Concurrency: Practice and Experience

Synchronization Transformations for Parallel Computing

Pedro C. Diniz and Martin C. Rinard

This paper describes a framework for synchronization optimization and a set of transformations for programs that implement critical sections using mutual exclusion locks. The basic synchronization transformations take constructs that acquire and release locks and move these constructs both within and between procedures. They also eliminate acquire and release constructs that use the same lock and are adjacent in the program.

The paper also presents a synchronization optimization algorithm, lock elimination, that uses these transformations to reduce the synchronization overhead. This algorithm locates computations that repeatedly acquire and release that same lock, then transforms the computations so that they acquire and release the lock only once. The goal of this algorithm is to reduce the lock overhead by reducing the number of times that computations acquire and release locks. But because the algorithm also increases the sizes of the critical sections, it may decrease the amount of available concurrency. The algorithm addresses this trade-off by providing several different optimization policies. The policies differ in the amount by which they increase the sizes of the critical sections.

Experimental results from a parallelizing compiler for object-based programs illustrate the practical utility of the lock elimination algorithm. For three benchmark applications, the algorithm can dramatically reduce the number of times the applications acquire and releasing locks, which significantly reduces the amount of time processors spend acquiring and releasing locks. The resulting overall performance improvements or these benchmarks range from no observable improvement to up to 30% performance improvement.

1
1

