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SUMMARY 
This paper describes design and implementation of an open, extensible object-oriented 
framework that allows integrating new and legacy components into a single user-friendly 
Grid Computing Environment. This way we extend the researcher’s desktop by providing 
seamless access to remote resources (that is, hardware, software and data), and thereby 
simplifying currently difficult to comprehend and changing interfaces and emerging 
protocols. The user, through the familiar Web Browser interface is able to compose 
complex computational tasks represented as a collection of middle-tier objects serving as 
proxies for services rendered by the back-end. The proxies through a grid resource broker 
use the grid services, as defined by the Global Grid Forum, to access remote computational 
resources. The middle-tier objects are persistent, and therefore once configured simulation 
can be reused, shared between users, or transition into operational or educational use. 
 
KEY WORDS: Web Portals, Grid Computing Environments, Access to Remote Resources, Problem 
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1. Introduction 
 
Computational approaches to problem solving have proven their worth in almost every field of 
human endeavor. Computers are used for modeling and simulating complex scientific and 
engineering problems, diagnosing medical conditions, controlling industrial equipment, 
forecasting weather, managing stock portfolios, and for many other purposes. Yet, although there 
are certainly challenging problems that exceed our ability to solve them, computers are still used 
less extensively then they should be. To pick just one example, university researchers make 
extensive use of computers when studying the impact of land use on biodiversity, but city 
planners selecting routes for new roads or planning new zoning ordinances do not. Yet it is these 
local dimensions that, ultimately, shape our future. 
 
Computational power constantly is opening new opportunities for numerical simulations, in turn 
opening opportunities for new science.  This computational power is expected to be a low cost 
alternative for design and validation, boosting efficiency of manufacturing, and be a reliable 
source of forecasts (e.g., weather, earthquake damage, the stock market, to name just a few 
domains), as well as all the other claimed and realized advantages for academic computing. As 
the power of computers has increased and the cost of hardware has decreased, the use of the 
computer as a tool in complex problem solving has become routine. Moreover, advances in 
networking technology and computational infrastructure make it possible to construct large scale 
high-performance distributed computing environments, or “Computational Grids” [1] that provide 
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dependable, consistent, and pervasive access to remote high-end computational resources, data 
repositories and databases, as well as data acquisition systems and instruments. These 
Computational Grids have potential to fundamentally change the way we think about computing, 
as our ability to compute will be no longer limited by the resources we currently have on hand. In 
addition, the access to remote resources promotes sharing of resources and collaboration, and can 
revolutionize the way the software is distributed and transitioned from researchers and developers 
to operational or educational use.  
 
The transition from the traditional programming model to a distributed, grid-based programming 
model is, however, very difficult to achieve. The grid environment is inherently complex, and 
may intimidate the end user.  This is why, despite the fact that projects such as Globus [2] or 
Legion [3] that build a grid-like environment have reached a certain level of maturity, the actual 
use of the computational grid is embarrassingly small, as it is hindered by:  

•  The need of software investment protection, that is, reuse of legacy applications. 
•  Complexity of the grid environment that typically offers only a command line–based 

interface that may intimidate the end user accustomed to the Windows environment. 
•  Complexity of the distributed, heterogeneous back end systems, as the constant demand 

for faster and faster compute servers drives vendors to introduce more and more 
sophisticated, scalable architectures including scalable interconnects, where even the end 
user (consumer rather than code developer) is exposed to all of the nitty-gritty details of 
the system on which applications are run. In such circumstances, coupling several codes 
into a single complex application is in most cases prohibitively hard. 

•  Lack of expertise in modern software engineering by the application domain specialists.  
 
In this paper we describe our design and implementation of an open, extensible object-oriented 
framework that allows integrating new and legacy components into a single user-friendly problem 
solving environment. The framework forms the foundation of a Grid Computing Environment 
[4], which we refer to as the Mississippi Computational Web Portal (MCWP). This way we 
extend the researcher’s desktop by providing seamless access to remote resources (that is, 
hardware, software and data), and thereby simplifying currently difficult to comprehend and 
changing interfaces and emerging protocols. The user, through the familiar Web Browser 
interface is able to compose complex computational tasks represented as a collection of middle-
tier objects serving as proxies for services rendered by the back-end. The proxies through a grid 
resource broker use the grid services, as defined by the Global Grid Forum, to access remote 
computational resources. The middle-tier objects are persistent, and therefore once configured, a 
simulation can be reused, shared between users, or transitioned into operational or educational 
use.  This work builds on our previous experience with developing Web-based systems providing 
Web access to remote resources [5,6]. 
 

2. MCWP Driving Applications 

Distributed Marine Environment Forecast System (DMEFS)  
 
In a long-term vision, the Distributed Marine Environment Forecast System [7] (DMEFS) is an 
open framework to simulate the littoral environments across many temporal and spatial scales 
that will accelerate the evolution of timely and accurate forecasting. This is to be achieved by 
adaptation of distributed scalable computational technology into oceanic and meteorological 
predictions (Climate-Weather-Ocean models), and incorporating the latest advances in solution 
schemes, grid generation, and scientific visualizations. DMEFS is expected to provide a means 



for substantially reducing the time to develop, prototype, test, validate, and transition to 
operations of simulation models as well as support a genuine, synergistic collaboration among the 
scientists, the software engineers, and the operational users. In other words, the resulting system 
must provide an environment for: 

- model development, including model coupling  
- model validation, and data analysis in general 
- routine runs of a suite of forecasts 
- decision support.  

The model developers are expected to be computer savvy domain specialists. On the other hand, 
operational users who routinely run the simulations to produce daily forecasts have only a limited 
knowledge on how the simulations actually work, while the decision support is typically 
interested only in accessing the end results. As the domain expertise level varies from one user 
category to another, so does their equipment: from the high-end development environment to a 
portable personal computer.   

Distributed Simulation Framework for Seismic Performance for Urban Regions (SPUR)  
 
The long-term objective of the SPUR project [8] is to advance the state-of-art in simulating the 
effects of a major earthquake on an urban region by the integration of earthquake ground motion 
modeling with modeling of structural and infrastructure systems using advanced computational 
and visualization methods. A distributed interactive simulation framework is being created to 
facilitate investigation of the performance of urban regions resulting from a major earthquake and 
for education of future earthquake engineers. The goal is to provide damage estimates based on 
best available information ultimately leading to earthquake related risk analysis enabling policy-
makers and emergency response agencies to plan for remediation and emergency response 
through what-if scenarios. 
 

3. Requirements Analysis 
 
Both projects, DMEFS and SPUR, require support for different kind of users: developers, 
operators, customers, and administrators. The developer is assumed to be a computer savvy 
domain specialist whose role is to develop, configure, run, test, and validate models. The operator 
runs validated codes, either as a part of his or her regular research activities, or to produce routine 
forecasts. It is critical to hide complexity of both grid environment and applications from the 
operator. The customer does not run models at all; instead he or she is provided an access to 
results. The customer does not know, or care, how the data are produced, but he or she must be 
given tools to identify, localize and access the data of interest. Finally, the administrator is 
responsible for portal configuration and management of users and resources. 
 
Furthermore, this system is expected to provide an integrated environment where applications can 
be validated, shared between users, and transitioned for operational use. In other words, the 
definitions of the user’s computational tasks, their configurations and results must be persistent, 
so they can be reused at later time, shared and/or compared with other results and observational 
data. This leads to a concept of the user space, referred to as the user context, where the task 
descriptors are stored.  
 
Finally, the system is expected to hide complexity of the heterogeneous, distributed back end 
resources. This can be achieved by introducing resource descriptors (machines, batch systems, 
applications) that provide all necessary information necessary to build the application, configure 
it, stage the input data, submit it, and retrieve results. 



 
The requested functionality of the system is shown in Figure 1, in form of a high-level use case 
diagram. On the left side of the diagram the system users (actors) are shown. The administrator 
role is to manage users and resources. The developer activities involve management of his or her 
context (creating, cloning and destroying projects and tasks), composing computational tasks, 
running them, and analyzing the results. To compose a task, the user creates or selects a task 
context, adds applications descriptors to it, and specifies relationships between the constituent 
applications. The user may use existing application descriptors in his or her user context, he or 
she may create a new one by registering a new application (and optionally publish it so others can 
use it), or import a descriptor published by someone else. Before the task can be submitted, each 
constituent application has to be configured: the user must specify input files, input parameters 
and options, final destination of the output files, as well as to specify the target machine on which 
the application is to be run. A graphical user interface assists the user with the application 
configuration process.  Optionally, the user may publish the task (list of configured applications 
and their relationships). This is a mechanism for transition of computational tasks from R&D to 
operations. The operator typically imports a published task, reconfigures it as needed, and runs it. 
In addition, the operator may schedule the task for routine runs, say, everyday at 10.00 pm. The 
customer selects the data of interest and analyses them. 
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Figure 1: A high-level use case diagram for the Mississippi Computational Web Portal (see text for 
discussion). [Non standard UML notation: a dashed arrow symbolizes <<extend>> relationship, while 
solid arrow symbolizes <<use>> relationship] 

 
Note that we treat the back-end systems as a (non-human) actor, that is, we take it as an external 
system with respect to the computational portal. We communicate with the back end through the 
grid interface, implemented by Java CoG [9], serving as a client for Globus services. Currently 
we use CoG for job submission and monitoring (GRAM), for file transfer (GridFTP), and for 
access to Globus Information services (MDS). In addition, we are using myProxy server[10] to 
maintain users credentials.    
 
The user contexts, application and task descriptors are entities internal to the portal, and as such 
they do not belong to the grid environment. The application descriptors relate to the grid 
environment through resource descriptors (machines, batch systems, etc.) maintained by the 
portal administrator.   
 

4. Portal Design 
 
For the sake of clarity, extensibility and reusability of the design, we split the whole system into 
four subsystems: user interface, user contexts, metadata, and resource broker. 

User Interface  
The front end of the system, that is, the user interface, exposes the functionality of the system to 
the user. For both our applications, DMEFS and SPUR, it presents a vertically integrated 
environment for a particular application area (Climate-Weather-Ocean, and Seismic Performance, 
respectively). Consequently, the MCWP front-end does not exposure directly the grid interface 
(CoG). The grid interface is deliberately hidden from the end user, and it is used exclusively by 
the resource broker subsystem.  
 
 Both projects mandate a Web browser-based implementation. However, since it is designed as a 
separate subsystem, the choice of implementation does not affect the other subsystems, as the 
subsystems interact with each other exclusively through well-defined subsystem interfaces.  The 
other implementation choices include client-side applications and peer-to-peer mechanisms such 
as email or JXTA[11] . Peer-to-peer mechanisms can be used for portal-to-portal interactions.    
 
The Web browser-based front end comprises a set of dynamically generated Web pages and 
HTML forms, enhanced with JavaScript for client-side error checking and Java Applets, which 
implement complex application and data visualization interactive user interfaces. We use Java 
Server Pages (JSP) technology, including custom tags and JavaBeans, to generate dynamic, 
context sensitive web contents. 
 
The challenge in design of the front-end is to maximize responsiveness of the system by 
minimizing the user effort (in terms of number of mouse clicks) to get things done. To this end, 
we have to maximize the amount of information simultaneously displayed on the screen while 
keeping the interface intuitive and minimizing the page refresh time. To achieve that we use 
HTML frames (see Figure 2). The upper frame confirms the DMEFS user role (developer in this 
case) and provides access to a set of common portal services: remote file browser, status of the 
user jobs, status of machines, user log, help, change role and sign-out of a DMEFS session. The 
bottom frame provides an automatically refreshing short status of the machines accessible 
thorough the portal (in this case two SUN clusters at ERC/MSU), and a placeholder for system 
messages (none in this particular screen dump).  The middle frame is split into three: the left one 



exposes the interface of the user context subsystem, the right one the interface of the metadata 
subsystem, and finally the center one the interface of the resource broker subsystem. The user 
creates or selects a task context using the context interface, creates or selects application 
descriptors using the metadata interface, and composes and configures a computational task using 
the resource broker interface. Other snapshots of the DMEFS and SPUR front-ends are given in 
Figures 3, 4, 5, and 6. 

User Contexts 
 
MCWP is designed as a problem solving environment. Therefore we introduce a notion of 
persistence to the interface. This is important for many reasons. Typically, the most difficult part 
of numerical simulations is configuration of the job (or a set a jobs) for scalable execution. This 
configuration effort may involve accessing and preprocessing input data (including, for example, 
grid generation) and data post processing such as quick evaluation of the quality of the result 
(e.g., "has the solver converged to a solution?") and/or visualizations. In many cases, several jobs 
in sequence (with data-flow type dependencies) or concurrently must be executed to obtain final 
results. For example, one code may generate boundary conditions for another (such as in littoral 
waters simulations) or the solution is to be obtained by applying precise but computationally 
expensive methods to an approximate solution resulting from crude but fast methods (e.g, 
molecule geometry optimization). Such requires both system and application specific knowledge  
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Figure 2: A screen dump of the DMEFS front end (see text for discussion). The screen is divided into 5 
frames to hide latency of web access to data, while minimizing the user effort (number of mouse clicks) to 
perform tasks.  
 
to configure complex applications, and it is labor intensive, requiring highly skilled user labor. 
Therefore, it is crucial to introduce a framework where configurations can be saved for later reuse 
and shared between users, thereby also providing validity in the same sense as does a well-
designed, repeatable scientific experiment.   
 
Figure 3 demonstrates illustrates another advantage of the user context. Acting as a DMEFS 
analyst, the user can search his or her user space for files generated by a particular job, or all files 
generated within a particular task or project to visualize them. 
 
The user context comprises a hierarchy of entities. The user entity (also referred to as a user 
context) represents the user name, preferences and credentials (necessary for allocation of remote 
resources such as PKI certificate or Kerberos ticket) and also contains one or more project 
contexts, each of which in turn contains task contexts that comprise application contexts. In this 
way, the user can organize his or her work into projects, and within a project he or she can 
construct multi-step computational tasks by adding applications to the task context and defining 
the data-flow type relationship between them. The user context objects are implemented as entity 
Enterprise JavaBeans (EJB) that guarantees their persistence, and operations on them as session 
Enterprise JavaBeans. The session EJB interfaces constitute the interface of the user contexts 
subsystem.  

 
Figure 3. Another snapshot of the DMEFS front end, showing a fragment of the analyst interface. The right 
frame lists all output files generated within cfg5 task of WAM2 project. The content of the highlighted file 
(postprocessed by a back-end VTK module) is displayed using Java2D-based applet. The data represent a 
forecast for the swell height in the Gulf of Mexico.  

Metadata 
 



Within MCWP, the computational task defined by the user is expressed in a platform independent 
way. The separation of the task specification from the resource allocation simplifies the user 
interface by hiding the details of the heterogeneous back end and automating the process of task 
definition. The resource broker is then responsible for mapping application specific user requests 
onto a generic grid interface. The intelligence of the resource broker is built on top of portal 
information services, i.e., metadata. In our system, the metadata comprise application, task, and 
machine descriptors, all implemented as XML files, and in addition, a job descriptor implemented 
as an entity EJB bean.  
 
The application descriptor provides all information needed to configure and run the application 
on a selected machine, and, if feasible, it provides also information how to build it. In addition, it 
contains a description of the output files that can be used for visualizations, coupling and 
archiving. The application descriptor can be thought of as a “recipe” of how to submit an 
application, thus hiding all complexity of it from the user. This is important as the recipe can vary 
from platform to platform. The application descriptor also solves the problem of software 
upgrades: all changes are entered to the descriptor, again transparently to the user.   
 
The task descriptor represents a computational task hierarchically composed of  “atomic” tasks, 
that is, configured applications, described by the application descriptors. The task descriptor 
consists of the list of applications, and if the list contains more than one application, it also 
describes the relationship between constituent applications. In the simplest case of a workflow, 
completion of one application triggers submission of another. In such a case, the resource broker 
examines the corresponding application descriptors to determine necessary file transfers, if any. 
 
Each task can be submitted multiple times (with or without modification of its configuration), 
which results in submission of all its constituent applications prescribed in the task descriptor 
order.  Each instance of a submitted application is referred to as a job. Since a job is a transient 
object (it disappears from the system after it completes), we introduce a persistent job descriptor, 
an entity EJB that maintains information about the job: time when it was submitted and 
completed, its exit code, and its configuration including pointers to input and output files (c.f. 
Figure 3).   
 
Finally, the machine descriptor provides information on machines accessible through the portal 
including the batch system. This information is used by the resource broker to actually submit 
jobs and to monitor their status. This information is needed only for back-end systems where the 
Globus metacomputing toolkit is not installed. 
 
The application descriptors are entered to the system through a registration process (e.g., an 
HTML form). The developer creates an experimental descriptor in his or her private area, 
optionally including a GUI. Once the application is mature enough, the developer can publish its 
descriptor so other users can use it. Since the descriptor provides information on how to configure 
the application, it is much easier for a new user to start using it. Moreover, the descriptor may 
contain a default or example configuration further simplifying making test runs of a new 
application. The task descriptor is generated as the response to the user interaction with the portal 
(Figure 1). The job descriptors are created automatically by the resource broker, and finally the 
machine descriptors are created by the portal administrator during the machine registration 
process.  

Resource Broker 
 



The primary responsibility of the resource broker is mapping of the user task onto resource 
allocation requests. Before submitting, the task must be resolved, that is, each atomic task must 
be assigned the target machine, either explicitly by the user, or implicitly by a resource broker. In 
addition, the location of the input files, final destination of the output files, as well as values of 
arguments and switches must be provided, either through the user interface or using defaults (the 
latter in an operational environment). The resolved task is then submitted: for each atomic task 
the input files are staged, the executable is submitted, and as soon as the execution completes, the 
output files are transferred to specified destination, if any.    
 

 

 
 
Figure 5: WAM model’s GUI provided by the application developer to select all five WAM input 
parameters:  restartflag (Hot or Cold Start), DTG, mainregion,  regioncode, and subregion (shown as a 
nested rubber bands on top of the map showing ETOPO-5 bathymetry). This particular snapshot shows the 
configuration to run regional forecast for Gulf of Mexico (gmc) for April 5th, 2001, using boundary 
conditions computed earlier for the Atlantic basin (at1). This run will save boundary conditions for sub-
regional, fine-resolution forecast for Mississippi Bight region (msb). This applet examines job descriptors 

Figure 4: Automatically generated GUI for the 
WAM model by applying XSL transformation to 
the application descriptor which defines five input 
parameters: restartflag, regioncode, mainregion, dtg 
and subregion 



within the task context to produce a pick list of regions for which boundary conditions have been computed 
for the selected time; in this example, the Atlantic basin data (column Hosts) are available every 12 hours 
between April 4th and April 6th (column DTG), and the boundary values for Gulf of Mexico are available 
(column Domains).  
 
In the future we envision the resource broker to optimize and automate selection of resources to 
further simplify the use of the grid environment for the end user.  In our current implementation, 
the user picks an application from a list. The portal responds with list of machines where the 
application can be run (or built). The user selects the target system, and the portal responds with 
an application GUI that allows the user to configure it as needed (by specifying input files, 
options, parameters, etc.). The GUI (an html form or an applet) is generated automatically 
through XSLT from the application description, shown in Figure 4, or is provided by an 
application developer, as shown in Figure 5. Figure 6 shows an example of GUI of the SPUR 
portal. 
 
 
 
 
 



 
 
Figure 6: An applet to visualize the ground motion data and selection of a subregion to feed the structure 
response simulation code. 

5. MCWP architecture 
 
The current version of MCWP is realized as a modern multi-tier system, as shown in Figure 7. 
The Front End is a Web-based interface that allows the user to specify the computational 
problem, allocate the resources, monitor progress, and analyze results. The Middle Tier is split 
into the Web Tier (Web Server) and EJB Tier (Application Server). The Web Tier accepts user 
requests and generates responses through interactions with the application server, which in turn 
implements the business logic of the portal. It follows that the Web Tier is responsible for the 
look and feel of the Front End, while the EJB tier is application independent. The Application 
Server interacts with the back end systems through the Java CoG kit. 
 
 



 
 
 

Figure 7: Architecture of the Mississippi Web Portal 
 
 
 

6. Summary 
 
The Mississippi Computational Web Portal is realized as a modern multi-tier system where the 
user can state complex multi-step problems, allocate all resources needed to solve them, and 
analyze results. A wizard type user interface will help user learn the system and train users new to 
simulation methodology on the process without encumbering the advanced user, while 
automating and hiding the unnecessary details. In this environment, definitions of problems, 
methods of solving them, and their solutions are persistently stored and, consequently, viewed 
and reused at later time, shared between researchers and engineers, and transitioned for 
operational or educational use. The Portal is also an environment that extends the user desktop by 
providing a seamless access to remote computational resources (hardware, software, and data), 
hiding from the user complexity of a heterogeneous, distributed, high performance back end. 
 
The middle-tier is split into Java Server Pages based Web tier responsible for request processing 
and dynamic generation of responses, and Enterprise Java Beans based application server. The 
EJB container is populated by a hierarchy of entity beans representing the state of the system or 
acting as proxies of services rendered by the back end. Operations on the entity beans are 
implemented as session beans. This design makes it possible to separate user requests (in terms of 
application independent task specification) from the back end resource allocation (through 
platform independent resource specification).  The middle-tier provides a transparent mapping 



between task and resource specification, hiding complexity of the heterogeneous back-end system 
from the user. Persistency of the middle-tier object allows for reuse once configured complex 
tasks and thus transition them into operational use.  
 
The project is in its initial phase. Having built the framework, we plan to extend its functionality 
by adding support for remote visualizations, grid generation and other tools. In particular, we are 
interested in a better integration of our system with the desktop resources. In addition, we are 
interested in extending our framework to support event driven simulations. 
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