

mance of each replica management strategy in terms of delivered average response time to clients, and the

replica utilization under each scheme.

Table 2: Configurable parameters of GM for stair-shaped workload

Table 3: Configurable parameters of GM for high-demand workload

MMS MMSR JIS

Parameter UMN UTSA UVA UMN UTSA UVA UMN UTSA UVA

Threshold (sec) 65 55 85 65 55 85 65 60 80

P (acquisition) 3 2 3 3 3 3 3 3 4

Q (acquisition) 7 5 7 6 5 7 5 4 7

Utilization 5 3 5 3 3 3 3 3 3

P (release) 4 4 4 4 4 4 4 5 4

Q (release) 9 9 9 9 9 9 9 8 9

MMS MMSR JIS

Parameter UMN UTSA UVA UMN UTSA UVA UMN UTSA UVA

Threshold (sec) 65 55 85 65 55 85 65 60 80

P (acquisition) 3 3 3 3 3 3 3 3 4

Q (acquisition) 6 5 7 6 5 7 5 4 7

Utilization 3 3 3 3 3 3 3 3 3

P (release) 4 4 4 4 4 4 4 5 4

Q (release) 9 9 9 9 9 9 9 8 9
21

e type is

mber of

and

rid pro-

show

re-allo-

om low

offer

tends to
Stair-Shape Workload

The response time measured at the client sites under each replica management scheme for each servic

shown (Figure 15). Static replication with 8 replicas achieves the lowest response time as it uses a large nu

replicas. However, it suffers from low utilization (Figure 16). As shown in Figure 15, both dynamic replication

static-8 meet the performance threshold requirement (see Table 2 for threshold). Observe that dynamic-hyb

vides better performance as compared with fully dynamic during the first demand peak period (Figure 17). We

results for MMSR only in the interest of brevity (the same pattern was seen for the other services). The static p

cation allows the system to more quickly serve the early burst of requests. However, this scheme may suffer fr

utilization if the number of client requests is very low. In addition, observe how the dynamic schemes generally

smooth response time irrespective of client load, but with static schemes such as static-2 the response time

mirror the workload shape.

M M S

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

10 0 0 0 0

UM N UV A UT S A

L o c a ti o n

R
es

po
ns

e

T
im

e(
m

s)

D yn a m ic

D yn a m ic - H yb r id

S t a t ic - 8

S t a t ic - 2

M M S R

0
2 0 0 0 0
4 0 0 0 0
6 0 0 0 0
8 0 0 0 0

10 0 0 0 0
12 0 0 0 0
14 0 0 0 0

UM N UV A UT S A

L o c a t i o n

R
es

po
ns

e

T
im

e(
m

s)

D yn a m ic
D yn a m ic -H yb rid
S t a t ic -8
S t a t ic -2

J I S

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

10 0 0 0 0

UM N UT S A UV A

L o c a t i o n

R
es

po
ns

e

T
im

e(
m

s)

D yn a m ic
D yn a m ic -H yb rid
S t a t ic -8
S t a t ic -2

Figure 15: Comparative performance for different replica acquisition policies

M M S

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D ynam ic D ynam ic -H ybrid Stat ic -8 Stat ic -2

M M S R

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D ynam ic D ynam ic -H ybrid Stat ic -8 Stat ic -2

JIS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D ynam ic D ynam ic-H ybrid Stat ic -8 Stat ic -2

Figure 16: Comparative utilization for different replica acquisition policies
22

Figure

average

ic-8,

accept-

licies
Next we show the percentage of client requests completed within the threshold that each GM defined (

18). As the graph shows, the gap between dynamic and static-8 becomes narrower when compared with the

response time (Figure 15). Although the average response time for dynamic replication is higher than for stat

most of individual requests are completed within the threshold. In this sense, dynamic replication can achieve

able levels of performance to static-8 but at lower cost.

Fully-Dynamic

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500

Request Number

R
es

po
ns

e
T

im
e(

m
s)

Dynamic-Hybrid

0

20000

40000

60000

80000

100000

120000

0 500 1000 1500

Request Number

R
es

po
ns

e
T

im
e(

m
s)

Static-2

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0 500 1000 1500

Request Number

R
es

po
ns

e
T

im
e(

m
s)

Static-8

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

0 500 1000 1500

Request Number

R
es

po
ns

e
T

im
e(

m
s)

Figure 17: MMSR: Measured response time under 4 replica acquisition strategies

M M S

0

20

40

60

80

100

UM N UTSA UVA

Location

%

Dynamic
Dynami-Hybrid
Static-2
Static-8

M M SR

0

20
40

60
80

100

UM N UTSA UVA

Location

%

Dynamic
Dynami-Hybrid
Static-2
Static-8

JIS

0

20

40

60

80

100

UM N UTSA UVA

Location

%

Dynamic
Dynami-Hybrid
Static-2
Static-8

Figure 18: Percentage of client requests below performance threshold under different replica acquisition po
23

a high

ynamic

ster and

egrada-

aph for

ervice

f small

the P-Q

reshold

above

nce of

y not be

arame-

GM
High-demand Workload

The high demand workload keeps request volume high throughout the lifetime of the experiment. In such

demand setting, static-8 offers the best response time overall (Figure 19). As in the stair-shape workload, d

replication can meet performance objectives at a lower cost (Figure 20). The replicas become overloaded fa

much earlier than in the stair-shaped workload, therefore all dynamic schemes suffer an initial performance d

tion early on until sufficient replicas can be created to handle the load (again we show a representative gr

MMSR, Figure 21).

Interestingly, the percentage of client requests below threshold in JIS is relatively low compared to other s

types (Figure 22). This is the result of service time dependence on the number of iterations. If a large number o

requests (small number of iterations) are interspersed with large requests (large number of iterations), then

algorithm is delayed in generating new replicas. The reason is that the small requests are generally below th

which prevents the early-start property of the algorithm (replicating based on P). While large requests are

threshold, enough smaller requests (below threshold), delay the replica creation. This highlights the importa

properly selecting P and Q as discussed in the next section. It also suggests to us that a single threshold ma

sufficient for highly variable services.

4.2.5 Sensitivity to Time Parameters

The final question we examined was the role of the parameters selected for the GMs in the VSG. Time p

ters defined in the GM play a critical role in performance and utilization. In particular, the behavior of the

MMS

0

20000

40000

60000

80000

100000

UMN UVA UTSA

Location

R
es

po
ns

e
T

im
e(

m
s)

Dynamic

Dynamic-Hybrid

Static-8

Static-2

MMSR

0
20000
40000
60000
80000

100000
120000
140000

UMN UVA UTSA

Location
R

es
po

ns
e

T
im

e(
m

s)

Dynamic
Dynamic-Hybrid
Static-8
Static-2

JIS

0

20000

40000

60000

80000

100000

UMN UTSA UVA

Location

R
es

po
ns

e
T

im
e(

m
s)

Dynamic
Dynamic-Hybrid
Static-8
Static-2

Figure 19: Comparative performance for different replica acquisition policies
24

thms to

(Figure

ce the

riments.

ctive.
depends on the values of P and Q for replica acquisition and release. To examine the sensitivity of our algori

those parameters, we used two different (micro) workloads for replica acquisition and release, respectively

23). In both workloads, the number of client requests increase or decrease significantly at a point in time. Sin

acquisition and release algorithms depend only on the average response time, we used MMS for the expe

During highest peak of client demand, a total of 8 clients are active while during low demand, 4 clients are a

The maximum threshold is 65 sec and the minimum utilization threshold is 3.

M M S

0
0 .1

0 .2
0 .3
0 .4
0 .5
0 .6
0 .7
0 .8
0 .9

1

D yn a m ic D yn a m ic -H yb r id S t a t ic -8 S t a t ic -2

M M S R

0
0 .1

0 .2
0 .3
0 .4
0 .5
0 .6
0 .7
0 .8
0 .9

1

D yn a m ic D yn a m ic -H yb r id S t a t ic -8 S t a t ic -2

J I S

0

0.2

0.4

0.6

0.8

1

Dynami c Dynami c-Hybr i d Static-8 Static-2

Figure 20: Comparative utilization for different replica acquisition policies

Fully-Dynam ic

0

50000

100000

150000

200000

250000

0 200 400 600 800 1000

Request Num ber

R
es

po
ns

e
T

im
e(

m
s)

Dyna m ic-Hybrid

0

20000

40000

60000

80000

100000

120000

140000

160000

0 200 400 600 800 1000

Re que st Num be r

R
es

po
ns

e
T

im
e(

m
s)

S ta tic-2

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

0 200 400 600 800 1000 1200

Re que st Num be r

R
es

po
ns

e
T

im
e(

m
s)

S ta tic-8

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0 200 400 600 800 1000 1200

Re que st Num be r

R
es

po
ns

e
T

im
e(

m
s)

Figure 21: MMSR: Measured response time under 4 replica acquisition strategies
25

avior of

time is

rease the

small.

a), after

uce the

icies
Replica Acquisition

In this experiment, we set the thresholds for release high enough to prevent release to isolate the beh

acquisition. Depending on the values of P and Q for acquire, the amount of time that the average response

above the threshold varies (Figure 24). Smaller values of P and Q reduce the response time because they inc

probability of replica creation. Therefore, if the demand peak continues, it is desirable to make these values

However, if the demand peak is transient, the GM may acquire unnecessary replicas. In the workload above (

the number of requests increases significantly, it remains for a long time. Smaller values of P and Q help to red

average response time (Figure 25). For this high demand workload, replica utilization approaches 100%.

M M S

0

20

40

60

80

100

UMN UTSA UVA

Lo cat io n

%
Dynamic
Dynami-Hybrid
Static-2
Static-8

M M SR

0

20
40

60
80

100

UMN UTSA UVA

Lo cat io n

%

Dynamic
Dynami-Hybrid
Static-2
Static-8

JIS

0

20

40

60

80

100

UMN UTSA UVA

Lo cat io n

%

Dynamic
Dynami-Hybrid
Static-2
Static-8

Figure 22: Percentage of client requests below performance threshold under different replica acquisition pol

Workload for replica acquisition

0

5

10

15

20

25

1 11 21 31 41 51

Time Frame(min.)

N
um

be
r

of
R

eq
ue

st
s

Workload for replica release

0

2

4

6

8

10

12

14

16

18

20

1 11 21 31

Time Frame(min.)

N
um

be
r

of
R

eq
ue

st
s

Figure 23: Workload for replica acquisition and release

(a) (b)
26

n

P_New = 30, Q_New = 60,
P_Release = 10, Q_Release = 20

0

20000

40000

60000

80000

100000

120000

140000

160000

0 100 200 300 400

Request Number

R
es

po
ns

e
T

im
e(

m
s)

P_New = 10, Q_New = 20,
P_Release = 10, Q_Release = 20

0

20000

40000

60000

80000

100000

120000

140000

160000

0 100 200 300 400

Request Number

R
es

po
ns

e
T

im
e(

m
s)

P_New = 5, Q_New = 10,
P_Release = 10, Q_Release = 20

0

20000

40000

60000

80000

100000

120000

140000

160000

0 100 200 300 400

Request Number

R
es

po
ns

e
T

im
e(

m
s)

P_New = 1, Q_New = 2,
P_Release = 10, Q_Release = 20

0

20000

40000

60000

80000

100000

120000

140000

160000

0 100 200 300 400

Request Number

R
es

po
ns

e
T

im
e(

m
s)

Figure 24: Sensitivity to P and Q values for replica acquisition

A ve ra g e R e sp o n se T im e

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

P 30Q60 P 20Q40 P 10Q20 P 5Q10 P 3Q6 P 1Q2

A
ve

ra
ge

R
es

po
ns

e
T

im
e(

m
s)

A v e ra g e R e p l ic a U ti l i z a tio n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P 30Q60 P 20Q40 P 10Q20 P 5Q10 P 3Q6 P 1Q2

A
ve

ra
ge

R
ep

lic
a

U
til

iz
at

io
n

Figure 25: Comparative performance and utilization with different P and Q values for replica acquisitio
27

ince P

during

or rep-

isition

ve client

enough to

, Q=60

lica uti-

released

t point

tolerate

sirable.

acqui-

e charac-

ponse
Replica Release

In this experiment, we use a fixed value for P and Q for acquisition and vary P and Q for replica release. S

and Q values for replica acquisition are the same, a new replica is acquired at similar time point in each run

phase 1 (the first portion of the graph up to the solid vertical line). However, depending on the P and Q values f

lica release, different behavior will result (Figure 26). In the most aggressive case (P = 1, Q = 2), replica acqu

and release is continued during demand peak period (phase 2). In the other three cases, two replicas ser

requests during the second phase. In the third phase, since the number of requests decrease, one replica is

service every client request. So with P=2, Q=4, the GM releases the unnecessary replica. However, with P=30

or P=5, Q=10 the GM still holds the underutilized replica. Figure 27 shows the average response time and rep

lization. Larger P and Q values result in smaller average response time because underutilized replicas are not

(and can be utilized later if demand increases). But because of this, replica utilization goes down. The importan

to stress is that P and Q values for both acquisition and release represent a trade-off. For systems unwilling to

low utilization due to the high cost of resources, then aggressive release (low P and Q for release) may be de

On the other hand, if good performance and client satisfaction is the principle goal then low P and Q values for

sition and high P and Q values for release are needed. The most appropriate choices, however, depend on th

teristics of the workload. Adjusting the values of P and Q to achieve some level of “QoS” (both in terms of res

P_ne w = 3, Q_Ne w = 6,
P_Re le a se = 30, Q_Re le a se = 60

0
20000
40000
60000
80000

100000
120000
140000

0 100 200 300 400
Request Number

R
es

po
ns

e
T

im
e(

m
s)

P_ne w = 3, Q_Ne w = 6,
P_Re le a se = 5, Q_Re le a se = 10

0
20000
40000
60000
80000

100000
120000
140000

0 100 200 300 400
Request Number

R
es

po
ns

e
T

im
e

P_ne w = 3, Q_Ne w = 6,
P_Re le a se = 2, Q_Re le a se = 4

0
20000
40000
60000
80000

100000
120000
140000

0 100 200 300 400
Request Number

R
es

po
ns

e
T

im
e(

m
s)

P_ne w = 3, Q_Ne w = 6,
P_Re le a se = 1, Q_Re le a se = 2

0
20000
40000
60000
80000

100000
120000
140000

0 100 200 300 400
Request Number

R
es

po
ns

e
T

im
e(

m
s)

Figure 26: Sensitivity to P and Q values for replica release
28

future

er

work,

cus of

lemen-

[3] is

twork

unica-

er the

ity with

hes to

he service.

f server

tion cre-

vice is

ted that

e infor-

ed rep-

onitor

d auto-
time and utilization) in response to changing workload characteristics is a promising and fascinating area of

research.

5.0 Related Work

A number of projects are exploring replica selection [1][4][5][10][13][24][25][27][27][33][34]. Scala-serv

projects [13][25] are studying mechanisms to support server replication within single-site clusters. In our

which is complementary, multiple replicas may be created within a single site or across multiple sites. The fo

other research [4][5][10][33] is on accurate bandwidth characterization and measurement, which is also comp

tary to our work. Several other projects are working on replica selection in wide-area environments. WALRUS

a Web-based server selection infrastructure that is designed to run without requiring modification to the ne

infrastructure (DNS, Web servers, and Web client software). Their server selection algorithms consider comm

tion performance first (geographic locality), then load balancing. The server selection policy does not consid

possibility that services may be heterogeneous. However, this model has practical value due to its compatibil

existing Web infrastructure.

The WebOS and Smart Clients projects [27][34] defer server selection to the client. When a user wis

access a service, a bootstrapping mechanism is used to receive service-specific applets designed to access t

The client-side applet makes a service-specific choice of a physical host to contact based on an internal list o

sites. The focus of these projects is on replica selection mechanisms. WebOS does support dynamic replica

ation, but assumes that their software infrastructure and Web tree are already loaded on the remote system.

Active Names [27] maps service names to a chain of mobile programs that can customize how a ser

located and how its results are transformed and transported back to the client. In this model, they demonstra

end-to-end information can be easily gathered while resolving the service name and the importance of using th

mation when selecting replicated servers. While our work is also focused on support for constructing customiz

lica selection policies, we do not implement our model via the naming system.

Fluid Replication is one of the very few systems that support automated replica creation [24]. Clients m

their performance while interacting with the service and when performance becomes poor, a replica is create

A v e r a g e R e s p o n s e T i m e

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

4 5 0 0 0

5 0 0 0 0

5 5 0 0 0

P 3 0 Q 6 0 P 5 Q 10 P 3 Q 6 P 2 Q 4 P 1Q 2

A
ve

ra
ge

R
es

po
ns

e
T

im
e(

m
s)

A v e r a g e R e p l i c a U t i l i z a t i o n

0 .7 5

0 .8

0 .8 5

0 .9

0 .9 5

1

P 3 0 Q 6 0 P 5 Q 10 P 3 Q 6 P 2 Q 4 P 1Q 2

A
ve

ra
ge

R
ep

lic
a

U
til

iz
at

io
n

Figure 27: Comparative performance and utilization with different P and Q values for replica release
29

tion for

. Their

ociated

anner.

and the

chine.

ting the

and

entity

on the

. In con-

ns, the

eplica

for each

ieved an

om and

isition

d the per-

a com-

ces, the

eshold).

more

eliver-

niques

ction is

be exam-

ncy is

nly dis-
matically. To select a replica site, they employ a distance-based discovery mechanism. In contrast, our solu

replica creation considers the characteristics of the service in addition to communication.

Dv provides a visualization service for massive scientific data sets that are stored at remote sites [21]

work is based on the notion of an active frame, an application-level transfer unit that contains program and ass

application data. The visualization process is divided into multiple stages which can be executed in pipelined m

On each stage, an incoming active frame is processed by the active frame server and the intermediate data

program associated with it are forwarded to the next active frame server, which could be on a different ma

However, this work is at an early stage and they have not yet tackled the dynamic scheduling problem of selec

best server to use at each stage.

The Bio-Networking Architecture is inspired by the biological metaphors of population growth in nature

provides a highly distributed replication mechanism [28]. Their work is similar to ours in that there is no master

that collects information and controls the actions of others. Replication, migration and destruction is based

concept of energy units which appears to have useful properties for economic-based resource management

trast, the metric that drives our research is response time and utilization.

6.0 Conclusion

We have presented a new mechanism for the delivery of high-end network services to client applicatio

virtual service grid. The VSG provides scalable performance irrespective of client demand using dynamic r

management techniques for replica selection, acquisition, and release. Efficient algorithms were presented

facet of replica management. These algorithms were based upon response time prediction models that ach

accuracy of 10% or better. Replica selection using our response time prediction model out-performed rand

round-robin replica selection for three high-performance services. Novel algorithms for dynamic replica acqu

and release (P-Q algorithm) based upon the use of throttle thresholds was also presented. We then compare

formance of several replica management schemes: fully dynamic replica management (using P-Q), static, and

bined approach. The results indicate that for two distinct workload patterns and three high-performance servi

dynamic approach offers the highest resource utilization and good performance (80% below response time thr

When dynamic replication is combined with a small amount of static pre-allocation, performance improves to

than 90% below threshold. Our conclusion is that such a combined approach is the most promising model for d

ing effective network services at reasonable cost.

Future work lies in several areas. The performance sensitivity to P and Q depends on the workload. Tech

for adaptively selecting these parameters are an interesting area of future work. The virtual service abstra

based on stateless services. Extension to stateful services and issues relating to replica consistency will also

ined. A complete implementation of the per-client proxy mechanism for replica re-selection and fault transpare

also planned. Finally, the issue of replica placement becomes important when the client requests are not eve
30

ting the

Net-

Net-

-

lems,”

d

CS

s-

gical

c-
persed but geographically clustered. We plan to investigate techniques for replica placement based on predic

location of future client accesses based on prior accesses.

7.0 Bibliography

[1] Akamai: http://www.akamai.com .

[2] ACCESS:http://access.cs.washington.edu .

[3] Y. Amir et al., “Seamlessly Selecting the Best Copy from Internet-Wide Replicated Web Servers,”Proceed-

ings of the 12th International Symposium on Distributed Computing, September 1998.

[4] R. L. Carter and M. E. Crovella, “Server Selection using Dynamic Path Characterization in Wide-Area

works,” Proceedings of IEEE Infocom '97, April 1997.

[5] R. L. Carter and M. E. Crovella, “Dynamic Server Selection using Bandwidth Probing in Wide-Area

works,” Boston University Technical Report BU-CS-96-007, March 1996.

[6] E. Belani et al., “The CRISIS Wide Area Security Architecture,”Proceedings of the USENIX Security Sym

posium, 1998.

[7] H. Cassanova and J. Dongarra, “Netsolve: A Network Server for Solving Computational Science Prob

International Journal of Supercomputing Applications and High Performance Computing, Vol. 11, no. 3,

1997.

[8] J. Czyzyk, M. Mesnier, and J. Moré, “The NEOS Server,”IEEE Journal on Computational Science an

Engineering, 5 (1998).

[9] Entropia:http://www.entropia.com.

[10] M. Faerman et al., “Adaptive Performance Prediction for Distributed Data-Intensive Applications,”Pro-

ceedings of SC 99, November 1999.

[11] A. Ferrari et al., “A Flexible Security System for Metacomputing Environments, “University of Virginia

TR-98-36, 1998.

[12] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,”International Journal of

Supercomputing Applications, 11(2), 1997.

[13] A. Fox et al., “Cluster-Based Scalable Network Services,”Proceedings of the Symposium on Operating Sy

tems Principles, 1997.

[14] A.S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwide Virtual Computer,”Communications of

the ACM, Vol. 40(1), 1997.

[15] A.S. Grimshaw, E.A. West, and W.R. Pearson, “No Pain and Gain! - Experiences with Mentat on Biolo

Application,” Concurrency: Practice & Experience, Vol. 5, issue 4, July, 1993.

[16] Groove:http//www.groove.net .

[17] M. Harchol-Balter, A.B. Downey, “Exploiting Process Lifetime Distributions for Dynamic Load Balan

ing,” SIGMETRICS, 1996.
31

, and

ng.”

uting

Sys-

ign

e-Area

-

[18] E.N. Houstis et al., “Enabling Technologies for Computational Science: Frameworks, Middleware

Environments,” Kluwer Academic Publishers, 2000.

[19] N. Kapadia and J.B. Fortes, “PUNCH: An Architecture for Web-Enabled Wide-Area Network-Computi

Cluster Computing, September 1999.

[20] B. Lee and J.B. Weissman, “Dynamic Replica Management in the Service Grid,” to appear inIEEE 2nd

International Workshop on Grid Computing, November 2001.

[21] J. Lopez and D. O'Hallaron, “Run-time support for adaptive heavyweight services,”Proceedings of the 5th

Workshop on Languages, Compilers and Run-time systems(LCR 2000), May 2000, Rochester, NY.

[22] NPACI-NET: http://legion.virginia.edu/npacinet.html

[23] H. Nakada, M. Sato, and S. Sekiguchi, “Design and Implementations of Ninf: towards a Global Comp

Infrastructure,”Journal of Future Generation Computing Systems, Metacomputing Issue, 1999.

[24] B. Noble et al., “Fluid Replication,”Proceedings of the Network Storage Symposium, 1999.

[25] V. Pai et al., “Locality-Aware Request Distribution in Cluster-based Network Servers,”Proceedings of the

8th International Conference on Architectural Support for Programming Languages and Operating

tems, 1998.

[26] SARA: http://www.cacr.caltech.edu/SDA/digital_puglia.html

[27] A. Vahdat et al., “Active Names: Flexible Location and Transport of Wide-Area Resources,”Proceedings of

the USENIX Symposium on Internet Technologies and Systems, 1999.

[28] M. Wang and T. Suda, “The Bio-Networking Architecture: A Biologically Inspired Approach to the Des

of Scalable, Adaptive, and Survivable/Available Network Applications,”2001 Symposium on Applications

and the Internet(SAINT 2000), January 2001.

[29] Web trace archive:http://www.web-caching.com/traces-logs.html

[30] J.B. Weissman, “Gallop: The Benefits of Wide-Area Computing for Parallel Processing,”Journal of Paral-

lel and Distributed Computing, Vol 54(2), November 1998.

[31] B. Lee and J.B. Weissman, “The Service Grid: Supporting Scalable Heterogeneous Services in Wid

Networks,”2001 Symposium on Applications and the Internet(SAINT 2000), January 2001.

[32] J.B. Weissman, “Fault Tolerant Wide-Area Parallel Computing,”IEEE Workshop on Fault-Tolerant Parallel

and Distributed Systems, International Parallel and Distributed Processing Symposium IPDPS, May 2000.

[33] R. Wolski, “Forecasting Network Performance to Support Dynamic Scheduling,”Proceedings of the Sixth

IEEE International Symposium on High Performance Distributed Computing, 1997.

[34] C. Yoshikawa et al.,” Using Smart Clients to Build Scalable Services,”Proceedings of the USENIX Techni

cal Conference, January 1997.
32

	The Virtual Service Grid: An Architecture for Delivering High- End Network Services
	Jon B. Weissman and Byoung-Dai Lee
	Department of Computer Science and Engineering
	University of Minnesota, Twin Cities
	Minneapolis, MN 55455
	WWW: www.cs.umn.edu/~jon
	E-mail: {jon, blee}@cs.umn.edu
	1.0 Introduction
	2.0 Motivating Scenarios
	Figure 1:� Scenario 1. Client requests Xi stream into the virtual solver service. The requests Xi...
	Figure 2:� Scenario 2. Client requests Xi stream into the virtual visualize service from one or m...
	Figure 3:� Scenario 3. Virtual service responds to demand spike by dynamically creating replicas ...
	Figure 4:� Scenario 4. Requests r1 .. rN are generated; preferred replica is R2. As queue grows o...
	Figure 5:� Scenario 5. During processing of request X1, replica R1 goes down. System regenerates ...

	3.0 Virtual Service Grid
	3.1 VSG Architecture
	Figure 6:� The Virtual Service Grid (VSG). Three replicas (r1, r2, and r3) are running in two sit...

	3.2 Scalable Information
	3.3 Dynamic Replica Management
	3.3.1 Dynamic Replica Selection
	3.3.2 Dynamic Replica Acquisition and Creation
	Figure 7:� The P-Q algorithm (P=3, Q=5). Example of algorithm for acquire/create. At t=6, the alg...

	3.3.3 Dynamic Replica Release and Deletion

	4.0 Performance
	4.1 VSG Prototype and Testbed
	Table 1:� VSG Testbed. Benchmark data is for a matrix multiply of 400x400 sized matrices.

	4.2 Results
	4.2.1 VSG Overhead
	Figure 8:� Binding overhead

	4.2.2 Response Time Prediction
	Figure 12:� Response Time Prediction for different service types

	4.2.3 Selection Policy Comparison
	Figure 13:� Selection policy comparison for each service type

	4.2.4 Performance Comparison
	Figure 14:� Two different types of workloads for the experiments
	Table 2:� Configurable parameters of GM for stair-shaped workload
	Table 3:� Configurable parameters of GM for high-demand workload

	Figure 15:� Comparative performance for different replica acquisition policies
	Figure 16:� Comparative utilization for different replica acquisition policies
	Figure 17:� MMSR: Measured response time under 4 replica acquisition strategies
	Figure 18:� Percentage of client requests below performance threshold under different replica acq...
	Figure 19:� Comparative performance for different replica acquisition policies
	Figure 20:� Comparative utilization for different replica acquisition policies
	Figure 21:� MMSR: Measured response time under 4 replica acquisition strategies
	Figure 22:� Percentage of client requests below performance threshold under different replica acq...
	Figure 23:� Workload for replica acquisition and release

	4.2.5 Sensitivity to Time Parameters
	Figure 24:� Sensitivity to P and Q values for replica acquisition
	Figure 25:� Comparative performance and utilization with different P and Q values for replica acq...
	Figure 26:� Sensitivity to P and Q values for replica release
	Figure 27:� Comparative performance and utilization with different P and Q values for replica rel...

	5.0 Related Work
	6.0 Conclusion
	7.0 Bibliography
	[1] Akamai: http://www.akamai.com.
	[2] ACCESS: http://access.cs.washington.edu.
	[3] Y. Amir et al., “Seamlessly Selecting the Best Copy from Internet-Wide Replicated Web Servers...
	[4] R. L. Carter and M. E. Crovella, “Server Selection using Dynamic Path Characterization in Wid...
	[5] R. L. Carter and M. E. Crovella, “Dynamic Server Selection using Bandwidth Probing in Wide-Ar...
	[6] E. Belani et al., “The CRISIS Wide Area Security Architecture,” Proceedings of the USENIX Sec...
	[7] H. Cassanova and J. Dongarra, “Netsolve: A Network Server for Solving Computational Science P...
	[8] J. Czyzyk, M. Mesnier, and J. Moré, “The NEOS Server,” IEEE Journal on Computational Science ...
	[9] Entropia: http://www.entropia.com.
	[10] M. Faerman et al., “Adaptive Performance Prediction for Distributed Data-Intensive Applicati...
	[11] A. Ferrari et al., “A Flexible Security System for Metacomputing Environments, “University o...
	[12] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” International ...
	[13] A. Fox et al., “Cluster-Based Scalable Network Services,” Proceedings of the Symposium on Op...
	[14] A.S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwide Virtual Computer,” Communica...
	[15] A.S. Grimshaw, E.A. West, and W.R. Pearson, “No Pain and Gain! - Experiences with Mentat on ...
	[16] Groove: http//www.groove.net.
	[17] M. Harchol-Balter, A.B. Downey, “Exploiting Process Lifetime Distributions for Dynamic Load ...
	[18] E.N. Houstis et al., “Enabling Technologies for Computational Science: Frameworks, Middlewar...
	[19] N. Kapadia and J.B. Fortes, “PUNCH: An Architecture for Web-Enabled Wide-Area Network-Comput...
	[20] B. Lee and J.B. Weissman, “Dynamic Replica Management in the Service Grid,” to appear in IEE...
	[21] J. Lopez and D. O'Hallaron, “Run-time support for adaptive heavyweight services,” Proceeding...
	[22] NPACI-NET: http://legion.virginia.edu/npacinet.html
	[23] H. Nakada, M. Sato, and S. Sekiguchi, “Design and Implementations of Ninf: towards a Global ...
	[24] B. Noble et al., “Fluid Replication,” Proceedings of the Network Storage Symposium, 1999.
	[25] V. Pai et al., “Locality-Aware Request Distribution in Cluster-based Network Servers,” Proce...
	[26] SARA: http://www.cacr.caltech.edu/SDA/digital_puglia.html
	[27] A. Vahdat et al., “Active Names: Flexible Location and Transport of Wide-Area Resources,” Pr...
	[28] M. Wang and T. Suda, “The Bio-Networking Architecture: A Biologically Inspired Approach to t...
	[29] Web trace archive: http://www.web-caching.com/traces-logs.html
	[30] J.B. Weissman, “Gallop: The Benefits of Wide-Area Computing for Parallel Processing,” Journa...
	[31] B. Lee and J.B. Weissman, “The Service Grid: Supporting Scalable Heterogeneous Services in W...
	[32] J.B. Weissman, “Fault Tolerant Wide-Area Parallel Computing,” IEEE Workshop on Fault-Toleran...
	[33] R. Wolski, “Forecasting Network Performance to Support Dynamic Scheduling,” Proceedings of t...
	[34] C. Yoshikawa et al.,” Using Smart Clients to Build Scalable Services,” Proceedings of the US...

