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Abstract

In this paper, we outline the design of a recommendation system (MyPYTHIA) implemented as a web portal.
MyPYTHIA’s design objectives include evaluating the quality and performance of scientific software on grid
platforms, creating knowledge about which software and computational services should be selected for solv-
ing particular problems, selecting parameters of software (or of computational services) based on user-specified
computational objectives, providing access to performance data and knowledge bases over the web, and enabling
recommendations for targeted application domains. MyPYTHIA uses a combination of statistical analysis, pattern
extraction techniques, and a database of software performance to map feature-based representations of problem
instances to appropriate software. MyPYTHIA’s open architecture allows the user to customize it for conducting
individual case studies. We describe the architecture as well as several scientific domains of knowledge enabled
by such case studies.
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1 Introduction

The new economic realities require the rapid prototyping of manufactured artifacts and rapid solutions to problems
with numerous interrelated elements. Thus, computational modeling and simulation has already become the main
tool of ‘big’ and ‘small’ science, and it is shifting from the single physical component design to the design of
a whole physical system. Increasingly, such simulations are being dynamically composed by scientists working
collaboratively on the grid, even though they are geographically distributed [6, 7, 9, 10, 11, 12].

The realization of this simulation scenario requires that grid users be able to identify relevant software and its
parameters before implementation on a remote computing resource. However, the obstacles to selecting the best
solution approach for a particular problem, and subsequently finding an appropriate software implementation, are
often difficult, and sometimes even impossible, to surmount. What is required is a knowledge-based technology for
the location and assembly of scientific software components. We refer to such services as ‘recommendation services’
and the facilities by which they are invoked as recommendation systems or ‘recommender systems’ [14, 27, 29, 38,
34, 36, 35, 37].

In this paper, we describe the MyPYTHIA web recommendation portal that evolved from our earlier efforts in
scientific recommendation systems [14, 38]. The precursor to this research is the original PYTHIA system described
in [38]. This facility used exemplar-based reasoning and emphasized the design of learning techniques to make
recommendations of PDE methods/software. In [14], we extended this methodology into the more general PYTHIA-
II database architecture, with well-defined interfaces for learning and reasoning. The recommendation problem was
‘configurable,’ in that the knowledge engineer had to define appropriate database records and specify interactions
with the underlying execution environment. PYTHIA-II then provided all the necessary enabling technologies to
prototype recommender systems. MyPYTHIA is the final step in this evolution and is meant to be a truly web-
accessible system that can be customized by any user desiring recommendation services. MyPYTHIA addresses the
following design objectives:

� Evaluate the quality and performance of software/machines pairs; MyPYTHIA allows users to incorporate
native performance data and provides all necessary facilities for their evaluation and data mining.

� Create knowledge about which software and computational services should be selected for solving particular
problems or realizing application components; MyPYTHIA provides data mining procedures to reduce the
original data and generate rules from the original performance data.

� Select the parameters of software (or computational service) based on user-specified computational objectives;
MyPYTHIA estimates parameters of software/hardware that satisfy given user-defined objectives such as time
and/or memory requirements.

� Provide performance data and knowledge for specific software domains over the web; MyPYTHIA can serve
as a knowledge base for a priori defined case studies.

� Provide recommendation services for targeted application domains.

Outline of Paper

Section 2 motivates and describes the algorithmic basis of the MyPYTHIA recommendation methodology. Section 3
identifies the major components of MyPYTHIA, along with system implementation details. Section 4 describes three
case studies that have been conducted with MyPYTHIA. Section 5 elaborates on one of these studies, providing
details of the analysis and descriptions of the results. Section 6 identifies opportunities for future research.



2 MyPYTHIA Methodology

One of the basic research issues in designing recommendation services is understanding the fundamental processes
by which knowledge about scientific problems and their solutions is created, validated, and communicated. Some
of this knowledge will come directly from experts — scientists and engineers — in the field. Other knowledge can
be mined from experimental data arising from simulations. Yet further knowledge will be learned from the experi-
ence gained by the recommendation service itself as it extracts performance knowledge about software components
running on the grid and applied to various problems. It is thus not surprising that the word ‘recommendation’ is
interpreted differently in the scope of different projects.

For instance, a polyalgorithm approach [31, 32], where a decision procedure is hardwired to choose among
different solution methods, can be viewed as a first level of recommendation service. It is, however, a very restrictive
one since the decision procedure is statically hardwired to the application and, except in artificial problem domains,
does not generalize to new situations. In many cases, it does not take into account all available problem features and
cannot incorporate the latest solution methods. In addition, the recommendations are often ‘over-cautious’ to prevent
various numerical disasters [1]. Furthermore, recommendations provided in this way cannot be used independently
of the accompanying software/modules (and hence do not constitute a grid service by themselves). Performance
databases such as the PDS server [22] address the problem of mathematical software evaluation, but their main focus
is on profiling solution methods and do not aid in problem solving beyond the tuning of architectural parameters. A
richer variety of features are modeled by rating services and online taxonomies of mathematical software, but such
services are more information-based and cannot be easily invoked in a computational pipeline due to differences in
vocabulary and mismatches in problem domain representation.

Before we describe the MyPYTHIA methodology, it is useful to define some notation. We denote by

��� a collection of problems or problem space,

��� a feature space for problems in � ,

��� a collection of parameterized scientific software for simulating a specific class of problems in � ,

��� a collection of parameterized machines (hardware),

��� a set of � performance metrics,

�
	 a mapping from ������
� to �������� where the points in the range of this mapping denote the
measurements for the metrics in � obtained by running ��������� pairs ( ����������� � �!� ) on the benchmark
space � , and

��" a collection of profiles for each software/machine pair defined from pairs of metrics from � .

Profiles are high-level summarizations of performance data that are useful in analysis and mining operations. An
example of a profile is a low-degree polynomial approximation which can be used to obtain interpolated data over
predefined regions. MyPYTHIA’s methodology addresses the partition (clustering) of the performance data space
� � into subclasses #%$'&)(+*&-,/. with respect to a set of profiles (or pairs of metrics) and the description (classification)
of those classes in terms of problem features from � . The classification part can be used to identify the best ���������
pair for all 0�� � or a user defined subclass of P. We refer to this problem as the method/machine selection problem.
In addition, MyPYTHIA can address the problem of determining the associated parameters of the best ���1����� pair
(parameter estimation problem) along with predicting the performance of the selected pair to the user’s problem by
a performance mapping.

Assuming a ‘dense’ benchmark of problems from a targeted application domain, MyPYTHIA uses a four-
pronged processing phase to realize the solution of the above problems: (i) feature classification of benchmark



problems and applicable software, (ii) performance evaluation of scientific software, (iii) statistical analysis of per-
formance data, and (iv) the (automatic) knowledge discovery of recommendation rules from software performance.
These phases have already been defined in previous papers [14, 38, 16] and address many of the difficulties in al-
gorithm recommendation outlined above. In the web portal implementation of MyPYTHIA, only the interface of
the portal and the underlying database facilities have been redesigned. The new design allows users to import their
own data necessary for the MyPYTHIA methodology to conduct performance evaluation and for the creation of
knowledge for a class of software/machine pairs.

3 MyPYTHIA System Components

We now provide detailed descriptions of MyPYTHIA’s system components. The MyPYTHIA portal is served by
an Apache webserver1 . PHP2 is the scripting language of choice and enables a modular design with its support for
object oriented class definitions. PHP’s built-in support for sessions helps provide the user with an easy to navigate
interface. Throughout, we use the term ”method” to refer to software that simulates a targeted class of problems.

3.1 Data Management and Retrieval

Each MyPYTHIA user is provided with an isolated view of their own database. Connection to the underlying
MySQL (open source3 , RDBMS) database is supported by available PHP database connectivity drivers. Each time
new users attempt to view their database contents for the first time, a simple SQL script is run which populates
the isolated database with relevant default data. The end-user web-enabled database interface is made possible by
tailoring the PhpMyAdmin package4 to suit the security needs of the MyPYTHIA implementation. The MyPythia
database interface indicating the MySQL and PHP supporting components is shown in Figure 1.

The database schema which is used to model and manage the data for the MyPYTHIA recommender has been
designed in a very general way, so that the analysis and data mining process can easily be extended to any knowl-
edge domain. Performance data must be generated, collected, and classified outside of the MyPYTHIA system.
This data is then imported into the MyPYTHIA storage manager using an XML-like interface. This eliminates
the ‘domain-specific’ representations required to internally generate performance data [14]. Our earlier schema
(described in [14]) required users to define all domain-specific elements of the problems and methods so that the
system itself could create and execute the programs for performance data acquisition. This assumption is relaxed in
MyPYTHIA.

The underlying representations required by MyPYTHIA to support the generation of inference data are listed
below.

� Benchmark Problem Population :

name varchar() -- problem name (primary key)
description text -- high level description of the problem
code text -- user description of the problem code
features text -- keys for accessing problem characteristics
featurevals text -- values for problem characteristics

Note that the code field is used for descriptive purposes only. Users may enter a description of the code, a path
to the code source, or even the code itself in this field, but MyPYTHIA does not use it in the analysis process.

1http://www.apache.org/
2http://www.php.net/
3http://www.mysql.com/
4http://www.phpwizard.net/projects/phpMyAdmin/



Figure 1: MyPYTHIA database homepage for creating the database, importing performance data, and creating
records which identify the benchmark problems, the collection of methods, and the features of interest.

The list of features and their values are the essential structures required in the analysis of the benchmark
population.

� Methods :

name varchar() -- method name (primary key)
description text -- high level description of the method
features text -- keys for accessing method characteristics
featurevals text -- values for method characteristics
measures text -- performance measures to use in method evaluation

Features and measures are the critical elements required by MyPYTHIA to analyze the methods and generate
rules concerning their application.

� Features :

name varchar() -- feature name (primary key)
description text -- high level description of the feature
possiblevalues text -- values assumed by this feature

This is a generic schema for features associated with problems or methods. Features may even be defined
to correspond directly to a set of performance data. That is, the feature may occur as a result of problem-
method execution, and may not be identified specifically with either a problem or method. An example of
possiblevalues is ‘yes, no’ for the feature ‘problem uses a uniform grid in all dimensions.’

� Performance Data :

name varchar() -- performance record name (primary key)
description text -- high level description of the method
problem text -- benchmark problem used to generate this data
method text -- method/software used to generate this data
features text -- problem-method execution characteristics
featurevals text -- values for characteristics
machine text -- execution environment, machine characteristics
perfarray text -- list of performance measure names
perfvalues text -- list of performance values



Figure 2: End-user interface for importing the performance data.

The problem and method fields are used to access the features associated with the (problem and method) input
used in producing the performance data. They may also be accessed by the end-user to get more comprehen-
sive information about the kinds of problems and methods which are the source for the generated data. The
performance measures which are available for analyzing the methods are named in perfarray, and their values
are listed in perfvalues.

� Feature-Measure Context :

name varchar() -- context record name (primary key)
description text -- high level description of the context
runs int -- number of analyzer runs
problemlist text -- list of problems classified by run
methodlist text -- list of methods to evaluate
measurelist text -- list of performance measures to extract
profileparm text -- problem-to-method profile definition
featurelist text -- list of features to consider

The context record determines the strategy for analyzing the data. The data must be collected and sent to the
analyzer in a way that quarantees the formulation of rules that can answer the target recommendation queries.
The selected problem-method performance data must be classified according to problem parameter sets (one
or more parameterized classes are combined to determine one analyzer run) so that the correct grouping of
features will be achieved in the ranking of the methods. Finally, the profileparm must identify one particular
problem parameter to be used in creating the performance profiles. The measure values are collected for all
variations of the ‘profile parameter’ which are associated with a given problem-parameter-method.

The typical usage of MyPYTHIA assumes that a substantial body of performance data already exists for the
user’s knowledge domain, and that the user can import this data into MyPYTHIA. The performance data should



Figure 3: End-user interface for browsing the performance database.

represent values that quantify the distinguishing characteristics of the collection of methods (speed of execution,
accuracy, scalability, etc.) and include all important measures for evaluating which methods are better than others
for a given benchmark problem. The benchmark features represent the interesting and important characteristics of
problems that scientists are interested in solving. As far as possible, the collection of methods should be applied to all
the benchmark problems and the measures should be collected across all applications of the methods (Statistical pre-
processing techniques can help overcome any lack of coverage for the underlying problem population). It remains
the task of the domain expert to assemble the benchmark problems and the collection of methods, and to identify
the salient, relevant features of both problems and methods. Performance measures should capture the significance
of altered problem features on method execution.

The features that characterize the problems, the methods and the execution create the context of the inference
data that subsequent recommendations are based upon. More specifically, a particular instance of inference data
(which the end-user chooses for eliciting a recommendation) is based entirely on the feature-measure context. The
performance measures determine the ranking of methods as applied to the selected benchmark population and the
features must explain (through the MyPYTHIA rules) why the methods behaved differently.

As an example, scientists may want MyPYTHIA to recommend methods that are scalable. A problem feature,
‘size,’ could be used to identify methods for which performance deteriorates as problem size increases, but only if
the domain expert included performance measures for length of execution time over a range of problem sizes.

3.2 Performance Data Generation and Collection

As described earlier, MyPYTHIA factors out the underlying execution environment for characterizing applica-
tion/software performance.

The simple schema of MyPYTHIA records and the XML-like import format provide the mechanism for popu-
lating the user’s MyPYTHIA database with large collections of existing performance data. Users can build retrieval
scripts with XML filters to apply to their current data storage environment, extracting the targeted data and inserting
the XML definition tags. The result is then imported directly into the MyPYTHIA database manager. A sample
XML definition for importing a specific instance of performance data into MyPYTHIA is given below.



Figure 4: End-user interface for accessing the performance data.

<complexType name="MyPYTHIARecord">
<element name="Performance" type="varchar()" />
<element ref="Description" item="singular pde study 10-2 : 99data -3"/>
<element ref="perfarray" item="number of iterations, elapsed time,

max-grid-delta, number of equations, problem size,
abs max error at nodes, discrete L2 error at nodes,
discrete L2 residual at midpoints, relative error"/>

<element ref="perfvalues" item=" 120, 1.73, 1.56E-02, 3969, 38909,
2.06E-04,2.52E-05,2.29E-01, 0.00328"/>

</complexType>

The supporting records for problems, methods and features are defined by users through the MyPYTHIA
database manager interface. These supporting records, along with the imported performance data drive the data anal-
ysis, rule generation and recommendation processes. Figure 2 shows the user interface for importing performance
records into a sample MyPythia database. Figure 3 and Figure 4 show MyPythia browsing and edit interfaces.

3.3 Data Mining Subsystems

Data mining encompasses the process of extracting and filtering performance data for statistical analysis, generating
method profiles and ranking them, selecting and filtering data for pattern extraction, and at the end, populating
the rule base of the recommender system. Two persistent activities conducted in this subsystem are the statistical
analysis and pattern extraction.



Statistical Analysis

The task of the analyzer is to rank a set of methods for a selected sample from the problem population, based on
apriori specified performance criteria. This ranking (ordering) is a function of the user’s computational objectives
(error, memory, total execution time). The generation of this ordering is based on the performance curves or profiles
such as error versus total elapsed time (on a log-log basis) for each method, machine, and problem triple. These
profiles are generated by linear least squares approximations to raw performance data. MyPYTHIA runs the analyzer
as a separate process, sending it an input file containing performance data and a set of parameters which specify the
mode of operation for the analyzer. In MyPYTHIA, we have borrowed the approach presented in [38], where a
non-parametric statistical technique is considered for the ranking of methods with respect to a given set of problem
instances. The process for ranking the methods uses multiple comparisons and contrast estimators based on Friedman
rank sums [13].

Pattern Extraction Algorithms

A variety of induction algorithms have been incorporated into MyPYTHIA; in this section we outline some of the
more important categories of induction algorithms.

Clustering: An area where tremendous progress has been made in inductive learning is clustering — a funda-
mental procedure in pattern recognition that looks for regularities in training exemplars. By revealing associations
between individuals of a population, it can be used to provide a compact representation of the input problem domain.
The basic goal of clustering is to obtain a ��� partition of the input data that exhibits categorically homogeneous sub-
sets, where � is the number of training exemplars and

���
�
� � . In MyPYTHIA, by representing problem instances

as characteristic vectors, we can use clustering to reveal regularities in the underlying problem population. Recom-
mendations of algorithms can be made by testing for membership of problems in given cluster(s) and choosing the
algorithm that best satisfies performance criteria (for other problems in the same cluster).

Neural Networks: More general forms of functional relationships can be modeled by neural networks [17], which
can approximate any function to any required level of accuracy (perhaps with exponential increase in complexity).
Neural networks use one or more layers of intermediate functional elements to model the dependence of an output
signal(s) on given input parameters. The task of learning in this scenario is thus to determine the interconnection
strengths and threshold biases (weights) that will result in acceptable approximation. While the general problem of
determining weights has been shown to be NP-complete, neural networks have emerged as a valuable tool for pattern
recognition and function approximation. In MyPYTHIA, neural networks have been used to associate problem
characteristic features with method and machine parameters [18]. Given a training set, MyPYTHIA can functionally
model the dependence of problem features on solution properties, and which can lead to the recommendation of a
suitable algorithm.

Inductive Logic Programming: While neural networks are attribute-value based techniques, more expressive
schemes can be obtained by harnessing the representational power of logic (specifically, first-order logic). In this
formalism, facts and measurements are represented as logical facts and data mining corresponds to forming an
intensional rule that uses relational representations to model the dependence of a ‘goal’ predicate on certain in-
put predicates (relations). This ‘inductive logic programming’ (ILP) approach [5] is one of the most popular in
MyPYTHIA and with the aid of software such as PROGOL, it can be used to find patterns such as:

method(X,‘FFT9’) :- laplace(X), constcoeff(X).



which indicates that the FFT9 method is best for problem X if X is Laplacian and has constant coefficients. Notice
the easy comprehensibility of the rule which could be later used in diagnostics and What-if analyses. In addition,
such rules can also be recursive, a feature which makes ILP amenable to automated program synthesis and discovery
of complex relationships such as protein secondary structure [5]. In addition, ILP allows the incorporation of a priori
background knowledge, a necessary pre-requisite for mining in complex structured domains.

ILP systems typically take a database of positive examples, negative examples, and background knowledge and
attempt to construct a predicate logic formula (such as method(X,Y)) so that all (most) positive examples can be
logically derived from the background knowledge and no (few) negative examples can be logically derived.

In the most general setting of first-order logic, relational induction as described above is undecidable. A first
restriction to function-free horn clauses results in decidability (this is the form of programs used in the programming
language PROLOG). Decidability here is with respect to induction; for deduction, first-order logic is semi-decidable.
However, ILP is often prohibitively expensive and the practice in MyPYTHIA is to restrict the hypothesis space to a
proper subset of first-oder logic.

Other Propositional Representations: Various attribute–value learning systems like ID3 [25], C4.5 [26], IBL [3],
which express the discovered knowledge in attribute-value languages, have also been incorporated into MyPYTHIA.
These approaches have the representational ability of propositional logic. Propositional languages are limited and do
not allow for representing complex structured objects and relations among objects or their components. The domain
(background) knowledge that can be used in the learning process is also of a very restricted form, compared to ILP.

For all of these approaches, an intermediate filter converts required information from MyPYTHIA databases to the
format required by each of the data mining packages. Recommendations are then made based on the methodology
applicable in the particular learning context. For instance, with an ILP system, we attach to each rule all the positive
(true) examples that are covered by the rule. After a rule has fired, we apply a nearest neighbor technique to identify
the stored example that most closely matches (closest example) the user’s example. After the closest example has
been identified, we retrieve the performance data for this example and the recommended best method by the fired
rule. The performance profiles for the method and the problem are consulted to provide estimates for the method’s
parameters and the performance indicators. If it is impossible for the system to satisfy the user’s imposed constraints,
then it uses the weights selected by the user to determine the best solution that satisfies approximately the constraints
with respect to the indicated weights.

3.4 Recommendation and Inference Engine

The recommender system is the end user module of the MyPYTHIA system. It is a form of decision support system
and is the only module in MyPYTHIA that is case study dependent as well as domain dependent. We will describe
how a recommender system has been generated as an interface for the knowledge generated by the ILP approach in
the pattern extraction module.

Each rule selected by the data mining program covers a number of positive and negative examples. The set
of positive examples covered for each rule along with the rules, is one part of the input given to the recommender
system. The recommender system asks the user to specify the features of the problem he wants to solve. It then uses
the CLIPS inference engine and checks its rule base to find a rule whose left-hand side satisfies the user selected
problem features. Every rule that is found to match the problem features specified by the user is selected and is
placed into the agenda. Rules are sorted in decreasing order based on their generality (number of examples they
cover), and the very first rule in the agenda is fired to determine the best algorithm for the problem the user specifies.
Since each rule is associated with a set of positive examples that are covered by this rule, the recommender system
goes through the list of positive examples associated with the fired rule and retrieves the example that has the most



Figure 5: Recommender interfaces for two MyPYTHIA case studies: (left) PDE case study, (right) SWEEP3D
application performance characterization.

common features with the user specified problem. This step aids in subsequent parameter estimation.
After this example problem is selected, the fact base of the recommender system is processed in order to provide

the user with any required set of parameters for which the user asks advice. The fact base consists of all the raw
performance data stored in the database. The recommender system accesses this information by submitting queries
generated on the fly, based on the user’s objectives and selections. If the user objectives cannot be met, a default
recommendation is provided. For some of the case studies presented here, the final step is the recommendation of a
certain method as the best method to use in satisfing the given conditions. It also indicates what parameter(s) whould
be used to achieve the computational objectives imposed by the user.

3.5 User Interface Components of MyPYTHIA

Users access MyPYTHIA through a web-based interface which provides: (i) user management and access autho-
rization, (ii) a web-enabled database interface to the underlying MySQL database, (iii) a guided selection process
for identifying how performance data will be classified and retrieved for knowledge creation processing, and (iv) the
recommender graphical interface.

When users access MyPYTHIA for the first time (http://shrine.cs.purdue.edu/pythia3), they
must register for authorization and password assignment. When an authorized, registered user enters the MyPYTHIA
environment with id and password, a new database can be created or an already existing database can be selected.
The MyPYTHIA database interface supports a full range of functionality for creating, editing, browsing, retrieving
and importing MyPYTHIA records. Both graphical and SQL mechanisms are available for managing the stored
data.



The specification of the feature-measure context is the starting point for the knowledge building process. MyPYTHIA
supports both graphical and SQL methods for identifying which performance data will form the basis for analysis
and rules generation. Various graphical selection processes are available, such as

� Selection by Features: Users can identify the problem and method features to be studied, and the system will
select all performance records associated with problems and methods possessing those features.

� Selection by Problems and Methods: Users can select the collection of all problems and methods to be
considered in the study. The system will select all performance records naming the chosen problems and
methods. Features associated with the selected problems and methods are considered as the basis for the rules
generation process.

� Selection by Performance Data: Users can select any subset of performance records to consider in the study.
Features associated with the problems and methods named in the performance records are considered as the
basis for rules generation.

Once the collection of performance records and corresponding features are established, the performance measures
are selected. Users select from the available measures listed in the perfarray field of the performance record collec-
tion. The selected measures must be available for all performance records in the collection, since these measures
apply to all analyzer runs. The measures are used to evaluate which methods are better than others, and the measures
become the basis for the computational objectives which users specify when requesting software recommendations.
The final phase of the feature-measure context specification is the grouping of performance records for analyzer
runs. The information specified for the feature-measure context is saved into the context record, and is then used
to guide the data retrieval for analysis and method ranking. Users can also browse the context record to realize the
basic input to MyPYTHIA’s inference data generation process.

The recommendation interface is created dynamically, using the inference context to identify the relevant features
and measures. Examples of the MyPYTHIA recommender interface for two application case studies are shown in
Figure 5.

4 Current Applications Coverage of MyPYTHIA

We now describe the chief application case studies that have used MyPYTHIA. One of these studies — involving
PDE benchmarks — is described in greater detail in the next section.

4.1 Numerical Quadrature

The recommendation problem addressed by this study is to select an method to evaluate a given integral ��������� �
	 ���	 so that relative error ������� and � & is minimized; where � is an user–specified error requirement and
� & is the number of times � �
	 � is evaluated in � ������� to yield the desired accuracy. For this testcase of MyPYTHIA,
we have utilized � ��� routines from the GAMS cross-index [4], where the category H2a is for the evaluation of
one dimensional integrals. A collection of 286 test problems and 124 methods were identified. The libraries from
which the routines are obtained are QUADPACK, NAG, IMSL, PORT, SLATEC, JCAM and the collected methods
of the ACM (TOMS). The test problems were selected so that they exhibit interesting or common features such
as smoothness (or its absence), singularities, discontinuities, peaks, and oscillation. Some of the functions were
selected so that they satisfy the special considerations on which some methods are designed. For example, routine
QDAWO requires that its argument contain a sine or a cosine. Most of the functions are parameterized, which
generates families of integrands with similar features and characteristics – this aids in the generalization of the
system. For each routine and each applicable integrand, experiments were conducted with varying requirements on



the relative error accuracy ��� . The number of accuracy levels was ��� and the strictest error requirement used was
������� .

Detailed results are presented in [30]. We briefly summarize that the knowledge discovered through our method-
ology correspond to accepted general knowledge about numerical integration routines. It was observed, for example,
that the adaptive methods use fewer function evaluations to achieve high–accuracy results than their non–adaptive
counterparts; conversely, they use more evaluations to meet low–accuracy constraints. A high accuracy adaptive
method has been found to be more suitable for an oscillating integrand. This could possibly be due to the fact that
in an oscillating function, subdivisions are spread over the entire domain of integration and hence a smaller number
of subdivisions are required to achieve a fairly high degree of accuracy. Conversely, integrands with singularities or
peaks are more amenable to low and medium accuracy adaptive routines. There are many more such observations,
and we have reproduced only the most interesting here. Finally, this implementation has helped identify ‘redun-
dant’ methods, i.e., methods which perform almost exactly the same for the test functions considered in this work.
For example, the rules selecting the methods DPCHIA, DCSITG and DCSPQU contained the same antecedents.
DPCHIA evaluates the given integral using piecewise cubic Hermite functions, DCSITG evaluates the integral of a
cubic spline and DCSPQU also uses spline interpolation. One interpretation for this result is that quadrature methods
using fitted functions often utilize similar mechanisms for obtaining data-dependent break points (for use in Hermite
cubics or as knots in spline-based methods).

4.2 PDE Software

The recommendation problem addressed by this case study is to select an method to solve ����� � 	�
 � , ����
� 	�
 ��� , such that relative error ��� � � and time ��� ���

, where � is a second order, linear elliptic operator,  is a
differential operator involving up to first order partial derivatives of � , � is a bounded open region in

�
–dimensional

space, and � ,
�

are performance criteria constraints. In this study, we restrict ourselves to rectangular domains.
Accuracy is measured as the maximum absolute error on the rectangular mesh divided by the maximum absolute
value of the PDE solution. Performance studies are conducted and the amount of time required to obtain three levels
of accuracy — ������� , ������� and ������� — is tabulated. We use linear least squares approximation to the profile data
as this allows us to interpolate between the discrete values of the meshes to specify the size necessary to obtain a
specified accuracy. We use the population in [33] of ��� linear second–order elliptic partial differential equations. The
primary motivation for developing this population was to aid in the performance evaluation of numerical software.
Forty two of the PDEs from this population are parameterized which gives rise to a huge number of PDEs, numbering
nearly

� ��� . We use several features of these PDEs to aid in method selection. The principal characteristics used
are those of the operator and right side (analytic, constant coefficients, nearly singular behavior, oscillatory, jump
discontinuity, singular, peaked, singular derivatives, entire), boundary conditions (as being mixed, homogeneous,
Dirichlet, Neumann, constant coefficients, etc.) and those of the domain (unit square, variable square, rectangle,
etc.).

This case study is described in greater detail in Section 5. We briefly summarize the results here. The rules
discovered confirm the statistically discovered conclusion in [15] that higher order methods are better for elliptic
PDEs with singularities. They also confirm the general hypothesis that there is a strong correlation between the
order of a method and its efficiency. There were several other interesting inferences drawn. The rule that had the
maximum cover from the data was the one which stated that the 9-point FFT method is best for a PDE if the PDE
has a Laplacian operator, homogeneous and Dirichlet boundary conditions and discontinuous derivatives on the right
side. Finally, an approximate ordering was induced for the overall population. This gave rise to the ordering whose
posited ranks correspond most closely to that for Poisson problems which formed the bulk of our population. In
overall, the rules from this study performed best method recommendation for ����� � of the cases.



4.3 Performance Modeling of Large Scientific Codes

Our final case study involved assessing performance models of Sweep3D, a complex ASCI benchmark for the
solution of 3D time-independent, neutron particle transport equations [2]. Available in FORTRAN code in the
public domain, it forms the kernel of an ASCI application and involves solving a group of time-independent discrete-
ordinate (Sn), neutron particle transport equations on a XYZ cartesian cube [20]. The XYZ geometry is represented
by an IJK logically rectangular grid of cells. The angular dependence is handled by discrete angles with a spherical
harmonics treatment for the scattering source. The solution involves two steps: the streaming operator is solved by
sweeps for each angle and the scattering operator is solved iteratively.

The first recommendation goal is to facilitate the selection of computational parameters of the application/machine
pair in order to achieve pre-specified performance goals. For example, in the context of SWEEP3D application, it
can be used to obtain the parameters of the underlying algorithm (e.g., grid size, spacing, scattering order, angles,
k-blocking factor, convergence test), system (e.g., I/O switches), and the target machine (e.g., processor configura-
tion). Thus, in the case of a fixed application/architecture pair where the parameters are a priori known and there
are performance data for various values of the parameters, then MyPYTHIA can be used a) to identify the best pair
from the given performance data for different levels of performance, b) to identify the best pair for a specified per-
formance objective (i.e., execution time, cost), and c) to identify the best pair including an estimate of its parameters
by specifying certain a priori selected features of the pair.

The second recommendation goal is to automatically classify the various designs/implementations based on
their performance data by using well designed benchmarks with specific features and with respect to range values of
some performance indicators or features. Here, the user might want to see a classification of the data with respect to
performance levels or certain features (i.e., architectural model, shared memory, distributed memory, etc.)

The third goal is to predict the performance of a conceptual design by comparing it with the performance of
existing ‘similar’ designs/implementations and assuming some user defined computational goals and design features.

5 A Complete MyPYTHIA Application

We present a case study that demonstrates how a knowledge engineer can use MyPYTHIA to discover and evaluate
the pertinent knowledge needed to solve the software selection problem for a certain population of PDEs.

For this case study we have selected � � benchmark PDE problems from [15] for which the solutions exhibit
singularities or near singularities. Each of the � � problems is parameterized by 3 sets of equation coefficients and 5
different grid sizes, resulting in a total population of � � � � � � � � � � unique PDE problems. The seven methods
to be evaluated by this case study of MyPYTHIA for solving the problems are listed in Table 1. Each of the

� � �
problems represents a subset of the feature space which contains � � features. These features have been categorized
into six classes: features for the PDE operator, the PDE, the right hand side, the solution, the boundary conditions,
and the domain. Each class of features is shown in a separate table: Table 2 lists the operator features, Table 3 lists
the PDE features, Table 4 lists the right hand side features, Table 5 lists the boundary condition features, Table 6 lists
the solution features, and Table 7 lists the domain features.

As described in a previous section, the performance data must be generated by the PDE expert outside of
the MyPYTHIA system, and then imported into MyPYTHIA in an XML-like format according to the underly-
ing database schema for the MyPYTHIA performance records. In the rest of this section, we present some of the
important principles related to the modeling and analysis of this domain using MyPYTHIA.

The ‘feature-measure context’ for this case study contains logical references to � � different analyzer ranking
runs. Each analyzer run considers one of the benchmark PDEs across the � coefficient parameter sets and � grid size
parameters. Each run addresses the two measures selected by the PDE expert for analyzing the effectiveness and
efficiency of the � numerical methods: accuracy (error in the computed solution) and elapsed CPU time in solving



Table 1: Numerical methods to be evaluated by MyPYTHIA.
Program Name Method Implemented

5-POINT STAR Ordinary second-order finite differences; Gauss Elimination
P3C1-COLLOCATION Fourth-order collocation with Hermite bicubics; Gauss Elimination
DYAKANOV CG Ordinary second-order finite differences; iteration with generalized

marching method and conjugate gradient method
DYAKANOV CG-4 Dyakanov CG with Richardson extrapolation to achieve

fourth-order accuracy
FFT9(IORDER=2) Ordinary second-order finite differences and Fast Fourier Transform
FFT9(IORDER=4) Fourth-order finite difference method and Fast Fourier Transform
FFT9(IORDER=6) Sixth-order finite difference method and Fast Fourier Transform

Table 2: Symbolic names and descriptions of features for the operator.
Feature Name Description

opConstCoeff Constant Coefficient
opGeneral General Operator
opHelmholtz ���������	�
��������������
opLaplace � ��� ��� ����� �
�����������
opSelfAdjoint ��� � � � � � �� � � � � � ��! ���"�#�$�&%'�(�*)
opPoisson �����+������� � �
� ��� �����
opSmoConst Constant Operator Smoothness

Table 3: Symbolic names and descriptions of features for the PDE.
Feature Name Description

pdeAnalytic PDE problem is analytic
pdeEntire PDE problem is entire
pdeConstCoeff PDE problem has constant coefficients
pdeNearlySingular PDE problem is nearly singular
pdeOscillatory PDE problem is oscillatory
pdeJump PDE problem has a jump discontinuity
pdeSingular PDE problem is singular (infinite)
pdePeaked PDE problem is parameterized or peaked
pdeCompComplex PDE problem is computationally complex
pdeSingDeriv PDE problem has singular derivatives
pdeSmoConst Smoothness of PDE problem is constant
pdeSmoEntire Smoothness of PDE problem is entire
pdeSmoAnalytic Smoothness of PDE problem is analytic
pdeSmoDiscDeriv Smoothness of PDE problem has discontinuous derivatives
pdeSmoSingular Smoothness of PDE problem is singular
pdeSmoOscillatory Smoothness of PDE problem is oscillatory
pdeSmoCompComp Smoothness of PDE problem is computationally complicated



Table 4: Symbolic names and descriptions of features for the right hand side.
Feature Name Description

rhsEntire Right hand side is entire
rhsAnalytic Right hand side is analytic
rhsSingular Right hand side is singular (infinite)
rhsSingDeriv Right hand side has singular derivatives
rhsConstCoeff Right hand side has constant coefficients
rhsNearlySingular Right hand side is nearly singular
rhsPeaked Right hand side is parameterized or peaked
rhsOscillatory Right hand side is oscillatory
rhsHomogeneous Right hand side is homogeneous
rhsCompComplex Right hand side is computationally complex
rhsSmoConst Smoothness of right hand side is constant
rhsSmoEntire Smoothness of right hand side is entire
rhsSmoAnalytic Smoothness of right hand side is analytic
rhsSmoDiscDeriv Smoothness of right hand side has discontinuous derivatives
rhsSmoSingular Smoothness of right hand side is singular
rhsSmoOscillatory Smoothness of right hand side is oscillatory
rhsSmoPeaked Smoothness of right hand side is peaked
rhsSmoCompComp Smoothness of right hand side is computationally complicated

Table 5: Symbolic names and descriptions of features for the boundary condition.
Feature Name Description

bcHomogeneous ����� on boundary
bcDirichlet ������� on boundary
bcNeumann � ��� ��� on some boundary
bcMixed ���&��� ��� ��� on some boundary
bcConstCoeff Boundary condition has constant coefficients
bcVarCoeff Boundary condition has non-constant coefficients

Table 6: Symbolic names and descriptions of features for the solution.
Feature Name Description

solEntire Solution is Entire
solAnalytic Solution is Analytic
solSingular Solution is singular (infinite)
solSingDeriv Solution has singular derivatives
solOscillatory Solution is oscillatory
solWaveFront Solution has a wave front
solBoundLayer Solution has a boundary layer
solPeaked Solution is parameterized or peaked
solUnknown Solution is unknown
solNearSingular Solution is nearly singular
solVarSmooth Solution has variable smoothness
solSmoEntire Smoothness of the solution is entire
solSmoAnalytic Smoothness of the solution is analytic
solSmoSingDeriv Smoothness of the solution has singular derivatives
solSmoOscillatory Smoothness of the solution is oscillatory
solSmoWaveFront Smoothness of the solution has wave front
solSmoDiscDeriv Smoothness of the solution has discontinuous derivatives
solSmoSingular Smoothness of the solution is singular
solSmoBoundLayer Smoothness of the solution has a boundary layer
solSmoPeak Smoothness of the solution has a peak
solSmoTabled Smoothness of the solution is tabled



Table 7: Symbolic names and description of features for the domain.
Feature Name Description

domVariableSquare ����� � ��� ��� ��� � � �	��� , where � can vary
domUnitSquare � � ��
 ��� � � �
 �
domSquare ����� � ��� ��� �	� � � ����� where � is a constant
domRectangle ����� � ��� � � ��� �
domVariableRectangle � � ��� ��� ������� �

the problem. As each analyzer run is initiated, the values for these two measures are retrieved from the performance
database records for the parameterized variations of a specific benchmark problem. Thus, � � � � � � � � ����� problem-
method instances of elapsed time and error are extracted for each run, and

� � � � � � � � � � problem-method instances
are accessed for the complete ranking analysis.

The full list of features to be used in the knowledge discovery process is also identified in the ‘feature-measure
context.’ We have selected � � features covering the entire suite of classes for the operator, PDE, right hand side,
solution, solution, boundary conditions and domain. All of the features are identified by symbolic names and are
associated with boolean values, i.e., the ‘possible values’ assumed by these features listed in the FEATURE recored
is true/false. The boolean value indicates whether the named feature belongs to the PDE problem or not.

The ‘feature-measure context’ controls the entire process of analyzer ranking and rules generation. The analyzer
builds performance profiles for each numerical method applied to each unique PDE problem, maintaing the resulting
profile data in the database. The profiles are used by the statistical analyzer to rank the methods for each of the � �
benchmarks, in each case using a rank sum analysis applied to the rankings across the parameter variations of a given
benchmark problem. After the method ranking for each benchmark record has been determined, the benchmark’s
features to be considered (according to the ‘feature-measure context’) are retrieved and a predicate is generated
attaching the method ranked first as the best method for the corresponding benchmark problem.

The predicates generated in this way, along with the predicates stating the features of each benchmark, are saved.
Based on the knowledge discovery process selected by the domain expert, different filters are used by the system to
transform the predicate information to an appropriate format for the knowledge discovery tool. MyPYTHIA system
utilizes many tools for the knowledge discovery phase, but in this case study we discuss only the PROGOL system,
because it is the only one that is currently interfaced with MyPYTHIA’s web Recommender system.

PROGOL [5] induces logical descriptions of relations in a subset of first order predicate logic. This means that
the induction process is extremely expensive. For this reason, the concept space to be explored by PROGOL must
be well suited to the domain under consideration. This becomes obvious if we consider that PROGOL immediately
fails to induce any rule for the � � -dimensional space of our case study due to resource limits. A solution to this
problem, then, is to reduce the high dimensional space of this study. In order to accomplish this, we make use of the
feature subset selection utility that is offered by the MLC++ library. The feature subset selection is a wrapper inducer
(in the sense that it wraps around a regular inducer) and selects a good subset of features for improved accuracy
performance. This topic has been fully covered in [21].

By applying this methodology to the feature space in this case study we end up with only four features that are
chosen by the feature subset selection process as the most important for the identification of the classes. The results
from the feature subset selection process are illustrated in Figure 6.

The most important information to be acquired from the feature subset selection process is the list of numbers
inside the square brackets which specify the index of the features considered as the most important by the program,
along with an estimation of the error attained for each one of the subsets of features selected as best each time.
The indices of the selected features are: � , � � , ��� , and

� � . The indexing scheme assumed by the method considers
the first feature as having index � . For this reason the selected features are: opGeneral, pdeSmoCompComp,
rhsAnalytic, and rhsEntire. We also observe that the error falls from � � � to � � � . The wrapped inducer in



New best node (1 evals) #0[]: error: 70.00% +- 10.48% (0.00% -
100.00%).

Test Set: 70.00% +- 8.51% [52.12% - 83.34%]. Bias: 0.00% cost: 10
complexity: 0

...................................................................
New best node (68 evals) #66[1, 14, 21]: error: 36.67% +- 7.78%

(0.00% - 66.67%).
Test Set: 33.33% +- 8.75% [19.23% - 51.22%]. Bias: 3.33% cost: 10
complexity: 3

................................................................
New best node (132 evals) #86[1, 14, 19, 21]: error: 30.00% +- 5.98%

(0.00% - 66.67%).
Test Set: 26.67% +- 8.21% [14.18% - 44.45%]. Bias: 3.33% cost: 10
complexity: 4

Figure 6: Output generated by the feature subset selection process for the feature space of the PDE with (near)
singularities case study.

Table 8: Confusion matrix for the wrapped ID3 inducer.
(a) (b) (c) (d) (e) (f) (g) Classes��� � � � � � � � � �"� � � � � � � � � � � � � � � �"� (a) 5-point star and band ge

 � � � � � � � � � �"� � � � � � � � � � � � � � � �"� (b) hermite collocation and band ge
� � � � � � � � � � �"� � � � � � � � � � � � � � � �"� (c) dyakanov-cg
� � � � � � � � � � �"� � � � � � � � � 
 � � � � � �"� (d) dyakanov-cg4
� � � � � � � � � � �"� 
 � � � � � � � � � � � � � �"� (e) fft 9 point order 2
� � � � � � � � � � �"� � � � � � � � � � � � � 
 � �"� (f) fft 9 point order 4
� � � � � � � � � � �"� 
 � � � � � � � 
 � � � ��� �"� (g) fft 9 point order 6

this case is the ID3 inducer. The final error for the ID3 inducer using a ��� -fold cross validation is only
� �	� ��� ��� .

Table 8 shows the confusion matrix for the problem instances used in this case study.
The rule set produced by PROGOL along with coverage statistics of each non-trivial (compressed) rule is shown

in Figure 7. Each logical rule generated by PROGOL is associated with an information compression factor measuring
the generalization accuracy of the rule. Its simple formula is � � 0 � � ��
 ��
��� where 0 and � are the number
of positive and negative examples respectively covered by a specific rule, � is the number of predicates in the body
of the clause/rule, and  is the number of predicates which must be added to the clause to complete the relationship
between variables in the head of the clause. The information compression factor is used for ordering the rules in the
rule base in a decreasing order and values for each one of these rule parameters are shown in Figure 7.

The confusion matrix by using the leave-one-out accuracy estimation technique for the rule set shown in Figure 7
is illustrated in Figure 8. The column labeled A in the contingency table represents the examples that are known to
belong to the set of positive examples while the column labeled Ã consists of negative examples. The positive and
negative examples, in sequel, are separated into two different categories: the category P, which includes the number
of examples that they were predicted as positive and P̃, the examples that were predicted as negative examples.
Additional information related to confidence and overall accuracy is also shown in Figure 8.



best_method(p2,fft_9_point_order_2).
best_method(p9,fft_9_point_order_6).
best_method(p19,fft_9_point_order_4).
best_method(A,5-point_star_and_band_ge) :- opGeneral_yes(A).
f=278,p=40,n=1,h=0 best_method(A,hermite_collocation_and_band_ge)
:- pdeSmoCompComp_yes(A). f=278,p=40,n=1,h=0
best_method(A,fft_9_point_order_4) :- rhsEntire_yes(A).
f=276,p=50,n=2,h=0 best_method(A,dyakanov-cg4) :- opGeneral_no(A),
pdeSmoCompComp_no(A). f=240,p=80,n=13,h=0
best_method(A,fft_9_point_order_6) :- opGeneral_no(A),

pdeSmoCompComp_no(A), rhsEntire_no(A).
f=216,p=50,n=10,h=0 [Total number of clauses = 8]

Figure 7: Rule set generated by PROGOL rule generation program along with coverage statistics.

[Partial accuracy= 149/210] Contingency table=
________A________˜A

P| 24| 55| 79
|( 11.3)|( 67.7)|

˜P| 6| 125| 131
|( 18.7)|( 112.3)|
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

30 180 210
[Overall accuracy= 70.95% +/- 3.13%]
[Chi-square = 24.72] [Without Yates correc-
tion = 26.79]
[Chi-square probability = 0.0000]

Figure 8: Contingency matrix representing accuracy information and statistics for the rule set generated for the PDE
case study.



6 Discussion

As a recommendation portal, MyPythia enables the complete automation, generation, and maintenance of domain
specific recommender systems, but does not neglect human intervention throughout the process. Our modularized
system enables a data-driven approach to grid computing, by clearly defining the interfaces at which human support
or iteration can take place. Our open database architecture can easily scale with the quantity and variety of infor-
mation that will be generated by recommendation studies. By facilitating efficient storage and retrieval for data-
intensive computing in scientific simulations, MyPYTHIA serves as a complementary approach to other projects
in Grid computing that provide decision-support in the form of data management facilities [8, 19, 23, 24, 28].
MyPYTHIA’s system design and architecture are novel in that they formalize the scientific software recommen-
dation problem and point in the direction of connecting such services with grid information services and other
knowledge-based portals.
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