
CONCURRENCY|PRACTICE AND EXPERIENCE

Concurrency: Pract. Exper. 2001; 00:1{99 Prepared using cpeauth.cls [Version: 2001/03/05 v2.01]

A comparison of concurrent

programming and

cooperative multithreading

Aaron W. Keen, Takashi Ishihara, Justin T. Maris,
Tiejun Li, Eugene F. Fodor, and Ronald A. Olsson�,y

Department of Computer Science, University of California, Davis, CA 95616 USA

Notes to Editor and Reviewers:

� Please send correspondence regarding this paper to Olsson.
� A preliminary version of this paper ([1]) appeared in Euro-Par 2000, held in Munich,

Germany, August 2000. The present paper has been signi�cantly revised and updated.

It now contains a more thorough discussion of several important issues | e.g.,

implementation issues, tradeo�s, and experiments with Java (new) | and much more

comprehensive performance results and explanations.

SUMMARY

This paper presents a comparison of the cooperative multithreading model with the
general concurrent programming model. It focuses on the execution time performance of
a range of standard concurrent programming applications. The overall results are mixed.
In some cases, programs written in the cooperative multithreading model outperform
those written in the general concurrent programming model. The contributions of
this paper are twofold. First, it presents a thorough analysis of the performances of
applications in the di�erent models, i.e., to explain the criteria that determine when a
program in one model will outperform an equivalent program in the other. Second, it
examines the tradeo�s in writing programs in the di�erent programming styles. In some
cases, better performance comes at the cost of more complicated code. Copyright c
2001 John Wiley & Sons, Ltd.

key words: cooperative multithreading; concurrent programming; parallel and distributed

programming languages; synchronization mechanisms; synchronization optimization

�Correspondence to: Prof. Ronald A. Olsson, Department of Computer Science, University of California,
Davis, CA 95616 USA
yE-mail: fkeen,ishihara,maris,liti,fodor,olssong@cs.ucdavis.edu
Contract/grant sponsor: Z-World, Inc. and the University of California under the MICRO program.

Received Sometime 2001
Copyright c 2001 John Wiley & Sons, Ltd.

2 A. KEEN ET AL.

1. INTRODUCTION
The general concurrent programming execution model (CP) typically provides independent
processes as its key abstraction. Processes execute nondeterministically. That is, processes run
in some unknown order, which can vary from execution to execution, and context switches

can occur arbitrarily. Multiple processes within a given program may execute at the same
time on multiple processors, e.g., on a shared-memory multiprocessor or in a network of
workstations. This model of execution is found in many concurrent programming languages
| e.g., Ada [2], CSP [3], Java [4], Orca [5], and SR [6, 7]. These languages provide various
synchronization mechanisms (e.g., semaphores, monitors, or rendezvous) to coordinate the
execution of processes. Some of these languages require process execution to be fair, so that
a language implementation might need to force context switches to prevent starvation. A
language implementation might represent these conceptual, language-level processes as system-
level processes or as threads within one or more system-level processes.

The cooperative multithreading execution model (CM) is a more specialized model of
execution. Threads execute one at a time. A thread executes until it chooses to yield the
processor or to wait for some event to become true. The kinds of events for which a thread
can wait include a shared variable meeting a particular condition, a device completing some
operation, or a timeout occurring. This model of execution is especially well-suited for writing
programs for real-world programmable controllers for embedded systems [8], such as those
found in irrigation control systems and railroad crossing control systems. One language for
writing these controllers is Z-World's Dynamic C [9].

The CM model as de�ned above allows only one thread to be active at any given time. A
natural generalization of CM (called PCM, for Parallel CM) is to allow multiple threads to
be active simultaneously, so that a CM program can run on multiple processors. However, to
preserve some of the advantages of CM (described later), some restrictions need to be placed on
which particular threads can be run simultaneously. For example, only one thread per module,
as in Lynx [10, 11], or one thread per group of threads with possibly interfering variable usages
may be active at any time.

Two signi�cant advantages of CM have been pointed out in the key work [10, 11] and
speci�cally for controllers in [8]: CM is a simpler conceptual model and threads often do not
need to synchronize explicitly because threads yield the processor at �xed places in the code.
Two other tradeo�s [12] involve how the e�ect of I/O can vary in the di�erent models and the
relationship of execution fairness to program determinacy.

In this paper, we present a comparison of the cooperative multithreading model (CM or
PCM) with the general concurrent programming model (CP). We focus on the execution
time performance of a range of standard concurrent programming applications. The overall
results are mixed. In some cases, programs written in the cooperative multithreading model
outperform those written in the general concurrent programming model. The contributions of
this paper are twofold. First, it presents a thorough analysis of the performances of applications
in the di�erent models, i.e., to explain the criteria that determine when a program in one model
will outperform an equivalent program in the other. Second, it examines the tradeo�s in writing
programs in the di�erent programming styles. In some cases, better performance comes at the

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 3

cost of more complicated code. (This paper extends our preliminary comparisons of CM and
CP [12] and PCM and CP [1]).)

The programs used in our experiments | CP-style, CM-style, and PCM-style | are
written in SR. For specifying concurrent or multithreaded execution, all three styles use SR's
basic process notation. For synchronization, the CP-style programs use SR's semaphores, the
CM-style programs use shared variables, and the PCM-style programs use both. (Further
description of how SR is used for all three styles appears later.) Although the programs used
in our experiments are written in SR, the general performance results should apply to some
extent to other languages and systems. The speci�c performance results will vary depending
on relative costs of synchronization and context switches, speci�c implementation details, etc.
Toward testing the general applicability, we also performed some experiments with CP-style
and CM-style Java programs.

The rest of this paper is organized as follows. Section 2 briey compares language features
typical in the three models. Section 3 discusses implementation issues that are key in
understanding the experimental results and how they a�ect the basic execution time costs
in implementations of the three models. Section 4 presents execution time performance
comparisons for SR programs written in the CM- or PCM-style with their counterparts written
in the CP-style for several standard CP applications. Section 5 reports on some similar
performance comparisons repeated for Java programs. Section 6 addresses additional issues
raised by our work and discusses related work. Finally, Section 7 concludes the paper.

2. LANGUAGE FEATURES

We assume most readers are familiar with CP languages (such as those languages mentioned
in Section 1) but are less familiar with CM or PCM languages. We therefore briey present
the essential ideas of two such languages | Dynamic C [9] and Lynx [10, 11].

Dynamic C extends the C language with various features to support CM. Its costate
statement de�nes a block of statements, which executes as a separate thread with its own
hidden statement counter. A thread executes until it chooses to yield the processor or to wait
for some event to become true. Yielding the processor is accomplished via explicit statements:
yield and waitfor. yield context switches to another ready thread, if any, or resumes the
current thread if no other thread is ready. waitfor evaluates the condition. If true, the thread
continues; otherwise, the thread yields and will, therefore, reevaluate the condition when it
runs again. (Some notations use await rather than waitfor.)

To illustrate Dynamic C, Figure 1 shows code for a piston controller [8]. The pneumatic
piston moves between two ends of a cylinder. It stays 1.3 seconds on one end, moves to the
other end, stays 4 seconds on that end, and then repeats. The controller also maintains a two
line LCD that displays the current time updated each second and the current status of the
piston.

Lynx is conceptually similar to Dynamic C. A Lynx program consists of a single module,
called a process. Each process may contain multiple threads. As in Dynamic C, only one thread
may be active at a time and threads execute until they block. An important feature of Lynx
is that Lynx programs (processes) can communicate via messages using a link mechanism; the

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

4 A. KEEN ET AL.

main() {

while(1) {

UpdateTime(&MsCount); /* set MsCount to current MilliSecond counter */

costate TimeLCD {

while(1) {

get current clock time and display it on LCD line 1

ClockMsCount += 1000;

waitfor(MsCount >= ClockMsCount); /* wait for another second */

}

}

costate PistonThread {

while(1) {

display "moving to END1" on LCD line 2

turn off valve1 and then turn on valve2

waitfor(piston to reach END1);

display "arrived at END1" on LCD line 2

PistonMsCount += 1300;

waitfor(MsCount >= PistonMsCount); /* wait for 1.3 seconds */

display "moving to END2" on LCD line 2

turn off valve2 and then turn on valve1

waitfor(piston to reach END2);

display "arrived at END2" on LCD line 2

PistonMsCount += 4000;

waitfor(MsCount >= PistonMsCount); /* wait for 4 seconds */

}

}

}

}

Figure 1. Dynamic C pseudo-code for a piston controller

receipt of a message creates a new thread to run code to handle the message. Lynx falls under
the PCM model because multiple threads | but at most one in each process within a group
of processes | may execute at a time.

To illustrate the di�erences between the CP and CM models, Figure 2 shows how the classic
dining philosophers problem can be solved in CP and CM. The CP code uses standard SR
features; for synchronization, it uses the shared array of semaphores fork. The CM code use

only CM-like features from SR; for synchronization, it uses the shared array of integers fork
and a simulated await statement. This simulation uses SR's nap function to explicitly yield.
(SR programs can be executed in CM-style; see Section 3.1.)

The key di�erence in these program fragments is how the philosopher checks the status of its
two neighboring philosophers to decide whether it can eat. In CP, synchronization is required
to avoid race conditions. By contrast, in CM, a context switch can occur only explicitly. Thus,
no context switch can occur within evaluation of the conditions of the (simulated) await or
between that test, if true, and the subsequent setting of the two elements of fork. (Note that
the CM code here is not valid under PCM; see Section 4.2.)

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 5

do true ->

think

...

get forks

(use semaphore operations

on shared sem array fork;

left and right are indices

of neighboring philosophers)

P(fork[left]);P(fork[right])

eat

...

release forks

V(fork[left]);V(fork[right])

od

do true ->

think

...

get forks, by simulating:

await fork[left]=1 & fork[right]=1

do not(fork[left]=1 & fork[right]=1) ->

nap(0) # i.e., yield

od

fork[left] := 0; fork[right] := 0

eat

...

release forks

fork[left] := 1; fork[right] := 1

od

(a) CP-style (b) CM-style

Figure 2. Code for a Philosopher in Dining Philosophers

3. KEY IMPLEMENTATION ISSUES AND BASIC COSTS

As noted in Section 1, a language implementation might represent conceptual, language-
level processes as system-level processes or as threads within one or more system-level
processes. Tradeo�s between these approaches are discussed in detail in [13, 14]. In the SR
implementations used in this paper, language-level processes are represented as threads within
a single system-level (UNIX) process. We use the term \process" for both a language-level
process and its implementation-level representation as a thread.

Also as noted in Section 1, context switches from one process to another in a CP program
can occur arbitrarily, whereas context switches from one thread to another in a CM or PCM
program occur only when a thread blocks or explicitly yields. This section discusses key
implementation issues and how they a�ect the basic execution time costs in implementations
of CP, CM, and PCM programs.

3.1. Key Implementation Issues

One key implementation issue is how an implementation of a CP language realizes implicit
context switching. The two main approaches are:

time-slicing: Allow a process to execute for some quantum of time. When that quantum
expires, switch to another process. This approach is nearly identical to how operating
systems time-slice user processes, but a language implementation typically performs
time-slicing within a single user process. This approach requires the language's run-time
system (RTS) to interact with the underlying operating system's timing facilities.

iteration-counting: Allow a process to execute for some number of loop iterations. This
approach is based on the realization that if a process is running and it does not block,

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

6 A. KEEN ET AL.

then it must be looping. This approach requires the language's compiler to generate
additional iteration-counting code as part of each loop. When this code detects that the
iteration limit has been reached, it invokes the run-time system to switch to another
process.

The standard SR implementation [6, 7] uses the iteration-counting approach; this paper will
refer to this implementation as SRIC . An experimental SR implementation uses the time-
slicing approach; it uses UNIX signals. We developed this implementation as part of this work;
this paper will refer to this implementation as SRTS .
Another key implementation issue is to ensure that internal RTS data structures are accessed

with appropriate exclusion. In SRIC , that is simple because the RTS is entered only via calls
from the generated code. So, the single processor version of SR's RTS requires no extra code,
but the multiprocessor version, known as MultiSR [15], requires code to lock key data structures
in case two processes enter the RTS at about the same time. (Typically, the implementation
uses spin locks.) In SRTS , ensuring appropriate exclusion is more complicated because a
process might be executing within the RTS when the signal indicating end of time-slice

occurs. Our initial implementation of SRTS disabled signals whenever an RTS procedure is
entered. Although that approach is correct, it requires frequent interaction with the operating
system (i.e., making system calls is expensive), which degrades performance. Our current
implementation instead uses a ag variable to indicate that the RTS is locked, thereby reducing
the overhead considerably. (Exclusive access to the ag variable is ensured in the multiprocessor

version by using locks.)
SR programs can be written in the CM-style (as seen in Figure 2(b)) and executed in the

CM-style. The standard SR implementation provides a compile-time option that prevents the
implicit context switches described above. When invoked with this option, the SR compiler
simply does not generate the iteration-counting code. This paper will refer to this use of SR
as SRCM .
The above discussion introduces three kinds of SR implementations: SRIC , SRTS , and

SRCM . Each of those has a single processor version and a multiprocessor version (based on
MultiSR). However, we will use the same term (e.g., \SRIC") for both versions and will
distinguish between them when necessary (e.g., \the multiple processor version of SRIC").

3.2. Basic Implementation Costs

The key factors in understanding the relative performances of the three kinds of
SR implementations | SRIC , SRTS , and SRCM | are context switching costs and

synchronization costs. Below, we discuss each of these in detail and present data to illustrate.
The data are from tests run on a 550 MHZ Pentium III processor PC running RedHat Linux
6.2 with the 2.2.14-5.0smp kernel. This system is a dual processor, but the single processor
versions of SR run SR processes (threads) on only a single processor at any time, so it is
equivalent to running on a single processor for those tests.
To compare relative performance of CM-style programs to CP-style programs, we use the

ratio of execution times multiplied by 100%, i.e.,

TSRCM=min(TSRIC ; TSRTS) � 100%

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 7

Table I. SR simple loop results on a single processor

SRIC SRTS SRCM CM/CP

(sec) (sec) (sec) ratio (%)

5.41 1.46 1.46 100.0

For brevity, we shall refer to this ratio as CM=CP or PCM=CP . Note that this ratio uses the
time of the best (fastest running) CP implementation for each test.

3.2.1. Context Switching Costs

As described above, to e�ect implicit context switching, SRIC generates additional code as
part of each loop, whereas SRTS uses a timer. SRCM does not e�ect implicit context switching.
By default, SRIC uses a switch count of 10,000 iterations (i.e., the generated code requests
a context switch every 10,000 iterations) and SRTS uses a quantum of ten millisecond. Ten
milliseconds is the smallest quantum possible on the test system. Section 4.3 discusses how
di�erent sized quanta and switch counts can a�ect performance.

Table I presents the execution times for the three kinds of implementations of a simple micro-
benchmark program designed to measure costs of the context switching code. The program
consists of four processes, each of which just executes a loop of 10,000,000 iterations. As can
be seen, the SRIC performance is considerably worse than the performances of the other
two implementations, which are identical. The reason is that in such a simple program the
iteration-counting code is the dominant cost. Further, given the default switch count of 10,000,
the SRIC context switches 4,000 times. In contrast, the SRTS context switches only 146 times
and SRCM does not context switch at all.

Table II presents the execution times for the above micro-benchmark when run on the
multiprocessor versions of the three implementations. Given that the test system has two
processors, one would hope for a speedup of 2.0 with respect to the data in Table I. As shown
in the table, SRCM obtains the ideal speedupy and SRTS obtains very close to the ideal
speedup. The di�erence for the latter is due to extra initialization costs and context switch
costs. SRIC , however, obtains a speedup of only 1.55. The di�erence is due to the extra locking
it must now perform within the RTS, which occurs, in this program, when the RTS is entered
for a context switch. As noted above, the single processor version of SRIC did not need any
locking.

yBecause this test has no shared variables, it does not require processor aÆnity. Section 4.2 further discusses
this issue.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

8 A. KEEN ET AL.

Table II. SR simple loop results on a dual processor (cf. Table I)

SRIC SRTS SRCM PCM/CP

(sec) (sec) (sec) ratio (%)

3.50 .75 .73 97.33

Table III. SR cost of synchronization per operation on a single processor

SRIC SRTS SRCM CM/CP

P and V P and V yield ratio

(�sec) (�sec) (�sec) (%)

.45 3.82 .37 82.20

3.2.2. Synchronization Costs

As noted in Section 2, CP-style SR programs use semaphores, whereas CM-style SR programs
use shared variables and yield. Table III shows the relative basic costs of these operations.
These data were obtained from two micro-benchmark programs. Each program consists of
two processes, with control alternating between them on each iteration. The data for the CP
program shows the combined cost of a P operation that blocks a process and a V that unblocks
a process. The data for the CM program shows the cost of a yield (i.e., nap(0)); the yield
in this program is unconditional, whereas often the yield is conditional based on the result
of testing shared variables. Unlike the other tables in this paper, this table (and Table IV)
shows the execution time per indicated operation, not the execution time for the entire micro-
benchmark program; thus, the costs of loop overhead, etc. are not included. As can be seen
from the table, SRIC 's performance is considerably better than SRTS ; the di�erence is due to
the cost of extra locking within the RTS. SRIC 's performance is slightly worse than SRCM ;
the di�erence is due to the extra testing and queueing and dequeuing involved in implementing

semaphore operations compared to implementing a simple yield.

Table IV presents the execution times for the above micro-benchmark when run on the
multiprocessor versions of the three implementations. As shown, all implementations require
more time than their single processor counterparts (Table III) due to the extra locking of the
RTS that is required. SRCM has the smallest absolute increase because its implementation
of yield requires fewer entries into the RTS than the others' implementations of semaphores.
Although SRTS has the largest absolute increase and the worst absolute performance, it has
the smallest relative increase because its single processor implementation already required
some locking.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 9

Table IV. SR cost of synchronization per operation on a dual processor (cf. Table III)

SRIC SRTS SRCM PCM/CP

P and V P and V yield ratio

(�sec) (�sec) (�sec) (%)

1.54 5.19 1.14 74.02

Table V. Standard CP applications used in the experiments

JI Jacobi iteration

(approximate the solution to a partial di�erential equation)

PC Producer/Consumer

DP Dining Philosophers

RW Readers and Writers

4. EXPERIMENTAL RESULTS FOR SR PROGRAMS

We wrote in the CM and PCM programming styles the standard CP applications listed in
Table V.z We programmed the applications in the SR language, using standard CP features
or CM-like features, as we did for the DP code in Figure 2. The PC, RW, and JI programs
are fairly straightforward (the CP versions are taken from [7], which are also available online
as part of the SR distribution [15]).
Below, we compare CP with CM (both running on a single processorx) and CP with PCM

(both running on a multiprocessor) by looking at the execution times for the applications
mentioned above. We ran each application on many di�erent problem sizes. For example, for
JI we tested with di�erent size matrices, convergence values, and initial values; for RW, we
tested with di�erent numbers of reader processes and writer processes. For DP, PC, and RW,
we tested with di�erent amounts of time spent inside and outside of critical sections. The
results we report below are representative of the observed results.
We ran the programs using the three kinds of SR implementations | SRIC , SRTS , and

SRCM | described in Section 3.1. Speci�cally, we ran the CM-style programs using SRCM

zThe PC problem consists of a single slot bu�er accessed, in general, by one or more producers and one or
more consumers. The PC solutions in this paper use a single producer and a single consumer. The more general
Bounded Bu�er problem includes a multiple slot bu�er; some results of our experiments for that problem appear
in [1].
xCM applications are typically run on a single processor; some CP applications (e.g., servers) are run on a
single processor.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

10 A. KEEN ET AL.

and the CP-style programs using both SRIC and SRTS . The data presented in this section
are from the tests run on the same test system as used in Section 3.2: a 550 MHZ single
or dual processor PC. To compare the relative performance of CM-style programs to CP-
style programs, we use the CM=CP or PCM=CP ratio de�ned in Section 3.2. To understand
better where execution time was being spent, we modi�ed the SR run-time system to report,
upon program termination, the number of context switches, the total number of semaphore P
operations performed, and the number of P operations that block. Finally, we used gprof to
pro�le the code.

4.1. CP versus CM (single processor)

This section presents and explains the results on the applications listed in Table V. The CM
programs outperformed CP programs in all cases, although just slightly in about half the
cases. (However, Section 4.3 presents additional cases, in which the CP programs outperform
the CM programs.) In some cases, the SRTS signi�cantly outperforms SRIC ; in other cases,
the situation is the opposite. The key factors in understanding the relative performances are
the basic implementation costs (for context switching and for synchronization) described in
Section 3.2 and application e�ects:

work: \Work" indicates how much non-critical activity a process performs. For example, in
PC, it represents what a producer must do to produce a new item. In some applications,
such as PC, the work is \real", i.e., some computation is performed. However, in other
applications, such as DP, the work representing the philosopher's eating or thinking is
simply a busy-waiting loop. Note that whether or not work includes real computation
can have a signi�cant e�ect on the overall results. In applications run under SRIC with
just busy-waiting work, the loop overhead can dominate, as discussed in Section 3.2. (See
Section 6 for further discussion.) We expect that most practical applications would fall
within the lower work categories, which incur fewer context switches and synchronization
points.

patterns of synchronization: The di�erent applications have di�erent patterns of
synchronization. For example, in PC, the producer and consumer alternate in their access
to the bu�er, whereas in RW, multiple readers can concurrently access the database.

Table VI presents the data for DP. For small work values, CM outperforms CP. However,
for large work values SRCM and SRTS are very close because a given philosopher can run to

completion without ever having to delay for the forks it needs. That happens here in the CM
program due to the nature of CM model and in the SRTS program because the work that
needs to be done can be �nished within a single quantum. The di�erence between SRCM and
SRTS for small amounts of work is due to overhead in the SRTS . In contrast, SRIC performs
poorly for large work values because it context switches more frequently. For example, when
one philosopher is eating, SRIC might context switch to that philosopher's neighbor, which
might also want to eat. However, because the neighbor is not able to eat, it will need to block.
Table VII presents the data for PC. The execution times for the three programs are close.

The slight di�erences are due to the di�erent costs between P/V and nap(0) and due to the

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 11

Table VI. SR DP results on a single processor

work SRIC SRTS SRCM CM/CP

(sec) (sec) (sec) ratio (%)

100 0.42 2.00 0.13 30.95

1000 3.69 3.18 1.19 37.42

10000 33.41 13.73 11.73 85.43

100000 318.39 119.41 117.13 98.09

1000000 3166.19 1175.76 1171.12 99.60

Table VII. SR PC results on a single processor

work SRIC SRTS SRCM CM/CP

(sec) (sec) (sec) ratio (%)

100 2.32 2.27 2.19 96.47

1000 22.95 21.72 21.61 99.49

10000 229.09 216.24 215.76 99.77

100000 2296.20 2161.61 2157.51 99.81

overhead in the CP implementations. In this application, the work includes real computation,
which dominates the overall execution.

Table VIII presents the data for RW. CM outperforms both CP implementations. For small
work values, SRTS outperforms SRIC because no context switches occur due to having reached
the switch count or the end of the quantum, so SRIC 's loop overhead dominates. However, for
larger work values, SRIC outperforms SRTS because this application requires a fair amount

of synchronization. As seen in Table III, P/V synchronization in SRIC is less costly than in
SRTS . Further, the amount of synchronization in this application takes suÆcient time so as
to force some additional context switches.

Table IX presents the results for JI. Each \test" entry indicates the size of the (square)
matrix and the number of processes used in the test. (The initial values and convergence
criteria also di�ered, although those are not shown in the \test" entry.) The performances
are very close because this application is mostly computational, which is the dominant cost.
However, the small di�erences between execution times can be attributed to context switching
overhead. The di�erence increases for larger problems due to increased context switching.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

12 A. KEEN ET AL.

Table VIII. SR RW results on a single processor

work SRIC SRTS SRCM CM/CP

(sec) (sec) (sec) ratio (%)

100 0.85 0.49 0.44 89.79

1000 0.93 0.87 0.49 56.32

10000 1.75 2.19 1.02 58.28

100000 10.09 14.61 6.37 63.13

1000000 93.01 141.20 59.81 64.30

Table IX. SR JI results on a single processor

test SRIC SRTS SRCM CM/CP

(sec) (sec) (sec) ratio (%)

128 8 3.72 3.81 3.71 99.73

256 2 19.25 18.80 18.47 98.24

512 8 77.59 77.17 73.11 94.73

4.2. CP versus PCM (multiprocessor)

We ran the applications again using the multiprocessor versions of the three kinds of SR
implementations | SRIC , SRTS , and SRCM | described in Section 3.1. The data presented
in this section are from the tests run on the same test system as used in the previous tests
(Sections 3.2 and 4.2): a 550 MHZ dual processor PC.

For the DP problem, we used the same CP version as before (Figure 2(a)). The PCM
version, though, is new. The basic approach, illustrated in Figure 3, splits philosophers into
two regions: East and West. Each of these regions is assigned to a processor. Synchronization
within a region uses shared variables, represented by dashed lines in Figure 3. Synchronization
between the two regions, however, uses a semaphore, represented by solid lines in Figure 3.
The code is, therefore, a hybrid of the code in the two parts of Figure 2 with three kinds
of philosophers: interior philosophers 2-7 and 10-15, each of which uses shared variables to
get both of its forks; border philosophers 1 and 9, each of which uses a semaphore to get its
right fork but a shared variable to get its left fork; and border philosophers 8 and 16, each of
which uses a semaphore to get its left fork but a shared variable to get its right fork. (Thus,
interior philosophers can be viewed as being written in CM-style and border philosophers as
in a combination of CP-style and CM-style.)

The MultiSR implementation, unfortunately, does not support processor aÆnity. (The same
holds true for the underlying Linux Threads [16] on which MultiSR is built.) So, di�erent

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 13

West East

89

3

11 6

7

2

12

16

10

14

1

5

413

(processor 1)(processor 2)

15

Figure 3. Layout of PCM Dining Philosophers for 16 philosophers and 2 processors

processes in the same region (East or West) could run at the same time, which violates the
PCM assumption and could lead to a race condition on the shared variables.

In our simulation, therefore, we tested two versions | DP1 and DP2 | of PCM DP.

Both include extra (semaphore) synchronization to protect the shared variables (\protection
synchronization"). DP2 includes additional synchronization to ensure that only one process
in a region runs at the same time (\region synchronization"). DP1, on the other hand, allows
more than one from the same region to run at the same time. DP1 is a reasonable, conservative
approximation to how PCM DP would perform. Given the characteristics of the tests (e.g.,
number of philosophers), it is likely that multiple philosophers from each region can run at the
same time; so the overall performance is not likely to be improved by running two philosophers
from the same region at the same time. The extra, protection synchronization means the
measured costs are (most likely) higher than they would be for a pure PCM DP solution.
Table X presents the results for DP. DP1 outperforms the CP versions of DP for all tested

workloads, even though DP1 has extra, protection synchronization. DP2 is slightly slower due
to its use of extra, region synchronization, but it too outperforms the CP versions of DP. The
reason that the PCM programs outperform the CP program is essentially the same as that for
the sequential version of the program (see Section 4.1): a philosopher can run to completion.
However, given that the PCM programs have two regions of philosophers, some competition
between philosophers can occur. When that happens, one philosopher will block and another
in that region can run; such blocking and later unblocking, however, does not signi�cantly

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

14 A. KEEN ET AL.

Table X. SR DP results on a dual processor

DP1 DP1 DP2 DP2

work SRIC SRTS SRCM PCM/CP SRCM PCM/CP

(sec) (sec) (sec) ratio (%) (sec) ratio (%)

100 0.93 3.49 0.56 60.21 0.59 63.44

1000 3.72 4.59 0.81 21.77 0.88 23.65

10000 31.60 12.69 6.09 47.99 6.26 49.33

100000 299.82 63.56 59.17 93.09 62.41 98.19

1000000 2977.32 600.64 590.49 98.31 595.61 99.16

Table XI. SR PC results on a dual processor

work SRIC SRTS SRCM PCM/CP

(sec) (sec) (sec) ratio (%)

100 1.43 1.87 1.25 87.41

1000 12.04 11.88 10.91 91.83

10000 123.40 110.59 108.85 98.42

100000 1163.44 1094.92 1080.14 98.65

Table XII. SR RW results on a dual processor

work SRIC SRTS SRCM PCM/CP

(sec) (sec) (sec) ratio (%)

100 1.35 1.39 0.60 44.44

1000 1.49 1.52 0.65 43.62

10000 2.81 3.30 1.33 47.33

100000 16.04 19.95 7.92 49.38

1000000 155.80 186.20 73.86 47.41

contribute to the overall execution costs. The e�ect of DP2's extra, region synchronization
is small, which reects that it does not cause many processes to block. As for the sequential
version of the program (see Section 4.1), the di�erences in the execution times between the
SRIC and the SRTS programs are due to extra context switching.

Table XI presents the results for PC. The PCM version of the PC program places
the producer on one processor and the consumer on the other. The code uses protection

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 15

Table XIII. SR JI results on a dual processor

test SRIC SRTS SRCM PCM/CP

(sec) (sec) (sec) ratio (%)

128 8 4.30 4.21 2.66 63.18

256 2 13.79 14.13 13.68 99.20

512 8 48.18 47.95 43.84 91.42

synchronization (semaphores) to protect the shared bu�er. In fact, the semaphore structure
is identical to that in the CP version. The performance of the PCM program is better than
the CP versions because it does not incur the context switching overhead present in the CP
implementations.

Table XII presents the results for RW. As for the PC program, the RW program uses the
same code for the CP versions and the PCM version. The overall results are similar too:
PCM outperforms CP. The di�erence is more pronounced here, though, because, as noted in
Section 4.1, the PC program does more real computational work than does the RW program.

Initially, we wrote another PCM version of the RW program, perhaps more in the PCM
style. To allow concurrent readers, we split readers between the two processors, P1 and P2.
We placed all writers on one of the processors, say P1. A reader on processor P1 can simply
check a shared variable to see whether it can begin reading. A reader on P2 needs to access
that shared variable with additional semaphore protection. A writer can access the number
of readers on P1 using a shared variable, but it must also access the variable representing
the number of readers on P2 with additional semaphore protection. As for the DP problem,
extra, protection synchronization is also required here to protect shared variables. However,
the PCM/CP ratio ranged from 109%-127%. The performance is worse for this program than
the other PCM RW program because they di�er in how they synchronize. The �rst program
uses a mutual exclusion semaphore and separate semaphores on which to block readers and
writers. The second program uses a single mutual exclusion semaphore around its tests of the
shared variables. Hence, the second program incurs extra costs for awakening blocked writers
when readers are still accessing the database; such writers just retest the shared variables
and block again. In contrast, the �rst program awakens either a waiting writer or all waiting
readers, depending on the system state.

Table XIII presents the results for JI. The CP and PCM versions of JI each use a barrier.
The di�erence, though, is in how the barrier is coded. In the CP version, the barrier uses
semaphores shared by all processes. On the other hand, the PCM version is similar in spirit
to the PCM version of DP (DP1). The N processes are divided into two groups. Each group
of N=2 processes uses shared variables to implement the barrier among the group. The �rst
N=2 � 1 workers in each group to arrive at the group's barrier use region-speci�c shared
variables to synchronize. The last worker in each group to arrive at the group's barrier signals
a semaphore to indicate that all processes in this region have reached the barrier. It then waits

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

16 A. KEEN ET AL.

for the last process in the other region to signal it on another semaphore that all processes
in the other region have reached their barrier too. (The actual code uses extra, protection
synchronization, as in DP1, to prevent race conditions.) The PCM version performs better,
despite the extra, protection synchronization, than the CP version. The reason is its use of the
simple shared variable barrier versus the more expensive semaphore barrier.

The overall speedups obtained between single processor and multiprocessor executions varied
considerably among the applications and problem sizes. For the dual processor on which we
ran the tests, one would hope for speedups close to 2.0. Such speedups were obtained for
the PC problem (Tables VII and XI). Speedups between roughly 1.1 and 1.7 were obtained
for the JI problem (Tables IX and XIII). Both the PC and JI problems are dominated by
real computation, although the cost of the barrier synchronization in JI is also signi�cant
(more so in the multiprocessor versions due to its higher cost) and explains the lower speedup.
For smaller work values, the multiprocessor versions of DP performed worse than the single
processor versions (Tables VI and X) due to the increased implementation overhead (see
Section 3.2). For larger work values, the SRTS and SRCM multiprocessor versions of DP
achieved speedups of close to 2.0 (Tables VI and X). However, the SRIC version achieved
speedups of only about 1.1 (Tables VI and X) due to the dominant cost of loop overhead (see
Section 3.2). For all work values, the multiprocessor versions of RW performed worse than the
single processor versions | i.e., speedups less than 1.0 | (Tables VIII and XII). The reason
is that the RW program does very little computation and much synchronization, the cost of
which is considerably higher in the multiprocessor versions of SR (see Section 3.2).

4.3. E�ect of Implementation Optimization and Tuning

The quantitative results presented in Sections 4.1 and 4.2 depend on the quality of the
implementations. We attempted to improve and tune the implementations in several ways.

As noted in Section 3.1, we reduced the use of (expensive) signals in the time-slicing
implementation. In addition, we attempted to improve the code the compiler generates for
iteration-counting. This code is executed on each iteration of each loop and is thus critical in the
overall performance of the iteration-counting SR implementation. However, this modi�cation
did not give signi�cantly better results (about 1% improvement).

We also experimented by varying the switch count in SRIC and by varying the quantum
size used in SRTS . Recall from Section 3.2 that the defaults are a switch count of 10,000 and
a quantum of 10 milliseconds.

The results for PC and JI were nearly independent of the switch count or quantum
(about 1% di�erence) because real computation dominates these applications. Although larger
switch counts or quanta can reduce the amount of context switching, that amount is not
signi�cant. Moreover, such context switches do not make a signi�cant di�erence in the pattern
of synchronization in these applications. That is, unless the quantum is very small, a process
will block on synchronization (e.g., when the bu�er becomes full in the PC problem) before it
reaches the end of its quantum.

However, the results for DP and RW on various switch counts and quanta showed signi�cant
di�erences. The results for DP appear in Tables XIV, XVI, XVIII, and XX. Varying the

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 17

Table XIV. SRIC DP results on a single processor (cf. Table VI)

SRIC with switch count of

work 1,000 10,000 100,000 1,000,000

(sec) (sec) (sec) (sec)

100 0.43 0.42 0.41 0.41

1000 3.52 3.68 3.68 3.67

10000 33.03 33.41 36.33 36.33

100000 328.26 318.31 341.32 356.61

1000000 3271.07 3165.20 3203.71 3385.04

switch counts or quanta can a�ect the overall synchronization patterns.{ For the single
processor versions, the SRIC performances vary by about 11% (Table XIV), whereas the
SRTS performances vary signi�cantly for small work values, but not much for large work
values (Table XVIII) where the larger quanta does not change the overall synchronization
pattern. A similar pattern in the data occurs for the multiprocessor versions (Tables XVIII
and XX).

The results for RW appear in Tables XV, XVII, XIX, and XXI. The SRIC performances vary
little for the single processor and multiple processor versions (Tables XV and XVII). As noted
in Section 4.1, the dominant cost for RW under SRIC is the iteration counting. However, the
SRTS performances vary signi�cantly for the single processor and multiple processor versions
(Tables XIX and XXI). As noted in Section 4.1, the dominant cost for RW under SRTS is
synchronization, signal handling, and context switching. With larger quanta, fewer such costs
are incurred. In fact, the single processor version of RW under SRTS even outperforms its
CM counterpart (Table VIII) due to \needless awakening". As noted in Section 4.2, the CM
version needlessly awakens waiting writers when they have no chance of progressing, whereas
the CP version awakens a waiting writer only when it is able to proceed.

5. EXPERIMENTAL RESULTS FOR Java PROGRAMS

We repeated the same experiments from Section 4.1 for programs written in Java, both

CP-style and CM-style. The Java CP-style programs use the standard Java monitor-like
synchronization mechanisms wait and notify. The Java CM-style programs use shared variables
and yield. We ran these experiments on a Sun Sparc 20 workstation running SunOS 5.7, i.e.,
Solaris. (We did not repeat the experiments from Section 4.2 that involve PCM because we

{A quantum of 1 means that no timer interrupts occur. However, the implementation still uses the same
locking as it does for �nite quanta.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

18 A. KEEN ET AL.

Table XV. SRIC RW results on a single processor (cf. Table VIII)

SRIC with switch count of

work 1,000 10,000 100,000 1,000,000

(sec) (sec) (sec) (sec)

100 0.86 0.84 0.84 0.84

1000 0.94 0.93 0.94 0.92

10000 1.78 1.75 1.75 1.75

100000 10.16 10.01 10.00 10.00

1000000 94.01 92.66 92.53 92.51

Table XVI. SRIC DP results on a dual processor (cf. Table X)

SRIC with switch count of

work 1,000 10,000 100,000 1,000,000

(sec) (sec) (sec) (sec)

100 0.89 0.93 0.93 0.94

1000 4.06 3.68 3.62 3.56

10000 33.55 31.47 31.70 31.35

100000 328.75 297.81 305.47 304.60

1000000 3263.59 2969.86 2941.91 2962.02

Table XVII. SRIC RW results on a dual processor (cf. Table XII)

SRIC with switch count of

work 1,000 10,000 100,000 1,000,000

(sec) (sec) (sec) (sec)

100 1.40 1.35 1.33 1.34

1000 1.54 1.48 1.46 1.47

10000 2.89 2.81 2.79 2.78

100000 16.33 16.04 16.00 15.99

1000000 150.76 148.41 148.08 148.03

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 19

Table XVIII. SRTS DP results on a single processor (cf. Table VI)

SRTS with quantum of

work 10 msec 20 msec 1,000 msec 1 msec

(sec) (sec) (sec) (sec)

100 2.00 1.56 0.73 0.75

1000 3.18 3.13 1.79 1.80

10000 13.73 13.76 12.33 12.34

100000 119.41 119.19 119.14 117.78

1000000 1175.76 1173.44 1173.38 1171.79

Table XIX. SRTS RW results on a single processor (cf. Table VIII)

SRTS with quantum of

work 10 msec 20 msec 1,000 msec 1 msec

(sec) (sec) (sec) (sec)

100 0.49 0.50 0.31 0.31

1000 0.87 0.79 0.33 0.33

10000 2.19 2.17 0.60 0.60

100000 14.61 14.63 3.31 3.30

1000000 141.20 140.87 136.29 30.30

Table XX. SRTS DP results on a dual processor (cf. Table X)

SRTS with quantum of

work 10 msec 20 msec 1,000 msec 1 msec

(sec) (sec) (sec) (sec)

100 3.49 3.51 3.53 2.13

1000 4.59 4.56 4.56 3.18

10000 12.69 12.81 12.84 12.90

100000 63.56 63.06 63.13 62.72

1000000 600.64 597.48 597.46 596.74

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

20 A. KEEN ET AL.

Table XXI. SRTS RW results on a dual processor (cf. Table XII)

SRTS with quantum of

work 10 msec 20 msec 1,000 msec 1 msec

(sec) (sec) (sec) (sec)

100 1.39 1.37 1.38 0.69

1000 1.52 1.55 1.73 0.76

10000 3.30 3.29 3.18 1.54

100000 19.95 20.07 20.01 9.36

1000000 186.20 186.59 187.10 87.74

do not have access to a multiprocessor running Solaris.) We chose this platform because the
\Green Threads" Java implementation (see below) runs only on Solaris.

The Java Language Speci�cation [17] neither requires nor prohibits that Java threads
execute fairly. Each Java thread has a priority, but the speci�cation does not require that
higher-priority threads be given preference over lower-priority threads (Section 17.12 of [17]).
If all threads in a Java program have equal priority, then an implementation of Java can
execute threads CP-style or CM-style. Most Java implementations (e.g., IBM's Version 1.3.0
of Java 2 SDK and Sun's Version 1.3.0 of Java 2 SDK) use the \native threads" package of
the underlying operating system, which provides CP-style execution. However, older Solaris
implementations (such as JDK 1.2.1-a) provide a \Green Threads" package that implements
threads within the JVM (Java Virtual Machine). Such an implementation provides CM-style
execution. However, periodic execution of the high-priority garbage-collection thread (which
we will designate TGC) can a�ect thread scheduling. In particular, under Green Threads,
it can make scheduling among equal, normal priority threads appear to be round-robin. For
example, suppose threads T1 and T2 have equal, normal priority, and each thread contains
a long loop with no yields. Then, the threads execute in the order T1, T2, T1, T2, etc. Our
observations indicate that after TGC executes, the scheduler picks the next thread to execute
rather than pick the thread that TGC preempted. On the other hand, if threads T1 and T2

have equal, high priority, then only T1 gets to execute. Our observations indicate that TGC
does not get to execute, presumably because it has a lower priority. (Or, if the TGC does
execute, the scheduler picks the preempted thread to run again afterwards.)

We ran Java versions of the DP, PC, RW, and JI applications (Section 4) on a single
processor.We ran CM-style versions and CP-style versions of these applications on two di�erent
Java implementations | one using Green Threads and one using native threads | as shown
in Table XXII. The table indicates that the two \natural" combinations are allowed. It also
indicates that \CPonGreen" | CP-style program executed on CM-style implementation | is
allowed: the applications do yield via their explicit synchronization (e.g., in the PC problem,

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 21

Table XXII. Java applications run on which Java implementations

CM-style program CP-style program

Green Threads yes yes

(CM-style implementation) \natural" \CPonGreen"

native threads no yes

(CP-style implementation) \CPnatural"

Table XXIII. Java DP results on a single processor

work CPnatural CPonGreen CM CM/CP

(sec) (sec) (sec) ratio (%)

100 1891.8 2300.6 965.6 51.0

1000 9226.6 9575.8 8235.4 89.3

10000 82059.8 82344.6 80972.0 98.7

100000 810625.6 810543.4 808722.8 99.7

a producer will yield if it �nds that the bu�er is full).k Finally, the table indicates that one
possibility | CM-style program executed on CP-style implementation | is disallowed: that
combination could have race conditions.
Tables XXIII, XXIV, XXV, and XXVI�� present the performance results for the

applications. As in Section 4, the CM/CP ratio in these tables shows the ratio between the
CM performance and the best of the two CP performances, i.e.,

TCM=min(TCPnatural; TCPonGreen) � 100%

The results show that on smaller amounts of work for DP, PC, and JI, CM outperforms CP,
but the situation is reversed for RW. The results also show that CPonGreen outperforms CM
or CPnatural in some cases, but it never outperforms both.
Despite these trends observed in the performance data, however, one should be cautious

in drawing conclusions. The implementations of native threads and Green Threads are quite

kAs noted earlier, this kind of execution is allowed by the Java Language Speci�cation even if the application
does not yield. However, for programs written in SR and some other languages, such an execution would not
be allowed because process execution is required to be fair.
��Due to the signi�cantly slower processor used for these tests, we used a slightly di�erent mix of tests for JI
in Java than we did for JI in SR (Tables IX and XIII).

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

22 A. KEEN ET AL.

Table XXIV. Java PC results on a single processor

work CPnatural CPonGreen CM CM/CP

(sec) (sec) (sec) ratio (%)

100 27027.6 20244.6 19035.0 74.9

1000 194425.8 186983.8 185012.6 96.2

10000 1851453.0 1853873.8 1845413.8 99.6

100000 18444763.0 18440204.0 18438873.0 99.9

Table XXV. Java RW results on a single processor

work CPnatural CPonGreen CM CM/CP

(sec) (sec) (sec) ratio (%)

100 6504.2 7034.0 8753.4 134.6

1000 7301.6 7665.6 9123.8 125.0

10000 14436.4 13807.2 12787.6 95.6

100000 133882.3 90370.4 49440.8 67.5

Table XXVI. Java JI results on a single processor

test CPnatural CPonGreen CM CM/CP

(sec) (sec) (sec) ratio (%)

8 2 0.59 0.49 0.38 77.6

128 8 10413.45 9784.68 9645.64 98.6

256 2 147045.93 146885.12 146132.26 99.5

di�erent. First, as noted above, native threads use OS (or kernel-level) threads whereas Green
Threads use threads within the JVM (or user-level) threads. These threads have quite di�erent
performance characteristics ([13, 14]). For example, switching between two threads is more
expensive using kernel-level threads because it requires a system call. Second, one thread
package might provide additional functionality not provided by the other, the implementation
of that additional functionality can have an impact on the performance of even its basic
functionality. (In contrast, the only di�erence in the implementations of SR used in Section 4.1
was whether the RTS provided CM-style or CP-style execution; the thread package was
identical in either case.) Nonetheless, the data gives some idea of performance of Java CM
and CP.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 23

6. DISCUSSION

We focused on the DP, PC, RW, and JI applications. We also experimented with SR versions
of Matrix Multiplication (MM) and Traveling Salesman Problem (TSP). For reasonable
problem sizes, MM is computationally intensive with almost no synchronization and TSP is
computationally intensive with little synchronization. Thus, their performances were roughly
similar to those seen for JI, i.e., very small di�erences between the models.

Applications such as JI, MM, and TSP run on a uni-processor system will (almost always) be
faster if they are written as sequential rather than concurrent programs. However, applications
such as PC, DP, and RW represent servers. Those applications and others such as HTTP or �le
servers lend themselves to multiple logical threads. For example, an HTTP server multiplexes
multiple connections and might have one thread for each request being serviced. These threads
might be expressed as processes within a CP program or as threads within a CM program
(e.g., as in the Boa server [18]). Having logical threads can also be important with respect to
I/O [12].

Earlier tests on other single processor platforms con�rmed the general trends seen in
Section 4.1. Those tests were run on several workstations including a Sun Sparc 5 workstation
running SunOS 5.5, various Intel-based PCs running various versions of Linux, a DEC 5000/260
running ULTRIX 4.3, and a DEC Alpha running OSF1 V3.2. Our earlier paper ([1]) gives
details. However, for the current paper, we have made changes to some of the test programs,
so direct comparisons between the data in the two papers are not always possible. An example
of such a change, and also an interesting general point about the benchmarks, is what exactly
comprises \work" (Section 4.1). If we modify the work in our experiments so that it involves
context switching | e.g., if DP uses a nap(10) to represent a philosopher eating for 10
milliseconds | then the resultant costs can dominate the program's execution time and the

extra switching can also a�ect the program's synchronization pattern. Such changes can a�ect
the results presented in Section 4. For example, the region synchronization in DP2 can now
often cause processes to block; the extra costs can make PCM program perform worse than
the CP program, as indicated in [1].

We observed that, in some CM programs, processes were sometimes busy waiting more than
necessary due to the order in which processes execute. For example, consider the code for
the Bounded Bu�er problem with two producers, two consumers, and one slot. If a producer

that has just deposited an item yields to the other producer, then that producer will be
awakened, perform any \work" it might need to do, see that it cannot proceed to deposit its
item, and in turn will yield. Some context switching can be eliminated if the producer instead
yields to a consumer, who can then fetch the item. We call this ability to select the process
to which to yield a named yield and the usual yield an unnamed yield. (A named yield is
like a coroutine resume.) We simulated named yield for the above problem and generally saw
improvements of about 10%, especially for small amounts of work (i.e., where context switching
is more dominant than work); see [1] for details. The simulated named yields relied on known
attributes of the particular implementation's underlying scheduler. We are considering how

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

24 A. KEEN ET AL.

named yields might be represented within the language or how that information might be
made available to the scheduler, either statically or dynamically. The latter approach might
be able to incorporate some of the dynamic feedback ideas presented in [19].

The style in which programs are written di�ers between the models. The di�erence between
CP and CM can be seen clearly in Figure 2. The di�erence between CP and PCMwas described,
for example, for the DP problem in Section 4.2. There, the code is a hybrid of styles and the
argument made regarding simplicity in [10, 11] is not as solid | the programmer needs to
understand both models of execution to program in PCM. As one speci�c example, our original
version of the PCM code for DP had a slight mistake (an \o� by one" error) in coordinating
the border philosophers. We did not discover the mistake until after the publication deadline
for [1]. As a result, the DP data in Table 2 of that paper is incorrect, although the general
trend in that table still holds for that speci�c benchmark.

The PCM DP example also raises the issue of load balancing. As presented, the processes
were split statically into two groups (regions), under the implicit assumption that, overall, each
group of processes was doing about the same amount of work. If that assumption is not correct,
then philosophers could be moved. Speci�cally, a border philosopher could be moved from one
group to the other; such a change would directly a�ect three philosophers and their roles as
border or interior. The actual code to e�ect such a move would be complicated, especially
when the philosophers are in the midst of synchronizing. In the CP model, load balancing can
happen implicitly without any change to how the processes synchronize.

The results we gave for SR programs are based on measurements of both CP-style programs

and CM- and PCM-style programs. The results might be skewed a bit in favor of the SRIC

programs because SR's underlying run-time system was designed for SRIC . An implementation
targeted speci�cally for SRCM or SRTS might be structured di�erently and perform better for
some programs. However, having all applications written in the same language was useful: the
implementation of other language features (e.g., code generated for accessing array elements) is
consistent between the di�erent versions of programs and therefore does not unfairly inuence
the results as it might when comparing programs written in di�erent languages.

Some thread packages also provide a CP model of execution. For example, Linux Threads [16]
uses threads within the operating system kernel to provide preemptible threads. Other thread
packages provide a CM model of execution. For example, GNU's Portable Threads (Pth) [20]
provide threads that are not preemptible. Yet other thread packages provide a PCM model of
execution. For example, the Ultra-lightweight Thread (uThread) package [21] provides \run-
to-completion" threads to avoid context switching. By allowing only one kernel-level process
to run at each processor, it can eliminate the need for mutual-exclusion primitives for threads
running within that kernel-level process.

A potential advantage of PCM-style programs is that they might bene�t from cache
aÆnity [22]. That is, processes that use the same variables will be placed on the same processor,

for example, as in the PCM DP example.

Our work is related generally to other work that attempts to eliminate synchronization or
replace synchronization by less expensive forms. Examples: eliminating barrier synchronization
from parallel programs [23] and replacing more costly forms of message passing with less costly
ones [24]. Both of those approaches employ compiler analysis, whereas the approach in this
paper is aimed at the higher, language level.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

CONCURRENT PROGRAMMING AND COOPERATIVE MULTITHREADING 25

We have also investigated how to transform CP programs into PCM or CM programs.
Even if some programmers prefer to express their code within the CP model, that code can
be transformed to PCM or CM and run more eÆciently by eliminating synchronization.
For example, a P/V pair of semaphore operations used for mutual exclusion can simply
be eliminated under certain conditions. Note that some implementations of CP languages
essentially map a CP into a PCM program anyway, but they generally need to assume the worst
case of when context switches will occur. It is also desirable to automate these transformations.
Unfortunately, we have not been successful in devising general transformations that would
work for many programs. It seems that application-speci�c semantic information (which is
not readily apparent from simple program structure) is required, thus defeating our goal of
(relatively) simple and general automatic transformations.

7. CONCLUSION

We have presented a comparison of the cooperative multithreading models (CM and
PCM) with the general concurrent programming model (CP). We examined execution
time performance of a range of standard concurrent programming applications. The overall
results are mixed. In some cases, programs written in the cooperative multithreading model
outperform those written in the general concurrent programming model. The key factors are
that CM and PCM programs can avoid context switching overhead and can use less costly
synchronization or even eliminate some synchronization. We also examined the tradeo�s in
writing programs in the di�erent programming styles, and observed that, in some cases,
better performance comes at the cost of more complicated code. Our experience indicates that
the cooperative multithreading models (CM or PCM) deserve further exploration as viable
alternatives to the general concurrent programming model (CP).

ACKNOWLEDGEMENTS

Joel Baumert made valuable technical suggestions on this work. Greg Benson provided helpful

technical information.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

26 A. KEEN ET AL.

REFERENCES

1. T. Ishihara, T. Li, E. F. Fodor, and R. A. Olsson. A comparison of concurrent programming and
cooperative multithreading. In A. Bode, T. Ludwig, W. Karl, and R. Wismuller, editors, Euro-Par 2000
Parallel Processing, number 1900 in Lecture Notes in Computure Science, pages 729{738. Springer-Verlag,
August 2000.

2. Intermetrics, Inc., 733 Concord Ave, Cambridge, Massachusetts 02138. The Ada 95 Annotated Reference
Manual (v6.0), January 1995. ftp://sw-eng.falls-church.va.us/public/Ada- IC/standards/95lrm_rat.

3. C.A.R. Hoare. Communicating Sequential Processes. Communications ACM, 21(8):666{677, August
1978.

4. G. Cornell and C. S. Horstmann. Core Java. Sun Microsystems, Inc., Mountain View, CA, 1996.
5. H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A language for parallel programming of

distributed systems. IEEE Transactions on Software Engineering, 18(3):190{205, March 1992.
6. G. R. Andrews, R. A. Olsson, M. CoÆn, I. Elsho�, K. Nilsen, T. Purdin, and G. Townsend. An overview

of the SR language and implementation. ACM Transactions on Programming Languages and Systems,
10(1):51{86, January 1988.

7. G.R. Andrews and R.A. Olsson. The SR Programming Language: Concurrency in Practice.
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1993.

8. Tak Auyeung. Cooperative multithreading. Embedded Systems Programming, pages 72{77, December
1995.

9. Z-World, Inc. Dynamic C 5.x Integrated C Development System Application Frameworks (Rev.1), 1998.
Dynamic C 5.x.

10. M. L. Scott. Language support for loosely coupled distributed programs. IEEE Transactions on Software
Engineering, 13(1):88{103, January 1987.

11. M. L. Scott. The Lynx distributed programming language: Motivation, design and experience. Computer
Languages, 16(3/4):209{233, 1991.

12. E.F. Fodor and R.A. Olsson. Cooperative multithreading: Experience with applications. In The 1999
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA
'99), pages 1953{1957, July 1999.

13. U. Vahalia. UNIX Internals: The New Frontiers. Prentice Hall, Upper Saddle River, New Jersey 07458,
1996.

14. G. Benson and R. Olsson. A framework for specializing threads in concurrent run-time systems. In Proc. of
4th Workshop on Languages, Compilers, and Run-time Systems for Scalable Computers (LCR98), volume
1511 of Lecture Notes in Computer Science, pages 139{152. Springer-Verlag, Pittsburgh, PA, 1998.

15. The SR programming language, version 2.3.2, August 1999. http://www.cs.arizona.edu/sr/.
16. S. Walton. LinuxThreads, 1997. http://www.ibiblio.org/pub/Linux/docs/faqs/Threads-FAQ/html/.
17. Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java Language Speci�cation. Addison-Wesley,

Reading, Massachusetts, second edition, 2000. http://java.sun.com/docs/books/jls/.
18. http://www.boa.org, 1999.
19. P. C. Diniz. Eliminating synchronization overhead in automatically parallelized programs using dynamic

feedback. ACM Transactions on Computer Systems, 17(2):89{132, May 1999.
20. GNU Pth | the GNU portable threads, March 2001. http://www.gnu.org/software/pth/.
21. Wei Shu. Runtime support for user-level ultra lightweight threads on massively parallel distributed memory

machines. In The Fifth Symposium on the Frontiers of Massively Parallel Computation, pages 448{445,
1995.

22. R. Vaswani and J. Zahorjan. The implications of cache aÆnity on processor scheduling for
multiprogrammed, shared memory multiprocessors. In Proceedings of the Thirteenth ACM Symposium
on Operating System Principles, pages 26{40, December 1991.

23. H. Han, C.-W. Tseng, and P. Keleher. Eliminating barrier synchronization for compiler-parallelized codes
on software DSMs. International Journal of Parallel Programming, 25(5):591{612, October 1998.

24. C. M. McNamee. Transformations for optimizing interprocess communication and synchronization
mechanisms. International Journal of Parallel Programming, 19(5):357{387, October 1990.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{99

Prepared using cpeauth.cls

