
Mississippi Computational Web Portal

Tomasz Haupt•••• , Purushotham Bangalore, Gregory Henley
Engineering Research Center at Mississippi State University

P.O.Box 9627, Mississippi State, MS 39762, USA
haupt@erc.msstate.edu, puri@erc.msstate.edu, henley@erc.msstate.edu

SUMMARY
This paper describes design and implementation of an open, extensible object-oriented
framework that allows integrating new and legacy components into a single user-friendly
Grid Computing Environment. This way we extend the researcher’s desktop by providing
seamless access to remote resources (that is, hardware, software and data), and thereby
simplifying currently difficult to comprehend and changing interfaces and emerging
protocols. The user, through the familiar Web Browser interface is able to compose
complex computational tasks represented as a collection of middle-tier objects serving as
proxies for services rendered by the back-end. The proxies through a grid resource broker
use the grid services, as defined by the Global Grid Forum, to access remote computational
resources. The middle-tier objects are persistent, and therefore once configured simulation
can be reused, shared between users, or transition into operational or educational use.

KEY WORDS: Web Portals, Grid Computing Environments, Access to Remote Resources, Problem
Solving Environments, Enterprise Java

1. Introduction

Computational approaches to problem solving have proven their worth in almost every field of
human endeavor. Computers are used for modeling and simulating complex scientific and
engineering problems, diagnosing medical conditions, controlling industrial equipment,
forecasting weather, managing stock portfolios, and for many other purposes. Yet, although there
are certainly challenging problems that exceed our ability to solve them, computers are still used
less extensively then they should be. To pick just one example, university researchers make
extensive use of computers when studying the impact of land use on biodiversity, but city
planners selecting routes for new roads or planning new zoning ordinances do not. Yet it is these
local dimensions that, ultimately, shape our future.

Computational power constantly is opening new opportunities for numerical simulations, in turn
opening opportunities for new science. This computational power is expected to be a low cost
alternative for design and validation, boosting efficiency of manufacturing, and be a reliable
source of forecasts (e.g., weather, earthquake damage, the stock market, to name just a few
domains), as well as all the other claimed and realized advantages for academic computing. As
the power of computers has increased and the cost of hardware has decreased, the use of the
computer as a tool in complex problem solving has become routine. Moreover, advances in
networking technology and computational infrastructure make it possible to construct large scale
high-performance distributed computing environments, or “Computational Grids” [1] that provide

• Correspondence to: Tomasz Haupt, ERC at Mississippi State University, P.O. Box 9627, Mississippi
State, MS 39762, USA. Tel: (662) 325 4524; Fax: (662) 325 7692

mailto:haupt@erc.msstate.edu
mailto:puri@erc.msstate.edu
mailto:henley@erc.msstate.edu

dependable, consistent, and pervasive access to remote high-end computational resources, data
repositories and databases, as well as data acquisition systems and instruments. These
Computational Grids have potential to fundamentally change the way we think about computing,
as our ability to compute will be no longer limited by the resources we currently have on hand. In
addition, the access to remote resources promotes sharing of resources and collaboration, and can
revolutionize the way the software is distributed and transitioned from researchers and developers
to operational or educational use.

The transition from the traditional programming model to a distributed, grid-based programming
model is, however, very difficult to achieve. The grid environment is inherently complex, and
may intimidate the end user. This is why, despite the fact that projects such as Globus [2] or
Legion [3] that build a grid-like environment have reached a certain level of maturity, the actual
use of the computational grid is embarrassingly small, as it is hindered by:

• The need of software investment protection, that is, reuse of legacy applications.
• Complexity of the grid environment that typically offers only a command line–based

interface that may intimidate the end user accustomed to the Windows environment.
• Complexity of the distributed, heterogeneous back end systems, as the constant demand

for faster and faster compute servers drives vendors to introduce more and more
sophisticated, scalable architectures including scalable interconnects, where even the end
user (consumer rather than code developer) is exposed to all of the nitty-gritty details of
the system on which applications are run. In such circumstances, coupling several codes
into a single complex application is in most cases prohibitively hard.

• Lack of expertise in modern software engineering by the application domain specialists.

In this paper we describe our design and implementation of an open, extensible object-oriented
framework that allows integrating new and legacy components into a single user-friendly problem
solving environment. The framework forms the foundation of a Grid Computing Environment
[4], which we refer to as the Mississippi Computational Web Portal (MCWP). This way we
extend the researcher’s desktop by providing seamless access to remote resources (that is,
hardware, software and data), and thereby simplifying currently difficult to comprehend and
changing interfaces and emerging protocols. The user, through the familiar Web Browser
interface is able to compose complex computational tasks represented as a collection of middle-
tier objects serving as proxies for services rendered by the back-end. The proxies through a grid
resource broker use the grid services, as defined by the Global Grid Forum, to access remote
computational resources. The middle-tier objects are persistent, and therefore once configured, a
simulation can be reused, shared between users, or transitioned into operational or educational
use. This work builds on our previous experience with developing Web-based systems providing
Web access to remote resources [5,6].

2. MCWP Driving Applications

Distributed Marine Environment Forecast System (DMEFS)

In a long-term vision, the Distributed Marine Environment Forecast System [7] (DMEFS) is an
open framework to simulate the littoral environments across many temporal and spatial scales
that will accelerate the evolution of timely and accurate forecasting. This is to be achieved by
adaptation of distributed scalable computational technology into oceanic and meteorological
predictions (Climate-Weather-Ocean models), and incorporating the latest advances in solution
schemes, grid generation, and scientific visualizations. DMEFS is expected to provide a means

for substantially reducing the time to develop, prototype, test, validate, and transition to
operations of simulation models as well as support a genuine, synergistic collaboration among the
scientists, the software engineers, and the operational users. In other words, the resulting system
must provide an environment for:

- model development, including model coupling
- model validation, and data analysis in general
- routine runs of a suite of forecasts
- decision support.

The model developers are expected to be computer savvy domain specialists. On the other hand,
operational users who routinely run the simulations to produce daily forecasts have only a limited
knowledge on how the simulations actually work, while the decision support is typically
interested only in accessing the end results. As the domain expertise level varies from one user
category to another, so does their equipment: from the high-end development environment to a
portable personal computer.

Distributed Simulation Framework for Seismic Performance for Urban Regions (SPUR)

The long-term objective of the SPUR project [8] is to advance the state-of-art in simulating the
effects of a major earthquake on an urban region by the integration of earthquake ground motion
modeling with modeling of structural and infrastructure systems using advanced computational
and visualization methods. A distributed interactive simulation framework is being created to
facilitate investigation of the performance of urban regions resulting from a major earthquake and
for education of future earthquake engineers. The goal is to provide damage estimates based on
best available information ultimately leading to earthquake related risk analysis enabling policy-
makers and emergency response agencies to plan for remediation and emergency response
through what-if scenarios.

3. Requirements Analysis

Both projects, DMEFS and SPUR, require support for different kind of users: developers,
operators, customers, and administrators. The developer is assumed to be a computer savvy
domain specialist whose role is to develop, configure, run, test, and validate models. The operator
runs validated codes, either as a part of his or her regular research activities, or to produce routine
forecasts. It is critical to hide complexity of both grid environment and applications from the
operator. The customer does not run models at all; instead he or she is provided an access to
results. The customer does not know, or care, how the data are produced, but he or she must be
given tools to identify, localize and access the data of interest. Finally, the administrator is
responsible for portal configuration and management of users and resources.

Furthermore, this system is expected to provide an integrated environment where applications can
be validated, shared between users, and transitioned for operational use. In other words, the
definitions of the user’s computational tasks, their configurations and results must be persistent,
so they can be reused at later time, shared and/or compared with other results and observational
data. This leads to a concept of the user space, referred to as the user context, where the task
descriptors are stored.

Finally, the system is expected to hide complexity of the heterogeneous, distributed back end
resources. This can be achieved by introducing resource descriptors (machines, batch systems,
applications) that provide all necessary information necessary to build the application, configure
it, stage the input data, submit it, and retrieve results.

The requested functionality of the system is shown in Figure 1, in form of a high-level use case
diagram. On the left side of the diagram the system users (actors) are shown. The administrator
role is to manage users and resources. The developer activities involve management of his or her
context (creating, cloning and destroying projects and tasks), composing computational tasks,
running them, and analyzing the results. To compose a task, the user creates or selects a task
context, adds applications descriptors to it, and specifies relationships between the constituent
applications. The user may use existing application descriptors in his or her user context, he or
she may create a new one by registering a new application (and optionally publish it so others can
use it), or import a descriptor published by someone else. Before the task can be submitted, each
constituent application has to be configured: the user must specify input files, input parameters
and options, final destination of the output files, as well as to specify the target machine on which
the application is to be run. A graphical user interface assists the user with the application
configuration process. Optionally, the user may publish the task (list of configured applications
and their relationships). This is a mechanism for transition of computational tasks from R&D to
operations. The operator typically imports a published task, reconfigures it as needed, and runs it.
In addition, the operator may schedule the task for routine runs, say, everyday at 10.00 pm. The
customer selects the data of interest and analyses them.

Computational Web Portal

Administrator

Developer

Operator

Customer
Analyst

Back End
Resources
(CoG Kit)

Submit and Monitor Task

Schedule Task

Select data and analyze

Manage users and resources

Manage User Contexts

Configure
Applications

Publish Application

Publish Task

Import Application

Import Task

Register
Application

Compose
Task

Figure 1: A high-level use case diagram for the Mississippi Computational Web Portal (see text for
discussion). [Non standard UML notation: a dashed arrow symbolizes <<extend>> relationship, while
solid arrow symbolizes <<use>> relationship]

Note that we treat the back-end systems as a (non-human) actor, that is, we take it as an external
system with respect to the computational portal. We communicate with the back end through the
grid interface, implemented by Java CoG [9], serving as a client for Globus services. Currently
we use CoG for job submission and monitoring (GRAM), for file transfer (GridFTP), and for
access to Globus Information services (MDS). In addition, we are using myProxy server[10] to
maintain users credentials.

The user contexts, application and task descriptors are entities internal to the portal, and as such
they do not belong to the grid environment. The application descriptors relate to the grid
environment through resource descriptors (machines, batch systems, etc.) maintained by the
portal administrator.

4. Portal Design

For the sake of clarity, extensibility and reusability of the design, we split the whole system into
four subsystems: user interface, user contexts, metadata, and resource broker.

User Interface
The front end of the system, that is, the user interface, exposes the functionality of the system to
the user. For both our applications, DMEFS and SPUR, it presents a vertically integrated
environment for a particular application area (Climate-Weather-Ocean, and Seismic Performance,
respectively). Consequently, the MCWP front-end does not exposure directly the grid interface
(CoG). The grid interface is deliberately hidden from the end user, and it is used exclusively by
the resource broker subsystem.

 Both projects mandate a Web browser-based implementation. However, since it is designed as a
separate subsystem, the choice of implementation does not affect the other subsystems, as the
subsystems interact with each other exclusively through well-defined subsystem interfaces. The
other implementation choices include client-side applications and peer-to-peer mechanisms such
as email or JXTA[11] . Peer-to-peer mechanisms can be used for portal-to-portal interactions.

The Web browser-based front end comprises a set of dynamically generated Web pages and
HTML forms, enhanced with JavaScript for client-side error checking and Java Applets, which
implement complex application and data visualization interactive user interfaces. We use Java
Server Pages (JSP) technology, including custom tags and JavaBeans, to generate dynamic,
context sensitive web contents.

The challenge in design of the front-end is to maximize responsiveness of the system by
minimizing the user effort (in terms of number of mouse clicks) to get things done. To this end,
we have to maximize the amount of information simultaneously displayed on the screen while
keeping the interface intuitive and minimizing the page refresh time. To achieve that we use
HTML frames (see Figure 2). The upper frame confirms the DMEFS user role (developer in this
case) and provides access to a set of common portal services: remote file browser, status of the
user jobs, status of machines, user log, help, change role and sign-out of a DMEFS session. The
bottom frame provides an automatically refreshing short status of the machines accessible
thorough the portal (in this case two SUN clusters at ERC/MSU), and a placeholder for system
messages (none in this particular screen dump). The middle frame is split into three: the left one

exposes the interface of the user context subsystem, the right one the interface of the metadata
subsystem, and finally the center one the interface of the resource broker subsystem. The user
creates or selects a task context using the context interface, creates or selects application
descriptors using the metadata interface, and composes and configures a computational task using
the resource broker interface. Other snapshots of the DMEFS and SPUR front-ends are given in
Figures 3, 4, 5, and 6.

User Contexts

MCWP is designed as a problem solving environment. Therefore we introduce a notion of
persistence to the interface. This is important for many reasons. Typically, the most difficult part
of numerical simulations is configuration of the job (or a set a jobs) for scalable execution. This
configuration effort may involve accessing and preprocessing input data (including, for example,
grid generation) and data post processing such as quick evaluation of the quality of the result
(e.g., "has the solver converged to a solution?") and/or visualizations. In many cases, several jobs
in sequence (with data-flow type dependencies) or concurrently must be executed to obtain final
results. For example, one code may generate boundary conditions for another (such as in littoral
waters simulations) or the solution is to be obtained by applying precise but computationally
expensive methods to an approximate solution resulting from crude but fast methods (e.g,
molecule geometry optimization). Such requires both system and application specific knowledge

Remote File Browser Job Status Status of Machines Journal Help Change View Sign Off

Figure 2: A screen dump of the DMEFS front end (see text for discussion). The screen is divided into 5
frames to hide latency of web access to data, while minimizing the user effort (number of mouse clicks) to
perform tasks.

to configure complex applications, and it is labor intensive, requiring highly skilled user labor.
Therefore, it is crucial to introduce a framework where configurations can be saved for later reuse
and shared between users, thereby also providing validity in the same sense as does a well-
designed, repeatable scientific experiment.

Figure 3 demonstrates illustrates another advantage of the user context. Acting as a DMEFS
analyst, the user can search his or her user space for files generated by a particular job, or all files
generated within a particular task or project to visualize them.

The user context comprises a hierarchy of entities. The user entity (also referred to as a user
context) represents the user name, preferences and credentials (necessary for allocation of remote
resources such as PKI certificate or Kerberos ticket) and also contains one or more project
contexts, each of which in turn contains task contexts that comprise application contexts. In this
way, the user can organize his or her work into projects, and within a project he or she can
construct multi-step computational tasks by adding applications to the task context and defining
the data-flow type relationship between them. The user context objects are implemented as entity
Enterprise JavaBeans (EJB) that guarantees their persistence, and operations on them as session
Enterprise JavaBeans. The session EJB interfaces constitute the interface of the user contexts
subsystem.

Figure 3. Another snapshot of the DMEFS front end, showing a fragment of the analyst interface. The right
frame lists all output files generated within cfg5 task of WAM2 project. The content of the highlighted file
(postprocessed by a back-end VTK module) is displayed using Java2D-based applet. The data represent a
forecast for the swell height in the Gulf of Mexico.

Metadata

Within MCWP, the computational task defined by the user is expressed in a platform independent
way. The separation of the task specification from the resource allocation simplifies the user
interface by hiding the details of the heterogeneous back end and automating the process of task
definition. The resource broker is then responsible for mapping application specific user requests
onto a generic grid interface. The intelligence of the resource broker is built on top of portal
information services, i.e., metadata. In our system, the metadata comprise application, task, and
machine descriptors, all implemented as XML files, and in addition, a job descriptor implemented
as an entity EJB bean.

The application descriptor provides all information needed to configure and run the application
on a selected machine, and, if feasible, it provides also information how to build it. In addition, it
contains a description of the output files that can be used for visualizations, coupling and
archiving. The application descriptor can be thought of as a “recipe” of how to submit an
application, thus hiding all complexity of it from the user. This is important as the recipe can vary
from platform to platform. The application descriptor also solves the problem of software
upgrades: all changes are entered to the descriptor, again transparently to the user.

The task descriptor represents a computational task hierarchically composed of “atomic” tasks,
that is, configured applications, described by the application descriptors. The task descriptor
consists of the list of applications, and if the list contains more than one application, it also
describes the relationship between constituent applications. In the simplest case of a workflow,
completion of one application triggers submission of another. In such a case, the resource broker
examines the corresponding application descriptors to determine necessary file transfers, if any.

Each task can be submitted multiple times (with or without modification of its configuration),
which results in submission of all its constituent applications prescribed in the task descriptor
order. Each instance of a submitted application is referred to as a job. Since a job is a transient
object (it disappears from the system after it completes), we introduce a persistent job descriptor,
an entity EJB that maintains information about the job: time when it was submitted and
completed, its exit code, and its configuration including pointers to input and output files (c.f.
Figure 3).

Finally, the machine descriptor provides information on machines accessible through the portal
including the batch system. This information is used by the resource broker to actually submit
jobs and to monitor their status. This information is needed only for back-end systems where the
Globus metacomputing toolkit is not installed.

The application descriptors are entered to the system through a registration process (e.g., an
HTML form). The developer creates an experimental descriptor in his or her private area,
optionally including a GUI. Once the application is mature enough, the developer can publish its
descriptor so other users can use it. Since the descriptor provides information on how to configure
the application, it is much easier for a new user to start using it. Moreover, the descriptor may
contain a default or example configuration further simplifying making test runs of a new
application. The task descriptor is generated as the response to the user interaction with the portal
(Figure 1). The job descriptors are created automatically by the resource broker, and finally the
machine descriptors are created by the portal administrator during the machine registration
process.

Resource Broker

The primary responsibility of the resource broker is mapping of the user task onto resource
allocation requests. Before submitting, the task must be resolved, that is, each atomic task must
be assigned the target machine, either explicitly by the user, or implicitly by a resource broker. In
addition, the location of the input files, final destination of the output files, as well as values of
arguments and switches must be provided, either through the user interface or using defaults (the
latter in an operational environment). The resolved task is then submitted: for each atomic task
the input files are staged, the executable is submitted, and as soon as the execution completes, the
output files are transferred to specified destination, if any.

Figure 5: WAM model’s GUI provided by the application developer to select all five WAM input
parameters: restartflag (Hot or Cold Start), DTG, mainregion, regioncode, and subregion (shown as a
nested rubber bands on top of the map showing ETOPO-5 bathymetry). This particular snapshot shows the
configuration to run regional forecast for Gulf of Mexico (gmc) for April 5th, 2001, using boundary
conditions computed earlier for the Atlantic basin (at1). This run will save boundary conditions for sub-
regional, fine-resolution forecast for Mississippi Bight region (msb). This applet examines job descriptors

Figure 4: Automatically generated GUI for the
WAM model by applying XSL transformation to
the application descriptor which defines five input
parameters: restartflag, regioncode, mainregion, dtg
and subregion

within the task context to produce a pick list of regions for which boundary conditions have been computed
for the selected time; in this example, the Atlantic basin data (column Hosts) are available every 12 hours
between April 4th and April 6th (column DTG), and the boundary values for Gulf of Mexico are available
(column Domains).

In the future we envision the resource broker to optimize and automate selection of resources to
further simplify the use of the grid environment for the end user. In our current implementation,
the user picks an application from a list. The portal responds with list of machines where the
application can be run (or built). The user selects the target system, and the portal responds with
an application GUI that allows the user to configure it as needed (by specifying input files,
options, parameters, etc.). The GUI (an html form or an applet) is generated automatically
through XSLT from the application description, shown in Figure 4, or is provided by an
application developer, as shown in Figure 5. Figure 6 shows an example of GUI of the SPUR
portal.

Figure 6: An applet to visualize the ground motion data and selection of a subregion to feed the structure
response simulation code.

5. MCWP architecture

The current version of MCWP is realized as a modern multi-tier system, as shown in Figure 7.
The Front End is a Web-based interface that allows the user to specify the computational
problem, allocate the resources, monitor progress, and analyze results. The Middle Tier is split
into the Web Tier (Web Server) and EJB Tier (Application Server). The Web Tier accepts user
requests and generates responses through interactions with the application server, which in turn
implements the business logic of the portal. It follows that the Web Tier is responsible for the
look and feel of the Front End, while the EJB tier is application independent. The Application
Server interacts with the back end systems through the Java CoG kit.

Figure 7: Architecture of the Mississippi Web Portal

6. Summary

The Mississippi Computational Web Portal is realized as a modern multi-tier system where the
user can state complex multi-step problems, allocate all resources needed to solve them, and
analyze results. A wizard type user interface will help user learn the system and train users new to
simulation methodology on the process without encumbering the advanced user, while
automating and hiding the unnecessary details. In this environment, definitions of problems,
methods of solving them, and their solutions are persistently stored and, consequently, viewed
and reused at later time, shared between researchers and engineers, and transitioned for
operational or educational use. The Portal is also an environment that extends the user desktop by
providing a seamless access to remote computational resources (hardware, software, and data),
hiding from the user complexity of a heterogeneous, distributed, high performance back end.

The middle-tier is split into Java Server Pages based Web tier responsible for request processing
and dynamic generation of responses, and Enterprise Java Beans based application server. The
EJB container is populated by a hierarchy of entity beans representing the state of the system or
acting as proxies of services rendered by the back end. Operations on the entity beans are
implemented as session beans. This design makes it possible to separate user requests (in terms of
application independent task specification) from the back end resource allocation (through
platform independent resource specification). The middle-tier provides a transparent mapping

between task and resource specification, hiding complexity of the heterogeneous back-end system
from the user. Persistency of the middle-tier object allows for reuse once configured complex
tasks and thus transition them into operational use.

The project is in its initial phase. Having built the framework, we plan to extend its functionality
by adding support for remote visualizations, grid generation and other tools. In particular, we are
interested in a better integration of our system with the desktop resources. In addition, we are
interested in extending our framework to support event driven simulations.

References

1. Ian Foster, Carl Kesselman (Editors) The Grid: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann Publishers; ISBN: 1558604758, November 1998. See
also home page of the Global Grid Forum: http://www.gridforum.org

2. I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, Intl Journal of
Supercomputer Applications 1997, 11:115-128, see also http://www.globus.org

3. Legion Worldwide Virtual Computer, http://legion.viginia.edu
4. Grid Computing Environments Working Group, http://www.computingportals.org
5. Tomasz Haupt, Erol Akarsu, Geoffrey Fox, WebFlow: a Framework for Web Based

Metacomputing, Future Generation Computer Systems 2000, 16:445-451.
6. Tomasz Haupt, Erol Akarsu, Geoffrey Fox and Choon-Han Youn, The Gateway System:

Uniform Web-Based Access to Remote Resources, Concurrency: Practice and
Experience 2000, 12:629-642.

7. DMEFS project, http://www.erc.msstate.edu/~haupt/DMEFS
8. SPUR project, http://www.erc.msstate.edu/~jmeyer/SPUR
9. G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke, CoG Kits: A Bridge

between Commodity Distributed Computing and High-Performance Grids, ACM 2000
Java Grande Conference, 2000

10. J. Novotny, V. Welch, MyProxy, http://dast.nlanr.net/Projects/MyProxy/
11. JXTA, http://www.jxta.org

http://www.gridforum.org/
http://www.globus.org/
http://legion.viginia.edu/
http://www.computingportals.org/
http://www.erc.msstate.edu/~haupt/DMEFS
http://dast.nlanr.net/Projects/MyProxy/
http://www.jxta.org/

	Mississippi Computational Web Portal
	
	
	
	
	Tomasz Haupt(, Purushotham Bangalore, Gregory Henley

	Introduction
	MCWP Driving Applications
	Distributed Marine Environment Forecast System (DMEFS)
	Distributed Simulation Framework for Seismic Performance for Urban Regions (SPUR)

	Requirements Analysis
	Portal Design
	User Interface
	User Contexts
	Metadata
	Resource Broker

	MCWP architecture
	Summary

