
An Event Service to Support Grid Computational Environments

Geoffrey Fox∗ Shrideep Pallickara†

Abstract

We believe that it is interesting to study the system and software architecture of environments
which integrate the evolving ideas of computational grids, distributed objects, web services, peer-to-
peer networks and message oriented middleware. Such peer-to-peer (P2P) Grids should seamlessly
integrate users to themselves and to resources which are also linked to each other. We can abstract
such environments as a distributed system of ”clients” which consist either of ”users” or ”resources”
or proxies thereto. These clients must be linked together in a flexible fault tolerant efficient high
performance fashion. In this paper, we study the messaging or event system - termed GES or the
Grid Event Service – that is appropriate to link the clients (both users and resources of course)
together. For our purposes (registering, transporting and discovering information), events are just
messages - typically with time stamps. The messaging system GES must scale over a wide variety
of devices - from hand held computers at one end to high performance computers and sensors at the
other extreme. We have analyzed the requirements of several Grid services that could be built with
this model, including computing and education and incorporated constraints of collaboration with
a shared event model. We suggest that generalizing the well-known publish-subscribe model is an
attractive approach and here we study some of the issues to be addressed if this model is used in the
GES.

1 Introduction

The web in recent years has experienced an explosion in the number of devices users employ to access
services. A single user may access a certain service using multiple devices. Most services allow clients to
access the service through a broker. The client is then forced to interact with the service via this broker
throughout the duration that it is using the service. If the broker fails, the client is denied servicing till
such that the failed broker recovers. In the event that this service is running on a fixed set of brokers the
client, since it knows about this set of brokers, could then connect to one of these brokers and continue
using the service. Whether the client missed any servicing and whether the service would notify the client
of this missed servicing depends on the implementation of the service. In all these implementations the
identity of the broker that the client connects to is just as important as the service itself. Clients do
not always maintain an online presence, and when they are online they may the access the service
using a different device with different computing and content-handling capabilities. The communication
channels employed during every such service interaction may have different bandwidth constraints and
communication latencies. Besides this a client accesses services from different geographic locations.

A truly distributed service, would allow a client to use services by connecting to a broker nearest to
the client’s geographical location. By having such local broker, a client does not have to re-connect all
the way back to the broker that it was last attached to. If the client is not satisfied with the response
times that it experiences or if the broker that it has connected to fails, the client could very well choose to
connect to some other local broker. Concentration of clients from a specific location accessing a remote
broker, leads to very poor bandwidth utilization and affects latencies associated with other services
too. Also it should not be assumed that a failed broker node would recover within a finite amount of
time. Stalling operations for certain sections of the network, and denying service to clients while waiting
for failed processes to recover could result in prolonged, probably interminable waits. Such a model
potentially forces every broker to be up and running throughout the duration that this service is being

∗Department of Computer Science, Indiana University. gcf@indiana.edu
†Department of Electrical Engineering &Computer Science, Syracuse University. shrideep@cat.syr.edu

1

provided. Models that require brokers to recover within a finite amount of time generally imply that each
broker has some state. Recovery for brokers that maintain state involves state reconstruction, usually
involving a calculation of state from the neighboring brokers. This model runs into problems when
there are multiple neighboring broker failures. Invariably brokers get overloaded, and act as black holes
where messages are received but no processing is performed. By ensuring that the individual brokers
are stateless (as far as the servicing is concerned), we can allow these brokers to fail and not recover. A
failure model that does not require a failed node to recover within a finite amount of time, allows us to
purge such slow processes and still provide the service while eliminating a bottleneck.

What is indispensable is the service that is being provided and not the brokers which are cooperating
to provide the service. Brokers can be continuously added or fail and the broker network can undulate
with these additions and failures of brokers. The service should still be available for clients to use.
Brokers thus do not have an identity - any one broker should be just as good as the other. Clients
however have an identity, and their service needs are very specific and vary from client to client. Any of
these brokers should be able to service the needs of every one of these millions and millions of clients.
It’s the system as a whole, which should be able to reconstruct the service nuggets that a client missed
during the time that it was inactive. Clients just specify the type of events that they are interested
in, and the content that the event should at least contain. Clients do not need to maintain an active
presence during the time these interesting events are taking place. Once it registers an interest it should
be able to recover the missed event from any of the broker nodes in the system. Removing the restriction
of clients reconnecting back to the same broker that it was last attached to and the departure from the
time-bound recovery failure model, leads to a situation where brokers could be dynamically instantiated
based on the concentration of clients at certain geographic locations. Clients could then be induced to
roam to such dynamically created brokers for optimizing bandwidth utilization. The network can thus
undulate with the addition and failure/purging of broker node processes.

The system we are considering needs to support communications for 109 devices. The users using
these devices would be interested in peer-to-peer (P2P) style of communication, business-to-business
(B2B) interaction or a system comprising of agents where discoveries are initiated for services from any
of these devices. Finally, some of these devices could also be used as part of a computation. The devices
are thus part of a complex distributed system. Communication in the system is through events, which are
encapsulated within messages. Events form the basis of our design and are the most fundamental units
that entities need to communicate with each other. Events are anything transmitted including updates,
objects themselves (file uploads), database updates and audio/video streams. These events encapsulate
expressiveness at various levels of abstractions - content, dependencies and routing. Where, when and
how these events reveal their expressive power is what constitutes information flow within our system.
Clients provide services to other clients using events. These events are routed by the system based on
the service advertisements that are contained in the messages published by the client. Events routed to
a broker are queued and routing decisions are made based on the service advertisements contained in
these events and also based on the state of the network fabric.

We believe that it is interesting to study the system and software architecture of environments
which integrate the evolving ideas of computational grids, distributed objects, web services, peer-to-
peer networks and message oriented middleware. Such peer-to-peer (P2P) Grids should seamlessly
integrate users to themselves and to resources which are also linked to each other. We can abstract
such environments as a distributed system of ”clients” which consist either of ”users” or ”resources” or
proxies thereto. These clients must be linked together in a flexible fault tolerant efficient high performance
fashion. In this paper, we study the messaging or event system - termed GES or the Grid Event Service
– that is appropriate to link the clients (both users and resources of course) together. For our purposes
(registering, transporting and discovering information), events are just messages - typically with time
stamps. The messaging system GES must scale over a wide variety of devices - from hand held computers
at one end to high performance computers and sensors at the other extreme. We have analyzed the
requirements of several Grid services that could be built with this model, including computing and
education and incorporated constraints of collaboration with a shared event model. We suggest that
generalizing the well-known publish-subscribe model is an attractive approach and here we study some
of the issues to be addressed if this model is used in the GES.

2

1.1 Messaging Oriented Middleware

Messaging systems based on queuing include products such as Microsoft’s MSMQ [26]and IBM’s MQSeries
[27]. The queuing model with their store-and-forward mechanisms come into play where the sender of
the message expects someone to handle the message while imposing asynchronous communication and
guaranteed delivery constraints. A widely used standard in messaging is the Message Passing Interface
Standard (MPI) [20]. MPI is designed for high performance on both massively parallel machines and
workstation clusters. Messaging systems based on the classical remote procedure calls include CORBA
[33], Java RMI [30] and DCOM [19]. In publish/subscribe systems the routing of messages from the
publisher to the subscriber is within the purview of the message oriented middleware (MOM), which
is responsible for routing the right content to the right consumers. Industrial strength products in the
publish subscribe domain include solutions like TIB/Rendezvous [17] from TIBCO and SmartSockets
[16] from Talarian. Other related effort in the research community include Gryphon [4, 1], Elvin [42]
and Sienna [11]. The push by Java to include publish subscribe features into its messaging middleware
include efforts like JMS [24] and JINI [2]. One of the goals of JMS is to offer a unified API across
publish subscribe implementations. Various JMS implementations include solutions like SonicMQ [15]
from Progress, JMQ [29] from iPlanet, iBus [28] from Softwired and FioranoMQ [14] from Fiorano.

1.2 Service provided

We have built a ”production” system and an advanced research prototype. The production system
uses the commercial Java Message Service (SonicMQ) and has been used very successfully to build a
synchronous collaboration environment applied to distance education. The publish/subscribe mechanism
is powerful but this comes at some performance cost and so it is important that it satisfies the reasonably
stringent constraints of synchronous collaboration. We are not advocating replacing all messaging with
such a mechanism - this would be quite inappropriate for linking high performance devices such as
nodes of a parallel machine linked today by messaging systems like MPI or PVM. Rather we have
recommended using a hybrid approach in such cases. Transport of messages concerning the control of
such HPCC resources would be the responsibility of the GES but the data transport would be handled by
high performance subsystems like MPI. This approach was successfully used by the Gateway computing
portal.

Here we study an advanced publish/subscribe mechanism for GES which goes beyond JMS and other
operational publish/subscribe systems in many ways. A basic JMS environment has a single server
(although by linking multiple JMS invocations you can build a multi-server environment and you can
also implement the function of a JMS server on a cluster). We propose that GES be implemented on
a network of brokers where we avoid the use of the term servers for two reasons; the publish/subscribe
broker service could be implemented on any computer - including a users desktop machine. Secondly
we have included the many application servers needed in a P2P Grid as clients in our abstraction for
they are the publishers and subscribers to many of the events to be serviced by the GES. Brokers can
run on either on separate machines or on clients whether these are associated with users or resources.
This network of brokers will need to be dynamic for we need to service the needs of dynamic clients.
For example suppose one started a distance education session with six distributed classrooms each with
around 20 students; then the natural network of brokers would have one for each classroom (created
dynamically to service these clusters of clients) combined with static or dynamic brokers associated with
the virtual university and perhaps the particular teacher in charge.

Here we study the architecture and characteristics of the broker network. We are using a particular
internal structure for the events (defined in XML but currently implemented as a Java object). Further
we assume a sophisticated matching of publishers and subscribers defined as general topic objects (defined
by an XML Schema that we have designed). However these are not the central issues to be discussed here.
Our study should be useful whether events are defined and transported in Java/RMI or XML/SOAP or
other mechanisms; it does not depend on the details of matching publishers and subscribers. Rather, we
are interested in the capabilities needed in any implementation a GES in order to abstract the broker
system in a scalable hierarchical fashion (section 2); the delivery mechanism (section 3); the guarantees
of reliable delivery whether brokers crash or disappear or whether clients leave or (re)join the system
(section 4). This section also discusses persistent archiving of the event streams. We have emphasized

3

the importance of dynamic creation of brokers but this was not implemented in our initial prototype.
However by looking at the performance of our system with different static broker topologies we can study
the impact of dynamic creation and termination of broker services.

1.3 Status

There exists a prototype implementation of GES. This prototype includes implementation of the routing
scheme, propagation of profiles, content matching, replication and guaranteed delivery of events. This
implementation uses TCP as the transport protocol for communication within the system. The imple-
mentation is developed using Java. Support for XML is currently being added to the system. Future
work would include work on support for dynamic topologies and security frameworks for authentica-
tion, authorization and dissemination of content. The results from our prototype implementation are
presented in this paper.

2 Clients and the Broker Topology

In this section we outline the destinations that are associated with an event. We discuss the connection
semantics for any client within the system, and also present our rationale for a distributed model in
implementing the solution. We then present our scheme for the organization of the broker network, and
the nomenclature that we would be referring to in the remainder of this paper.

2.1 Destination lists and the generation of unique identifiers

Clients in the system specify an interest in the type of events that they are interested in. Some examples
of interests specified by clients could be sports events or events sent to a certain discussion group. It
is the system which computes the clients that should receive a certain event. A particular event may
thus be consumed by zero or more clients registered with the system. Events have explicit or implicit
information pertaining to the clients which are interested in the event. In the former case we say that
the destination list is internal to the event, while in the latter case the destination list is external to the
event.

An example of an internal destination list is “Mail” where the recipients are clearly stated. Examples
of external destination lists include sports score, stock quotes etc. where there is no way for the issuing
client to be aware of the destination lists. External destination lists are a function of the system and the
types of events that the clients, of the system, have registered their interest in.

2.2 Client

Clients can generate and consume events in the system. Events in the system are continuously generated
and consumed within the system. Clients on the other hand have intermittent connection semantics.
Clients can be present in the system for a certain duration and be disconnected later on. Clients
reconnect at a later time and receive events, which they were supposed to receive as well as events that
they are supposed to receive during their present incarnations. Clients can issue/create events while in
disconnected mode, these events would be held in a local queue to be released to the system during a
reconnect.

Associated with every clients is its profile, which keeps track of information pertinent to the client.
This includes the application type., events the client is interested in and the broker node the client was
attached to in its previous incarnation.

2.3 The Broker Node Topology

One of the reasons why one would use a distributed model is high availability. Having a centralized model
would imply a single broker hosting multiple clients. While, this is a simple model, the inherent simplicity
is more than offset by the fact that it constitutes a single point of failure. Thus all the clients present in
the system would be unable to use any of the services provided by the system till a recovery mechanism

4

kicks in. A highly available distributed solution would have data replication at various broker nodes
in the network. Solving issues of consistency while executing operations, in the presence of replication,
leads to a model where other broker nodes can service a client despite certain broker node failures. The
smallest unit of the system is a broker node and constitutes a unit at level-0 of the system. Broker
nodes grouped together form a cluster, the level-1 unit of the system. Clusters could be clusters in the
traditional sense, groups of broker nodes connected together by high speed links. A single broker node
could decide to be part of such traditional clusters, or along with other such broker nodes form a cluster
connected together by geographical proximity but not necessarily high speed links.

Several such clusters grouped together as an entity comprises a level-2 unit of our network and is
referred to as a super-cluster. Clusters within a super-cluster have one or more links with at least
one of the other clusters within that super-cluster. When we refer to the links between two clusters,
we are referring to the links connecting the nodes in those individual clusters. In general there would
be multiple links connecting a single cluster to several other clusters. This approach provides us with
a greater degree of fault-tolerance, by providing us with multiple routes to reach nodes within other
clusters. This topology could be extended in a similar fashion to comprise of super-super-clusters (level-
3 units), super-super-super-clusters (level-4 units) and so on. A client thus connects to a broker node,
which is part of a cluster, which in turn is part of a super-cluster and so on and so forth. We limit the
number of super-clusters within a super-super-cluster, the number of clusters within a super cluster and
the number of nodes within a cluster. This limit, the block-limit, is set at 64. In an N -level system this
scheme allows for 26

N × 26
N−1 × · · · 26

0 i.e 26∗(N+1) broker nodes to be present in the system.
We now delve into the small world graphs introduced in [44] and employed for the analysis of real

world peer-to-peer systems in [34, pages 207 – 241]. In a graph comprising several nodes, pathlength
signifies the average number of hops that need to be taken to reach from one node to the other. Clustering
coefficient is the ratio of the number of connections that exist between neighbors of node and the number
of connections that are actually possible between these nodes. For a regular graph consisting of n nodes,
each of which is connected to its nearest k neighbors – for cases where n � k � 1, the pathlength is
approximately n/2k. As the number of vertices increases to a large value the clustering coefficient in
this case approaches a constant value of 0.75.

At the other end of the spectrum of graphs is the random graph, which is the opposite of a regular
graph. In the random graph case the pathlength is approximately logn/ log k, with a clustering coefficient
of k/n. The authors in [44] explore graphs where the clustering coefficient is high, and with long
connections (inter-cluster links in our case). They go on to describe how these graphs have pathlengths
approaching that of the random graph, though the clustering coefficient looks essentially like a regular
graph. The authors refer to such graphs as small world graphs. This result is consistent with our
conjecture that for our broker node network, the pathlengths will be logarithmic too. Thus in the
topology that we have the cluster controllers provide control to local classrooms etc, while the links
provide us with logarithmic pathlengths and the multiple links, connecting clusters and the nodes within
the clusters, provide us with robustness.

2.3.1 GES Contexts

Every unit within the system, has a unique Grid Event Service (GES) context associated with it. In
an N -level system, a broker exists within the GES context C1

i of a cluster, which in turn exists within
the GES context C2

j of a super-cluster and so on. In general a GES context C�
i at level � exists within

the GES context C�+1
j of a level (� + 1) unit. In an N -level system, a unit at level � can be uniquely

identified by (N − �) GES context identifiers of each of the higher levels. Of course, the units at any
level � within a GES context C�+1

i should be able to reach any other unit within that same level. If this
condition is not satisfied we have a network partition.

2.3.2 Gatekeepers

Within the GES context C2
i of a super-cluster, clusters have broker nodes at least one of which is

connected to at least one of the nodes existing within some other cluster. Some of the nodes in the
cluster thus maintain connections to the nodes in other clusters. Similarly, some nodes in a cluster could
be connected to nodes in some other super-cluster. We refer to such nodes as gatekeepers. Depending

5

on the highest level at which there is a difference in the GES contexts of these nodes, the nodes that
maintain this active connection are referred to as gatekeepers at the corresponding level. Nodes, which
are part of a given cluster, have GES contexts that differ at level-0. Every node in a cluster is connected
to at least one other node within that cluster. Thus, every node in a cluster is a gatekeeper at level-0.

Let us consider a connection, which exists between nodes in a different cluster, but within the same
super-cluster. In this case the nodes that maintain this connection have different GES cluster contexts i.e.
their contexts at level-1 are different. These nodes are thus referred to as gatekeepers at level-1. Similarly,
we would have connections existing between different super-clusters within a super-super-cluster GES
context C3

i . In an N -level system gatekeepers would exist at every level within a higher GES context.
The link connecting two gatekeepers is referred to as the gateway, which the gatekeepers provide, to the
unit that the other gatekeeper is a part of. Figure 1 shows a system comprising of 78 nodes organized

SSC-A

SC-1

SC-2

SC-3

e

g

c

b

f

d

a

SSC-BSC-4

SC-5

SC-6

l

n

i

j

m

k

h

SSC-C

SC-7

SC-8

SC-9

s

u

o

q

t

r

p

SSC-D

SC-11

y

z

SC-10

w

x

v

Link connecting super-super-cluster gateways.
Link connecting super-cluster gateways.

Link connecting cluster gateways.

Figure 1: Gatekeepers and the organization of the system

into a system of 4 super-super-clusters, 11 super-clusters and 26 clusters. In general, if a node connects
to another node, and the nodes are such that they share the same GES context C�+1

i but have differing
GES contexts C�

j , C�
k, the nodes are designated as gatekeepers at level−� i.e. g�(C�+1). Thus, in figure 1

we have 12 super-super-cluster gatekeepers, 18 super-cluster gatekeepers (6 each in SSC-A and SSC-C,
4 in SSC-B and 2 in SSC-D) and 4 cluster-gatekeepers in super-cluster SC-1.

6

3 The problem of event delivery

The event delivery problem is one of routing events to clients based on the type of events that clients
are interested in. Events need to be relayed through the broker network prior to being delivered to
clients. The dissemination process should efficiently deliver events to the destinations, which could be
internal or external to the event. In the latter case the system needs to compute the destination lists
pertaining to the event. The system merely acts as a conduit to efficiently route the events from the
issuing client to the interested clients. A simple approach would be to route all events to all clients, and
have the clients discard those events that they are not interested in. This approach would however place
a strain on network resources. Under conditions of high load and increasing selectivity by the clients, the
number of events that a client discards would far exceed the number of events it is actually interested in.
This scheme also affects the latency associated with the reception of real time events at the client. The
increase in latency is due to the cumulation of queuing delays associated with the uninteresting/flooded
events. The system thus needs to be very selective of the kinds of events that it routes to a client.

Prior Art

Different systems address the problem of event delivery to relevant clients in different ways. In [21]
each subscription is converted into a deterministic finite state automaton. This conversion and the
matching solutions nevertheless can lead to an explosion in the number of states. In [42] network
traffic reduction is accomplished through the use of quench expressions. Quenching prevents clients from
sending notifications for which there are no consumers. Approaches to content based routing in Elvin
are discussed in [43]. In [11, 12] optimization strategies include assembling patterns of notifications as
close as possible to the publishers, while multicasting notifications as close as possible to the subscribers.
In [4] each broker maintains a list of all subscriptions within the system in a parallel search tree (PST).
The PST is annotated with a trit vector encoding link routing information. These annotations are then
used at matching time by a broker to determine which of its neighbors should receive that event. [3]
describes approaches for exploiting group based multicast for event delivery. These approaches exploit
universally available multicast techniques.

The approach adopted by the OMG [33] is one of establishing channels and registering suppliers and
consumers to those event channels. The channel approach in the event service [32] approach could entail
clients (consumers) to be aware of a large number of event channels. The two serious limitations of
event channels are the lack of event filtering capability and the inability to configure support for different
qualities of service. These are sought to be addressed in the Notification Service [31] design. However the
Notification service attempts to preserve all the semantics specified in the OMG event service, allowing
for interoperability between Event service clients and Notification service clients. Thus even in this case
a client needs to subscribe to more than one event channel. In TAO [25], a real-time event service
that extends the CORBA event service is available. This provides for rate-based event processing, and
efficient filtering and correlation. However even in this case the drawback is the number of channels that
a client needs to keep track of.

In some commercial JMS implementations, events that conform to a certain topic are routed to the
interested clients. Refinement in subtopics is made at the receiving client. For a topic with several
subtopics, a client interested in a specific subtopic could continuously discard uninteresting events ad-
dressed to a different subtopic. This approach could thus expend network cycles for routing events to
clients where it would ultimately be discarded. Under conditions where the number of subtopics is far
greater than the number of topics, the situation of client discards could approach the flooding case.

In the case of servers that route static content to clients such as Web pages, software downloads etc.
some of these servers have their content mirrored on servers at different geographic locations. Clients
then access one of these mirrored sites and retrieve information. This can lead to problems pertaining
to bandwidth utilization and servicing of requests, if large concentrations of clients access the wrong
mirrored-site. In an approach sometimes referred to as active mirroring, websites powered by EdgeSuite
[13] from Akamai, redirect their users to specialized Akamized URLs. EdgeSuite then accurately identifies
the geographic location from which the clients have accessed the website. This identification is done based
on the IP addresses associated with the clients. Each client is then directed to the server farm that is
closest to the client’s network point of origin. As the network load and server loads change clients could

7

be redirected to other servers.

3.0.3 GES Solution Highlights

Our solution to the problem of event delivery handles the dissemination problem in a near optimal
fashion. An event is routed only to those units that have at least one client that is interested in the
event. Further, the links employed during the routing ensures the fastest dissemination since each broker
makes routing decisions, which ensure that the path from that broker to the intended recipients is the
fastest and the shortest path. The routing decisions are made based on the current state of the network.
A broker or islands of brokers could fail and the routes computed would avoid these failed sections of
the broker network while routing to recipients. Solutions to the delivery problem, involve a matching
step being performed at every broker. In our solution for a broker network, organized as an N-level
system, the matching step is not performed at every broker as the event is being relayed through the
broker network to its intended recipients. In fact this matching step is performed at most (N+1) times
prior to delivery at a given recipient. Our solution to the event delivery problem handles dense and
sparse interests in events equally well. The solution for delivery of events to clients experiencing service
interruptions due to single/multiple broker failures is discussed in the next section.

3.1 The gateway propagation protocol - GPP

The gateway propagation protocol (GPP) accounts for the process of adding gateways and is responsible
for the dissemination of connection information within relevant parts of the sub system to facilitate
creation of abbreviated system interconnection graphs. However, GPP should also account for failure
suspicions/confirmations of nodes and links, and provide information for alternative routing schemes. The
organization of gateways reflects the connectivities, which exist between various units within the system.
Using this information, a node should be able to communicate with any other node within the system.
This constitutes the connectivity graph of the system. At each node the connectivity graph is different
while providing a consistent overall view of the system. The view that is provided by the connectivity
graph at a node should be of those connectivities that are relevant to the node in question. Figure 2
depicts the connections that exist between the various units of the system that we would be using as an
example in further discussions. The connectivity graph is constructed based on the information routed
by the system in response to the addition or removal of gateways within the system. This information is
contained within the connection. Not all gateway additions or removals/failures affect the connectivity
graph at a given node. This is dictated by the restrictions imposed on the dissemination of connection
information to specific sub-systems within the system.

3.1.1 The connection

A connection depicts the interconnection between units of the system, and defines an edge in the con-
nectivity graph. Interconnections between the units snapshot the kind of gatekeepers that exist within
that unit. A connection exists between two gatekeepers. If a level-� connection is established, the con-
nection information is disseminated only within the higher level GES context C�+1

i of the sub-system
that the gatekeepers are a part of. Thus, connections established between broker nodes in a cluster are
not disseminated outside that cluster.

When the connection information is being disseminated throughout the GES context C�+1
i , it arrives

at gatekeepers at various levels. Depending on the kind of link this information is being sent over, the
information contained in the connection is modified. Details regarding the information encapsulated in
a connection, the update of this information during disseminations and the enforcement of dissemination
constraints can be found in [38, 37, 35]. Thus, in figure 2 the connection between SC-2 and SC-1 in
SSC-A, is disseminated as one between node 5 and SC-2. When this information is received at 4, it is
sent over as a connection between the cluster c and SC-2. When the connection between cluster c and
SC-2 is sent over the cluster gateway to cluster b, the information is not updated. As was previously
mentioned, the super cluster connection (SC-1,SC-2) information is disseminated only within the super-
super-cluster SSC-A and is not sent over the super-super-cluster gateway available within the cluster a
in SC-1 and cluster g in SC-3.

8

SSC-A

SC-1

SC-2

SC-3

e

g

c4 5
6

b

f

d

a

SSC-BSC-4

SC-5

SC-6

l

n

i

j

m

k

h

SSC-C

SC-7

SC-8

SC-9

s

u

o

q

t

r

p

SSC-D

SC-11

y

z

SC-10

w

x

v

Figure 2: Connectivities between units

Every edge created due to the dissemination of connection information also has a link count associated
with it, which is incremented by one every time a new connection is established between two units that
were already connected. This scheme also plays an important role in determining if a connection loss
would lead to partitions. Further, associated with every edge is the cost of traversal. In general the cost
associated with traversing a level-� link from a unit ux increases with increasing values of both x and �.
This cost scheme is encapsulated in the link cost matrix, which can be dynamically updated to reflect
changes in link behavior. Thus, if a certain link is overloaded, we could increase the cost associated with
traversal along that link. This check for updating the link cost could be done every few seconds.

3.1.2 Organizing the nodes

The first node in the connectivity graph is the vertex node, which is the level-0 broker node hosting the
connectivity graph. The nodes within the connectivity graph are organized as nodes at various levels. A
graph node k at level � in the connectivity graph is denoted as n�

k. Associated with every level-� node
in the graph are two sets of links, the set LUL, which comprises of connections to nodes na

i � a ≤ � and
LD with connections to nodes nb

i � b > �. When a connection is received at a node, the node checks to
see if either of the graph nodes (representing the corresponding units at different levels) is present in the
connectivity graph. If any of the units within the connection is not present in the connectivity graph,
the corresponding graph node is added to the connectivity graph.

Figure 3 depicts the connectivity graph that is constructed at the node SSC-A.SC-1.c.6 in figure
2. The set LUL at the node SC-3 in the figure comprises of node SC-2 at level-2 and node b at level-1.

9

6

SC-2

SSC-B

ba

54

SSC-CSSC-D

SC-3

6 (2)
4

6

5

4

3

2

1

0 0

2

level-0

level-1

level-2

level-3

SSC-A.SC-1.c.6

Figure 3: The connectivity graph at node 6.

The set LD at SC-3 comprises of the node SSC-B at level-3. The cost associated with traversal over a
level-3 gateway between a level-2 unit b and a level-3 unit SC-3 as computed from the linkcost matrix is
3, and is the weight of the connection edge. There are two connections between the super-super-cluster
units SSC-B and SSC-D, this is reflected in the link count associated with the edge connecting the
corresponding graph nodes.

To reach the vertex from any given node, a set of links need to be traversed. This set of links
constitutes a path to the vertex node. In the connectivity graph, the best hop to take to reach a certain
unit is computed based on the shortest path that exists between the unit and the vertex. This process of
calculating the shortest path, from the node to the vertex, starts at the node in question. The directional
arrows indicate the links, which comprise a valid path from the node in question to the vertex node.
Edges with no imposed directional constraints are bi-directional. For any given node, the only links that
come into the picture for computing the shortest path are those that are in the set LUL associated with
any of the nodes in a valid path.

3.1.3 Building and updating the routing cache

The best hop to take to reach a certain unit is the last node that was reached prior to reaching the
vertex, when traversing the shortest path from the corresponding unit graph node to the vertex. This
information is collected within the routing cache, so that events can be disseminated faster throughout
the system. The routing cache should be used in tandem with the routing information contained within
a routed event to decide on the next best hop to take to ensure efficient dissemination. Certain portions
of the cache can be invalidated in response to the addition or failures of certain edges in the connectivity
graph.

3.2 Organization of Profiles and the calculation of destinations

Every event conforms to a signature which comprises of an ordered set of attributes {a1, a2, · · · , an}.
The values these attributes can take are dictated and constrained by the type of the attribute. Clients
within the system that issue these events, assign values to these attributes. The values these attributes
take comprise the content of the event. All clients are not interested in all the content, and are allowed
to specify a filter on the content that is being disseminated within the system. Thus a filter allows a
client to register its interest in a certain type of content. Of course one can employ multiple filters to

10

signify interest in different types of content. These filters specified by the client constitutes its profile.
The organization of these profiles, dictates the efficiency of matching content.

3.2.1 Constructing a profile graph

Events encapsulate content in an ordered set of < attribute, value > tuples. The constraints specified
in the profiles should maintain this order contained within the event’s signature. Thus to specify a
constraint on the second attribute (a2) a constraint should have been specified on the first attribute (a1).
What we mean by constraints, is the specification of the value that a particular attribute can take. We
however also allow for the weakest constraint, denoted ∗, on any of the attributes. The ∗ signifies that
the filtered events can take any of the valid values within the range permitted by the attribute’s type.
By successively specifying constraints on the event’s attributes, a client narrows the content type that it
is interested in.

We use the general matching algorithm, presented in [1], of the Gryphon system to organize profiles
and match the events. Constraints from multiple profiles are organized in the profile graph. Every
attribute on which a constraint is specified constitutes a node in the profile graph. When a constraint is
specified on an attribute ai, the attributes a1, a2, · · · , ai−1 appear in the profile graph. A profile comprises
of constraints on successive attributes in an event’s signature. The nodes in the profile graph are linked
in the order that the constraints have been specified. Any two successive constraints in a profile result
in an edge connecting the nodes in the profile graph. Depending on the kinds of profiles that have been
specified by clients, there could be multiple edges, originating from a node. Figure 4 depicts the profile
graph constructed from three different profiles. The example depicts how some of the profiles share
partial constraints between them, some of which result in profiles sharing edges in the profile graph.

Along every edge we maintain information regarding the units that are interested in its traversal. For
each of these units we also maintain the number of predicates δω within that unit that are interested in
the traversal of that edge. The first time an edge is created between two constraints as a result of the
profile specified by a unit, we add the unit to the route information maintained along the edge. For a
new profile ωnew added by a unit, if two of its successive constraints already exist in the profile graph,
we simply add the unit to the existing routing information associated with the edge. If the unit already
exists in the routing information, we increment the predicate count associated with that destination.

A

B

D C

C

C

a [s1,s2][1,1]

f [s
3][1]

d [s3][1] c [s3][1]

b [s2][1]
c [s2][1]

* [s1][1]
c [s2][1]

s1= {A=a, B=*, C=c}
s2= {A=a, B=b,C=c}
s3= {A=f, D=d, C=c}

Figure 4: The complete profile graph with information along edges.

The information regarding the number of predicates δω per unit that are interested in two successive
constraints allows us to remove certain edges and nodes from the profile graph, when no clients are
interested in the constraints any more. Figure 4 provides a simple example of the information maintained
along the edges. When an event comes in we first check to see if the profile graph contains the first
attribute contained in the event. If that is the case we can proceed with the matching process. When
an event’s content is being matched, the traversal is allowed to proceed only if –

11

(a) There exists a wildcard (∗) edge connecting the two successive attributes in the event.

(b) The event satisfies the constraint on the first attribute in the edge, and the attribute node that
this edge leads into is based on the next attribute contained in the event.

As an event traverses the profile graph, for each destination edge that is encountered if the event satisfies
the destination edge constraint, that destination is added to the destination list associated with the
event.

3.2.2 The profile propagation protocol - Propagation of ±δω changes

In the hierarchical dissemination scheme that we have, gatekeepers g�+1 compute destination lists for
the u� units that it serves as a g�+1 for. A cluster gatekeeper would maintain profiles of all the broker
nodes contained with that cluster. A gatekeeper g�+1 should thus maintain information regarding the
profile graphs at each of the u� units. Profile graph P�+1

i maintains information contained in profiles P�

at all the u� units within u�+1
i . This should be done so that when an event arrives over a g�+1 in u�+1

i –

(a) The events that are routed to destination u�’s, are those with content such that at least one
destination exists for those events within the sub-units that comprise the profile for u�.

(b) There are no events, that were not routed to u�
i , with content such that u�

i would have had a
destination within the sub-units whose profile it maintains.

Properties (a) and (b) ensure that the events routed to a unit, are those that have at least one client
interested in the content contained in the event.

For profile changes that result in a profile change of the unit, the changes need to be propagated to
relevant nodes, that maintain profiles for different levels. A cluster gateway snapshots the profile of all
clients attached to any of the broker nodes that are a part of that cluster. The change in profile of the
broker node should in turn be propagated to the cluster gateway(s) within the cluster that the node is
a part of. A profile change in broker (as a result of a change in an attached client’s profile) needs to
be propagated to the unit (cluster, super-cluster, etc) gatekeeper within the unit that the broker is a
part of. In general the gatekeepers to which the profile changes need to be propagated are computed as
follows —

(a) Locate the level-(�) node in the connectivity graph.

(b) The uplink from this node of the connectivity graph to any other node in the graph, indicates the
presence of a level-� gateway at the unit corresponding to the graph node.

This scheme provides us with information regarding the level-� gateway, within the part of the system
that we are interested in. In the connectivity graph depicted in figure 3 any δω0 changes at any of the
nodes within cluster c, need to be routed to node 4. Any δω1 changes at node 4 need to be routed
to node 5, and also to a node in cluster b. Similarly δω2 changes at node 5 needs to be routed to
the level-3 gatekeeper in cluster a and superclusters SC-3, SC-2. When such propagations reach any
unit/super-unit the process is repeated till such time that the gateway that the node seeks to reach is
reached. Every profile change has a unique-id associated it, which aids in ensuring that the reference
count scheme does not fail due to delivery of the same profile change multiple times within the same
unit.

3.3 The event routing protocol - ERP

Event routing is the process of disseminating events to relevant clients. This includes matching the
content, computing the destinations and routing the content along to its relevant destinations by de-
termining the next broker node that the event must be relayed to. Events have routing information
associated with them, which indicate its dissemination within various parts of the broker network. The
dissemination information at each level can be accessed to verify disseminations in various sections of
the broker network. Routing decisions and the brokers that an event must be relayed to are made on the
basis of this information. This routing information is not added by the client issuing this event but by

12

the system to ensure faster dissemination and recovery from failures. When an event is first issued by
the client the broker node that the client is attached to adds the routing information to the event. This
routing information is the GES contextual information (see section 2.3.1) pertaining to this particular
node in the system. As the event flows through the system, via gateways, the routing information is
modified to snapshot its dissemination within the system.

Prior to routing an event across the gateway a level-� gatekeeper takes the following sequence of
actions –

• Check the level-� routing information for the event to determine if the event has already been
consumed by the unit at level-�. If this is the case the event will not be sent over the gateway to
that unit.

• In case the gateway decides to send the event over the gateway, all routing information pertaining
to lower level disseminations are stripped from the event routing information.

When a gatekeeper g� with GES context C�
i is presented with an event it computes the u�−1’s within

C�
i that the event must be routed to. A cluster gatekeeper, when it receives an event, computes the

broker destinations associated with that event. This calculation is based on the profiles available at the
gatekeeper as outlined in the profile propagation protocol. At every node the best hops to reach the
destinations are computed. Thus, at every node the best decision is taken. Nodes and links that have
not been failure suspected are the only entities that can be part of the shortest path. The event routing
protocol, along with the profile propagation protocol and the gateway information ensure the optimal
routing scheme for the dissemination of events in the existing topology.

4 The Reliable Delivery Of Events

Reliable delivery involves the guaranteed delivery of events to intended recipients. The delivery guar-
antees need to be satisfied even in the presence of single or multiple broker failures, link failures and
network partitions. In GES clients need not maintain an active online presence and can also roam the
network attaching themselves to any of the nodes in the broker network. Events missed by clients in the
interim need to be delivered to these clients irrespective of the failures that have or are currently present
in the system.

Prior Art

The problem of reliable delivery [23, 7] and ordering [9, 8] in traditional group based systems with
process crashes has been extensively studied. The approaches normally have employed the primary
partition model [40], which allows the system to partition under the assumption that there would be a
unique partition, which could make decisions on behalf of the system as a whole, without the risk of
contradictions arising in the other partitions and also during partition mergers. However the delivery
requirements are met only within the primary partition [22]. Recipients that are slow or temporarily
disconnected may be treated as if they had left the group. This model, adopted in Isis [6], works
well for problems such as propagating updates to replicated sites. This approach does not work well
in situations where the client connectivity is intermittent, and where the clients can roam around the
network. Systems such as Horus [39] and Transis [18] manage minority partitions, and can handle
concurrent views in different partitions. The overheads to guarantee consistency are however too strong
for our case. DACE [10] introduces a failure model, for the strongly decoupled nature of pub/sub systems.
This model tolerates crash failures and partitioning, while not relying on consistent views being shared
by the members. DACE achieves its goal through a self-stabilizing exchange of views through the Topic
Membership protocol. In [5], the effect of link failures on the solvability of problems (which are solved
with reliable links) in asynchronous systems, has been rigorously studied. [41] describes approaches to
building fault-tolerant services using the state machine approach.

Systems such as Sienna [12, 11] and Elvin [43, 21, 42] focus on efficiently disseminating events, and do
not sufficiently address the reliable delivery problem in the presence of failures. In Gryphon the approach
to dealing with broker failures is one of reconstructing the broker state from its neighboring brokers. This

13

approach requires a failed broker to recover within a finite amount of time, and recover its state from the
brokers that it was attached to prior to its failure. SmartSockets [16] provides high availability/reliability
through the use of software redundancies. Mirror processes receiving the same data and performing the
same sequence of actions as the primary process, allows for the mirror process to take over in the case
of process failures. The mirror process approach runs into scaling problems as the number of processes
increase, since each process needs to have a mirror process. Since there is an entire server network that
would be mirrored in this approach the network cycles expended for dissemination also increases as the
number of server nodes increases. SmartSockets also allows for routing tables to be updated in real time
in response to link failures and process failures. What is not clear though, is how the system is affected if
both the process and its mirror counterpart fail. TIB/Rendezvous [17] integrates fault tolerance through
delegation to another software TIB/Hawk which provides it with immediate recovery from unexpected
failures or application outages. This is achieved through the distributed TIB/Hawk micro-agents, which
support autonomous network behavior, while continuing to perform local tasks even in the event of
network failures.

Message queuing products such as IBM’s MQSeries [27] and Microsoft’s MSMQ [26] are statically
pre-configured to forward messages from one queue to another. This leads to the situation where they
generally do not handle changes to the network (node/link failures) very well. They also require these
queues to recover within a finite amount of time to resume operations. To achieve guaranteed delivery,
JMS provides two modes: persistent for sender and durable for subscriber. When messages are marked
persistent, it is the responsibility of the JMS provider [15, 29, 28, 14] to utilize a store-and-forward
mechanism to fulfill its contract with the sender (producer).

4.0.1 GES Solution Highlights

Our solution to the reliable delivery problem eliminates the constraint that a failed broker recovers within
a finite amount of time. Also, we do not rely on state reconstructions of broker since these solutions lead
to problems during multiple broker failures. In our solution we allow for a broker to fail and remain failed
forever. The reliable delivery scheme also incorporates a replication scheme that provides for different
replication strategies to exist at different parts of the system. The scheme also allows for this replication
strategy to change at different parts of the system as time progresses. Changes to the replication scheme
at a certain section of the broker network results in updates at the corresponding subsystems of the broker
network. Roaming, disconnected and connected clients are not affected by these changes in replication
schemes within the broker network. Clients reconnecting after a failure or prolonged disconnect make a
complete recovery of the events that were published in the interim. The recovery is very precise and only
those events that were missed by a reconnecting client are routed through the system en route to the
recovering client as recovery events. The persistence model in most systems involves the persistent store
subscribing to all events that are published in the system. This could lead to exponential rise in storage
requirements at different stable storages in the system. With increasing selectivity in the type of events
a client is interested in and also in the number of clients that are present in the system, the events stored
in storages servicing subsystems far exceeds the number of events that clients in those subsystems are
actually interested in. In the GES replication scheme a stable storage servicing a subsystem subscribes
to only those events that the brokers (and in turn the clients) that it servicing, is interested in. We also
have a garbage collection scheme which ensures that the storage space does not increase exponentially
with time. The epochs and reference counting scheme ensures that no client is starved of events that it
was supposed to receive while ensuring that the event is garbage collected once all clients interested in
receiving those events have received that event.

In our failure model a unit can fail and remain failed forever. The broker nodes involved in dissem-
inations compute paths based on the active nodes and traversal times within the system. The routing
scheme is thus based on the state of the network at any given time. Brokers could be dynamically
created, connections established or removed, and the events would still be routed to the relevant clients.
Any given node in the system would thus see the broker network undulate, as the brokers are being
added and removed. Connections could also be instantiated dynamically based on the average path-
length for communication with any other node within the system. The connectivity graph maintains
abbreviated system views; each node in this graph could also maintain information regarding the average
pathlengths for communication with any other node within the unit, which the graph node represents.

14

Connections could be dynamically instantiated to vary clustering coefficients and also to reduce aver-
age pathlengths for communications. The routing algorithms and the failure model allow support for
dynamic reconfiguration of networks.

4.1 Stable Storage Issues

Storages exist en route to destinations but decisions need to be made regarding when and where to store
an event and also on the number of replications that we intend to have for any given event. Events can
be forwarded to clients only after they have been written to stable storage. The greater the number of
stable storage hops en route to delivery to a client, the greater the latency in delivering the event to
that client. In section 4.1.1 we discuss the replication scheme for our system, and the process of adding
stable storages within a sub-system. Section 4.2 describes the need for epochs, the assigning of epochs
and the storage scheme for events. Section 4.2.4 describes the guaranteed delivery of events to all units
within the subsystem. Finally in section 4.2.6 we describe the recovery scheme for roaming clients or
clients connecting back after a prolonged disconnect.

4.1.1 Replication Granularity

In our storage scheme, data can be replicated a few times, the exact number being proportional to the
number of units within a super unit and also on the replication granularity that exists within a specific
unit. If there is a stable storage set up for servicing all the broker nodes within a level-� unit, then we
denote the replication granularity for nodes within that part of the sub system as r�. Stable storages
exist within the context of a certain unit, with the possibility of multiple stable storages at different levels
within the same unit. We do not impose a homogeneous replication granularity throughout the system.
Instead, we impose a constraint on the minimum replication scheme for the system. In an N -level system,
comprising of level-N units, we require that every node have a replication granularity of at least rN .
Thus, in a system comprising of super-super-clusters we require that every broker node within every
super-super-cluster have a replication granularity of at least r3. This is, of course, the coarsest grained
replication scheme. There could be units present within the system that have a replication strategy,
which is more finely grained. The other constraint, which we impose is that within a level-� unit u�

i there
can be only one stable storage at level �.

Figure 5 depicts the different replication granularities that can exist within different parts of a sub
system. As can be seen super-super-cluster SSC-B has a replication granularity r3, while super-cluster
SC-4 within SSC-B has a replication granularity r2. Cluster l has a replication granularity of r1. Also,
in the depicted replication scheme there could be no other node in SSC-B that serves as a stable storage
to provide the nodes in SSC-B with a replication granularity of r3. Similarly, there could be no other
stable storages, which try to service units SC-4 and SC-6 with a replication granularity of r2. Table 1
lists the replication granularities available at different nodes within the sub system depicted in figure 5.

Nodes Granularity r� Servicing Storage
10,11,12 r3 1

1,2,3,4,5,6,7,8,9 r2 9
16,17,18,19,20,21 r2 19

13,14,15 r1 14

Table 1: Replication granularity at different nodes within a sub system

4.1.2 Adding stable storages and updates of replication granularity

When a stable storage is configured as a level-� storage, we try to update the replication granularities
associated with the nodes within the level-� unit u�

i that the stable storage is a part of. For a node x if
the node’s replication granularity is rx

m, there are two possible outcomes. If m > � the node’s replication
granularity is updated to � i.e. rx

� . On the other hand if m < � the replication granularity for the node
is left unchanged. Thus for example if the unit had a granularity of rx

3 and r2 has been added, the

15

SSC-BSC-4

SC-5

SC-6

l
13 14
15

n
20

21

i4 5
6

j7 8
9

m16
17

18

k10 11

12

h1 2

3

1

19

14

9

Cluster Storage

Super Cluster Storage

Super Super Cluster Storage

19

Figure 5: The replication scheme

granularity is changed to rx
2 . A condition where m = � is an error condition since it depicts the presence

of multiple stable storages at the same level, a situation which should not arise because of the constraint
that we have imposed. In the topology in figure 5 if we were to set up a level-2 stable storage at node
10, the replication granularities at nodes 10,11 and 12 would be updated from r3 to r2. The replication
granularity for every broker node in the cluster SC-5.l remains unchanged at r1.

4.1.3 Stability

For an N -level system with a minimum replication granularity of rN , the responsibility for ensuring
stability of messages is delegated to the finer grained stable storages for those sub systems where the
replication granularity is less than N. In the case of multiple stable storages, at different levels within
a single super-unit, the stability requirements for individual nodes are delegated to the finest grained
store servicing the corresponding node. Thus, in figure 5 stability for nodes 13,14 and 15 is handled
by the cluster storage at node 14 while that for nodes 10,11 and 12 is handled by the level-3 stable
storage at node 1. Every event in the system should be stable since we should be able to retrieve the
event in case of failures or roams initiated by clients. When a node is hosting a stable storage with r�,
this node is responsible for computing destinations, comprising of units at level-(�-1), within the level-�
unit that the node belongs to. Along with these destinations the node also computes the predicate count
per destination that are interested in receiving the event, this feature allows us to garbage collect events
upon receiving acknowledgements.

If finer grained stable storages are present within the subsystem with r�, the receipt notification is
slightly different. As soon as the event is stored to the finer grained stable storage, this stable storage
sends a notification to the coarser grained storage indicating the receipt of the event and also the predicate
count that can be decremented for the sub-unit that this storage is servicing. Thus, in figure 5, when an

16

event stored at node 1 is received at node 19, we can assume that all nodes in unit SC-6 can be serviced
and decrement the reference counts at the level-3 stable storage at node 1 accordingly.

4.2 Epochs

Epochs are used to aid the reconnected clients and also to recover from failures. We use epochs to
ensure that the recovery queues constructed for clients would not comprise of events that a client was
not originally interested in. Failure to ensure this could lead to starvation of some of the clients. We
also need epochs to provide us with a precise indication of the time from which point on a client should
receive events. Not having this precise indication (during recoveries) leads to client starvations and also
would also cause the system to expend precious network cycles in routing these events. We also have an
epoch associated with every profile change and require that the client to waits till it receives the epoch
notification, before it can disconnect from the system.

4.2.1 Epoch generation

Epochs, denoted ξ, are truly determined by the replication granularities that exist in different parts of
the system. Some of the details pertaining to epoch generation are listed below –

(a) Epochs should monotonically increase.

(b) Epochs for clients exist within the context of the finest grained stable storage that the broker
node (that it is attached to) is a part of. Thus, if the broker node has a replication granularity of
r2, valid epochs for events received by the client, would be those that have been assigned by the
corresponding level-2 storage.

(c) For every client with a profile ω there is a epoch ξω associated with it.

For a profile ω associated with a client, we denote individual profile predicates as δω. Events are
routed to a client based on the δω that exist within a profile ω. However, every event received at a
client needs to have an epoch associated with it to aid in the recovery from failures and also to service
events that have not been received by the client. The arrival of such an event results in an update of the
corresponding epoch associated with the client’s profile. The replication granularity within the system
could be different in different sub systems. Within a subsystem having a replication granularity r�, it
is possible that there are subsystems with replication granularity r�−1, r�−2, · · · , r0. In such cases the
epochs assigning process is delegated to the corresponding replicators.

4.2.2 The storage format

When an event is written to a stable storage, there is an epoch number associated with it. Since all
events are not routed to all destinations we maintain the destinations associated with the event. For
each destination we also store the predicate count associated with that destination. We also maintain
information pertaining to the type of the event and the length of the serialized representation of the
event. Finally we maintain the serialized representation of the event. Thus, the storage format is the
tuple – < ξe, (de

0, d
e
1, · · · , de

n), (pe
0, p

e
1, · · · , pe

n), e.type, e.length, e.serialize >.

4.2.3 Epochs and the addition of stable storages

In this section we describe the process of adding stable storages. Consider a scenario where a new store is
being added within a unit un

i . The present replication granularity of this unit is rm and the new storage
for this unit is at level-n. The addition of a stable storage at level n is disseminated only within the unit
un

i that the hosting node belongs to.
If n < m, the new finer grained stable storage should access the coarser grained storage with rm

and retrieve the events, which were meant to be disseminated within the unit un
i . The predicate count

associated with the destinations for each individual event needs to be updated accordingly to reflect
the predicate counts associated with the sub-units in un

i . The epochs associated with these retrieved
events should however remain unchanged. This is especially crucial since there are clients, attached to

17

(disconnected from) broker nodes in the unit un
i , which have epoch numbers associated with their profiles

based on the ones assigned by storage hosting rm. The epochs associated with the client profiles should
remain consistent even if a new stable storage is added. Once this event retrieval process is complete,
the newly added stable storage is ready to assign epoch numbers to the events.

4.2.4 System storage and guaranteed delivery of events

For a level-N system, the stable storages servicing the individual level-N units are also designated as
system storages. For events issued by clients attached to nodes within these uN units, these system
storage nodes have the additional responsibility that they maintain events in stable storage till such time
that they are sure that all the other uN units within the system have received that event. When an
event is issued within a super unit uN

i , the destinations are computed as described in the event routing
protocol. However, before the event is allowed to leave unit uN

i , it must be stored onto the stable storage
that provides nodes in uN

i with the minimum replication granularity of rN .
The system storage node maintains the list of all known uN destinations within the system. This

destination list is associated with every event that is stored by the system storage. Associated with these
events is a sequence number, which is different from the epoch number associated with the events that
clients receive. Further, sequence numbers associated with events are used only by the system storages
to conjecture the events that they should have received from any other system storage within the system.
These sequence numbers are not used by the clients or the broker nodes within the system to detect
missing events. Once the event is stored to such a system storage, it is ready to be sent across to the other
uN destinations within the system. Also, for an event that is issued by a client within uN

i , the event is
stored to stable storage (to ensure routing to other uN units within the system) within uN

i and not at any
other system storages at the other uN units within the system. When the events are being sent across
gateway gN for dissemination to other uN units, every event has a sequence number associated with it
and also the unit uN

i in which this event was issued. This is useful since the rN replicators (which serve
as system storages) in other units can know which unit to send the acknowledgements (either positive
or negative) to.

4.2.5 Stable storage failures

When a stable storage node fails, the events that it stored would not be available to the system. A new
client trying to retrieve its events is prevented from doing so. The stable storage also misses any garbage
collect notifications that were intended for it. We require this stable storage to recover within a finite
amount of time.

Requirement 4.1 A stable storage cannot remain failed forever, and must recover within a finite
amount of time.

4.2.6 Routing events to a reconnected client

When a client is not present in the system, the event is not acknowledged and thus can not be garbage
collected by the replicator that this client was being serviced by. The events are thus available for the
construction of recovery queues when the client connects back into the system. The recovering client in
question could be both a roaming client or a client which has reconnected after a prolonged disconnect.
Associated with every client is the epoch number associated with the last event that it received or the
last profile change initiated by the client. The routing for the client is based on the node that the client
was last attached to. It is this node that serves as a proxy for the client. If this node fails it is the cluster
gateway, of the cluster that the node belonged to, which serves as a proxy for the client. As mentioned
earlier, in our system a node/unit can fail and remain failed forever.

Stable storages at higher levels are aware of the finer grained replication schemes that exist within
its unit. If a coarser grained stable storage is servicing the broker the client was last attached to, the
system would use the higher level stable storage to retrieve the client’s interim events. Otherwise the
system would delegate this retrieval process to the finer grained stable storage, which now services the
client’s lower level GES context.

18

For a profile ω associated with a client, when a disconnected client joins the system it presents the
node the it connects to in its present incarnation the following –

(a) The logical address of the broker node that this client was attached to in its previous incarnation.

(b) The last epoch ξ received from the replicator within the replication granularity r� of the sub system
that it was formerly attached to.

(c) A list of the profile ID’s associated with client’s profile ω.

Item (a) provides us with the stable storage that has stored events for the client. Item (b) provides
us with the precise instant of time from which point on, event queues of events needs to be constructed
and routed to the client’s new location. Item (c) provides for the precise recovery of the disconnected
client . Details regarding the precise recovery mechanism can be found in [38, 35].

5 Results

In this section we present results pertaining to the performance of the Grid Event Service (GES) protocols.
We first proceed with outlining our experimental setups. We use two different topologies with different
clustering coefficients. The factors that we measure include latencies in the delivery of events and variance
in the latencies. We measure these factors under varying publish rates, event sizes, event disseminations
and system connectivity. We intend to highlight the benefits of our routing protocols and how these
protocols perform under the varying system conditions, which were listed earlier.

5.1 Experimental Setup

The system comprises of 22 broker node processes organized into the topology shown in the Figure 6.
This set up is used so that the effects of queuing delays at higher publish rates, event sizes and matching
rates are magnified.

Each broker node process is hosted on 1 physical Sun SPARC Ultra-5 machine (128 MB RAM, 333
MHz), with no SPARC Ultra-5 machine hosting two or more broker node processes. For the purpose of
gathering performance numbers we have one publisher in the system and one measuring subscriber (the
client where we do our measurements). The publisher and the measuring subscriber reside on the same
SPARC Ultra-5 machine and are attached to nodes 22 and 10 respectively in the topology outlined in
figure 6. In addition to this there are 100 subscribing client processes, with 5 client processes attached
to every other broker node (nodes 22 and 10 do not have any other clients besides the publisher and
measuring subscriber respectively) within the system. The 100 client node processes all reside on a
SPARC Ultra-60 (512 MB RAM, 360 MHz) machine. The publisher is responsible for issuing events,
while the subscribers are responsible for registering their interest in receiving events. The run-time
environment for all the broker node and client processes is Solaris JVM (JDK 1.2.1, native threads,
JIT).

5.2 Factors to be measured

Once the publisher starts issuing events the factor that we are most interested in is the latency in the
reception of events. This latency corresponds to the response times experienced at each of the clients.
We measure the latencies at the client under varying conditions of publish rates, event sizes and matching
rates. Publish rate corresponds to the rate at which events are being issued by the publisher. Event size
corresponds to the size of the individual events being published by the publisher. Matching rate is the
percentage of events that are actually supposed to be receieved at a client. In most publish subscribe
systems, at any given time for a certain number of events being present in the system, any given client
is generally interested in a very small subset of these events. Varying the matching rates allows us to
simulate such a scenario, and perform measurements under conditions of varying selectivity. For a sample
of events received at a client we calculate the mean latency for the sample of received events and the
variance in the sample of these events. Another very important factor that needs to be measured is the
change in latencies as the connectivity between the nodes in a broker network is increased. This increase

19

SSC-BSC-4

SC-5

SC-6

l20 19

21

n
9

10

i11 4
5

j
15 6

7

m17 18
16

k1 2
3

h
14 12

13

8

22
Publisher

Measuring
Subscriber 8

1 Level-3 Storage

Level-2 Storage

Persistent
Subscriber

Figure 6: Testing Topology - (I)

in connectivity has the effect of reducing the number of broker hops that an event has to take prior to
being received at a client. The effects of change in latencies with decreasing broker hops is discussed in
section 5.3.3.

5.2.1 Measuring the factors

For events published by the publisher the number of tag-value pairs contained in every event is 6, with
the matching being determined by varying the value contained in the fourth tag. The profile for all the
clients in the system, thus have their first 3 <tag=value> pairs identical to the first 3 pairs contained
in every published event. This scheme also ensures that for every event for which destinations are being
computed there is some amount of processing being done. Clients attached to different broker nodes
specify an interest in the type of events that they are interested in. This matching rate is controlled by
the publisher, which publishes events with different footprints. Since we are aware of the footprints for
the events published by the publisher, we can accordingly specify profiles, which will allow us to control
the dissemination within the system. When we vary the matching rate we are varying the percentage of
events published by the publisher that are actually being received by clients within the system.

For each matching rate we vary the size of the events from 30 to 500 bytes, and vary the publish rates
at the publisher from 1 Event/Sec to around 1000 Events/second. For each of these cases we measure
the latencies in the reception of events. To compute latencies we have the publishing client and the
measuring subscriber residing on the same machine. Events issued by the publisher are timestamped
and when they are received at the subscribing client the difference between the present time and the
timestamp contained in the received event constitutes the latency in the dissemination of the event at

20

the subscriber via the broker network. Having the publisher and one of the subscribers on the same
physical machine with access to the same underlying clock, obviates the need for clock synchronization
and also accounts for clock drifts.

5.3 Discussion of Results

In this section we discuss the latencies gathered for varying values of publish rates, event sizes and
matching rates. We then proceed to include a small discussion on system throughputs at the clients. We
also discuss the trends in the variance of the latencies, associated with the sample of events received at
a client. The results also discuss the latencies involved in the delivery of events to persistent clients in
units with different replication schemes. The delays are in the range of 1-2 mSec for every broker hop.
Implementing certain sections of the networking code in C/C++ and then employing JNI to provide
access to these native routines could improve upon this delay significantly. The only disadvantage that
would result is that we would need to compile programs separately for different platforms. However the
brokers written in Java and Java/JNI could still continue to inter-operate with each other. Thus users
can decide which parts of the broker network would run the JNI-optimized implementation and which
would not.

5.3.1 Latencies for the routing of events to clients

At high publish rates and increasing event sizes, the effects of queuing delays come into the picture. This
queuing delay is a result of the events being added to the queue faster than they can be processed. In
general, the mean latency associated with the delivery of events to a client is directly proportional to
the size of the events and the rate at which these events were published. The latencies are the lowest for
smaller events issued at low publish rates. The mean latency is further influenced by the matching rates
for events issued by the publisher. The results clearly demonstrate the effects of flooding/queuing that
take place at high publish rates and high event sizes and high matching rates at a client. It is clear that
as the matching rate reduces the latencies involved also reduce, this effect is more pronounced for cases
involving events of a larger size at higher publish rates.

Figure 7 depicts the pattern of decreasing latencies with decreasing matching rates. Table 2 outlines
the reduction in latencies and the variance associated with the latencies corresponding to the sample of
events received at a client. This reduction in the latencies for decreasing matching rates, is a result of the
routing algorithms that we have in place. These routing algorithms ensure that events are routed only to
those parts of the system where there are clients, which are interested in the receipt of those events. In
the flooding approach, all events would still have been routed to all clients irrespective of the matching
rates. Additional results for latencies at different matching rates, system throughput measurements and
changes in variance in the latency samples can be found in [38, 36, 35].

5.3.2 Persistent Clients

In figure 6 we have also outlined the replication scheme that exists in the system. When an event arrives
at node 1, the event is first stored to the level-3 stable store so that it has an epoch associated with it.
The event is then forwarded for dissemination within the unit. Clients attached to any of the nodes in
super-cluster SC-6 have a replication granularity of r2. When the events issued by the publisher in the
test topology of figure 6 are being disseminated, when clients attached to nodes in SC-6 receive the event,
that event would have been replicated twice (once at node 1 and once at node 8). For testing purposes we
set up another measuring subscriber at node 7 in addition to the subscriber that we would set up at node
10. When an event is received by the subscriber attached to node 7 the event would have been replicated
only once, at node 1. These measuring subscribers allow us to measure the response times involved for
singular and double replications experienced at clients attached to nodes 7 and 10 respectively. Every
node (with the exception of nodes 7 and 10) in the system has 5 persistent subscribing clients attached
to it, for a total of 102 persistent subscribing clients. The publisher and the 2 measuring subscribers are
all hosted on the same machine for reasons discussed earlier. Figure 8 depicts the latencies in delivery
of events at persistent clients, with singular and double replications for a matching rate of 50%.

21

Latencies under different matching rates:22 Servers 102 Clients

Match Rate=100%
Match Rate=50%
Match Rate=10%

0 100 200 300 400 500 600 700 800 900 1000
Publish Rate
 (Events/sec) 0

50
100

150
200

250
300

350
400

450
500

Event Size
 (Bytes)

0
50

100
150
200
250
300
350
400
450

Latencies
 (MilliSeconds)

Figure 7: Latencies for match rates of 100%, 50% and 10%

Match Latency Range @ < publish Rate, event Size > Variance Range
Rate Latency La Latency La Variance Va

@ La

Variance Vb

@ Lb

100% 15.54 mSec @ 391.85 mSec @ 2.3684 69,713.93
<1evt/Sec, 50B> <952evts/Sec, 450B> mSec2 mSec2

50% 13.02 mSec @ 178.66 mSec @ 56.8196 14,634
<20evts/Sec, 50B> <952evts/Sec, 350B> mSec2 mSec2

33% 15.18 mSec @ 95.969 mSec @ 26.57 mSec2 1,263 mSec2

<20evts/Sec, 50B> <952evts/Sec, 425 B>
25% 14.40 mSec @ 66.6 mSec @ 0.24 mSec2 587.04

<20evts/Sec, 50B> <961evts/Sec, 400B> mSec2

20% 15.35 mSec @ 62.35 mSec 12.02 mSec2 312 mSec2

<20evts/Sec, 50B> <952evts/Sec, 400B>
10% 14.40 mSec @ 52.0 mSec @ 0.44 mSec2 103 mSec2

<20 evts/Sec, 50B> <952evts/Sec, 400B>
5 % 14.0 mSec @ 47.6 mSec @ 0.44 mSec2 87.44 mSec2

<20evts/Sec, 50B> <961evts/Sec, 425B>

Table 2: Latency and Variance Range Table

22

Persistent Client Latencies: Different replication schemes

Double Replication
Singular Replication

0 100 200 300 400 500 600 700 800 9001000
Publish Rate
 (Events/sec) 0

50
100

150
200

250
300

350
400

450
500

Event Size
 (Bytes)

0
20
40
60
80

100
120
140
160
180
200
220

Latencies
 (MilliSeconds)

Figure 8: Match Rates of 50% - Persistent Clients (singular and double replication)

5.3.3 Pathlengths and Latencies

The topology in figure 6 allows us to magnify the latencies, which occur by having the queuing delays at
individual broker hops add up. In that topology the number of broker hops taken by an event prior to
delivery at the measuring subscriber is 9. We now proceed with testing for the topology outlined in figure
9. The layout of the broker nodes is essentially identical to the earlier one, with the addition of links
between nodes resulting in a strongly connected network. We have 5 subscribing clients at each of the
broker nodes. The mapping of broker nodes and subscribing client nodes to the physical machines is also
identical to the earlier topology. As can be seen the addition of super-cluster link between super-clusters
SC-5 and SC-6, and level-0 links between nodes 8 and 10 in cluster SC-6.n reduces the number of
broker hops, for the shortest path from the publisher to the measuring subscriber at node 10, from 9 to
4.

In this setting we are interested in the changes in latencies as the number of broker hops vary. We
measure the latencies at three different locations, the measuring subscriber at node 10 has a broker
hop of 4 while the measuring subscribers at nodes 1 and 22 have broker hops of 2 and 1 respectively
for events published by the publisher at node 22. In general, as the number of broker hops reduce the
latencies also reduce. The patterns for changes in latency as the event size and publish rates increase is
however similar to our earlier cases. We depict our results, gathered at the three measuring subscribers
for a matching rate of 50%. The pattern of decreasing latencies with a decrease in the number of broker
hops is clear by looking at figure 10. Additional results at different matching rates can be found in [36].

6 Conclusion

In this paper, we have presented the Grid Event Service (GES), a distributed event service designed to run
on a very large network of broker nodes. The delivery guarantee needs to be met across client roams and
also in the presence of broker failures. GES comprises of a suite of protocols, which are responsible for the

23

SSC-BSC-4

SC-5

SC-6

n
9

10

i11 4
5

j15 6
7

m
17 18

16

h14 12

13

8

22
Publisher

Subscriber
(Server
Hops=4)

8

1 Level-3 Storage

Level-2 Storage

k1 2

3

l
20 19

21

Subscriber
Server
Hops=2

Subscriber
Server
Hops=1

Figure 9: Testing Topology - Latencies versus broker hops

organization of nodes, creation of abbreviated system views, management of profiles and the hierarchical
dissemination of content based on these profiles. The broker topology ensures that pathlengths would
only increase logarithmically with geometric increases in the size of the broker network. The feature of
having multiple links between two units/super-units ensures a greater degree of fault tolerance. Links
could fail, and the routing to the affected units is performed using the alternate links.

The system views at each of the broker nodes respond to changes in system inter-connections, aiding
in the detection of partitions and the calculation of new routes to reach units within the system. The
organization of connection information ensures that connection losses (or additions) are incorporated
into the connectivity graph hosted at the broker nodes. The protocols in GES ensure that the routing is
intelligent and can handle sparse/dense interest in certain sections of the system. GES’s ability to handle
the complete spectrum of interests equally well, lends itself as a very scalable solution under conditions
of varying publish rates, matching rates and message sizes.

The paper outlined a scheme for the delivery of events in the presence of broker node failures. In
our scheme a unit could fail and remain failed forever. The only requirement that we impose is that if
a stable storage fails, it should recover within a finite amount of time. The replication strategy, that we
adopted allows us to add stable storages and also to withstand stable storage failures. The replication
strategy, epochs associated with received events and profile ID’s associated with client profiles allowed
us to account for a very precise recovery of events for clients with prolonged disconnects or those which
have roamed the network.

GES could be extended very easily to support dynamic topologies. Based on the concentration of
clients at specific locations, bandwidth utilization can be optimized with the creation of dynamic brokers

24

Latencies under different server hops:22 Servers 102 Clients (Match Rate 50%)

Server Hop=4
Server Hop=2
Server Hop=1

0 100 200 300 400 500 600 700 800 900 1000
Publish Rate
 (Events/sec) 0

50
100

150
200

250
300

350
400

450
500

Event Size
 (Bytes)

0

20

40

60

80

100

120

140

Latencies
 (MilliSeconds)

Figure 10: Broker Hops - Match Rate 50%

at some of the clients. This scheme fits very well with our failure model for system units, where they
can remain failed forever. Detection schemes can be employed to detect slow nodes, which serve as
performance bottlenecks. Forcing these affected nodes to fail then reconfigures the system.

Clients can connect to local brokers instead of reconnecting all the way back to the remote broker
that it was last connected to. This scheme optimizes bandwidth utilization. This optimization is very
pronounced when there is a high concentration of clients accessing the remote broker. The failure model
of the system, which allows a broker node or a unit/super-unit of broker nodes to fail and remain failed
forever and still satisfy delivery guarantees is another significant contribution, which also allows the
system to be easily extensible. This model ensures that clients need not wait for a broker to recover after
this broker has failed. During failures clients do not experience a denial of service in this model. The
service, as mentioned earlier, extends very naturally into dynamic topologies allowing for the dynamic
instantiation and purging of brokers and connections. Changes in network fabric are incorporated by
the routing algorithms, which ensure that the routing decisions made at a node are based on the current
state of the system. The replication strategy presented in this paper, could be augmented to include
mirror storages, which maintain information identical to that of the stable storages, and take over in
the event of stable storage failures. This feature would add additional robustness and reduce the time
required to recover from stable storage failures.

The results in section 5 demonstrated the efficiency of the routing algorithms and confirmed the
advantages of our dissemination scheme, which intelligently routes messages. Industrial strength JMS
solutions, which support the publish subscribe paradigm generally are optimized for a small network of
brokers. The seamless integration of multiple broker nodes in our framework and the failure model that
we impose on broker nodes provides for very easy maintenance of the broker network.

25

References

[1] Marcos Aguilera, Rob Strom, Daniel Sturman, Mark Astley, and Tushar Chandra. Matching events
in a content-based subscription system. In Proceedings of the 18th ACM Symposium on Principles
of Distributed Computing, May 1999.

[2] Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim Waldo, and Ann Wollrath. The Jini
Specification. Addison-Wesley, June 1999.

[3] Mark Astley, Joshua Auerbach, Guruduth Banavar, Lukasz Opyrchal, Rob Strom, and Daniel Stur-
man. Group multicast algorithms for content-based publish subscribe systems. In Middleware 2000,
New York, USA, April 2000.

[4] Gurudutt Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao, Rob Strom, and Daniel
Sturman. An Efficient Multicast Protocol for Content-Based Publish-Subscribe Systems. In Pro-
ceedings of the IEEE International Conference on Distributed Computing Systems, Austin, Texas,
May 1999.

[5] Anindya Basu, Bernadette Charron Bost, and Sam Toueg. Solving problems in the presence of
process crashes and lossy links. Technical Report TR 96-1609, Dept. Of Computer Science, Cornell
University, Ithaca, NY-14853, September 1996.

[6] Kenneth Birman. Replication and Fault tolerance in the ISIS system. In Proceedings of the 10th
ACM Symposium on Operating Systems Principles, pages 79–86, Orcas Island, WA USA, 1985.

[7] Kenneth Birman. The process group approach to reliable distributed computing. Communications
of the ACM, 36(12):36–53, 1993.

[8] Kenneth Birman. A response to cheriton and skeen’s criticism of causal and totally ordered com-
munication. Technical Report TR 93-1390, Dept. Of Computer Science, Cornell University, Ithaca,
NY 14853, October 1993.

[9] Kenneth Birman and Keith Marzullo. The role of order in distributed programs. Technical Report
TR 89-1001, Dept. Of Computer Science, Cornell University, Ithaca, NY 14853, May 1989.

[10] Romain Boichat, Patrick Th. Eugster, Rachid Guerraoui, and Joe Sventek. Effective Multicast
programming in Large Scale Distributed Systems: The DACE Approach. Concurrency: Practice
and Experience, 2000.

[11] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving scalability and ex-
pressiveness in an internet-scale event notification service. In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing, pages 219–227, Portland OR, USA, July
2000.

[12] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Content-based addressing and
routing: A general model and its application. Technical Report CU-CS-902-00, Department of
Computer Science, University of Colorado, Jan 2000.

[13] Akamai Corporation. EdgeSuite: Content Delivery Services . Technical report, URL:
http://www.akamai.com/html/en/sv/edgesuite over.html, 2000.

[14] Firano Corporation. A Guide to Understanding the Pluggable, Scalable Connection Manage-
ment (SCM) Architecture - White Paper. Technical report, http://www.fiorano.com/ prod-
ucts/fmq5 scm wp.htm, 2000.

[15] Progress Software Corporation. SonicMQ: The Role of Java Messaging and XML in Enterprise
Application Integration. Technical report, URL: http://www.progress.com/sonicmq, October 1999.

[16] Talarian Corporation. Smartsockets: Everything you need to know about mid-
dleware: Mission critical interprocess communication. Technical report, URL:
http://www.talarian.com/products/smartsockets, 2000.

26

[17] TIBCO Corporation. TIB/Rendezvous White Paper. Technical report, URL:
http://www.rv.tibco.com/whitepaper.html, 1999.

[18] D Dolev and D Malki. The transis approach to high-availability cluster communication. In Com-
munications of the ACM, volume 39(4). April 1996.

[19] Guy Eddon and Henry Eddon. Understanding the DCOM Wire Protocol by Analyzing Network
Data Packets. Microsoft Systems Journal, March 1998.

[20] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Technical report,
Message Passing Interface Forum, May 1994.

[21] John Gough and Glenn Smith. Efficient recognition of events in a distributed system. In Proceedings
18th Australian Computer Science Conference (ACSC18), Adelaide, Australia, 1995.

[22] Katherine Guo, Robbert Renesse, Werner Vogels, and Ken Birman. Hierarchical message stability
tracking protocols. Technical Report TR97-1647, Dept. Of Computer Science, Cornell University,
Ithaca, NY 14853, 1997.

[23] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and related
problems. Technical Report TR94-1425, Dept. Of Computer Science, Cornell University, Ithaca,
NY-14853, May 1994.

[24] Mark Happner, Rich Burridge, and Rahul Shrama. Java message service. Technical report, Sun
Microsystems, November 1999.

[25] T.H. Harrison, D.L. Levine, and D.C. Schmidt. The design and performance of a real-time CORBA
object event service. In Proceedings of the OOPSLA’97, Atlanta, Georgia, October 1997.

[26] Peter Houston. Building distributed applications with message queuing middleware - white paper.
Technical report, Microsoft Corporation, 1998.

[27] IBM. IBM Message Queuing Series. http://www.ibm.com/software/mqseries, 2000.

[28] Softwired Inc. iBus Technology. http://www.softwired-inc.com, 2000.

[29] iPlanet. Java Message Queue (JMQ) Documentation. Technical report, URL:
http://docs.iplanet.com/docs/manuals/javamq.html, 2000.

[30] Javasoft. Java Remote Method Invocation - Distributed Computing for Java (White Paper).
http://java.sun.com/marketing/collateral/javarmi.html, 1999.

[31] The Object Management Group (OMG). CORBA Notification Service. URL:
http://www.omg.org/technology/documents/formal/notificationservice.htm, June 2000. Ver-
sion 1.0.

[32] The Object Management Group (OMG). OMG’s CORBA Event Service. URL:
http://www.omg.org/technology/documents/formal/eventservice.htm, June 2000. Version 1.0.

[33] The Object Management Group (OMG). OMG’s CORBA Services. URL:
http://www.omg.org/technology/documents/, June 2000. Version 3.0.

[34] Andy Oram, editor. Peer-To-Peer - Harnessing the Benefits of a Disruptive Technology. O’Reilly
& Associates, Inc., 1.0 edition, March 2001.

[35] Shrideep Pallickara and Geoffrey Fox. The grid event service (ges) framework: Research direction
& issues. Technical report, IPCRES Grid Computing Laboratory, 2001.

[36] Shrideep Pallickara and Geoffrey Fox. Initial results from an early prototype of the grid event
service. Technical report, IPCRES Grid Computing Laboratory, 2001.

27

[37] Shrideep Pallickara and Geoffrey Fox. Routing events in the grid event service. Technical report,
IPCRES Grid Computing Laboratory, 2001.

[38] Shrideep B. Pallickara. A Grid Event Service. PhD thesis, Syracuse University, June 2001.

[39] R Renesse, K Birman, and S Maffeis. Horus: A flexible group communication system. In Commu-
nications of the ACM, volume 39(4). April 1996.

[40] Aleta Ricciardi, Andre Schiper, and Kenneth Birman. Understanding partitions and the ”no parti-
tion” assumption. In Proceedings of the Fourth Workshop on Future Trends of Distributed Systems,
Lisbon, Portugal, September 1993.

[41] Fred Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
In ACM Computing Surveys, volume 22(4), pages 299–319. ACM, December 1990.

[42] Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe notification service
with quenching. In Proceedings AUUG97, pages 243–255, Canberra, Australia, September 1997.

[43] Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps. Content based routing
with elvin4. In Proceedings AUUG2K, Canberra, Australia, June 2000.

[44] D.J. Watts and S.H. Strogatz. Collective Dynamics of ’Small-World’ Networks. Nature, 393:440,
1998.

28

