
On the Implementation of the Opus Coordination Language

Erwin Laure1 Matthew Haines2 Piyush Mehrotra3 Hans Zima1

1Institute for Software Technology and Parallel Systems

University of Vienna

Liechtensteinstrasse 22, A-1090, Vienna, Austria

ferwin,zimag@par.univie.ac.at

2Department of Computer Science

University of Wyoming

Laramie, WY 82071-3682

haines@cs.uwyo.edu

3Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Mail Stop 132C

Hampton, VA 23681-0001

pm@icase.edu

Abstract

Opus is a new programming language designed to assist in coordinating the execution of multiple,

independent program modules. With the help of Opus, coarse grained task parallelism between data

parallel modules can be expressed in a clean and structured way. In this paper we address the problems

of how to build a compilation and runtime support system that can e�ciently implement the Opus con-

structs. Our design considers the often-con
icting goals of e�ciency and modular construction through

software re-use. In particular, we present the system requirements for an e�cient Opus implementation,

the Opus runtime system and describe how they work together to provide the underlying services that

the Opus compiler needs for a broad class of machines.

1 Introduction

Data parallel languages, such as High Performance Fortran (HPF) [23], have been successfully applied to a

wide range of numerical applications. For single programs, signi�cant parallelism can be achieved using high-

level constructs. However, many advanced scienti�c and engineering applications are multidisciplinary and

heterogeneous in nature, requiring several independent programs working together to generate a solution.

Such applications do not �t well into the data parallel paradigm, since there are no facilities for controlling

the interaction between multiple, independent program units. The Opus coordination language [6, 7] was

recently designed to �ll this gap.

Opus de�nes language extensions to HPF that support the coordination of data parallel tasks. In doing

so, Opus introduces coarse-grained task parallelism on top of an existing data parallel model, where each

task is represented by an independent program module. Opus also introduces a mechanism to control the

coupling of multiple programs into complex multidisciplinary codes. To achieve these goals Opus provides

the following set of features:

� encapsulation of separate programs into modules in a way that respects their separate name spaces;

� coupling between modules at a high language level, as opposed to using explicit message-passing

constructs throughout the code;

� task-level parallelism between modules and data parallelism within each module; and

�
exible and general synchronization mechanisms that allow the programmer maximal freedom in ex-

ploiting task-level parallelism.

In a previous paper [7], we presented the syntax and semantics of the Opus language. In this paper, we

2

describe the design of a system that e�ciently implements the Opus constructs. We provide an overview

of the whole system, ranging from the low level virtual machine up to the high level compiler component.

In designing our system, we have tried to satisfy several requirements, including e�cient support for data

parallelism, an e�cient implementation of the coordination mechanisms of the language, the possibility to

extend and modify the language, and portability to a broad class of machines.

Apart from describing our present system design, we discuss design alternatives, together with their ad-

vantages and disadvantages, and the motivation for our choices. Our approach deals with the often-con
icting

goals of e�ciency and modular construction through software re-use. Software re-use is of invaluable impor-

tance when designing a highly complex system. For example, we utilize an existing HPF compilation system

(the Vienna Fortran Compiler VFC [3]) for the data parallel portion of our work. We also utilize existing

libraries that provide useful communication and threading abstractions, but avoid larger runtime packages

such as Nexus [13] and Chant [19] for reasons that we will explain later in more detail.

Finally, although our system has been speci�cally designed to meet the requirements of the Opus language,

we believe that the design decisions described in this paper can be applied in a more general context. In

particular, we show that the usage of a multithreaded virtual machine is advantageous for modeling complex

asynchronously interacting tasks and we analyze the relationship between compiler and runtime system

functionality.

The remainder of this paper is organized as follows: After a short introduction to the Opus language in

Section 2 and the Opus execution model in Section 3, we present our detailed system design in Section 4.

Possible design alternatives and related work are discussed in Section 5. In Section 6 we validate the

e�ectiveness of our approach with some preliminary results. We end in Section 7 with concluding remarks

and a discussion of future work.

2 The Opus Language

Opus introduces a small set of extensions to HPF [23] designed to coordinate an e�cient parallel execution

of multiple, independent data-parallel modules. At the heart of these extensions is an abstract data type

3

called a ShareD Abstraction, or SDA, whose purpose is to provide a means for encapsulation of data and

methods (procedures) which act on this data. Syntactically, Opus borrows heavily from Fortran 90 [26] in

the de�nition and use of SDAs. SDAs may exploit data parallelism in that the internal data of SDAs as well

as the data of SDA methods may be distributed using HPF data mapping features.

Viewed as an abstract data type, an SDA type speci�es an object structure, containing internal data

and the methods (procedures) which manipulate this data. By creating an instance of an SDA type an SDA

object is generated. In the following, when it is clear from the context, we will simply refer to SDAs instead

of SDA objects. At creation of an SDA, the resources on which it will execute are allocated, and all the

internal data of the SDA is also allocated and initialized in order to establish a well-de�ned initial state.

Resource allocation in Opus is controlled by an on-clause which can be used to specify the machine and the

number of processors on which the SDA should be created. During its lifetime, which is the time between

its creation and its termination, an SDA can be accessed (a method of an SDA can be invoked) from within

a program via SDA variables.

An SDA method can be invoked synchronously, where the caller is blocked until control returns, or

asynchronously, where the caller does not have to wait for the completion of the method. Explicit synchro-

nization is possible via event variables that can be associated with asynchronous method invocations. More

speci�cally, an SDA may test (or poll) an event in a non-blocking fashion, thus getting information about

a method's status without having to wait for its completion, or it may wait until a method has �nished its

execution. No two methods of an SDA are allowed to execute in parallel; thus each method has exclusive

access to the data of the SDA. A method may have an associated condition clause, specifying a logical

expression, which guards the method's activation.

In Figure 1 we illustrate the usage of Opus with the standard producer/consumer problem. In this

example a set of producers and consumers operate independently, communicating and synchronizing each

other via a bounded FIFO bu�er. Note, that this example exploits only the task parallel features of Opus

and does not make use of data parallelism.

*** Figure 1: Producer/Consumer Problem with Opus ***

4

3 The Opus Execution Model

In order to provide a better understanding of the implementation issues discussed in the following section

we sketch the Opus execution model below, taking the above producer/consumer problem as a practical

example.

During its execution an Opus program consists of a main procedure and a set of SDA objects which

are created and destroyed dynamically during the lifetime of the main procedure. Every SDA (and the

main procedure as well) executes asynchronously in a unique address space called SDA Address SPace

(SASP), containing the data and the executable code of an SDA. Each SASP is mapped to a set of physical

computational units called nodes, where a node can, for example, be a workstation or a processor in a

multi-processor machine. The distribution of a SASP across more than one node, for example the processors

of a distributed-memory machine or a network of workstations, allows the exploitation of data parallelism.

Distributed SASPs give rise to some di�cult issues such as proper synchronization of method executions

and data exchange as will be discussed in Section 4.4. A good overview of issues relating to the combination

of task and data parallelism can be found in [1, 28]. In order to exploit the available resources e�ciently,

multiple SASPs may reside on a node.

The execution of an Opus program starts by executing the main procedure, so that we begin with a single

(possibly distributed) SASP. When new SDAs are created, we allocate new SASPs on speci�c sets of nodes.

After an SDA has been created, it runs asynchronously and in parallel with all other SDAs in the program.

There is a parent/child relationship between SDAs; a parent SDA can only terminate if all of its children

have �nished their execution. SDAs communicate with each other via method invocation (MI).

During its lifetime an SDA receives method invocation requests from other SDAs which are bu�ered and,

depending on the associated \when-conditions", one of these bu�ered request is chosen to be ful�lled, that

is, the associated method is executed. During the execution of a method an SDA may communicate with

other SDAs via MIs, it may create additional SDAs, or it may wait for the return of issued MIs.

In our producer/consumer example the main procedure creates np+nc+1 SDAs (1 bu�er, np producers,

and nc consumers). The main procedure issues an asynchronous MI to every producer (consumer), causing

5

the execution of the produce (consume) method. During the execution of these methods synchronous MIs to

the bu�er are issued, resulting in the execution of the put or get method, respectively. The bu�er executes

these methods conditionally, thus ensuring correct program behavior.

An Opus implementation has to provide an e�cient mapping of SASPs to low level services (like threads

and processes) available on nodes as well as e�cient means of interaction between SDAs. Moreover, it has

to ensure that an SDA is capable of receiving and bu�ering new MIs independently of ongoing method

executions. Bu�ering MIs should be accomplished without unnecessary copying of MI arguments, which can

include large segments of data. We provide a detailed discussion of how an implementation of Opus can

ful�ll these requirements in the following section.

4 An Implementation of Opus

In this section we discuss in detail how an Opus program is compiled and describe the components of the

Opus system. Apart from having an e�cient and portable implementation one of the main design goals was

the integration with an existing HPF compilation system (the Vienna Fortran Compiler VFC [3]), so that

we do not have to re-implement any of the HPF compiler work.

4.1 Introduction

The transformation of an Opus source code into an executable program is a 3-stage process as can be seen

in Figure 2:

� The Opus Compiler transforms the code into blocks of HPF code with calls to the Opus Runtime

System (ORS). This transformation process uses compilation templates which specify code structures

common to every Opus application (cf. Section 4.3).

� This code is further processed by VFC which produces Fortran 90 code with calls to the VFC runtime

system.

� The resulting Fortran 90 code is eventually compiled with a Fortran 90 compiler and linked with both

the VFC runtime system and the ORS.

6

*** Figure 2: The Opus Compilation Process ***

While in the initial implementation of Opus [20] a fairly sophisticated runtime system was used, in

our present system design the role of the runtime system is reduced to basic communication and SDA

management tasks (cf. Section 4.2), while the Opus compiler implements most of the SDA semantics such

as scheduling of MIs and e�cient argument handling. In particular, the ORS integrates and abstracts lower

level system components for both, SASP mapping and interaction (cf. Figure 3). We require communication

mechanisms that do not assume a shared memory model for realizing SDA interaction. For an e�cient

mapping of SASPs we need to facilitate mappings of multiple SASPs to the same node, in order to exploit

locality between SDAs. Such a mapping could be realized on Unix-based systems by mapping SASPs to

processes, but this approach su�ers from two major drawbacks: the inability to control scheduling and the

costly context switching overheads (cf. [20]). In light of the problems with using a process-based model, we

have elected to use a multithreading model. However, some support for a process-based model is necessary

for platforms which do not allow multithreading as will be discussed in Section 4.5.

In our current design we make use of low-level packages for both communication and multithreading.

The actual modules used vary from system to system, but include systems like MPI [29], TCP/IP [24], and

POSIX threads [25]. These low level components can be seen as part of the virtual machine on top of which

an Opus application will be executed.

We have taken a simpli�ed approach to resource management: we presume that all the required resources

are statically allocated. The extension of our design to support dynamic acquisition of new resources is

subject to ongoing work.

We now provide a detailed discussion of the Opus system design, in particular of the Opus Runtime

System (ORS) and the Opus Compiler.

4.2 The Opus Runtime System

The Opus Runtime System (ORS) implements the low-level runtime support that is utilized by every Opus

application. Speci�cally, the ORS provides runtime routines for SDA management, including initialization,

�nalization, and MI handling, which are exploiting the functionalities provided by the underlying systems

7

components (cf. Figure 3).

*** Figure 3: The Opus Runtime System and its Supporting System Components ***

Due to the conditional execution of methods it is necessary to bu�er MIs on the callee side until the

method is eventually ready for execution. This bu�ering is a critical task since MIs may be accompanied

by large amounts of data being passed as input arguments to the method. MI-bu�ers are realized using two

FIFO queues called MI-queues: the inqueue bu�ers incoming MIs while the outqueue keeps track of issued

MIs. The inqueue management ensures some fairness in processing MIs by choosing the next earliest MI in

the list after each unsuccessful test of a \when-condition".

MIs are represented in the form of execution records which contain information about the caller and

the callee, the method that is to be executed, and a set of marshaled arguments. Figure 4 shows the type

declaration (using Fortran 90 syntax) of an execution record, where the derived type ors sda handle is the

runtime representation of SDAs and the type ors generic type is a compiler generated abstraction of the

method arguments; apart from these pointers the execution record holds a unique id, the id of the method

to be executed, the type of the execution (synchronous or asynchronous) and a logical
ag which provides

information about the execution progress. The action component allows the use of execution records not

only for MI requests, but also for inquiries about the state of an MI and execution acknowledgments (cf.

Section 4.3). The ORS implementation takes care that the management of input data does not involve any

data copying that is not caused by the underlying message passing system, hence an execution record has

only a pointer to the method arguments.

*** Figure 4: The Execution Record ***

The ORS also supports argument marshaling that is necessary for proper MI execution. The complex

nature of SDA methods and the fact that the internal data structures can be distributed over multiple nodes

makes argument marshaling a non-trivial task that may involve data redistribution. We make use of existing

redistribution algorithms or libraries [5, 8, 30] for this purpose. In implementing the ORS, we were careful

to avoid the underlying message passing system when communicating between two SASPs co-located on the

same node, and used direct memory copies in these situations.

Apart from basic MI support, the ORS also facilitates SDA synchronization like the event mechanism

8

described in Section 2. It also provides a higher-level interface to the underlying system components (e.g.,

creating a new thread or synchronizing threads via mutexes and condition variables), so that these packages

can be easily exchanged without a�ecting the ORS or the compiler.

In the following we provide a more detailed discussion of the main ORS routines whose interface is given

in Figure 5. The use of these routines can be seen in the following section where we discuss the Opus

Compiler and its compilation templates. We omit the presentation of threading routines since those are

simple wrappers around the low level routines. It is worth noting that our actual implementation of the

ORS is done in Fortran 90 which facilitates the integration with existing HPF-runtime systems as will be

discussed in more detail in Section 5.

*** Figure 5: Main ORS Routines ***

� ors initialize sda(iq,oq): The initialization routine of an SDA. It allocates the inqueue iq and

outqueue oq.

� ors terminate sda(oq): This routine is invoked on the termination of an SDA and ensures correct

behavior on termination. It is necessary to wait on the return of all outstanding MIs (which can be

accessed via the outqueue oq), and a termination signal is sent to all children of the SDA. The routine

has to wait until all of the SDA children have terminated in turn. After that it is safe to delete the

SASP and to return.

� ors get rec(r, queue) result(return rec): Depending on whether the optional argument r is

available, a pointer to the earliest execution record ready for processing or a pointer to the record

matching r is returned. The latter case arises when the execution progress of an MI is queried by the

intrinsic \wait" or \test" procedure. If queue is empty, the call will block until a new record has been

inserted.

� ors insert rec(r, queue): A new record is inserted into the queue.

� ors delete rec(r, queue): A record is deleted from the queue.

� ors new event(e,r): This routine binds an event variable to an execution record.

9

� ors test(e,s) result(finished): This routine facilitates a test inquiry, where s is the SDA-handle

of the caller. A blocking MI is sent to the owner of event e (which is the SDA that has issued the MI

to which the event is bound). The result of this MI is a logical
ag indicating the execution progress

of the MI bound to the queried event.

� ors wait(e,s): This routine is similar to ors test except that it facilitates a wait inquiry. Thus, it

will only return if the MI bound to the queried event has �nished its execution. The counterpart of

both routines, ors test and ors wait, on the callee side is the routine ors handle inquiry.

� ors handle inquiry(r,c,a): This routines handles an inquiry a (which may be a test or a wait) on a

speci�c asynchronous MI referred to by r. c is the execution record of the inquiry. In case of a test the

�nished component of r is immediately returned to the caller. In case of a wait, the caller is blocked

until the the queried MI returns.

� ors handle return(r): This routine is invoked when an SDA receives an execution acknowledgment

for an issued MI. It checks whether all the results have been received, cleans up the outqueue (i.e., the

execution record is deleted) and informs all SDAs waiting on the return of the MI (i.e., all SDAs which

have issued a wait on the event bound to the MI) that it is �nished. Note, that records of asynchronous

MIs cannot be deleted completely; some minimal information (including the �nished
ag and the ID)

needs to be maintained because wait- or test-inquiries may still occur.

� ors receive mi(r): This is a wrapper for the message passing calls required for receiving MIs. Note

that these message passing calls should be blocking, such that a thread which is waiting for an MI is

suspended giving other threads the possibility to perform useful work. The routine allocates a new

execution record and receives all the record data from the caller, except the input arguments. The

calls for receiving input arguments are generated by the compiler as will be discussed in the following

subsections.

� ors send synchronous mi(r), ors send asynchronous mi(r): These two routines are the counter-

parts of ors receive mi(r) on the caller side. An execution record is sent over to the callee; again,

10

no input arguments are communicated. See Section 4.4 for a detailed discussion of input argument

transfers.

4.3 The Opus Compiler

The last component of the Opus system is the Opus compiler. The compiler restructures the Opus code and

produces blocks of code that utilize the functionalities provided by the ORS. More speci�cally, the compiler

translates the code of an SDA into a set of subroutines which implement the SDA semantics. The structure of

these subroutines is independent of the actual input program and is embodied in what are called compilation

templates. These templates are �lled in by the compiler using the speci�c application code.

The Opus compiler has been designed so as to work in conjunction with an HPF compiler such as the

Vienna Fortran Compiler (VFC) [3]. As already shown in Figure 2, the input program is transformed into

an HPF-conforming program with calls to the ORS. This HPF program is subsequently compiled by VFC,

producing a Fortran 90 program with calls to both the ORS and the VFC runtime systems. By making use

of both, the Opus compiler and VFC, we can speci�cally focus on the tasking issues of Opus and allow VFC

to handle the data parallel portions. Therefore, the compiler needs only to restructure SDA code, and leaves

the remainder of the code as well as all the internal code of SDA methods which is not concerned with MIs

to be handled by VFC.

As already discussed in Section 4.1, the mapping of SASPs onto nodes can be process based or thread based.

In the following we assume a thread based mapping and give some remarks on a process based implementation

in Section 4.5.

By compiling SDAs into separate threads multiple SASPs can be e�ciently mapped to the same physical

resources. However, there is the need for multiple threads within an SDA as well because we need a component

that is able to receive MIs independently of ongoing method executions. Hence, one can think of a hierarchical

thread structure where an SDA thread is subdivided into two independent threads communicating via a

shared memory segment. As shown in Figure 6 the three components of an SDA are:

� A shared memory area, in which the MI-queues as discussed in Section 4.2 are allocated.

11

� The Server Thread which receives MI requests and places the execution records into the inqueue.

� The Execution Thread which retrieves records from the inqueue, evaluates the \when-conditions" and

executes the respective methods.

*** Figure 6: Structure of an SDA Object ***

Both threads execute asynchronously in parallel; the only synchronization required is a mutually exclusive

access to the shared queues.

Apart from the internal threads of each SDA, a special thread called the creation thread, is spawned on

every node at the start of the program. When a new SDA needs to be created, the parent SDA sends a

message to the creation threads of all the nodes on which the SDA is to be established. In response to this

message, the creation thread on each node sets up a new SDA object on its node. In particular, both the

server and the execution thread are spawned and the shared memory area is allocated. In addition, a new

communicator containing all the nodes on which the SDA has been created is provided to the data-parallel

VFC-runtime system which will use this communicator for its own communication needs. In the following,

we describe the compilation of method invocations and introduce the compilation templates for both the

server and execution thread.

Method Invocation SDAs communicate with each other via method invocation requests and synchronize

by waiting or testing an event associated with the invocation. Such SDA interactions are implemented by

replacing the respective Opus calls with calls to the ORS according to the compilation template shown in

Figure 7.

The �rst step is the creation of a new execution record. Note, that the argument component of the

execution record also holds pointers for results and arguments with intent OUT or INOUT, thus the routines

for receiving the results can make use of these addresses and do not need to make additional copies. This

record is then inserted into the outqueue1 and, if an event was speci�ed, the event variable is bound to

this record. The actual invocation is initiated by making a call to the ORS and the needed input data is

transferred to the callee. In the case of an asynchronous call, the caller resumes its execution immediately

1The outqueue is accessible to a method via host association as will be explained when discussing the execution thread.

12

while in the case of an synchronous call it will block until the MI has returned. However, in either case, the

caller does not resume its execution before all input data has been transferred in order to ensure that the

input data to the invocation is not modi�ed during the process of setting up the MI. A call to the intrinsic

routines wait and test are simply compiled to a respective ORS calls.

*** Figure 7:Compilation Template for Method Invocations ***

The Server Thread Although the primary task of the server thread is to receive and enqueue MIs while

the method executions are carried out by the execution thread, it also directly responds to inquiries about

the state of an MI. This allows such queries to be \short-cut" and answered immediately, rather than being

enqueued for service by the execution thread. Such queries occur within the context of event management

(wait and test).

Figure 8 shows the compilation template for a server thread. Once the server thread is created it starts

an in�nite loop in which it is waiting for incoming MIs. This call is blocking and the underlying thread

system ensures that the server thread is suspended if no messages are available. After having received an MI,

the server thread takes the appropriate steps dependent on the action that has to be performed in response

to the MI. The server thread is able to distinguish between four di�erent actions:

� Inquiries: A wait or test request is received which relates to an event that is bound to an MI located

in the outqueue. The server thread can serve this request immediately without involving the execution

thread by looking up the outqueue for the matching execution record and subsequently calling the

ORS to handle the request.

� Execution Acknowledgment: An acknowledgment from another SDA is received which indicates that

an MI has �nished its execution. Similar to inquiries, �rst the matching execution record has to be

retrieved from the outqueue and then the ORS is invoked in order to handle the return.

� Method Call: A request for executing an MI is received. Depending on which method should be

executed the server thread receives all the input arguments and adds them to the execution record

which in turn is inserted into the inqueue. It is guaranteed that all input arguments have been received

before the execution record is inserted into the inqueue and thus becomes available to the execution

13

thread. Note, that all communication carried out by the server thread may well be overlapped with

useful computation in the execution thread.

� Termination: This
ag indicates that the server thread should terminate.

The compiler has to �ll in the appropriate calls to the ORS for receiving the arguments of MIs. By

compiling the exchange of actual arguments we can avoid additional copying that would occur if the ORS

has to receive the arguments without knowing the actual procedure interfaces.

*** Figure 8: Compilation Template for the Server Thread ***

The Execution Thread The execution thread (cf. Figure 9) contains all of the method code, which is

unaltered by the Opus compiler except for the method calls, as well as the code required to evaluate the

\when-conditions" for conditional SDA method invocation. The execution thread also contains a generic

\execution loop" that looks in the inqueue for work. The execution thread is implemented as a Fortran 90

subroutine whose body is the execution loop. The method procedures are compiled to internal subroutines

and the \when-conditions" are transformed to internal logical functions. Hence, all method-subroutines and

\when-condition"-functions have access to the internal SDA data and the MI-queues via host association. The

execution loop repeatedly checks the inqueue for MIs. If none are found, the execution thread is suspended.

Otherwise, the procedure associated with the MI is executed, given that the associated \when-condition"

function evaluates to true. The implementation of the execution thread guarantees that no two method

procedures of an SDA can execute in parallel which is in conformance with the monitor-like semantics of

SDAs.

In particular, the execution thread performs the following actions:

� After a call to the ORS in order to initialize the SDA (in particular the outqueue and inqueue), the

execution thread enters the execution loop.

� In the execution loop the inqueue is checked for MIs. If there is an execution record available, the when

function matching the indicated method (identi�ed by the method id component of the execution-

record), is evaluated. If the \when-condition" is satis�ed, i.e., the function returns true, the MI is

14

processed as follows:

{ The associated method is executed.

{ The ORS is asked to send back an execution acknowledgment and the results.

{ Finally, the record is deleted from the inqueue.

*** Figure 9: Compilation Template for the Execution Thread ***

4.4 Interaction between Distributed SDAs

To allow for data parallel execution, an SDA may be distributed across multiple nodes. Thus, depending

on the underlying system, an SDA consists of multiple threads or processes. This fact gives rise to some

non-trivial coordination and synchronization problems.

First of all we have to facilitate the exchange of possibly distributed data between SDAs which may well

require data redistribution. As already noted, existing algorithms or libraries [5, 8, 30] will be employed for

this task. However, in order to make use of these libraries, we have to ensure that:

1. all nodes of both the caller and the callee are ready to exchange the data, and

2. the callee knows the actual layout of the input data in order to compute the correct communication

schedules.

The �rst issue above is a problem of synchronizing all the threads/processes of an SDA. In order to do

this properly, we need to combine them in a so-called SDA group (in a multithreaded context this is similar

to the notion of ropes [21]) and introduce a master/worker relationship among them. The SDA master will

notify its workers when data transfer is necessary such that all components of the SDA will work on the

same transfer.

The second problem can be solved by having the master of the caller SDA transfer the data layout

descriptors of all procedure arguments to the master of the callee. The callee master, in turn, noti�es its

workers, broadcasting the layout descriptors. Note, that the descriptors for the result arguments also need

to be transferred such that they are available for computing communication schedules when the results need

15

to be sent back. There is no need for transferring layout descriptors from the callee to the caller since the

caller has access to the internal representation of the callee which also includes the layout descriptors for its

procedures' arguments.

Having all nodes of the caller and callee agreed on performing the data transfer and having exchanged

the necessary data layout descriptors, a redistribution library can be asked to compute communication

schedules and to perform the actual data transfer. Figure 10 illustrates the data exchange process. Note,

that all the communication takes place in the server threads; hence communication may well be overlapped

by computation taking place in the execution thread.

Another synchronization issue is that all execution threads of an SDA need to work on the same MI. The

MI handling described above ensures the same ordering of execution records in all the inqueues of an SDA,

thus, there is no need of extra synchronization between the master and its workers when selecting a record

for execution. However, the evaluation of the \when-conditions" may involve data replication if distributed

data is needed for doing the evaluation. A possible alternative to having all execution threads of an SDA

doing the evaluation would be to assign only the master with this task. In this case there is then the need

of synchronization between the master and its workers: the master has to signal which record should be

executed.

*** Figure 10: Illustration of the MI Process for Distributed SDAs ***

4.5 Practical Remarks on the Implementation

We have presented a detailed design description of the Opus system above. However, the actual implemen-

tation needs to deviate from this \ideal" design to some extent because of interoperability problems between

some of the system components as we discuss below.

Thread Compliant Message Passing Systems Our design, as described above, assumes a multi-

threaded system. This requires the underlying message passing system to be thread compliant as speci�ed

in the MPI-2 standard [29]. However, current MPI implementations, such as mpich [16], are not thread

compliant which forces some changes to our implementation.

16

In particular, we have to ensure that at any time there is only one MPI-call active on a node. We can

accomplish this by assigning all the MPI calls to the server thread and having only a single server thread per

node to serve all the SDAs on the node instead of having a separate server thread for each SDA. This shared

server thread then can also carry out the responsibilities of the creation thread. One of the issues that arises

is that the server thread cannot block on a call to the ors receive mi routine, since it is servicing calls for

multiple SDAs. Hence, the server thread has to actively poll for messages which may cause a signi�cant

overhead.

Process Based Implementation If the underlying system does not allow a mapping of SDAs to threads,

a process based mapping has to be utilized. Hence, an SDA cannot be internally multithreaded as described

in our design. In particular, this means that there is only one thread of control which has to ful�ll the tasks

of both the server and the execution threads. This can be accomplished by merging the codes of the server

and the execution thread. More speci�cally, the compilation template of the execution thread is used as

basis for the new implementation and the code of the server thread template is included into the execution

loop. This ensures that new MIs can be received if no method is being executed. The implementation of the

routine ors receive mi has to be changed such that it is not blocking anymore but instead actively polls

for MIs.

Another problem within the context of process based implementations is that the underlying message

passing system must be able to support dynamic process management. Unfortunately, this is, for example,

not possible with the current implementation of mpich [16]. An implementation based upon LAM-MPI [27]

could be considered instead.

Heterogeneous Environments Even though our current implementation executes Opus programs in a

homogeneous environment, there is nothing inherently in the design which prohibits execution in a hetero-

geneous environment. If the underlying message passing system supports heterogeneous networks, an Opus

program will run without any modi�cations in the environment. We are currently investigating di�erent pos-

sibilities for facilitating executions of Opus programs on heterogeneous platforms by using communication

systems others than MPI in such environments such as the Nexus [12] library or the Java [15] networking

17

facilities.

5 Rationale and Related Work

In this section, we highlight the alternative design possibilities for the di�erent components of our system

and provide reasons for our speci�c design choices. We also contrast our system design with other systems

being developed for integrating task and data parallelism.

5.1 System Support

In Section 4.1, we identi�ed the functionalities that the underlying support system has to provide for the

ORS to work properly. The key requirements are multithreading and communication. Thus, we could have

employed one of the packages that combine these features, such as Chant [19], Nexus [13], or Panda [4].

The advantage of using such packages would be that they provide a high level of abstraction for both mul-

tithreading and communication, often using an interface similar to the well known pthreads interface. With

help of these packages, we can ignore the low-level details encountered when integrating multithreading and

communication, such as direct communication between threads or proper thread synchronization. Moreover,

most of these packages also provide support for a remote service request abstraction.

However, for an Opus implementation, as we have described in this paper, we felt that the disadvantages

of using a high-level runtime system like Chant or Nexus outweighed the advantages of the features they

o�er. There are several reasons for this. First, many of the features provided by these packages, such

as remote service requests, do not directly implement the proper semantics of SDAs, such as conditional

execution of methods and distributed method arguments. Expressing the SDA semantics with these high

level constructs often adds unnecessary overhead which can be avoided by making direct use of lower level

systems. Second, because we have chosen to compile the SDA speci�cations as much as possible, the

requirement for sophisticated runtime support is greatly reduced. Instead, only a small set of lightweight

interfaces for threads and communication is desired. Third, there is a serious software engineering problem

with integrating a large runtime package with an existing HPF runtime system such as VFC. This is due in

18

large part to the inability of most runtime system packages to change their behavior in accordance with the

needs of di�erent users [18]. Finally, if all one needs is basic threads and communication, then using these

higher-level runtime systems often just adds unwanted overhead to the performance of the operations. For

example, although it is possible to access MPI calls from within Nexus [11], doing so is much slower than

accessing the machine-speci�c MPI implementation directly.

In light of these disadvantages for using high-level runtime support systems, we decided to use low-level

communication (e.g., MPI, TCP/IP) and multithreading (e.g., pthreads) packages directly as basis for our

ORS implementation. By using these standardized packages we can easily integrate the ORS with the VFC

runtime system, thus enabling us to port to another platform that supports VFC with little e�ort.

5.2 The Opus Runtime System and the Opus Compiler

The main component of the Opus system is the Opus Compiler which targets the Opus Runtime System.

The compiler and the ORS are tightly interrelated hence we combine their discussions in here.

One of the major design decisions was where to put the borderline between the compiler and the runtime

system. In previous work on the implementation of Opus [20], we assumed that the runtime system would

provide a generic interface and manage most of the coordination between SDAs. The task of the compiler

was only to insert calls to the runtime system where appropriate. This approach, which is commonly used

to provide an initial implementation of a new language, assumed a fairly sophisticated runtime system based

upon Chant [19]. However, this approach had some major drawbacks. In order to provide a generic interface

to the compiler, the runtime system was supposed to be implemented in C/C++, since Fortran 90 does not

support any abstraction for generic data types. This meant that all the data needed for method invocations

had to be converted from Fortran 90 to C/C++, stored and managed there, and subsequently be converted

back to Fortran 90. This conversion, however, is a non-trivial task since there are major di�erences in

the storing schemes and argument handling between C/C++ and Fortran 90. Moreover, storage schemes

and argument handling are not standardized in Fortran 90, thus, any attempt to interface Fortran 90 with

C/C++ would be compiler dependent and not portable anymore. Another problem with that approach

would be generating and using C-wrappers for all the HPF routines, resulting in additional calling overhead.

19

The same problems arise when using other high level coordination libraries like KeLP [9] which is also a

C++ library that needs additional conversion of the HPF data and HPF mapping descriptors into its own

convention.

Again, for the approaches discussed above interoperability problems with the VFC runtime system would

occur, as described in the previous subsection.

The HPF binding of MPI (HPF/MPI [14]) could probably more easily be integrated with VFC. How-

ever, it has some problems in providing the
exibility that Opus needs since it is targeted more towards

programmers rather than compilers.

Our decision to let the compiler do most of the work and using only a small runtime system written in

Fortran 90 was mainly driven by the disadvantages in using languages other than Fortran 90 as described

above. Although the task of the compiler is limited at the moment, in fact, it only �lls in compilation

templates, making extensive use of the compiler may have further bene�ts in the future. By using a compiler

we can apply optimizations to avoid expensive runtime checks which cannot be skipped by a generalized

runtime system. In addition, the compiler could recognize and exploit further potential parallelism like

intra-SDA parallelism which is a major topic for future research.

Related coordination approaches that make use of a compiler are, for example, Fx [17], Fortran-M [10],

or Orca [2]. Fx does not need any runtime support since it has a quite simple tasking model similar to the

tasking facilities in HPF-2 (in fact, HPF-2 took over many ideas introduced in Fx). Fortran-M is based upon

Nexus which �ts perfectly into the Fortran-M model. However, Fortran-M is a purely task parallel language

thus the problems of Nexus in a data parallel context do not arise. Similarly, Orca was initially designed as a

task parallel language based upon Panda. Subsequently, Orca was extended to support data parallelism [22]

using concepts similar to those in Opus. However, in contrast to Opus, Orca is not an extension of an existing

data parallel language but a new language where both data and task parallel features have been designed

in a way that they integrate well. Hence, Panda was designed to support both task and data parallelism

whereas the ORS has to be integrated with an existing data parallel runtime system.

20

6 Implementation Status and Preliminary Results

We have implemented a prototype of the ORS on the MEIKO CS2 as well as on a cluster of Solaris Worksta-

tions. The implementation was mainly done in Fortran 90. The ORS is based on mpich [16] (on the Meiko)

and on TCP/IP [24] (on Workstations), respectively, as well as on the native Solaris pthreads implementation.

This prototype is currently restricted to the task parallel features of Opus.

Although the implementation of the compiler is not yet completely �nished, we have hand-compiled a

simple version of the producer/consumer problem (cf. Figure 1) to prove the e�ectiveness of our approach.

In this simple example, we simulated one producer and one consumer acting on a bounded bu�er. The

preliminary runtime results of this hand-compiled program can be found in Figure 11(a) for the Meiko and

in Figure 11(b) for the Workstation-Cluster.

*** Figure 11 (a) and (b): Preliminary Results for the Consumer Producer Problem ***

From the results for the Meiko, it can be seen that our implementation introduces only a small overhead

to the sequential version using one processor. We can achieve almost perfect speedup onto two processors,

whereas using more processors does not lead to any additional performance gain. This is due to the internal

parallelism of the problem which is restricted because we simulate only one producer and one consumer.

The situation on a Workstation-Cluster di�ers signi�cantly from the Meiko since we cannot make use

of the fast interconnection network but are using an Ethernet connection for communication. Therefore,

executing the program on more than one processor increases the execution time signi�cantly because of the

communication overhead. We have also tested the program using a process based implementation instead of

the thread based one. As can be easily seen, a process based approach introduces a signi�cant overhead if

more than one SDA is mapped onto the same processor. This is due to the inability of explicitly scheduling

processes. The situation becomes better if we enlarge the number of processors used, so that eventually only

one SDA (and consequently only one process) is mapped onto a processor. However, the runtime on three

processors is still worse than the sequential one because of the communication overhead. The execution time

of the pthreads version is slightly higher on three processors - this is due to the context switching overhead

between the execution and server thread; the process based implementation does not introduce this overhead.

21

Figure 12 presents the results for an extended producer/consumer example on the Meiko. Here, we

have executed larger tasks on di�erent numbers of processors where the whole produce and consume task is

distributed over di�ering numbers of SDAs reaching from one to 16 producers and 16 consumers, respectively.

Note, that due to the signi�cant increase in the problem size (which was necessary to execute the program

on up to 32 processors) the execution times cannot be directly compared with those given in Figure 11.

Again, it can be seen that the Opus implementation adds only limited overhead to the sequential version

and that the problem scales well up to 32 processors. Moreover, having multiple SDAs executing on the same

processor (as is the case if the number of producers and consumers is larger than the available processors)

does not add a signi�cant overhead and can indeed be advantageous because of a better overlapping of

communication and computation.

*** Figure 12: Extended Consumer Producer Problem ***

7 Conclusion and Future Work

In this paper, we have presented our major design decisions for the Opus system and showed how it can

be e�ciently implemented. We have also identi�ed low level services which have to be available on any

target platform. In particular, these services include standardized packages for both communication and

multithreading (such as MPI and pthreads respectively). The use of standardized packages enhances the

exibility and portability of the Opus system.

We have described in detail the runtime behavior of an Opus application and provided a speci�cation for

the supporting runtime system as well as for the restructuring compiler.

Our approach makes intensive use of a restructuring compiler which generates an HPF-conforming code

expressing the Opus semantics. Thus, our approach is very di�erent from runtime based approaches like

KeLP [9] or HPF/MPI [14] where a runtime library is used to coordinate di�erent tasks. By using a

restructuring compiler our implementation is open for future extensions or modi�cations of the Opus language

that might need more advanced compiler techniques (for example, the exploitation of intra-SDA parallelism).

Another bene�t of the compiler approach is that we do not need to tackle the interoperability problems of

22

Fortran 90 and C or C++ since all of our resulting code and most of our runtime system is written in Fortran

90.

Future work will focus on the implementation of the Opus compiler which will be realized in close

relationship with the HPF compiler VFC [3]. Moreover the Opus runtime system has to be integrated with

the VFC runtime system.

Acknowledgments

The work described in this paper was partially supported by the Special Research Program SFB F011

"AURORA" of the Austrian Science Fund and by the National Aeronautics and Space Administration

under NASA Contract No. NAS1-19840, while the authors were in residence at ICASE, NASA Langley

Research Center, Hampton, VA 23681. Matthew Haines was supported in part by NSF CAREER Award

ASC-9623904.

References

[1] H.E. Bal and M. Haines. Approaches for Integrating Task and Data Parallelism. IEEE Concurrency,

6(3), 1998.

[2] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: A Language For Parallel Programming of

Distributed Systems. IEEE Transactions on Software Engineering, Vol. 18(No. 3), March 1992.

[3] S. Benkner. VFC: The Vienna Fortran Compiler. Journal of Scienti�c Programming, 7(1):67{81,

December 1998.

[4] R. Bhoedjang, T. R�uhl, R. Hofman, K. Langendoen, H.E. Bal, and F. Kaashoek. Panda: A Portable

Platform to Support Parallel Programming Languages. In Symposium on Experiences with Distributed

and Multiprocessor Systems IV, San Diego, September 1993.

[5] B. Carpenter, G. Zhang, and Y.Wen. NPAC PCRCRuntimeKernel (Adlib) De�nition [Draft]. Technical

report, Northeast Parallel Architectures Centre, Syracuse University, 1998.

23

[6] B. Chapman, M. Haines, E. Laure, P. Mehrotra, J. Van Rosendale, and H. Zima. Opus 1.0 Reference

Manual. Technical Report TR 97-13, Institute for Software Technology and Parallel Systems, University

of Vienna, October 1997.

[7] B. Chapman, M. Haines, P. Mehrotra, J. Van Rosendale, and H. Zima. OPUS: A Coordination Language

for Multidisciplinary Applications. Scienti�c Programming, 6/9:345{362, Winter 1997.

[8] S. Chatterjee, J.R. Gilbert, F.J.E. Long, R. Schreiber, and S. Teng. Generating Local Addresses

and Communication Sets for Data-Parallel Programs. In Proceedings of the Fourth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, San Diego, CA, May 1993.

[9] S. J. Fink, S. B. Baden, and S. R. Kohn. Flexible Communication Mechanisms for Dynamic Structured

Applications. In IRREGULAR '96, 1996.

[10] I. Foster and K.M. Chandy. Fortran M: A Language for Modular Parallel Programming. Journal of

Parallel and Distributed Computing, Vol. 26, 1995.

[11] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Managing Multiple Communication Methods in

High-Performance Networked Computing Systems. Journal of Parallel and Distributed Computing,

40(1), Jan. 1997.

[12] I. Foster, C. Kesselmann, and S. Tuecke. Nexus: Runtime Support for Task-Parallel Programming Lan-

guages. Technical report, Mathematics and Computer Science Division, Argonne National Laboratory,

1994.

[13] I. Foster, C. Kesselmann, and S. Tuecke. The Nexus Approach to Integrating Multithreading and

Communication. Journal of Parallel Computing, 37:70{82, 1996.

[14] I. Foster, D.R. Kohr Jr., R. Krishnaiyer, and A. Choudhary. Double Standards: Bringing Task Paral-

lelism to HPF via the Message Passing Interface. In Proc. Supercomputing 96, Pittsburgh, PA., 1996.

[15] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Addison-Wesely, 1996.

24

[16] W. Gropp and E. Lusk. User's Guid for mpich, a Portable Implementation of MPI. Argonne National

Laboratory, 1996.

[17] T. Gross, D. O'Hallaron, and J. Subhlok. Task Parallelism in a High Performance Fortran Framework.

IEEE Parallel & Distributed Technology, 2(3):16{26, Fall 1994.

[18] M. Haines. An Open Implementation Analysis and Design of Lightweight Threads. In Proceedings of

OOPSLA 97, Atlanta, GA, October 1997.

[19] M. Haines, D. Cronk, and P. Mehrotra. On the Design of Chant: A Talking Threads Package. In

Supercomputing '94, Washington DC, November 1994.

[20] M. Haines, B. Hess, P. Mehrotra, J. Van Rosendale, and H. Zima. Runtime Support for Data Parallel

Tasks. In Proceedings of The Fifth Symposium on the Frontiers of Massively Parallel Computation,

McLean VA, February 1995.

[21] M. Haines, P. Mehrotra, and D. Cronk. Ropes: Support for Collective Operations Among Distributed

Threads. Technical Report ICASE-TR 95-36, ICASE, NASA Langley Research Center, Hampton, VA,

1995.

[22] S.B. Hassen and H.E. Bal. Integrating Task and Data Parallelism Using Shared Objects. In 10th ACM

International Conference on Supercomputing, Philadelphia, PA, May 1996.

[23] High Performance Fortran Forum. High Performance Fortran Language Speci�cation Version 2.0, Jan-

uary 1997.

[24] C. Hunt. TCP/IP Network Administration. O'Reilly and Associates, Inc., 1997.

[25] IEEE. Threads Extension for Portable Operating Systems (Draft 7), February 1992.

[26] ISO. Fortran 90 Standard. ISO/IEC 1539 :1991 (E).

[27] LAM/MPI Parallel Computing. http://www.mpi.nd.edu/lam/.

[28] P. Mehrotra, J. Van Rosendale, and H. Zima. Language Support for Multidisciplinary Applications.

IEEE Computational Science & Engineering, 5(2):64{75, 1998.

25

[29] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, July 1997.

[30] S. Ramaswamy and P. Banerjee. Automatic Generation of E�cient Array Redistribution Routines for

Distributed Memory Multicomputers. In Proceedings of Frontiers '95, pages 342{349, McLean, VA,

February 1995.

26

program producer consumer

sda type bu�er type(size)
integer :: size
real, private :: �fo(0:size-1)
integer, private :: count = 0
integer, private :: px = 0
integer, private :: cx = 0

contains
subroutine put(x) when (count .lt.

size)
real, intent(in) :: x
�fo(px) = x
px = mod(px+1,size)
count = count+1

end subroutine put

subroutine get(x) when (count .gt.
0)

real, intent(out) :: x
x = �fo(cx)
cx = mod(cx+1,size)
count = count-1

end subroutine get
end bu�er type

sda type producer type
contains
subroutine produce(b)
sda(bu�er type) b
real a
do

a = ... ! produce a

call b%put(a)
end do

end subroutine produce
end producer type

sda type consumer type
contains
subroutine consume(b)
sda (bu�er type) b
real a
do
call b%get(a)
... = ... a ... ! consume a

end do
end subroutine consume

end consumer type

! main program

integer,parameter :: np=5
integer,parameter :: nc=5
integer,parameter :: bu�ersize=10
sda(bu�er type) bu�er
sda(consumer type) consumer(nc)
sda(producer type) producer(np)

call bu�er%create(bu�ersize)
do i = 1,nc
call consumer(i)%create

end do
do i = 1,np
call producer(i)%create

end do

do i = 1,np
spawn producer(i)%produce(bu�er)

end do
do i = 1,nc
spawn consumer(i)%consume(bu�er)
end do

end program producer consumer

Figure 1: Producer/Consumer Problem with Opus

+ calls to ORS and VFC Runtime
F90 source code

VFC

HPF source code
+ calls to ORS

Opus Compiler (OC)

F90

VFC Library

Executable Program

Opus Source Code

Compilation Templates

ORS

Figure 2: The Opus Compilation Process

27

Processes
Threads

MPI
TCP/IP

System Components

ORS

SASP interactionSASP mapping

Figure 3: The Opus Runtime System and its Supporting System Components

TYPE ors_execution_rec

INTEGER :: id, method_id, action, execution_type

LOGICAL :: finished

TYPE(ors_sda_handle), POINTER :: caller

TYPE(ors_sda_handle), POINTER :: callee

TYPE(ors_generic_type), POINTER :: arguments

END TYPE ors_execution_rec

Figure 4: The Execution Record

28

ors_initialize_sda(iq,oq) [TYPE(ors_mi_queue) iq, oq]

ors_terminate_sda(oq) [TYPE(ors_mi_queue) oq]

ors_get_rec(r, queue) result(return_rec)

[TYPE(ors_execution_rec), optional :: r

TYPE(ors_execution_rec), pointer :: return_rec

TYPE(ors_mi_queue) queue]

ors_insert_rec(r, queue) [TYPE(ors_execution_rec) r

TYPE(ors_mi_queue) queue]

ors_delete_rec(r, queue) [TYPE(ors_execution_rec) r

TYPE(ors_mi_queue) queue]

ors_new_event(e,r) [TYPE(ors_event) e; TYPE(ors_execution_rec) r]

ors_test(e,s) result(finished)

[LOGICAL finished; TYPE(ors_event) e

TYPE(ors_sda_handle) s]

ors_wait(e,s) [TYPE(ors_event) e; TYPE(ors_sda_handle) s]

ors_handle_inquiry(r,c,a) [TYPE(ors_execution_rec) r,c; INTEGER a]

ors_handle_return(r) [TYPE(ors_execution_rec) r]

ors_receive_mi(r) [TYPE(ors_execution_rec) r]

ors_send_synchronous_mi(r) [TYPE(ors_execution_rec) r]

ors_send_asynchronous_mi(r) [TYPE(ors_execution_rec) r]

Figure 5: Main ORS Routines

. . .
Arguments

MI Queues

SERVER THREAD

MI MI

* enqueue MIs

* poll for MIs

EXECUTION THREAD
* dequeue MIs

* conditional MI execution

Arguments

execution
record

execution
record

SDA Object

Figure 6: Structure of an SDA Object

29

SUBROUTINE method 1(b,...)
TYPE(ors sda type), POINTER :: b
TYPE(ors execution rec), POINTER :: r
TYPE(ors event) :: e
...
! CALL b%m1(...)
r = ors new rec(b,method id(b%m1), arguments)
CALL ors insert rec(r,outqueue)
CALL ors send synchronous mi(r)
...
! e = SPAWN b%m2(...)
r = ors new rec(b,method id(b%m2), arguments)
CALL ors insert rec(r,outqueue)
CALL ors new event(e,r)
CALL ors send asynchronous mi(r)
...
! wait(e)
CALL ors wait(e,ors my sda)
...
END SUBROUTINE method 1

Figure 7: Compilation Template for Method Invocations

30

SUBROUTINE sda name server
TYPE(ors execution rec), POINTER :: b,c
TYPE(ors mi queue), POINTER :: inqueue
TYPE(ors mi queue), POINTER :: outqueue

DO ! forever
CALL ors receive mi(b) ! blocking

SELECT CASE (b%action)
CASE (wait id, test id)
c = ors get rec(b,outqueue)
CALL ors handle inquiry(c,b,b%action)

CASE (exec ackn id)
c = ors get rec(b,outqueue)
CALL ors handle return(c)

CASE (method call id)
SELECT CASE (b%method id)
CASE(1)

! receive arguments for method 1
...

CASE(n)
! receive arguments for method n

END SELECT

CALL ors insert rec(b,inqueue)

CASE (termination id)
EXIT

END SELECT

END DO

END SUBROUTINE sda name server

Figure 8: Compilation Template for the Server Thread

31

SUBROUTINE sda name
TYPE(ors mi queue), POINTER :: inqueue
TYPE(ors mi queue), POINTER :: outqueue
TYPE(ors execution rec), POINTER :: exec rec
...
! user data
...
CALL ors initialize sda(inqueue,outqueue)
execution loop: DO
exec rec = ors get rec(inqueue)
SELECT CASE(exec rec%method id)
CASE (1)
IF (method 1 condition()) THEN
CALL method 1(exec rec%arguments ...)
! send results
CALL ors delete record(exec rec,inqueue)

END IF

...
CASE (n)
...

CASE (termination request)
CALL ors terminate sda(outqueue)
EXIT execution loop

END SELECT

END DO execution loop
CONTAINS

! method procedures and \when-condition" functions
END SUBROUTINE sda name

Figure 9: Compilation Template for the Execution Thread

32

Opus Program

Master

Master

Callee SASPCaller SASP

Opus Program

Master

Master

1. Caller master sends an MI to

callee master with actual argument

distributions and noti�es its work-

ers.

Callee SASPsCaller SASP

Opus Program

Master

Master

2. Callee master noti�es its work-

ers. All components of the caller

and callee compute communication

schedules.

Callee SASPCaller SASP

Opus Program

Master

Master

3. Caller components send data

messages to appropriate callee com-

ponents directly.

Callee SASPCaller SASP

Opus Program

Master

Master

4. When method execution has �n-

ished, the callee components send

any return messages to the caller

components. This completes the

MI.

Figure 10: Illustration of the MI Process for Distributed SDAs

33

1.0 2.0 3.0
Number of Processors

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

S
ec

on
ds

Consumer/Producer
Meiko CS2/Pthreads/MPI

Sequential
OPUS

1.0 2.0 3.0
Number of Processors

50.0

70.0

90.0

110.0

130.0

150.0

170.0

190.0

210.0

230.0

250.0

S
ec

on
ds

Consumer/Producer
SPARC 10 WS/Ethernet

Sequential
TCP/IP − Processes
TCP/IP − PThreads

(a) (b)

Figure 11: Preliminary Results for the Consumer Producer Problem

1 2 4 8 16 32
Processors

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

S
ec

on
ds

Producer/Consumer − OPUS
Meiko CS2

16 P/C
8 P/C
4 P/C
2 P/C
1 P/C
Sequential

Figure 12: Extended Consumer Producer Problem

34

