
A Distributed Computing Environment for
Interdisciplinary Applications

Jerry A. Clarke

US Army Research Laboratory
Aberdeen Proving Ground, MD

clarke@arl.army.mil

Raju R. Namburu
US Army Research Laboratory
Aberdeen Proving Ground, MD

raju@arl.army.mil

ABSTRACT

Practical applications are generally interdisciplinary in nature. The technology is
well matured for addressing individual discipline applications and not for
interdisciplinary applications. Hence, there is a need to couple the capabilities of several
different computational disciplines to address these interdisciplinary practical
applications. One approach is to use coupled or multi-physics software, which typically
involves developing and validating the entire software spectrum for a specific
application, which will be time consuming and may require more time to get to the end
user. The other approach is to integrate individual well-matured computational
technology discipline’s software by taking advantage of the existing scalable software
and validation investments, and tremendous developments in computer science and
computational sciences. This integrated approach requires consistent data model, data
format, data management, seamless data movement, and robust modular scalable
including coupling algorithms. To address these requirements, we developed a new
flexible data exchange mechanism for HPC codes and tools, known as the eXtensible
Data Model and Format (XDMF). XDMF provides computational engines with the tools
necessary to exist in a modern computing environment with minimal modification.
Instead of imposing a new programming paradigm on HPC codes, XDMF uses the
existing concept of file I/O for distributed coordination. XDMF incorporates Network
Distributed Global Memory (NDGM), Hierarchical Data Format version 5 (HDF5), and
eXtensible Markup Language (XML) to provide a flexible yet efficient data exchange
mechanism. . This paper discusses development and implementation of distributed
computing environment for interdisciplinary applications utilizing the concept of a
common data hub. Also, the implementation of XDMF is demonstrated for a typical
blast-structure interaction interdisciplinary application.

mailto:Clarke@arl.army.mil
mailto:Raju@arm.army.mil

 1

1.0 INTRODUCTION

Many challenging High Performance computing applications require the use of
capabilities from separate computational disciplines. For example, simulating a blast
interacting with a structure requires the integration of a Computational Fluid Dynamics
(CFD) code with Computational Structural Mechanics (CSM) code, and Computational
Chemistry and Material Science (CCM) code along with a mathematically consistent
coupling algorithms at the interfaces. That is, an interface definition consistent with the
numerical approaches used between each discipline’s software, namely blast and
structure in a mathematically consistent manner is required to address this application.
On the other hand, multi-physics codes attempt to provide this functionality utilizing
unified numerical algorithms or single software starting from partial differential
equations. The computational approach discussed in this paper involves coupling
existing validated individual codes from each discipline by taking advantage of
tremendous developments in computer science, interface or coupling algorithms, and
computational sciences. While individually impressive, these codes are typically not
designed to be coupled. Additionally, attempting to modify the internal communications
scheme of these scalable codes is not only difficult but could possibly affect their
validity.

Existing systems like Globus[1] and Legion[2], CORBA[3], KeLP[4], and the Active
Data Repository[5] provide data exchange mechanisms among their services. Systems
like POLYLITH[6], Darwin[7], and Olan[8] provide a software module interconnection
framework. While these systems have met with varying amounts of success, they are not
currently sufficient for our purposes since implementation can require significant site
wide coordination or significant modification to existing software. Emulating the concept
of a common I/O in a parallel and efficient manner alleviates these problems. Individual
codes can periodically read and write necessary data to a centrally accessible location in
order to exchange necessary information. As long as individual codes can agree on a
common data model and format, this approach can be extended to a wide variety of HPC
codes. While not as efficient as single multi-physics coupling software, this approach has
the potential to add significant functionality to current HPC software.

Hence, a common, active, data model and format suitable for the heavily used HPC codes
is needed. HDF5 defines a feature rich data format for structured and unstructured
datasets as well as groups of data. Hence, we opted for HDF5 for storage of enormous
datasets. For description of the meaning of data or small amounts of data, we have chosen
to use the eXtenisible Markup Language (XML). While HDF5 has an “attribute” facility
for storing name=value pairs, the use of XML allows us to easily support other heavy
data formats as necessary. Additionally, the enormous amount of software available to
process XML makes it a natural candidate for storage and manipulation of data. Each
individual discipline computational software is scalable. That is, each runs on a set of
distributed processors. Hence, there is a need for field requests and data transfers while
the software is being executed for these coupled applications. This requirement is
fulfilled by Network Distributed Global Memory (NDGM) which provides a physically
distributed, logically shared, unstructured memory buffer. Instead of handling the

 2

mapping and unmapping of memory pages automatically, NDGM is accessed through a
subroutine interface. While less automatic, this allows applications to form a
“cooperative shared memory” that is simple yet efficient. NDGM is a client-server layer
that consists of multiple server processes and an Application Programmers Interface
(API) for clients. Each server maintains a section of a virtual contiguous buffer and fields
requests for data transfer and program synchronization. Clients use the API to transfer
data in and out of the virtual buffer and to coordinate their activity.

Through the use of HDF5, XML, and NDGM we have defined the “eXtensible Data
Model and Format “ (XDMF). It provides a level of abstraction for enormous distributed
datasets. Computational codes, visualization, and user interface can all interface with the
data in a well-defined method without severely limiting performance. As mentioned
previously, XDMF is both a data model and format. It allows for a self-describing
method of storing large data structures and the information necessary to tell how the data
is to be used. This not only makes it possible to combine the capabilities of several
codes, but also makes the development of reusable pre and post-processing tools possible.

The rest of the paper is organized as follows: first we discuss the main components of
XDMF, namely, NDGM, XML, and HDF5. Next we discuss the data model and format
through a simple example. Finally a simple numerical example utilizing the XDMF is
provided before the conclusion.

2.0 eXtensible Data Model and Format (XDMF)

XDMF can best be described as an active data model and format. It is a self-describing
data hub that can be dynamically updated by multiple clients. Data format (number type,
array dimensions, etc.) is managed separately from data model (how data is to be used).
This greatly enhances the flexibility of the system.

Data format refers to the raw data to be manipulated. Information like number type (
float, integer, etc.), precision, location, rank, and dimensions completely describe any
dataset regardless of its size. The description of the data is also separate from the values
themselves. We refer to the description of the data as “Light” data and the values
themselves as “Heavy” data. Light data is small and can be passed between modules
easily. Heavy data may be potentially enormous; movement needs to be kept to a
minimum. Due to the different nature of heavy and light data, they are stored using
separate mechanisms. Light data is stored using XML, Heavy data is typically stored
using HDF5. While we could have chosen to store the light data using HDF5 “attributes”,
using XML does not require every tool to have access to the compiled HDF5 libraries in
order to perform simple operations.

Data model refers to the intended use of the data. For example, a three dimensional array
of floating point vales may be the X,Y,Z geometry for a grid or calculated vector values.
Without a data model, it is impossible to tell the difference. Since the data model only
describes the data, it is purely light data and thus stored using XML. It is targeted at
scientific simulation data concentrating on scalars, vectors, and tensors defined on some

 3

type of computational grid. Structured and Unstructured grids are described via their
topology and geometry. Calculated, time varying data values are described as “attributes”
of the grid. The actual values for the grid geometry, connectivity, and attribute values are
contained in the data format. This separation of data format and model allows HPC codes
to efficiently produce and store vales in a convenient manner without being encumbered
by our data model which may be different from their internal arrangement.

Utilizing the common data model and format, codes and tools can produce and consume
data just as they would write and read any other data file. These data “files”, however,
can exist in a distributed shared memory system (called NDGM) which has barriers and
semaphores to help coordinate parallel activity. This is what makes XDMF more than just
another file format.

2.1 Network Distributed Global Memory

At the heart of the data organization, is a unique heterogeneous shared memory system.
Network Distributed Global Memory (NDGM) [9] provides ICE with a physically
distributed, logically shared, unstructured memory buffer. But instead of handling the
mapping and unmapping of memory pages automatically, NDGM is accessed through a
subroutine interface. While less automatic, this allows applications to form a
“cooperative shared memory” that is simple yet efficient.

NDGM is a client-server layer that consists of multiple server processes and an
Application Programmers Interface (API) for clients. Each server maintains a section of a
virtual contiguous buffer and fields requests for data transfer and program
synchronization. Clients use the API to transfer data in and out of the virtual buffer and to
coordinate their activity.

Calls to the API result in lower level messages being sent to the appropriate NDGM
server that keeps track of its piece of the total virtual buffer. The API translates the global
memory address into a local address that the server then transfers from its local memory.

Client programs use an API to access the virtual NDGM buffer as contiguous bytes. No
structure is placed upon the NDGM buffer; the application can impose any structure on
this buffer that is convenient. In addition, NDGM is designed to implement a system of
applications in contrast to a single monolithic parallel application. The API includes
facilities to get and put contiguous memory areas, get and put vectors of data, acquire and
release semaphores, and to initialize and check into multiple barriers.

Each server maintains a local memory buffer that maps into the virtual buffer address
space. This local buffer can be in one of three locations: local address space (obtained via
malloc), system shared memory, or a local file. If system shared memory is used, a client
executing on the same physical machine as the server accesses the shared memory
instead of making requests to a server. This access is transparent to the NDGM client
application and results in faster data transfers. Using a file as the server's local storage
allows NDGM servers to restart with their local memory already initialized.

 4

Clients and servers run on top of a layered message-passing interface. Similar in concept
to well known message passing interfaces like PVM or MPI, this layer provides a level of
abstraction, freeing the upper layers from the details of reading and writing data. The
NDGM message-passing layer has fewer facilities than either PVM or MPI but is
designed to pass NDGM data efficiently with minimal copying. This layer provides calls
to establish connections, send messages, probe for incoming messages, read messages,
and close connections.

Process Local
Address Space

System Shared Memory Disk File

0 10M 30M 50M

Physical Data Storage

Servers

Clients

Network Distributed Global Memory

Put
Get

VectorPut
VectorGet

Barrier
Semaphore

Figure 1. Emulating Shared Memory on Distributed Systems

NDGM has been used to develop parallel applications, but it is particularly useful as a
“data rendezvous” for a collection of applications. A parallel, computationally intensive
code can write a snapshot of data to NDGM then continue its’ processing. The data can
then be visually inspected, through 2D plots and 3D surfaces, while not inhibiting the
progress of the code.

2.2 Hierarchical Data Format

NDGM provides a distributed, heterogeneous unstructured buffer. To provide some
structure to this buffer, ICE uses the “Hierarchical Data Format Version 5” (HDF5)[10]
from the National Center for Supercomputing Applications (NCSA). HDF5, a well-
known and widely used format, is designed to allow an orderly access to structured and

 5

unstructured datasets. All access is accomplished through a well-defined application
programmer’s interface (API) .

The HDF5 API provides an efficient and powerful means of describing and accessing
both data values and the associated meta-data (data about the data). HDF5 defines data
types (chars, integers, and floats of various precisions and byte orders) and data space (
rank and dimensions). There is a grouping facility that allows the construction of a
directed acyclic graph description of the data arrangement and an attribute facility to
store name=value pairs. In addition to allowing access to disk files, HDF5 provides a
“Virtual File Layer”. This allows the user to add “drivers” for data access. We have
written an HDF5 “driver” for NDGM that allows for NDGM access via the standard
HDF5 API.

To simplify access to HDF5 files accessed via separate drivers, we have introduced the
concept of “domains”. HDF5 uses filenames in several of its’ API routines. If these
filenames are prepended by “NDGM:”, the HDF data refers to NDGM. For
completeness, prepending “FILE:” to the filename refers to a disk file. If the domain is
omitted, a disk file is assumed. This new HDF driver allows a single application to store
data on disk, in distributed memory, or in both.

2.3 eXtensible Markup Language

HDF5 defines a feature rich data format for structured and unstructured datasets as well
as groups of data. We primarily use HDF5 for storage of enormous datasets or “Heavy”
data. For description of the meaning of data or small amounts of data, we have chosen to
use the eXtenisible Markup Language (XML). While HDF5 has an “attribute” facility for
storing name=value pairs, the use of XML allows us to easily support other heavy data
formats as necessary. Additionally, the enormous amount of software available to process
XML makes it a natural candidate for storage of this “Light” data.

XML is human readable text originally intended for use on the Web. XML looks like
HTML but allows the definition of the tags and attributes. XML can be stored in a file or
transmitted like any other character string. Through the use of freely available software,
XML can be “parsed” into an in-memory tree structure [11]. Tree nodes can be added,
modified, or deleted. The resulting tree can then be “serialized” back into an XML string.
Since XML is just text, any program can produce it without the need for special libraries.

The data model in XDMF is stored in XML. This provides the knowledge of what is
represented by the Heavy data. In this model, HPC data is viewed as a hierarchy of
Domains. A Domain may contain one or more sub-domains but must contain at least one
Grid. A Grid is the basic representation of both the geometric and computed/measured
values. A Grid is considered to be a group of elements with homogeneous Topology and
their associated values. If there is more than one type of topology, they are represented in
separate Grids. In addition to the topology of the Grid, Geometry, specifying the X, Y,
and Z positions of the Grid is required. Finally, a Grid may have one or more Attributes.

 6

Attributes are used to store any other value associated with the grid and may be
referenced to the Grid or to individual cells that comprise the Grid.

The XML may be passed as an argument, stored in an external file or communicated via
a socket mechanism. For customization purposes, tools can also augment the standard
content with XML “processing instructions”. This is useful for attaching peer level
information to the standard XML content without modifying the base specification.

HDF5

File

Domain

Topology
1 Million

Hexahedra

Grid

Geometry
XYZPoints.h5

Attribute
NDGM:Pressure.h5

XML

HPC
Code

Domain Grid

HDF5

 Complexity of Model Defined in Light Data

 HPC Code I/O is Natural and Efficient

NDGM GASS

Attribute
NDGM:Temperature.h5

Figure 2. Separating Light and heavy data

The concept of separating the light data from the heavy data, as shown in Figure 2, is
critical to the performance of this data model and format. HPC codes can read and write
data in large, contiguous chunks that are natural to their internal data storage, to achieve
optimal I/O performance. If codes were required to significantly re-arrange data prior to
I/O operations, data locality, and thus performance, could be adversely affected,
particularly on codes that attempt to make maximum use of memory cache. The
complexity of the dataset is described in the light data portion, which is small and
transportable. For example, the light data might specify a topology of one million
hexaherda while the heavy data would contain the geometric XYZ values of the mesh and
pressure values at the cell centers stored in large, contiguous arrays. This key feature will
allow reusable tools to be built that do not put onerous requirements on HPC codes.
Despite the complexity of the organization described in the XML below, the HPC code
only needs to produce the three HDF5 datasets for geometry, connectivity, and pressure
values.

Through the use of NDGM, HDF, and XML we have defined the “eXtensible Data
Model and Format “ (XDMF). It provides a level of abstraction for enormous distributed

 7

datasets. Computational codes, visualization, and user interface can all interface with the
data in a well-defined method without severely limiting performance. As mentioned
previously, XDMF is both a data model and format. It allows for a self-describing
method of storing large data structures and the information necessary to tell how the data
is to be used. We provide a C++ class library mainly as a convenience layer. Codes and
tools use this layer from C++, C, or FORTRAN to easily access any XDMF functionality.
In addition, this layer has been “wrapped” for access from Tcl, Python, and Java.

3.0 Accessing eXtensible Data Model and Format (XDMF)

The computationally intensive components of a large system are generally developed
using system-programming languages like C, C++, or FORTRAN. Once these
computationally intensive components have been developed however, they may be
“glued” together in a number of ways to provide the overall required functionality. Using
a system-programming language for this task is tedious, time-consuming, and inflexible.

Scripting languages are specifically designed for this purpose. They tend to be “weakly-
typed” so that the output of one component can easily be used as the input to another with
little concern over the “type” of the data. While one pays in runtime efficiency for this
flexibility, scripting languages are intended to call large chunks of functionality and not
be used for fine grain control.

Languages like Java, Python and Tcl, are supported on a variety of platforms and can be
used to glue together existing programs. One can also extend the functionality of any of
these scripting languages by adding additional commands. In addition to developing
callable functions in the language itself, this is accomplished by adding a “wrapper” to
interface the language command-calling interface with the argument list of a system-
programming routines that implements the desired functionality efficiently. “The
Simplified Wrapper and Interface Generator” (SWIG) is a widely used tool that
generates these wrappers for code written in C or C++ for access via languages like Tcl,
Python, and Java. SWIG allows commands to be added to these languages that access the
custom code in an object-oriented fashion.

While significantly different in syntax, most scripting languages are similar in
functionality. The choice of a scripting language can regularly be a matter of personal
preference. XDMF has been wrapped to provide interfaces to Java, Tcl, and Python.
Access to FORTRAN and ‘C’ is accomplished via a ‘C’ interface to C++. This flexibility
is key to providing a useful data exchange mechanism to both HPC codes which are
written in system programming languages, and analysis tools which may be written in
scripting languages. While HPC codes can access XDMF via system programming
languages, custom tools can be written in high level languages that maintain much of the
performance of the system programming language components.

Scientific Visualization is a critical component of ICE. Both runtime and post-processing
visualization are possible when using XDMF as the data hub. Because of the various

 8

capabilities of different visualization packages, we support both commercial and Open
Source products.

The commercial product EnSight from CEI is supported via a “data reader”. EnSight
loads the reader at runtime from a shared object that can then convert and external
XDMF dataset to EnSight’s internal representation. EnSight is a full-featured product and
is used extensively for presentation quality post-processing scientific visualization.

OpenDX is the open source software project based on IBM’s Visualization Data
Explorer. OpenDX differs significantly from EnSight in that the user connects
visualization “modules” via a data flow diagram. This makes OpenDX more configurable
than EnSight at the cost of having a more complex user interface. XDMF data is
converted to OpenDX format during runtime or during post processing. Users of
OpenDX can build custom interfaces for XDMF data while hiding the complexities of the
data flow.

The Visualization Toolkit (vtk) from Kitware is another open source visualization
software product. It is a widely used C++ class library of visualization and graphics
algorithms that includes interfaces for Tcl, Python, and Java. XDMF supports vtk
natively, that is the XDMF grid class has a method that returns a native vtk grid. Methods
also exist that assign scalars and vectors to the vtk grids. This interface allows for the
development of custom visualization tools via a programming interface.

XDMF Visualization
Toolkit (vtk)

Java
with

JFC/Swing

Tcl/Tk
with

BWidgets

Python

Figure 3. Data Access from High Level Languages

The ability to quickly prototype custom applications and tools in higher level languages
allows for the rapid development of task-specific applications. By utilizing vtk, these

 9

applications can include visualization of enormous amounts of data in addition to
graphical user interfaces.

4.0 Test Case

Naturally, the flexibility and functionality of the system sacrifice some performance
when compared to a “hard-wired” solution. A balance between functionality and
performance must be reached that allows for reusable tools that perform their function
with acceptable efficiency. In addition, to be truly useful, existing HPC programs must
be able to take advantage of the system without overly burdensome modifications.

To gauge the usefulness of the system we chose to attempt a one-way coupling of two
heavily used HPC codes to solve a relevant computational problem. An explosive charge
was simulated using the CTH code from Sandia National Laboratory[12]. A solid steel
wall was placed in the simulation that was “loaded” by the explosive charge. Next, a
concrete block wall was simulated using the ParaDyn program from Lawrence Livermore
National Laboratory[13]. Utilizing XDMF, the loading of the wall was transferred from
the structured CTH domain to the unstructured ParaDyn domain via a third “interpolator”
process. Since this problem has already been accomplished using CTH “tracer” points
and disk files[14], it gave us a method of validating the results of our new approach.

CTH ParaDyn

Interpolator

Figure 4. Coupling CTH and ParaDyn with XDMF

ParaDyn, from Lawrence Livermore National Laboratory, is a parallel version of the
widely used, finite element based structural dynamics program Dyna3D . ParaDyn, like
many currently used HPC codes, is written primarily in FORTRAN and uses MPI to

 10

achieve parallelism. We felt that adding runtime visualization capability to ParaDyn, via
ICE, would demonstrate the steps required to integrate existing components and also
result in a useful distributed application at ARL.

ParaDyn, like many HPC simulation codes, follows this basic execution:

• Read in computational grid and input parameters from the file system
• Initialize internal variables
• Iterate over the core physics routines of the code until final solution is

reached, periodically writing intermediate solutions to the file system
• Write final solution, cleanup, and exit

The additional ICE calls map well into this execution flow. Since the code is mainly
FORTRAN and ICE access is accomplished via C++, FORTAN wrapper functions are
needed to encapsulate the required ICE functionality.

For example, we write a new FORTRAN subroutine PARAINITICE(), called when
ParaDyn initializes its internal variables, to initialize the necessary ICE C++ objects and
store their addresses in static variables. When the nodes need to update XDMF, they have
access to the appropriate C++ objects.

The internal structure of ParaDyn is complex enough to place it beyond the scope of our
discussion. Suffice it to say that internal variables are accessed through an internal
database API. For simplicity, let us assume that there exists such FORTRAN subroutines
as PDGETXYZ(), PDGETNODEVAR(), and PDGETCELLVAR() to return XYZ
location and scalar values. We add a subroutine call to the main ParaDyn loop to call a
new PARACHECKICE() subroutine every iteration. This is where the majority of the
ICE functionality is accessed.

The concrete wall in ParaDyn consisted of a computational grid of about 110,000
hexahedral elements. The following XDMF XML file describes the computational grid
and a cell centered scalar. This is used as input to a visualization program or some other
post-processing analysis tool.

<XDMF>

<Domain>
<Grid

Name=”Concrete Wall”>
<Topology

Type=”Hexahrdron”
NumberOfElements=”110520”>
<DataStructure

Dimensions=”110520 8”
Format=”HDF”
DataType=”Int”

 11

Precision=”4”>
NDGM:Wall.h5:/Initial/Connections
</DataStructure>

</Topology>
<Geometry

Type=”XYZ” >
<DataStructure

Dimensions=”179685 3”
Format=”HDF”
DataType=”Float”
Precison=”8”>

NDGM:Wall.h5:/Initial/XYZ
</DataStructure>

</Geometry>
<Attribute

Name=”Effective Plastic Strain”
Type=”Scalar”
Center=”Cell”>
<DataStructure

Dimensions=”110520”
Format=”HDF”
DataType=”Float”
Precision=”8”>

NDGM:Wall.h5:/Results/EffPlaStr
</DataStructure>

</Attribute>
</Grid>

</Domain>
</XDMF>

The same overall strategy was used to outfit CTH to update XDMF. But since CTH uses
structured, rectilinear grids, the updates tend to be more efficient due to the contiguous
nature of the date. Since this is a one-way coupling, only CTH need to write information
to NDGM in order to accomplish the simulation. For visualization purposes, however,
both CTH and ParaDyn periodically output data. The visualization below shows the
initial loading of the wall represented by the colors on a mesh at the original concrete
block locations. At that point in the simulation, the initial loading, gravity, and contact
with other blocks effect the block’s displacement. The lowest row of concrete block is
fixed to the ground and not allowed to move. The simulation is small enough (about
110,000 hexahedral elements) to complete in a reasonable amount of time for
benchmarking purposes. In fact, the relatively small amount of data being sent to the
NDGM buffer and the noncontiguous nature of the unstructured mesh magnifies
communication latency effects. In addition, in order to get a “worst case” idea of the
overhead involved, we ran the problem on the IBM NH-2 (375 MHz Power3, the jobs
were submitted in a manner to distribute the work across different SMP nodes), with the

 12

NDGM buffer on one node. In this scenario, all of the MPI nodes must funnel their
runtime data to one designated “collection” node that holds the HDF5 data.

Figure 5. Loading of Concrete Wall from CTH

Primarily due to the noncontiguous nature of the finite element data, ParaDyn on the IBM
sees only about 12MB/sec effective throughput. Effective throughput is being defined as
the total amount of data being transferred over the entire run divided by the total runtime
with updates minus the total runtime without updates. To give an idea of the other end of
the performance spectrum, CTH on an Origin 2000 can see over 200MB/sec effective
throughput since large chunks of contiguous data is being transferred via system shared
memory.

With both ParaDyn and CTH, most of the interface code deals with accessing the internal
database APIs. To provide a more straightforward example, we provide a complete code
on our WEB site (http://www.arl.hpc.mil/ice) that has pre-processing, computation, and
file I/O confined to a single FORTRAN source file. The code needed to interface this
code to ICE is then added in the previously mentioned fashion. This interface is about
150 lines of C++ code. Much of this interface is reusable for other applications; the main
difference is the access of the HPC code’s internal variables. This may result in a new
convenience object to encapsulate the functionality thus reducing many interfaces to
significantly less code.

5.0 Conclusion

We developed a new eXtensible Data Model and Format for addressing interdisciplinary
applications. In addition to providing a common data model and format that allows for
the development of powerful and reusable tools, XDMF allows efficient active updates to

http://www.arl.hpc.mil/SciVis/Dice

 13

facilitate runtime visualization and HPC code coupling. The applicability of the
approach is demonstrated for an interdisciplinary blast-structure interaction application.
For this demonstration purpose, the coupled application used widely accepted individual
discipline software, namely, CTH for blast simulations and ParaDyn for structural
simulations. The approach is promising for a wide class of applications and we are
currently extending this approach for a different set of software. In addition, we are
developing a suite of reusable tools written in Java and Python to provide a complete
environment for the computational scientist. This ICE will provide a modern
environment for existing and future numerical simulations.

6.0 ACKNOWLEDGEMENTS

This work is part of the DOD High-performance Computing Modernization program
Common High-performance computing Scalable Software Initiative (CHSSI) project.
Use of SGI O3K and IBM SP at Army Research Laboratory Major Shared Resource
Center is acknowledged.

7.0 References
1. Foster, I., Antonio, J., “The Globus project: a status report”, proceedings of the
Seventh heterogeneous Computing workshop, pp 4-18, march 1998

2. Grimshaw, A., Ferrari, A., Knabe, F., Humphrey, M., “Wide area computing: resource
sharing on a large scale”, Computer , volume 32, issue 5, pp 29-37, May 1999

3. Object Management Group, “The Common Object Request Broker: Architecture and
Specification”, num. 91.12.1, December 1991

4. Baden, S.B., Fink, S.J., “A programming methodology for dual-tier multicomputers “,
IEEE Transactions on software engineering, Volume 26, Issue 3, pp 212-226, March
2000

5. Chialin Chang, Kurc, T., Sussman, A., Saltz, J., “ Optimizing retrieval and processing
of multi-dimensional scientific datasets”, Proceedings of 14th international Parallel and
Distributed Symposium, 2000. pp. 405-410, May 2000

6. Purtilo, J.M., “The POLYLITH Software Bus”, ACM TOPLAS, Vol 16, Number 1, pp
151-174, Jan. 1994

7. Magee, J., Dulay, N., Kramer, J., “A Constructive Development Environment for
Parallel and Distributed programs”, Proceedings of the International Workshop on
Configurable Distributed Systems, Pittsburgh, March 1994

8. Bellissard L., Boyer, F., Riveill, M., Vion-Dury, J., “System Services for Distributed
Application Configuration”, Proceedings of Fourth international conference on
Configurable Distributed Systems. Pp 53-60, May 1998

 14

9. Clarke J., “Emulating Shared Memory to Simplify Distributed-Memory
Programming”, IEEE Computational Science & Engineering, Vol 4, No. 1, pp 55-62,
January-March 1997

10. Folk, M., McGrath, R., Yeager, N., “HDF: an update and future directions”,
Proceedings of IEEE 1999 international Geoscience and Remote Sensing Symposium,
Volume 1, pp 273-275, july 1999

11. “Document Object Model (DOM) Level 1 Specification.”, World wide Web
Consortium, http://www/w3.org/TR/REC-DOM-Level-1

12. McGlaun, J.M., Thompson, S.L., and Elrick, M.G., "CTH: A Three-Dimensional
Shock Wave Physics Code," International Journal of Impact Engineering, Vol. 10, pp.
351-360, 1990.
13. Hoover, C.G., DeGroot, A.J., Maltby, J.D., and Procassini, R.J., "ParaDyn: DYNA3D
for Massively Parallel Computers," UCRL 53868-94, Lawrence Livermore National
Laboratory, Livermore, CA, 1995.

14. Raju R. Namburu, Jimmy O. Balsara, Tommy L. Bevins, and Photios P. Papados,
“Large-Scale Explicit Simulations on Scalable Computers,” Advances in Engineering
Software, Vol. 29, pp. 187-196, 1998.

http://www/w3.org/TR/REC-DOM-Level-1

	Jerry A. Clarke
	ABSTRACT

