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ABSTRACT 
 

Practical applications are generally interdisciplinary in nature.  The technology is 
well matured for addressing individual discipline applications and not for 
interdisciplinary applications.  Hence, there is a need to couple the capabilities of several 
different computational disciplines to address these interdisciplinary practical 
applications.  One approach is to use coupled or multi-physics software, which typically 
involves developing and validating the entire software spectrum for a specific 
application, which will be time consuming and may require more time to get to the end 
user.  The other approach is to integrate individual well-matured computational 
technology discipline’s software by taking advantage of the existing scalable software 
and validation investments, and tremendous developments in computer science and 
computational sciences.  This integrated approach requires consistent data model, data 
format, data management, seamless data movement, and robust modular scalable 
including coupling algorithms.  To address these requirements, we developed a new 
flexible data exchange mechanism for HPC codes and tools, known as the eXtensible 
Data Model and Format (XDMF).  XDMF provides computational engines with the tools 
necessary to exist in a modern computing environment with minimal modification.  
Instead of imposing a new programming paradigm on HPC codes, XDMF uses the 
existing concept of file I/O for distributed coordination. XDMF incorporates Network 
Distributed Global Memory (NDGM), Hierarchical Data Format version 5 (HDF5), and 
eXtensible Markup Language (XML) to provide a flexible yet efficient data exchange 
mechanism. . This paper discusses development and implementation of distributed 
computing environment for interdisciplinary applications utilizing the concept of a 
common data hub.  Also, the implementation of XDMF is demonstrated for a typical 
blast-structure interaction interdisciplinary application. 
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1.0 INTRODUCTION 
 
Many challenging High Performance computing applications require the use of 
capabilities from separate computational disciplines. For example, simulating a blast 
interacting with a structure requires the integration of a Computational Fluid Dynamics 
(CFD) code with Computational Structural Mechanics (CSM) code, and Computational 
Chemistry and Material Science (CCM) code along with a mathematically consistent 
coupling algorithms at the interfaces.  That is, an interface definition consistent with the 
numerical approaches used between each discipline’s software, namely blast and 
structure in a mathematically consistent manner is required to address this application.  
On the other hand, multi-physics codes attempt to provide this functionality utilizing 
unified numerical algorithms or single software starting from partial differential 
equations.  The computational approach discussed in this paper involves coupling 
existing validated individual codes from each discipline by taking advantage of 
tremendous developments in computer science, interface or coupling algorithms, and 
computational sciences. While individually impressive, these codes are typically not 
designed to be coupled.  Additionally, attempting to modify the internal communications 
scheme of these scalable codes is not only difficult but could possibly affect their 
validity. 
 
Existing systems like Globus[1] and Legion[2], CORBA[3],  KeLP[4],  and the Active 
Data Repository[5] provide data exchange mechanisms among their services. Systems 
like POLYLITH[6], Darwin[7], and Olan[8] provide a software module interconnection 
framework. While these systems have met with varying amounts of success, they are not 
currently sufficient for our purposes since implementation can require significant site 
wide coordination or significant modification to existing software. Emulating the concept 
of a common I/O in a parallel and efficient manner alleviates these problems. Individual 
codes can periodically read and write necessary data to a centrally accessible location in 
order to exchange necessary information. As long as individual codes can agree on a 
common data model and format, this approach can be extended to a wide variety of HPC 
codes. While not as efficient as single multi-physics coupling software, this approach has 
the potential to add significant functionality to current HPC software. 
 
Hence, a common, active, data model and format suitable for the heavily used HPC codes 
is needed.  HDF5 defines a feature rich data format for structured and unstructured 
datasets as well as groups of data.  Hence, we opted for HDF5 for storage of enormous 
datasets. For description of the meaning of data or small amounts of data, we have chosen 
to use the eXtenisible Markup Language (XML). While HDF5 has an “attribute” facility 
for storing name=value pairs, the use of XML allows us to easily support other heavy 
data formats as necessary. Additionally, the enormous amount of software available to 
process XML makes it a natural candidate for storage and manipulation of data.  Each 
individual discipline computational software is scalable.  That is, each runs on a set of 
distributed processors.  Hence, there is a need for field requests and data transfers while 
the software is being executed for these coupled applications.  This requirement is 
fulfilled by Network Distributed Global Memory (NDGM) which provides a physically 
distributed, logically shared, unstructured memory buffer. Instead of handling the 
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mapping and unmapping of memory pages automatically, NDGM is accessed through a 
subroutine interface. While less automatic, this allows applications to form a 
“cooperative shared memory” that is simple yet efficient.  NDGM is a client-server layer 
that consists of multiple server processes and an Application Programmers Interface 
(API) for clients. Each server maintains a section of a virtual contiguous buffer and fields 
requests for data transfer and program synchronization. Clients use the API to transfer 
data in and out of the virtual buffer and to coordinate their activity.  
 
Through the use of HDF5, XML, and NDGM we have defined the “eXtensible Data 
Model and Format “ (XDMF). It provides a level of abstraction for enormous distributed 
datasets. Computational codes, visualization, and user interface can all interface with the 
data in a well-defined method without severely limiting performance. As mentioned 
previously, XDMF is both a data model and format. It allows for a self-describing 
method of storing large data structures and the information necessary to tell how the data 
is to be used.  This not only makes it possible to combine the capabilities of several 
codes, but also makes the development of reusable pre and post-processing tools possible.   
 
The rest of the paper is organized as follows:  first we discuss the main components of 
XDMF, namely, NDGM, XML, and HDF5.  Next we discuss the data model and format 
through a simple example.  Finally a simple numerical example utilizing the XDMF is 
provided before the conclusion. 
 
2.0 eXtensible Data Model and Format (XDMF)  
 
XDMF can best be described as an active data model and format. It is a self-describing 
data hub that can be dynamically updated by multiple clients. Data format (number type, 
array dimensions, etc.) is managed separately from data model (how data is to be used). 
This greatly enhances the flexibility of the system. 
 
Data format refers to the raw data to be manipulated. Information like number type ( 
float, integer, etc.), precision, location, rank, and dimensions completely describe any 
dataset regardless of its size. The description of the data is also separate from the values 
themselves. We refer to the description of the data as “Light” data and the values 
themselves as “Heavy” data. Light data is small and can be passed between modules 
easily. Heavy data may be potentially enormous; movement needs to be kept to a 
minimum. Due to the different nature of heavy and light data, they are stored using 
separate mechanisms. Light data is stored using XML, Heavy data is typically stored 
using HDF5. While we could have chosen to store the light data using HDF5 “attributes”, 
using XML does not require every tool to have access to the compiled HDF5 libraries in 
order to perform simple operations. 
 
Data model refers to the intended use of the data. For example, a three dimensional array 
of floating point vales may be the X,Y,Z geometry for a grid or calculated vector values. 
Without a data model, it is impossible to tell the difference. Since the data model only 
describes the data, it is purely light data and thus stored using XML. It is targeted at 
scientific simulation data concentrating on scalars, vectors, and tensors defined on some 
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type of computational grid. Structured and Unstructured grids are described via their 
topology and geometry. Calculated, time varying data values are described as “attributes” 
of the grid.  The actual values for the grid geometry, connectivity, and attribute values are 
contained in the data format. This separation of data format and model allows HPC codes 
to efficiently produce and store vales in a convenient manner without being encumbered 
by our data model which may be different from their internal arrangement. 
 
Utilizing the common data model and format, codes and tools can produce and consume 
data just as they would write and read any other data file. These data “files”, however, 
can exist in a distributed shared memory system (called NDGM) which has barriers and 
semaphores to help coordinate parallel activity. This is what makes XDMF more than just 
another file format. 
 
2.1 Network Distributed Global Memory 
 
At the heart of the data organization, is a unique heterogeneous shared memory system. 
Network Distributed Global Memory (NDGM) [9] provides ICE with a physically 
distributed, logically shared, unstructured memory buffer. But instead of handling the 
mapping and unmapping of memory pages automatically, NDGM is accessed through a 
subroutine interface. While less automatic, this allows applications to form a 
“cooperative shared memory” that is simple yet efficient.  
 
NDGM is a client-server layer that consists of multiple server processes and an 
Application Programmers Interface (API) for clients. Each server maintains a section of a 
virtual contiguous buffer and fields requests for data transfer and program 
synchronization. Clients use the API to transfer data in and out of the virtual buffer and to 
coordinate their activity. 
 
Calls to the API result in lower level messages being sent to the appropriate NDGM 
server that keeps track of its piece of the total virtual buffer. The API translates the global 
memory address into a local address that the server then transfers from its local memory. 
 
Client programs use an API to access the virtual NDGM buffer as contiguous bytes. No 
structure is placed upon the NDGM buffer; the application can impose any structure on 
this buffer that is convenient. In addition, NDGM is designed to implement a system of 
applications in contrast to a single monolithic parallel application. The API includes 
facilities to get and put contiguous memory areas, get and put vectors of data, acquire and 
release semaphores, and to initialize and check into multiple barriers. 
 
Each server maintains a local memory buffer that maps into the virtual buffer address 
space. This local buffer can be in one of three locations: local address space (obtained via 
malloc), system shared memory, or a local file. If system shared memory is used, a client 
executing on the same physical machine as the server accesses the shared memory 
instead of making requests to a server. This access is transparent to the NDGM client 
application and results in faster data transfers. Using a file as the server's local storage 
allows NDGM servers to restart with their local memory already initialized. 
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Clients and servers run on top of a layered message-passing interface. Similar in concept 
to well known message passing interfaces like PVM or MPI, this layer provides a level of 
abstraction, freeing the upper layers from the details of reading and writing data. The 
NDGM message-passing layer has fewer facilities than either PVM or MPI but is 
designed to pass NDGM data efficiently with minimal copying. This layer provides calls 
to establish connections, send messages, probe for incoming messages, read messages, 
and close connections. 
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Figure 1. Emulating Shared Memory on Distributed Systems 
 
 
 
NDGM has been used to develop parallel applications, but it is particularly useful as a 
“data rendezvous” for a collection of applications. A parallel, computationally intensive 
code can write a snapshot of data to NDGM then continue its’ processing. The data can 
then be visually inspected, through 2D plots and 3D surfaces, while not inhibiting the 
progress of the code. 
 
2.2 Hierarchical Data Format 
 
NDGM provides a distributed, heterogeneous unstructured buffer. To provide some 
structure to this buffer, ICE uses the “Hierarchical Data Format Version 5” (HDF5)[10]  
from the National Center for Supercomputing Applications (NCSA). HDF5, a well-
known and widely used format, is designed to allow an orderly access to structured and 
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unstructured datasets. All access is accomplished through a well-defined application 
programmer’s interface (API) .  
 
The HDF5 API provides an efficient and powerful means of describing and accessing 
both data values and the associated meta-data (data about the data). HDF5 defines data 
types (chars, integers, and floats of various precisions and byte orders) and data space ( 
rank and dimensions ). There is a grouping facility that allows the construction of a 
directed acyclic graph description of the data arrangement and an attribute facility to 
store name=value pairs. In addition to allowing access to disk files, HDF5 provides a 
“Virtual File Layer”. This allows the user to add “drivers” for data access. We have 
written an HDF5 “driver” for NDGM that allows for NDGM access via the standard 
HDF5 API. 
 
To simplify access to HDF5 files accessed via separate drivers, we have introduced the 
concept of  “domains”.  HDF5 uses filenames in several of its’ API routines. If these 
filenames are prepended by “NDGM:”, the HDF data refers to NDGM. For 
completeness, prepending “FILE:” to the filename refers to a disk file. If the domain is 
omitted, a disk file is assumed. This new HDF driver allows a single application to store 
data on disk, in distributed memory, or in both. 
 
2.3 eXtensible Markup Language 
 
HDF5 defines a feature rich data format for structured and unstructured datasets as well 
as groups of data. We primarily use HDF5 for storage of enormous datasets or “Heavy” 
data. For description of the meaning of data or small amounts of data, we have chosen to 
use the eXtenisible Markup Language (XML). While HDF5 has an “attribute” facility for 
storing name=value pairs, the use of XML allows us to easily support other heavy data 
formats as necessary. Additionally, the enormous amount of software available to process 
XML makes it a natural candidate for storage of this “Light” data. 
 
XML is human readable text originally intended for use on the Web. XML looks like 
HTML but allows the definition of the tags and attributes. XML can be stored in a file or 
transmitted like any other character string. Through the use of freely available software, 
XML can be “parsed” into an in-memory tree structure [11]. Tree nodes can be added, 
modified, or deleted. The resulting tree can then be “serialized” back into an XML string. 
Since XML is just text, any program can produce it without the need for special libraries. 
 
The data model in XDMF is stored in XML. This provides the knowledge of what is 
represented by the Heavy data. In this model, HPC data is viewed as a hierarchy of 
Domains. A Domain may contain one or more sub-domains but must contain at least one 
Grid. A Grid is the basic representation of both the geometric and computed/measured 
values. A Grid is considered to be a group of elements with homogeneous Topology and 
their associated values. If there is more than one type of topology, they are represented in 
separate Grids. In addition to the topology of the Grid, Geometry, specifying the X, Y, 
and Z positions of the Grid is required. Finally, a Grid may have one or more Attributes.  
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Attributes are used to store any other value associated with the grid and may be 
referenced to the Grid or to individual cells that comprise the Grid.  
 
The XML may be passed as an argument, stored in an external file or communicated via 
a socket mechanism. For customization purposes, tools can also augment the standard 
content with XML “processing instructions”.  This is useful for attaching peer level 
information to the standard XML content without modifying the base specification. 
 

HDF5

File

Domain

Topology
1 Million

Hexahedra

Grid

Geometry
XYZPoints.h5

Attribute
NDGM:Pressure.h5

XML

HPC
Code

Domain Grid

HDF5

 Complexity of Model Defined in Light Data

 HPC Code I/O is Natural and Efficient

NDGM GASS

Attribute
NDGM:Temperature.h5

 
Figure 2. Separating Light and heavy data 

 
The concept of separating the light data from the heavy data, as shown in Figure 2, is 
critical to the performance of this data model and format. HPC codes can read and write 
data in large, contiguous chunks that are natural to their internal data storage, to achieve 
optimal I/O performance. If codes were required to significantly re-arrange data prior to 
I/O operations, data locality, and thus performance, could be adversely affected, 
particularly on codes that attempt to make maximum use of memory cache. The 
complexity of the dataset is described in the light data portion, which is small and 
transportable. For example, the light data might specify a topology of one million 
hexaherda while the heavy data would contain the geometric XYZ values of the mesh and 
pressure values at the cell centers stored in large, contiguous arrays. This key feature will 
allow reusable tools to be built that do not put onerous requirements on HPC codes. 
Despite the complexity of the organization described in the XML below, the HPC code 
only needs to produce the three HDF5 datasets for geometry, connectivity, and pressure 
values. 
 
Through the use of NDGM, HDF, and XML we have defined the “eXtensible Data 
Model and Format “ (XDMF). It provides a level of abstraction for enormous distributed 



 7

datasets. Computational codes, visualization, and user interface can all interface with the 
data in a well-defined method without severely limiting performance. As mentioned 
previously, XDMF is both a data model and format. It allows for a self-describing 
method of storing large data structures and the information necessary to tell how the data 
is to be used. We provide a C++ class library mainly as a convenience layer. Codes and 
tools use this layer from C++, C, or FORTRAN to easily access any XDMF functionality. 
In addition, this layer has been “wrapped” for access from Tcl, Python, and Java. 
 
 
3.0 Accessing eXtensible Data Model and Format (XDMF) 
 
The computationally intensive components of a large system are generally developed 
using system-programming languages like C, C++, or FORTRAN. Once these 
computationally intensive components have been developed however, they may be 
“glued” together in a number of ways to provide the overall required functionality. Using 
a system-programming language for this task is tedious, time-consuming, and inflexible. 
 
Scripting languages are specifically designed for this purpose. They tend to be “weakly-
typed” so that the output of one component can easily be used as the input to another with 
little concern over the “type” of the data. While one pays in runtime efficiency for this 
flexibility, scripting languages are intended to call large chunks of functionality and not 
be used for fine grain control. 
  
Languages like Java, Python and Tcl, are supported on a variety of platforms and can be 
used to glue together existing programs. One can also extend the functionality of any of 
these scripting languages by adding additional commands. In addition to developing 
callable functions in the language itself, this is accomplished by adding a “wrapper” to 
interface the language command-calling interface with the argument list of a system-
programming routines that implements the desired functionality efficiently. “The 
Simplified Wrapper and Interface Generator” (SWIG) is a widely used tool that 
generates these wrappers for code written in C or C++ for access via languages like Tcl, 
Python, and Java. SWIG allows commands to be added to these languages that access the 
custom code in an object-oriented fashion.  
 
While significantly different in syntax, most scripting languages are similar in 
functionality. The choice of a scripting language can regularly be a matter of personal 
preference. XDMF has been wrapped to provide interfaces to Java, Tcl, and Python. 
Access to FORTRAN and ‘C’ is accomplished via a ‘C’ interface to C++. This flexibility 
is key to providing a useful data exchange mechanism to both HPC codes which are 
written in system programming languages, and analysis tools which may be written in 
scripting languages. While HPC codes can access XDMF via system programming 
languages, custom tools can be written in high level languages that maintain much of the 
performance of the system programming language components. 
 
Scientific Visualization is a critical component of ICE. Both runtime and post-processing 
visualization are possible when using XDMF as the data hub. Because of the various 
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capabilities of different visualization packages, we support both commercial and Open 
Source products. 
 
The commercial product EnSight from CEI is supported via a “data reader”.  EnSight 
loads the reader at runtime from a shared object that can then convert and external 
XDMF dataset to EnSight’s internal representation. EnSight is a full-featured product and 
is used extensively for presentation quality post-processing scientific visualization. 
 
OpenDX is the open source software project based on IBM’s Visualization Data 
Explorer. OpenDX differs significantly from EnSight in that the user connects 
visualization “modules” via a data flow diagram. This makes OpenDX more configurable 
than EnSight at the cost of having a more complex user interface. XDMF data is 
converted to OpenDX format during runtime or during post processing. Users of 
OpenDX can build custom interfaces for XDMF data while hiding the complexities of the 
data flow. 
 
The Visualization Toolkit (vtk) from Kitware is another open source visualization 
software product. It is a widely used C++ class library of visualization and graphics 
algorithms that includes interfaces for Tcl, Python, and Java. XDMF supports vtk 
natively, that is the XDMF grid class has a method that returns a native vtk grid. Methods 
also exist that assign scalars and vectors to the vtk grids. This interface allows for the 
development of custom visualization tools via a programming interface. 
 

XDMF Visualization
Toolkit (vtk)

Java
with

JFC/Swing

Tcl/Tk
with

BWidgets

Python

 
Figure 3. Data Access from High Level Languages 

 
The ability to quickly prototype custom applications and tools in higher level languages 
allows for the rapid development of task-specific applications. By utilizing vtk, these 
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applications can include visualization of enormous amounts of data in addition to 
graphical user interfaces. 
 
4.0 Test Case 
 
Naturally, the flexibility and functionality of the system sacrifice some performance 
when compared to a “hard-wired” solution. A balance between functionality and 
performance must be reached that allows for reusable tools that perform their function 
with acceptable efficiency.  In addition, to be truly useful, existing HPC programs must 
be able to take advantage of the system without overly burdensome modifications.  
 
To gauge the usefulness of the system we chose to attempt a one-way coupling of two 
heavily used HPC codes to solve a relevant computational problem. An explosive charge 
was simulated using the CTH code from Sandia National Laboratory[12]. A solid steel 
wall was placed in the simulation that was “loaded” by the explosive charge. Next, a 
concrete block wall was simulated using the ParaDyn program from Lawrence Livermore 
National Laboratory[13]. Utilizing XDMF, the loading of the wall was transferred from 
the structured CTH domain to the unstructured ParaDyn domain via a third “interpolator” 
process. Since this problem has already been accomplished using CTH “tracer” points 
and disk files[14], it gave us a method of validating the results of our new approach. 
 
 

CTH ParaDyn

Interpolator

 
Figure 4. Coupling CTH and ParaDyn with XDMF 

 
ParaDyn, from Lawrence Livermore National Laboratory, is a parallel version of the 
widely used, finite element based structural dynamics program Dyna3D . ParaDyn, like 
many currently used HPC codes, is written primarily in FORTRAN and uses MPI to 
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achieve parallelism. We felt that adding runtime visualization capability to ParaDyn, via 
ICE, would demonstrate the steps required to integrate existing components and also 
result in a useful distributed application at ARL. 
 
ParaDyn, like many HPC simulation codes, follows this basic execution: 
 

•  Read in computational grid and input parameters from the file system 
•  Initialize internal variables 
•  Iterate over the core physics routines of the code until final solution is 

reached, periodically  writing intermediate solutions to the file system 
•  Write final solution, cleanup, and exit 

 

The additional ICE calls map well into this execution flow. Since the code is mainly 
FORTRAN and ICE access is accomplished via C++, FORTAN wrapper functions are 
needed to encapsulate the required ICE functionality. 

For example, we write a new FORTRAN subroutine PARAINITICE( ), called when 
ParaDyn initializes its internal variables, to initialize the necessary ICE C++ objects and 
store their addresses in static variables. When the nodes need to update XDMF, they have 
access to the appropriate C++ objects. 

The internal structure of ParaDyn is complex enough to place it beyond the scope of our 
discussion. Suffice it to say that internal variables are accessed through an internal 
database API. For simplicity, let us assume that there exists such FORTRAN subroutines 
as PDGETXYZ(), PDGETNODEVAR(), and PDGETCELLVAR() to return XYZ 
location and scalar values. We add a subroutine call to the main ParaDyn loop to call a 
new PARACHECKICE() subroutine every iteration. This is where the majority of the 
ICE functionality is accessed. 

 

The concrete wall in ParaDyn consisted of a computational grid of about 110,000 
hexahedral elements. The following XDMF XML file describes the computational grid 
and a cell centered scalar. This is used as input to a visualization program or some other 
post-processing analysis tool. 
 
<XDMF> 

<Domain> 
<Grid  

Name=”Concrete Wall”> 
<Topology  

Type=”Hexahrdron” 
NumberOfElements=”110520”> 
<DataStructure 

Dimensions=”110520 8” 
Format=”HDF” 
DataType=”Int” 
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Precision=”4”> 
NDGM:Wall.h5:/Initial/Connections 
</DataStructure> 

</Topology> 
<Geometry 

Type=”XYZ” > 
<DataStructure 

Dimensions=”179685 3” 
Format=”HDF” 
DataType=”Float” 
Precison=”8”> 

NDGM:Wall.h5:/Initial/XYZ 
</DataStructure> 

</Geometry> 
<Attribute 

Name=”Effective Plastic Strain” 
Type=”Scalar” 
Center=”Cell”> 
<DataStructure 

Dimensions=”110520” 
Format=”HDF” 
DataType=”Float” 
Precision=”8”> 

NDGM:Wall.h5:/Results/EffPlaStr 
</DataStructure> 

</Attribute> 
</Grid> 

</Domain> 
</XDMF> 
 

The same overall strategy was used to outfit CTH to update XDMF. But since CTH uses 
structured, rectilinear grids, the updates tend to be more efficient due to the contiguous 
nature of the date. Since this is a one-way coupling, only CTH need to write information 
to NDGM in order to accomplish the simulation. For visualization purposes, however, 
both CTH and ParaDyn periodically output data. The visualization below shows the 
initial loading of the wall represented by the colors on a mesh at the original concrete 
block locations. At that point in the simulation, the initial loading, gravity, and contact 
with other blocks effect the block’s displacement. The lowest row of concrete block is 
fixed to the ground and not allowed to move. The simulation is small enough (about 
110,000 hexahedral elements) to complete in a reasonable amount of time for 
benchmarking purposes. In fact, the relatively small amount of data being sent to the 
NDGM buffer and the noncontiguous nature of the unstructured mesh magnifies 
communication latency effects. In addition, in order to get a “worst case” idea of the 
overhead involved, we ran the problem on the IBM NH-2 ( 375 MHz Power3, the jobs 
were submitted in a manner to distribute the work across different SMP nodes ), with the 
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NDGM buffer on one node. In this scenario, all of the MPI nodes must funnel their 
runtime data to one designated “collection” node that holds the HDF5 data. 

 

 

 

Figure 5. Loading of Concrete Wall from CTH 

Primarily due to the noncontiguous nature of the finite element data, ParaDyn on the IBM 
sees only about 12MB/sec effective throughput. Effective throughput is being defined as 
the total amount of data being transferred over the entire run divided by the total runtime 
with updates minus the total runtime without updates. To give an idea of the other end of 
the performance spectrum, CTH on an Origin 2000 can see over 200MB/sec effective 
throughput since large chunks of contiguous data is being transferred via system shared 
memory.  

With both ParaDyn and CTH, most of the interface code deals with accessing the internal 
database APIs. To provide a more straightforward example, we provide a complete code 
on our WEB site (http://www.arl.hpc.mil/ice) that has pre-processing, computation, and 
file I/O confined to a single FORTRAN source file. The code needed to interface this 
code to ICE is then added in the previously mentioned fashion. This interface is about 
150 lines of C++ code. Much of this interface is reusable for other applications; the main 
difference is the access of the HPC code’s internal variables. This may result in a new 
convenience object to encapsulate the functionality thus reducing many interfaces to 
significantly less code. 

5.0 Conclusion 

We developed a new eXtensible Data Model and Format for addressing interdisciplinary 
applications.  In addition to providing a common data model and format that allows for 
the development of powerful and reusable tools, XDMF allows efficient active updates to 

http://www.arl.hpc.mil/SciVis/Dice
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facilitate runtime visualization and HPC code coupling.  The applicability of the 
approach is demonstrated for an interdisciplinary blast-structure interaction application.  
For this demonstration purpose, the coupled application used widely accepted individual 
discipline software, namely, CTH for blast simulations and ParaDyn for structural 
simulations.  The approach is promising for a wide class of applications and we are 
currently extending this approach for a different set of software.  In addition, we are 
developing a suite of reusable tools written in Java and Python to provide a complete 
environment for the computational scientist.  This ICE will provide a modern 
environment for existing and future numerical simulations. 
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