
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2001; volume (number): 000–000

 Received 23 July 2001
Copyright © 2001 John Wiley & Sons, Ltd. Revised 23 July 2001

Features of the Java Commodity Grid Kit

Gregor von Laszewski, Jarek Gawor, Peter Lane, Nell Rehn, and Mike Russell
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, U.S.A.

Corresponding Author: Gregor von Laszewski, gregor@mcs.anl.gov, phone: + 630 378 0837 fax: + 630 252 5986
Note: The paper follows the template given in the GCE working group provided for this special issue to address each issue. If a
page limit is require the paper can be shortened.

Journals Production Department, John Wiley & Sons, Ltd.,
Chichester, West Sussex, PO19 1UD, U.K.

SUMMARY

In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides
middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general
enough to design a variety of advanced Grid applications with quite different user requirements. Access to the
Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus
reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the
Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable
network, Internet, enterprise, and peer-to-peer computing. A variety of projects have successfully used the
client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also
report on the efforts to develop serverside Java CoG Kit components. As part of this research we have
implemented a prototype pure Java resource management system that enables one to run Globus jobs on
platforms on which a Java virtual machine is supported, including Windows NT machines.

KEY WORDS: Grid Computing, Globus, Peer-to-Peer, Portal, Java

1. INTRODUCTION

Over the past few years, international groups have initiated research in the area of
computational Grids to provide scientists with new modalities required by state-of-the-
art scientific application domains. High-end applications using such computational
Grids include data-, compute-, and network- intensive applications. Examples range
from nanomaterials, structural biology, and chemical engineering to high-energy
physics and astrophysics. Many of these applications require the coordinated use of
real-time large-scale instrument control and experiment handling, distributed data

2 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

sharing among hundreds or even thousands of scientists, petabyte distributed storage
facilities, parameter studies, and teraflops of compute power.

All of these applications have in common a complex infrastructure that is difficult to
manage. Researchers therefore have been developing services, and portals utilizing
these services to facilitate these complex environments, and to hide much of the
complexity of the underlying infrastructure. The Globus project provides a small set of
useful services, including authentication, remote access to resources, and information
services to discover and query such remote resource. Unfortunately, these services may
not be compatible with the commodity technologies used for application development
by the software engineers and scientists.

To overcome these difficulties, the Commodity Grid project is creating what we call
Commodity Grid Toolkits (CoG Kits) that define mappings and interfaces between
Grid services and particular commodity frameworks. Technologies and frameworks of
interest include Java, Python, CORBA, perl, .NET, JXTA.

In this paper we concentrate on the features of the Java CoG Kit. It provides convenient
access to Grid functionality through pure Java client-side classes and components. We
are also developing pure Java server side components. Although the Java CoG Kit can
be classified as middleware for integrating advanced Grid services, it can also be
classified, both as a system providing unique advanced services currently not available
in Globus and as a framework for designing computing portals.

Grids

The term “Grid” emerged in the past decade and denotes an integrated distributed
computing infrastructure for advanced science and engineering applications. The Grid
concept is based on coordinated resource sharing and problem solving in dynamic
multi- institutional virtual organizations [28]. Besides access to a diverse set of remote
resources among different organizations, Grid computing is required to facilitate highly
flexible sharing relationships among them, ranging from client-server to peer-to-peer
computing. An example of a typical Grid client-server relationship is a supercomputer
center to which a client submits jobs to the supercomputer batch queue. An example for
peer-to-peer computing is the collaborative online steering of high-end applications as
demonstrated by the use of advanced instruments [59][9].

Features of the Java Commodity Grid Kit 3

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

Grids must support different levels of control, ranging from fine-grained access control
to delegation, single user to multi-user, and different quality of service mechanisms
such as scheduling, coallocation, and accounting. These requirements are not
sufficiently addressed by current commodity technologies. Although sharing of
information and communication between resources is allowed, it is not easy to
coordinate use of resources at multiple sites for computation. To date, the Grid
community has developed protocols some, services and tools that address issues arising
from sharing resources in peer communities. The community is also addressing security
solutions that support management of credentials and policies when computations span
multiple institutions, secure remote access to compute and data resources, and
information query protocols that provide services for obtaining the configuration and
status information of the resources.

Java Fram

ew
ork

Application

Collective

Resource

Connectivity

Fabric

 Application

Jini, RMI, JaCORB

JMS, JSSE, JXTA

Runtime.exec

Java C
oG

 K
it

O
bjects

Fabric

Browser

Figure 1: The figure on the left depicts the current view of the Grid architecture. The
figure on the right depicts how a subset of Java technologies fits within this
architecture. Naturally, this is just a small subset; many more Java technologies exist
addressing Grid-related issues, as explained in the text.

Because of the diversity of the Grid, however it is difficult to develop an all-
encompassing Grid architecture. Recently, a Grid architecture representation has been
proposed [59] that comprises five layers:

4 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

• fabric layer, which interfaces to local control, including physical and logical
resources such as files or even a distributed file system;

• connectivity layer, which defines core communication and authentication
protocols supporting Grid-specific network transactions;

• resource layer, which allows the sharing of a single resource while using a
• collective layer which allows resources to be viewed as collections; and
• application layer, which uses the appropriate components of each layer to

support the application.

Each of these layers may contain protocols, APIs, and Software Development Kits
(SDKs) to support the development of Grid applications. This layered Grid architecture
is shown in the left part of Figure 1.

Why Java for Grids?

Java has most recently received considerable attention by the Grid community in the
area of application integration and portal development. For example, the EU DataGrid
effort recently defined Java, in addition to C, as one of their target implementation
languages [4]. Several factors make Java a good choice for Grid computing: Java is a
modern, object-oriented programming language that makes software engineering of
large-scale distributed systems much easier. Thus, it is well suited as a basis for an
interoperability framework. Java also has the advantage of platform independence
because of its intermediate bytecode representation. This feature allows any pure Java
application to run without recompilation on any system that supports a Java 2 Virtual
Machine (JVM). Since platform independence is important when delivering
applications in heterogeneous environments such as Grids, Java has a big advantage for
Grid developers and users. Moreover, the support of Java virtual machines on many
client-based systems makes Java an ideal starting point for developing many client side
applications. The Java environment includes core libraries that implement common
Internet protocols and functionality. Among them are rich and easy-to-use networking
libraries that are of particular use in the Grid environment. Java is type safe, has array
bounds checking, and sandboxing of running applications. Java also allows for explicit
security, providing security APIs that allow for authentication, data integrity, and
confidentiality. Furthermore, Java has a number of technologies that are advantageous

Features of the Java Commodity Grid Kit 5

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

for Grid developers. Some of these technologies, which could be layered either above
or below Globus, are JAAS [48], JINI [26], JXTA [32], JNDI [51], JSP [35], EJBs [37],
and CORBA/IIOP [54] interoperability. For example, the Java Authentication and
Authorization Service (JAAS) enables fine-grained and extensible access control, based
on who signed a particular code and/or who runs this code. A small subset of Java
technologies is mapped in Figure 1 in the corresponding Grid layers. We see that Java
provides supporting technologies on many levels within this Grid architecture. Of big
advantage are those technologies that are accessed to write user interface applications,
object technologies enabling remote object frameworks such as CORBA [57], RMI,
and Jini. JIT (just-in-time) technology also has helped dispel the myths about Java’s
performance being poor when compared with compiled languages such as C or Fortran.
With JIT technology, Java bytecode is compiled into native code just before execution,
resulting in a significant performance gain coming close to speeds of classical
compilers. Furthermore, IBM’s research JVM [38] has demonstrated that Java can
outperform C and FORTRAN compilers even for numerical calculations. Additional
reasons for choosing Java for Grid computing can be found in [47] [31].

Web Technologies for Grids

Web technologies are playing an enormous role in developing future Grid applications
and Java is quite well situated as a development framework for Web applications.
Accessing technologies such as XML [36], XML schema [18], SOAP [25], and WSDL
[22] will become increasingly important, not just for the Web but also for the Grid
community. Specifically, by leverage existing technologies as part of ongoing Grid
activities as well as simplifying interaction between Grid and Web services. We are
currently investigating these and other technologies for Grid computing as part of the
commodity Grid projects to create CoGs Kits based on Python, CORBA, Java, and Java
Server Pages.

The Java CoG Kit provides a good technology integration framework (see Figure 2)
for enabling request driven semantic Grids [53], which combine features of each
technology. Java is used to implement many of the Standards proposed by W3C and
OMG. Standards promoted through the Global Grid Forum (GGF) are implemented as
part of the Java CoG Kit. As a result we will be able to use the Java CoG Kit for
interfacing and reusing technologies from the semantic Web and model driven

6 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

architectures. Some of the promises of a federation of these technologies as part of a
request driven semantic Grid include:

• Provide scalability on various levels including the infrastructure and user base
• Use natural language for interacting with the Grid
• Federate namespaces between ontologies
• Deliver performance
• Provide a request driven behaviour
• React to dynamic behaviour
• Support of commercial platforms

Grid Fabric and Services
(GGF)

Java Framework

Java CoG Kit

Model Driven Architecture
(OMG)

Semantic Web
(W3C)

Figure 2: The Java framework is used to build the necessary technology bridge
between model driven architectures and the semantic Web. The Java CoG Kit provides
the bridge to Grid technologies.

2. OVERVIEW OF THE JAVA COG KIT

Description and Goals

Java CoG Kit [46] [45] [47] is an implementation of Globus protocols and functionality
in Java. The components provided are not limited to those of the C Globus
implementation [6]. The Java CoG Kit is general enough to be used in the design of a
variety of advanced Grid applications with quite different user requirements. The
access to the Grid is established via Globus protocols allowing communication with the

Features of the Java Commodity Grid Kit 7

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

C Globus reference implementation. The goal of the Java CoG Kit is to provide Grid
developers with the advantage to utilize much of the Globus functionality, as well as,
access to the numerous additional libraries and frameworks developed by the Java
community allowing network, Internet, enterprise, and peer-to-peer computing. We are
currently extending our efforts to also include a pure Java resource management system
that enables Grid users to run Globus jobs on platforms on which a Java Virtual
Machine is supported. Naturally, this includes machines running Windows NT.

Elementary Grid Services and Features

Grid services that can be accessed through the client-side Java CoG Kit include

• An information service compatible to the Globus MDS [43] implemented with

JNDI.
• A security infrastructure compatible to the Globus GSI implemented with the iaik

security library [9].
• A data transfer compatible with a subset of the Globus GridFTP and/or GSIFTP is

supported.
• Resource management and job submission to the Globus GRAM Gatekeeper [23].
• Quality of service compatible with Globus GARA [30].
• A certificate store based on the myProxy server[49].

The Globus collocation client service DUROC is not supported, because of the planned
removal of the Nexus [29] [27] protocol from its dependency list. Thus, MPICH/G2
[39] jobs can be started from a CoG client, but the job must be executed on a Globus C
server.

New Services

Besides these elementary Grid services, several other features and services currently
not provided by the Globus Toolkit are included explicitly or implicitly within the Java
CoG Kit.

The Java Webstart [14] and signed applet technologies provide developers with
an advanced service to simplify code startup, code distribution, and code update. Java
Webstart allows the easy distribution of the code as part of downloadable jar files that

8 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

are installed locally on a machine through a browser or an application interface. We
demonstrate the use of Webstart within the Java CoG Kit by providing sophisticated
Swing applications. One example is the LDAP browser we have developed, which is
available via Webstart or can be executed through signed applet technologies at the
same Web location [41].

Another well-known feature of Java is the ability to easily define graphical user
interfaces (GUIs) as part of Java applications and applets. The integration of this
feature within the frameworks adhered by vendors is advantageous for developing
cross-platform portable JavaBeans. Because of this standardization of the GUI APIs
within Java and the existing component model based on the JavaBeans framework,
many commercial vendors provide interface development environments (IDEs) [13].
Thus, while developing JavaBeans with graphical and non-graphical Grid components,
it is already possible to use commercial IDEs as Grid IDEs.
 Since many Web browsers support the execution of Java applets and
applications (through Webstart with the proper authentication), the placement of Grid
services on the client and server side as part of a Web-based strategy is appropriate and
desirable. Moreover it can dramatically cut cost in installing and maintaining Grid
client software. Similar arguments can be made for other Grid services, as we are
currently exploring with a pure Java resource management service. Figure 3 depicts a
subset of these technologies that may be reused by the application teams.

Globus
Toolkit

Java,HTML Portals and Applications

JSP
CoG

Toolkit

Apache
Web

Server

iButton
CoG

Toolkit

HTML
CoG

Toolkit

CORBA
CoG

Toolkit

Commodity
Java

Tools and
Services

Structural
Biology
Portal

High
Energy
Physics
Portal

JiPang/
Netsolve/

Ninf

CCAT
Toolkit

NCSA
Alliance

Chemistry
Portal

CERN
Data
Grid

Earth
Science

Grid

Global
Climate

PSE
Portal

Java
IDE

Java Distributed Programming
Framework

Java
GRAM
Service

…

Java CoG Kit

Java
GASS

Service

…

TENT

Figure 3: The Java CoG Kit builds a solid foundation for developing Grid applications based on the
ability to combine Grid and Web technologies.

Features of the Java Commodity Grid Kit 9

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

Systems, Sites, and Users Served

The user community served by the Java CoG Kit is quite diverse. The Java CoG Kit
allows

• middleware developers to create new middleware components that depend on
the Java CoG Kit such as GPDK [8] and the Rutgers/ANL CORBA CoG Kit
[57];

• portal developers to create portals that expose transparently the Grid
functionality as part of a portal service such as the CoG Box [56]; and

• application developers to use of Grid services within the application portal
such as the ASC project [3].

A variety of existing projects have successfully used the Java CoG Kit to access Grids
driven by the C Globus software. The middleware characteristics make the Java CoG
Kit useful as a toolkit to develop Grid client- and server-side applications in pure Java.
The Java CoG Kit is particularly well suited for the development of advanced Grid
services and Portals. Projects using currently the Java CoG Kit for accessing Grid
functionality include the following:

• CogBox [56] provides a simple GUI for much of the client-side functionality
such as file transfer and job submission.

• CCAT [11] provides an implementation of a standard suggested by the Common
Component Architecture Forum, defining a minimal set of standard features that
a high-performance component framework has to provide, or can expect, in
order to be able to use components developed within different frameworks.

• Grid Portal Development Kit (GPDK) [8] provides access to Grid services by
using Java Server Pages (JSP) and JavaBeans using Tomcat, a Web application
server.

• JiPANG (Jini-based Portal AugmeNting Grids) [55] is a computing portal
system that provides uniform access layer to a large variety of Grid services
including other PSEs, libraries, and applications.

• The NASA IPG LaunchPad [15] uses the Grid Portal Development Kit based on
the Java CoG Kit. The tool consists of easy-to-use windows for users to input
job information, such as the amount of memory and number of processors
needed.

10 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

• The NCSA Science Portal [19, 40] provides a “personal Web server” that the
user runs on a workstation. This server has been extended in several ways to
allow the user to access Grid resources from a Web browser or from desktop
applications.

• The Astrophysics Simulation Code Portal (ASC Portal) [3] is to build a
computational collaboratory to bring the numerical treatment of the Einstein
theory of general relativity to astrophysics.

• TENT [17] is a distributed simulation and integration system used for example
for airplane design in commercial settings.

• ProActive [20] [21] is a Java library for Parallel, Distributed, and Concurrent
computing and programming. The library is based on a reduced set of rather
simple primitives and supports an active object model. It is based on the RMI
Java standard library. The CoG Kit provides access to the Grid.

• DISCOVER [52] is developing a generic framework for interactive steering of
scientific applications and collaborative visualization of data sets generated by
such simulations. Access to the Grid will be enabled through the CORBA [57]
and Java Commodity Grid Kits.

• The Java CORBA CoG Kit [50] [57] provides a simple Grid domain that can be
accessed from CORBA clients. The domain is provided as pure Java prototype.
Future implementations in C++ are possible.

A regularly updated list of such projects can be found at [42]. We encourage the
community to notify us of additional projects using the Java CoG Kit, so we can
continue to update the Web page.

3. ARCHITECTURE

The Java CoG Kit integrates Java and Grid components and services within one toolkit,
as a bag of services and components. In general, each developer chooses the
components, services, and classes that ultimately support his development
requirements. Java CoG Kit components related to Grid services do not provide a
simple one to one mapping between the C Globus and Java CoG Kit API. As a simple
example, in the Globus Toolkit on which we are building our prototypes, remote
computation management is handled via a procedural API and callbacks; in the Java
CoG Kit, the same functionality is provided via a job object and Java events. The
services and components within the CoG Kit belong in one of four groups each of
which contains a servicerelated implementations application portal and interfaces,

Features of the Java Commodity Grid Kit 11

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

advanced portal and Grid services, mapping and interfaces to basic Grid services, and
Grid Services.

The functionality of these Grid components enables mappings and interfaces to both
existing and new Grid services. These services build the basis for the development of
more advanced services and components. Additionally, we provide a simple set of
graphical components that we hope to extend with the input of the user community to
develop application portals. Thus, our bag of services can be reused to define
architectures based on the application domain. As an example we show in Figure 3 a
conceptual diagram for a Grid based computing portal developed with parts of the Java
CoG Kit. As the figure indicates services developed by other groups can be integrated
into the general portal architecture. Such services include collaborative session
management (e.g. for the Access Grid [1]), problem session management, and data
pedigree, data management and job management (e.g. by TENT [17]). We note that the
Grid services in the lowest level of Figure 4 are currently implemented in C, but in
principle there is no restriction that these services could not be provided in pure Java.

Application User Portal
Administration

Portal

Infrastructure
Monitoring

Administration
Service

Compute
Services

Data
Services

Network
Services

Installation
Job

Submission
Authentication

Discovery Reservation

Job
Management

Submission

Scheduling

Grid
Services . . .

. . .

CoG Toolkit
Mapping &
Interfaces

to existing
and new

Grid
Services

Advanced
Components &

Services

Application
Portal

PSE Design
Portal

Design
Environment

Caching

File TransferAuthorization

QoS

Repository

Information
Services

Data
Management

Problem
Session

Management

Collaborative
Session

Management

12 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

Figure 4: The architecture of an application portal that can be developed with current
and future CoG Kit components. Additional components may also be provided by other
projects.

Dependencies on Grid Software and Services

Since much of the current Java CoG Kit implements a client-side solution for accessing
Grid services of the Globus Toolkit, Globus should be installed on the server to which
we want to connect. Nevertheless, for many applications it is possible to install just a
subset of Globus services as required by some applications. One can, for example, use
the LDAP browser for browsing the MDS without having to install the rest of Globus.
In future versions the dependency on the installation of the C Globus version will be
relaxed as more and more services are provided as pure Java implementation. We
emphasize that the client side of the Java CoG Kit is not dependent on any additional
services on the client side. Thus, the download of the jar file is sufficient if a Java
virtual machine is present.

Use of Grid software and Services

The Java CoG Kit monitors closely the development within the Globus project to assure
that a level of interoperability is maintained. The CoG Kit development team continues
to keep track of projects that reuse the Java CoG Kit and documents the requirements of
the community, in order to feed this information back to the Globus development team
and to develop new features within the Java CoG Kit.

Software Services not Supported by Other Grid Technologies

In addition to the already mentioned services, we provide services that use the Grid
Object Specification (GOS) as defined by the Grid Information Services Working
group of the Global Grid Forum [5]. A binding from GOS to the RFC2252 [58] also is
provided that can be used to create schemas for the Metacomputing Directory Service
[43] of the Globus project. Furthermore, we will define simple services using part of
the Java CoG Kit to perform the task of a portal to do job submissions and to coordinate
tasks via workflows. These examples can be used by the community to create more
sophisticated components by the community that we hope to integrate in an open source
distribution of the Java CoG Kit.

Features of the Java Commodity Grid Kit 13

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

Optional Components and Services Used by the Java CoG Kit

In addition to the components and services available or accessible through the Java
framework, we may use commodity technologies such as XML, Web servers, and Java
servlet engines. The use of these components depends on the application domain
reusing the Java CoG Kit. An additional useful service is the ability to use smart card or
Java iButton technology [10] to perform secure authentication with a possible multiple
credential store on a smart card or an iButton.

Impact on the GGF GCE Working Group

The Grid Computing Environments Working Group as part of the Global Grid Forum
[33] is exploring the possibility of creating easy to-use and transparent compute
environments. Since the goal of the Java CoG Kit is to provide middleware to design
such environments it all services and components of the Java CoG Kit clearly are
reusable by the GCE Working Group participants.

4. IMPLEMENTATION DETAILS

We are designing the Java CoG Kit based on the usual software engineering practices
followed in the Java community.

Commodity Technologies and Software

We are using the Java framework delivered by Sun Microsystems. This includes JNDI,
which is included in the J2EE. We use XML parsers, iButtons libraries, and the IAIK
Security libraries to implement GSI over SSL. If desired, the creation of customized jar
files can be controlled via GNU autoconfigure [7] or ant [2], which is also available for
the Windows operating system. We use jUnit for the execution of simple tests for the
code. We note that not all technologies need be used to integrate the Java CoG Kit
within a users application framework; the user may collect the desired functionality,
thus determining the technologies used.

Current Products and Deliverables

The current deliverables of the Java CoG team are as follows:

1. An open source Java code mapping Grid functionality into the Java framework.

14 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

2. An extensive set of documentation including a manual, documented examples,
and tutorials.

3. A distribution of the Java CoG Kit as source with a low overhead but flexible
configuration service to also create custom jar files.

4. A distribution of the Java CoG Kit as jar file with an easy installation service.
5. A gradual inclusion of new components and services as they become available.

Additionally, we have will provide

1. a jar file that includes a GOS conversion tool as part of the GGF requirement s
[34].

2. a service that performs the GOS conversion through a Web interface.
3. updates to the jar file distribution of the LDAP browser.

The LDAP browser can be freely used for educational purposes under proper
acknowledgment. This part of the Java CoG Kit is used over 1,600 times as part of
commercial licensing agreements.

Table 1: Classification of the Java CoG Kit classes to Grid services

Grid Service Class Name
Security org.globus.security

org.globus.myproxy
org.globus.iButton

Resource Management /
Scheduling

org.globus.rsl
org.globus.gram
org.globus.server.gram

Information Services org.globus.mds
org.globus.gos
org.globus.gosml
org.globus.mdsml (deprecated)

Data Transfer org.globus.io.gass
org.globus.io.ftp
org.globus.io.urlcopy

Resource Management /
Quality of Service

org.globus.gara

Features of the Java Commodity Grid Kit 15

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

Grid Services

Table 1 shows a simple classification between Grid services and the current list of
classes that are included in the beta release of the Java CoG Kit. We provide for each
class a short technical description of the library, comparing it with the C Globus
implementation. For more information we refer to the Web page [41]. Furthermore, we
have presented in [45], [46], and [44] selected examples for the usage of these classes.

GSI (org.globus.security)

This library is a partial implementation of GSI. It is fully compatible with Globus GSI
and can be used to write GSI-enabled clients and servers. It supports both host and
subject authorizations. It does not, however, implement the GAA or offer a GSS API
interface. Moreover, it currently does not support certificate revocation lists (CRL) and
does not check certificate extensions. One unique feature of the library is that it can
manage multiple credentials at the same time in the same process. Any library that uses
the Java GSI library can take advantage of this capability.

MyProxy (org.globus.myproxy)

This library provides the MyProxy client API in Java. It is fully compatible with the C
implementation of MyProxy. It allows for uploading the Globus credentials to a
MyProxy server, retrieving the stored credentials from the server, and destroying them.
The C Globus dis tribution does not include a corresponding library. In many cases
using iButton or smart card technologies are preferred and more desirable.

RSL (org.globus.rsl)

This library provides an API for creating, manipulating, and checking the validity of
RSL expressions. It also handles an XML-based RSL representation.

GRAM (org.globus.gram)

This library is a full implementation of the GRAM client API. It allows for submitting
and canceling of jobs, polling for job status, and sending signals to a job. The library
enables a user to ‘ping’ a gatekeeper to verify whether the user can authenticate to it. In
addition, this library allows for registering and unregistering of callback listeners that
listen for job status updates. The callbacks are implemented as Java events. Beyond the
functionality of Globus, the Java GRAM API allows the specification of the security
delegation type to perform, either full or limited.

16 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

MDS (org.globus.mds)

This library provides convenient APIs for accessing the MDS service. It allows for
querying the MDS and adding, modifying, or deleting MDS entries. The library is
based on the JNDI library and enables communication with the MDS over a SASL
interface (secure MDS) from both JNDI and the Netscape Directory SDK.

MDSML (org.globus.mdsml)

This library provides an API for converting various schemas to and from the
MDSMLv1 format. For example, an MDSML document can be translated into the
LDAPv3 schema format or DSML. Work has already been approved for, among other
related activities, upgrading this library to conform to the MDSMLv2 specification. The
C Globus distribution does not include a corresponding library. This class will be
deprecated shortly in favour of the development of gosML together with the GGF. We
will keep the code for MDSML in our distribution to provide backwards compatibility
but will offer limited support.

GASS (org.globus.io.gass)

This library provides client and server GASS functionality. Java GASS implementation
is fully compatible with Globus GASS. It allows, for example, a Java GASS client to
connect and transfer a file from a Globus GASS server; or a Globus GASS client to
connect and transfer a file from a Java GASS server. The Java GASS client provides
the file-access API, while the Java GASS server provides the ‘server-ez’ API. Java
CoG Kit does not support the cache management functionality at this point; nor does it
follow the full client and server C API.

GSIFTP (org.globus.io.ftp)

This library provides a client API for accessing and transferring files from GSI-enabled
FTP servers. It provides all the common FTP commands as methods, implements more
advanced functionality such as recursive file transfers (transferring of entire
directories), and supports third-party transfers. It does not, however, support any other
advanced GridFTP functionality at this point.

UrlCopy (org.globus.io.urlcopy)

This library provides a simple API for transferring a file from one location to another.
The locations are specified as URLs, and any combination of the following protocols is

Features of the Java Commodity Grid Kit 17

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

supported: HTTP, HTTPS, FTP, GSIFTP, and FILE. Also, third party transfers can be
initialized between any ftp servers that support that feature.

GARA (org.globus.gara)

This library is an implementation of the GARA reservation API in Java. It allows for
creating, cancelling, and modifying various types of reservations, including network,
CPU, and SGI graphics pipe reservations. It also allows for polling reservation status,
and for registering and unregistering callback listeners just as in the GRAM library.
The C Globus distribution does not include a corresponding library.

Table 2: Classification of the Java CoG Kit command line tools to Grid services

Grid Service Command Line Tool

Security grid-proxy- init
grid-proxy-destroy
grid-cert- info
grid-change-pass-phrase
myproxy (1)
visual-grid-proxy- init (2) (3)
visual-myproxy- init (1) (2) (3)

Resource Management /
Scheduling

Globusrun
GramMultiJobRequest (3)

Information Services grid- info-search
mdsml-converter
gos-converter

Data Transfer globus-url-copy
globus-gass-server
globus-gass-server-shutdown

Resource Management /
Quality of Service

 (1) myProxy is a package that is supplied outside of Globus. If possible the use of
iButtons or smart cards is preferred.
 (2) graphical components
 (3) not provided by C Globus

18 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

Command-Line Tool Interfaces to Grid Services

The Java Cog Kit contains a set of command-line scripts (Table 2) that provide client-
side functionality similar to that in C Globus. The command-line tools include, at
present, Bourne shell scripts and Windows batch files, which are thin wrappers around
the Java classes that implement the desired functionality. All of these command-line
tools mimic the functionality of the appropriate command line tools distributed with the
C Globus Toolkit with the exception of globusrun, which does not support multi-
requests (see GramMultiJobRequest through DUROC [24], and grid-proxy-init, which
does not mask the entry of one’s passphrase, since echo ing of streams to stdout is not
defined as part of the language standard. A GUI version called visual-grid-proxy- init is
provided that properly masks an entered passphrase.

Comannd-line services that are not supported by the C version of Globus are the visual
components, such as visual-grid-proxy-init, providing the same functionality as the
grid-proxy- init call, but allows graphical manipulation of proxy settings and providing
a masked passphrase entry field. Additionally, we provide means for submitting
GlobusMultiJobRequests that do not require the use of DUROC [24]. Thus, it is
possible to start a set of related jobs on a set of remote machines as specifiable via the
Globus RSL.

Table 3: Classification of the Java CoG Kit classes to Grid services

Grid Service Computing Portal Component

Security org.globus.myproxy
Resource Management /
Scheduling

org.computingportals.gecco (1)
org.computingportals.desktop

Information Services org.computingportals.mds.MdsTable
org.computingportals.mds.Search
org.computingportals.mds.SearchTree

Data Transfer
Resource Management /
Quality of Service

org.computingportals.gara.workbench

Installation Service org.computingportals.common.config
 (1) at present, not supported or distributed

Features of the Java Commodity Grid Kit 19

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

GUI Components and Grid Services and Tools

The Java CoG Kit contains a set of graphical components that demonstrate the kits
usability as a foundation for graphical Grid applications and that provide a convenient
interface to low-level Grid client tools. Table 3 summarizes the available components.

Configuration Wizard

The Configuration Wizard provides the user with a uniform way of configuring the
Java CoG Kit. We note that the configuration process is rather trivial, however, and can
easily be done manually.

Grid Proxy Init

The Grid Proxy Init component provides a visual interface for creating Globus proxies
(see visual-grid-proxy- init).

MyProxy

This component is used to manage proxies on the MyProxy Servers.

GridDesktop

The Grid Desktop is a next-generation portal application that demonstrates the benefits
of Java, the Grid, and Web-based portals. Currently, this component is implemented as
an application. This component can also be used to demonstrate the integration of
drag-n-drop functionality into Grid applications.

MDS Components

These components are simple examples and can be used to develop more sophisticated
components.

GARA Workbench

This application provides a simple user interface for managing network reservations. It
has been shown as a demo at SC2000 [12].

Other Features

Other implementation related features of the Java CoG Kit includes firewall support
with the ability to set the port ranges for machines behind firewalls or NAT servers. To
increase the performance of the authentication process on Linux machines, one can use

20 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

the /dev/urandom device to create the necessary random numbers for faster seed
generation as needed by the GSI library implementation.

5. FUTURE WORK

Java Gram Service

One of the additional features we planed for the Java CoG Kit is a pure Java service
that provides the ability to submit RSL strings to this service and execute them in a
fashion similar to that of the C Globus GRAM service. The implementation of such a
service is based on a generalized multithreaded server. This server, originally used to
implement the GASS server provided by the Java CoG Kit, can be reused to implement
the GRAM server, because the object oriented design means that the protocol used on
the incoming socket connection can be changed easily. Internally, we distinguish the
following components (Figure 5). A multithreaded gatekeeper accepts incoming
connections from the client software. The RSL string part of the me ssage gets
interpreted, and a job manager gets started that works as proxy between the client and
the environment executing the job. If the job specifies an executable it gets executed
through the Java Runtime.exec() call. The I/O can be appropriately redirected to and
from the client dependent on the specification within the RSL string. The gatekeeper
and the job manager log their state changes into a log file in order to provide
accounting information. Besides the execution of executables for the specified
operating system, we can also execute signed and unsigned Java programs submitted as
jar files as part of our GRAM server. The GRAM server can be configured in one of
two ways: the program associated job manager gets executed in the same virtual
machine as the gatekeeper, or each job manager gets executed in an own virtual
machine (Figure 6). We are currently experimenting with these setups to provide a
performance vs. security level ability that will be beneficial once we have integrated the
Globus map file mechanism. In contrast to the current C Globus GRAM service, we are
also investigating the support of the gsiftp protocol as part of the service. This will
enable us to use gsiftp as part of the redirection capabilities for I/O; the GRAM service
uses GSI for authentication.

The reasons for the developing such a GRAM service are manifold. First, it is possible
to develop a service similar to seti@home [16], but with the advantage that applications
can be augmented with the usual Java properties to enable secure access within the Java

Features of the Java Commodity Grid Kit 21

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

Gatekeeper
Server

Job
Manager

Log
File

Logger

GRAM
Client

Runtime.
exec()

Job
Manager

GRAM
Client

classloader
.jar file

Figure 5: Overview of the components constituting the pure Java GRAM service.

Gatekeeper
Server

Job
Manager

Log
File

Logger

GRAM
Client

Runtime.
exec()

classloader
.jar fileJVM

Gatekeeper
Server

Job
Manager

Log
File

Logger

GRAM
Client

Runtime.
exec()

classloader
.jar fileJVM

or

or

JVM

Figure 6: The GRAM service can be started either within the same JVM or within a different one to
increase fault tolerance and security.

22 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

sandbox model. Thus, Java provides implicitly an additional security service for
building aggregations of compute services. This service together with the MDS can be
used to build a virtual community. The model to describe this community is built on
two roles: compute providers and compute consumers. The providers register their
resources with the virtual organization, and the consumers register their tasks through
the submission of jar files and meta-information about the job. A broker (based, for
example, on Condor matchmaking) could provide for an easy assignment of jobs to the
resources. Although many other use models are possible, we have chosen this model
because of its well-known characteristics within the Grid community.

6. CONCLUSION

Commodity distributed-computing technologies enable the rapid construction of
sophisticated client-server applications. Grid technologies provide advanced network
services for large-scale, wide area, multi- institutional environments and for applications
that require the coordinated use of multiple resources. In the Commodity Grid project,
we bridge these two worlds so as to enable advanced applications that can benefit from
both Grid services and sophisticated commodity development environments.

The Java Commodity Grid Project is creating such a bridge for the Java framework. We
provide an elementary set of classes that allow the Java programmer to access basic
Grid services, as well as enhanced services suitable for the definition of desktop
problem solving environments.

The Java CoG Kit is available as a beta version from the CoG Kit Web pages [41]. It
has already received considerable testing by external projects. The CoG Kit project
will provide additional services for development of Grid applications. These additional
Java CoG Kit components will be released gradually while adhering to quality control
standards. Some components described in this paper are not officially released yet. For
up-to-date release notes, readers should refer to the Web page at
http://www.globus.org/cog. New releases are announced to the mailing list at cog-
news@globus.org.

Features of the Java Commodity Grid Kit 23

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

Our future work will involve the integration of more advanced services into the Java
CoG Kit and the creation of other CoG Kits, with CORBA and Python being short-term
priorities. We hope to gain a better understanding of where changes to commodity or
Grid technologies can facilitate interoperability and of how commodity technologies
can be exploited in Grid environments.

ACKNOWLEDGEMENTS

This work was supported by the Mathematical, Information, and Computational
Science Division subprogram of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. DARPA,
DOE, and NSF support Globus research and development. We thank Ian Foster,
Geoffrey C. Fox, Dennis Gannon, and Jay Alameda, for the valuable discussions during
the course of the ongoing CoG Kit development. This work would not have been
possible without the help of the Globus team.

REFERENCES

[1] "Access Grid Web Page," 2001, http://www-fp.mcs.anl.gov/fl/accessgrid/.
[2] "ant: A Jakarta Project," 2001, http://jakarta.apache.org/ant/index.html.
[3] "The Astrophysics Simulation Collaboratory: A Laboratory For Large Scale

Simulations of Relativistic Astrophysics," 2001, http://www.ascportal.org/.
[4] "Data Grid and Data Managament Project," 2001, http://www.cern.ch/grid.
[5] "Global Grid Forum Web Page," http://www.gridforum.org.
[6] "The Globus project WWW page," 2001.
[7] "GNU Autoconf," 2001, http://www.gnu.org/software/autoconf/autoconf.html.
[8] "The Grid Portal Development Kit," 2000,

http://dast.nlanr.net/Projects/GridPortal/.
[9] "IAIK Java Crytology," 2001, http://jcewww.iaik.at/.
[10] "iButton Web Page," 2001, http://www.ibutton.com/.
[11] "Indiana CCAT Home Page," 2001, http://www.extreme.indiana.edu/ccat/.
[12] "Internet Audio Demonstration Wins SC2000 Award," NCSA Access News

Brief, 2000,
http://www.ncsa.uiuc.edu/News/Access/Briefs/00Briefs/001212.SC2000.html.

24 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

[13] "Java Forte Integrated Developement Environment," 2001, http://www.sun.com.
[14] "Java Web Start Web Page," Version 1.0.1 ed, 2001,

http://java.sun.com/products/javawebstart/.
[15] "Launching into Grid Space with the NASA IPG Launchpad," 2001,

http://www.nas.nasa.gov/Main/Features/2001/Winter/launchpad.html.
[16] "Seti at Home Web Page," 2001, http://setiathome.ssl.berkeley.edu/.
[17] "TENT Home Page," German Air and Space Agency (DLR), 2001,

http://www.sistec.dlr.de/tent/.
[18] "XML SChema, Primer 0 - 3," 2001, http://www.w3.org/XML/Schema.
[19] J. Alameda, "Chemical ENgeneering Portal," 2001,

http://www.ncsa.uiuc.edu/Science/ChemEng/.
[20] D. Caromel, "ProACtive Java Library for Parallel, Distributed and Concurrent

Programmming," 2001, http://www-sop.inria.fr/oasis/ProActive/.
[21] D. Caromel, W. Klauser, and J. Vayssiere, "Towards Seamless Computing and

Metacomputing in Java," Concurrency Practice and Experience, vol. 10, pp.
1043--1061, 1998 http://www-sop.inria.fr/oasis/ProActive/.

[22] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, "Web Services
Description Language (WSDL) 1.1," W3C Note, 2001,
http://www.w3.org/TR/wsdl.

[23] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke, "A Resource Management Architecture for Metacomputing
Systems," presented at Proceedings of IPPS/SPDP '98 Workshop on Job
Scheduling Strategies for Parallel Processing,, LOCATION MISSING, 1998.

[24] K. Czajkowski, I. Foster, and C. Kesselman, "Co-allocation Services for
Computational Grids," presented at Proc. 8th IEEE Symposium on High
Performance Distributed Computing, 1999.

[25] D. E. Don Box, Gopal Kakivaya, Andrew Layman, and H. F. N. Noah
Mendelsohn, Satish Thatte, Dave Winer, "Simple Object Access Protocol
(SOAP) 1.1," 2000, http://www.w3.org/TR/SOAP.

[26] W. K. Edwards, Core Jini, 2nd edition ed: Prentice Hall Computer Books, 2000.
[27] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal, and S.

Tuecke, "A Wide-Area Implementation of the Message Passing Interface,"
Parallel Computing, vol. 24, pp. 1735--1749, 1998.

[28] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling
Scalable Virtual Organizations," Intl. J. Supercomputer Applications, vol. (to
appear), 2001 http://www.globus.org/research/papers/anatomy.pdf.

Features of the Java Commodity Grid Kit 25

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

[29] I. Foster, C. Kesselman, and S. Tuecke, "The Nexus Approach to Integrating
Multithreading and Communication," Journal of Parallel and Distributed
Computing, vol. 37, pp. 70--82, 1996.

[30] I. Foster, A. Roy, and V. Sander, "A Quality of Service Architecture that
Combines Resource Reservation and Application Adaptation," presented at
Proc. 8th International Workshop on Quality of Service, 2000.

[31] G. C. Fox and W. Furmanski, "High Performance Commodity Computing," in
The Grid: Bluepirnt for a new computing infrastructure, I. Foster and C.
Kesselman, Eds.: Morgam Kaufman, 1999.

[32] L. Gong, "Project JXTA: A Technology overview," 2001, http://www.jtxa.org.
[33] M. H. Gregor von Laszewski, Steve Fitzgerald, Al Gilman, "GGF GIS Working

Group Charter," GWD-GIS-000-3 ed: Global Grid Forum Information Services
Working Group, 2001, http://www-unix.mcs.anl.gov/gridforum/gis/.

[34] S. F. Gregor von Laszewski, Pete Vanderbilt, Peter Lane, Brett Didier, "GOSv3:
A Data Definition Language for Grid Information Services," Argonne National
Laboratory and Pacific Northwest Laboratory, Grid Forum Working Group
Document GWD-GIS-011-11, June 2000 2001, http://www-
unix.mcs.anl.gov/gridforum/gis/reports/gos-v3/gis-wg-021-002.html.

[35] M. Hall, Core Servlets and JavaServer Pages (JSP), 1 edition ed: Prentice Hall
PTR/Sun Microsystems Press, 2000.

[36] S. Holzner, Inside XML, 1 edition ed: New Riders Publishing, 2000.
[37] D. M. John Crupi, Deepak Alur, Core J2EE Patterns: Best Practices and

Design Strategies, 1st edition ed: Prentice Hall PTR/Sun Microsystems Press,
2001.

[38] S. M. José Moreira, Manish Gupta, "A Comparison of Three Approaches to
Language, Compiler, and Library Support for Multidimensional Arrays in
Java," presented at Joint ACM Java Grande - ISCOPE 2001 Conference,
Stanford University, 2001.

[39] N. Karonis, "MPICH-G2 Web Page," 2001, http://www.hpclab.niu.edu/mpi/.
[40] S. Krishnan, R. Bramley, D. Gannon, M. Govindaraju, R. Indurkar, A.

Slominski, B. Temko, R. Alkire, T. Drews, E. Webb, and J. Alameda, "The
XCAT Science Portal," presented at Accepted for Proceedings of SC2001,
2001.

[41] G. v. Laszewski, "The CoG Kit Web Pages," 2001, http://www.globus.org/cog.
[42] G. v. Laszewski, "Projects using the Java CoG Kit," 2001,

http://www.globus.org/cog/java/projects.html.

26 G. von Laszewski et. al.

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

[43] G. v. Laszewski, S. Fitzgerald, I. Foster, C. Kesselman, W. Smith, and S.
Tuecke, "A Directory Service for Configuring High-Performance Distributed
Computations," in Proc. 6th IEEE Symp. on High-Performance Distributed
Computing, 1997, pp. 365-375.

[44] G. v. Laszewski and I. Foster, "Grid Infrastructure to Support Science Portals
for Large Scale Instruments," in Proc. of the Workshop Distributed Computing
on the Web (DCW): University of Rostock, Germany, 1999,
http://www.mcs.anl.gov/~laszewsk/papers/rostock.pdf.

[45] G. v. Laszewski, I. Foster, J. Gawor, and P. Lane, "A Java Commodity Grid
Kit," Concurrency and Computation: Practice and Experience, vol. 13, pp. 643-
662, 2001 http://www.globus.org/cog/documentation/papers/cog-cpe-final.pdf.

[46] G. v. Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke, "CoG Kits: A
Bridge between Commodity Distributed Computing and High-Performance
Grids," in ACM 2000 Java Grande Conference. San Francisco, CA, 2000, pp.
97--106, http://www.mcs.anl.gov/~laszewsk/papers/cog-final.pdf.

[47] G. v. Laszewski, V. Getov, M. Philippsen, and I. Foster, "Multi-Paradigm
Communications in Java for Grid Computing," Communications of ACM, 2001
http://www.globus.org/cog/documentataion/papers/.

[48] S. Microsystems, "JavaTM Authentication and Authorization Service (JAAS),"
vol. 2001, http://java.sun.com/products/jaas/.

[49] J. Novotny, S. Tuecke, and V. Welch, "An Online Credential Repository for the
Grid: MyProxy," presented at to be published in HPDC, 2001.

[50] M. Parashar, S. Verma, and G. v. Laszewski, "CORBA CoG Architecture &
Implementation," 2001,
http://www.caip.rutgers.edu/TASSL/CorbaCoG/CORBACog.htm.

[51] S. S. Rosanna Lee, JNDI API Tutorial and Reference: Building Directory-
Enabled Java Applications: Addison-Wesley, 2000.

[52] R. M. a. M. P. Samian Kaur, "An Environment for Web based Interaction and
Steering of Scientific Applications," presented at ACM Java Grande
Conference, 2000.

[53] E. V. Schweber, "Summary of the Software Services Grid Workshop."
[54] J. Siegel, CORBA 3 Fundamentals and Programming, 2nd Edition ed: John

Wiley & SonS, 2000.
[55] T. Suzumura, S. Matsuoka, and H.Nakada, "A Jini-based Computing Portal

System," 2001.

Features of the Java Commodity Grid Kit 27

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

[56] B. Temko, "The CoGBox Home Page," 2001,
http://www.extreme.indiana.edu/~btemko/cogbox/.

[57] S. Verma, J. Gawor, G. v. Laszewski, and M. Parashar, "A CORBA Commodity
Grid Kit," presented at 2nd International Workshop on Grid Computing in
conjunction with Supercomputing 2001 (SC2001), Denver, Colorado, 2001.

[58] M. Wahl, A. Coulbeck, T. Howes, and S. Kille, "Lightweight Directory Access
Protocol (v3): Attribute Syntax Definitions," 1997,
http://www.faqs.org/rfcs/rfc2252.html.

[59] Y. Wang, F. D. Carlo, D. Mancini, I. McNulty, B. Tieman, J. Bresnahan, I.
Foster, J. Insley, P. Lane, G. v. Laszewski, C. Kesselman, M.-H. Su, and M.
Thiebaux, "A high-throughput x-ray microtomography system at the Advanced
Photon Source," Review of Scientific Instruments, vol. 72, pp. 2062-2068, 2001.

