
Engineering Parallel Symbolic Programs in GpH

Hans-Wolfgang Loidl, Philip W. Trinder,

Kevin Hammond, Sahalu B. Junaidu,

Richard G. Morgan, Simon L. Peyton Jones

October 5, 1998

Abstract

We investigate the claim that functional languages o�er low-cost parallelism in the context
of symbolic programs on modest parallel architectures. In our investigation we present the �rst
comparative study of the construction of large applications in a parallel functional language,
in our case in Glasgow Parallel Haskell (GpH). The applications cover a range of application
areas, use several parallel programming paradigms, and are measured on two very di�erent
parallel architectures.

On the applications level the most signi�cant result is that we are able to achieve modest
wall-clock speedups (between factors of 2 and 10) over the optimised sequential versions
for all but one of the programs. Speedups are obtained even for programs that were not
written with the intention of being parallelised. These gains are achieved with a relatively
small programmer-e�ort. One reason for the relative ease of parallelisation is the use of
evaluation strategies, a new parallel programming technique that separates the algorithm
from the coordination of parallel behaviour.

On the language level we show that the combination of lazy and parallel evaluation is
useful for achieving a high level of abstraction. In particular we can describe top-level paral-
lelism, and also preserve module abstraction by describing parallelism over the data structures
provided at the module interface (\data-oriented parallelism"). Furthermore, we �nd that the
determinism of the language is helpful, as is the largely-implicit nature of parallelism in GpH.

1 Introduction

Parallelism without pain is perpetually promised | but seldom delivered. For applications where
the parallelism is well-structured, well-understood techniques such as SPMD now deliver good
performance [SMT+95]. But for richly-structured symbolic applications, such as compilers and
natural-language processing, the jury is still out. Such applications are characterised as follows.

� The computation is largely symbolic, rather than numerical, e.g. with arbitrary precision
integers rather than oating point numbers.

� The data structures are complex, e.g. richly connected trees or graphs, rather than arrays.

� The algorithm supports modest, rather than massive, parallelism.

� Parallelism arises from several sources, often nested within one another.

� Thread granularities are not statically predictable.

The literature on parallel applications of this sort is sparse, and good results seem to demand
an unreasonable investment of e�ort, except in particularly well-studied niches, such as parallel
discrete event simulation and computer algebra [JSC96].

Functional programming languages have long held out the possibility of addressing parallel
symbolic applications. On the one hand, their automatic storage allocation, polymorphic typing,

1

1 INTRODUCTION 2

and rich data structures, makes them well suited to symbolic applications. On the other hand,
their expression-oriented style exposes much potential parallelism.

Despite this promise, real parallel implementations have been slow in coming. By a \real"
implementation we mean one that (a) delivers wall-clock speedups over the best sequential com-
piler for the same language, and (b) is robust enough to handle multi-thousand-line application
programs. The engineering challenge of developing a real implementation in this sense is consid-
erable. Hammond [Ham94] provides a good overview of work in this area, and Section 7 discusses
related work on applications.

We have, however, developed a real implementation of the functional language Haskell [PHA+97],
described in [THM+96]. Using it we have begun to write substantial parallel applications, and
to develop systematic ways of doing so. In this paper we describe our experiences of parallelising
a set of �ve parallel applications of varying size. Three are really warm-up exercises, serving to
set the scene. The last two, a compiler for Haskell, and a natural-language processing system are
substantial: 5,000 and 47,000 lines of Haskell respectively. Together, these applications cover a
range of

� application areas;

� parallel programming paradigms;

� parallel computer systems.

So, based on this experience, what is the verdict? Our conclusions are these:

� With a modest investment of e�ort, it is possible to extract modest levels of parallelism
(a factor of 2{10), and wall-clock speedup, for complex symbolic applications that were
originally written without parallelism in mind (Section 5.1). It can be di�cult to extract
much more parallelism than this without substantial rewriting.

Viewed from the massively-parallel computing standpoint, this looks disappointing. Viewed
from the position of a compiler writer used to considering a 20% improvement as a huge
win, it looks exciting. \Low pain, moderate gain" is our motto. Because this speedup
is achieved with only minor changes in the code, merely exposing parallelism rather than
controlling it in detail, this style of parallelism should be of interest for non-specialists in
parallel programming.

� Some of the long-time claims of the functional community do hold good. In particular,
determinism is an enormous boon. Once a program works on a uni-processor, then it also
works on a multi-processor, and always delivers the same results. There are no race hazards,
core dumps, and un-repeatable errors. However, the usual problems and advantages of
di�erent resource usage in a multi-processor setting remain, as illustrated in Section 4.5.

� We have found a way to cleanly separate the algorithm that computes the result from the
evaluation strategy that governs its parallel behaviour. Evaluation strategies are the topic of
another paper [THLP98], and are introduced in Section 2.1.

Interestingly, lazy evaluation plays an essential role in supporting this modular program
decomposition. (Lazy evaluation means that a component of a data structure is only eval-
uated when its value is needed.) This result directly contradicts the folk-lore that laziness
and parallelism are in conict [TG95, Ken94]. In short, lazy evaluation allows to de�ne
parallelism over a data structure produced by a function without breaking the abstraction of
the function. This data-oriented form of parallel programming encourages a modular design
where sequential functions can be reused and parallelism is de�ned when composing several
functions.

� Our techniques support a variety of parallel programming paradigms, including farms,
pipelines, divide-and-conquer, and data parallelism. Since some of our applications involve
several di�erent forms of parallelism, it is helpful that our programming framework is not

2 GPH | A PARALLEL FUNCTIONAL LANGUAGE 3

biased towards one particular paradigm. Several of the programs nest one paradigm within
another, furthermore we exploit the facility to nest paradigms to an arbitrary depth.

These are general remarks. The distinctive contribution of this paper is that we justify them in
detail, based on experience of substantial applications covering a range of application areas.

Parallel functional programming is no panacea. Writing parallel algorithms is still hard. For
applications that demand very high utilisation of an expensive massively-parallel machine the
programmer might well be better o� with existing approaches. However, in an age where every
desktop machine will soon be a multi-processor, and where under-used networks of workstations
abound, a way to extract modest speedups for a modest investment of e�ort is a welcome and
encouraging development.

The structure of the paper is as follows. After discussing the programming language in Section 2
and environment in Section 3, we describe the applications themselves in Section 4. In the rest of
the paper we then try to abstract the lessons we learned from that experience in Sections 5 and 6.
We include a substantial survey of the �eld in Section 7, before concluding with Section 8.

2 GpH | A Parallel Functional Language

The essence of the problem facing the parallel programmer is that, in addition to specifying what

value the program should compute, explicitly-parallel programs must also specify how the machine
should organise the computation. There are many aspects to the parallel execution of a program:
threads are created, execute on a processor, transfer data to and from remote processors, and
synchronise with other threads, etc. Managing all of these aspects on top of constructing a correct
and e�cient algorithm is what makes explicit parallel programming so hard. The diametrically
opposing approach is to rely solely on the compiler and runtime system to manage the parallel
execution without any programmer input. Unfortunately, this purely implicit approach is not yet
fruitful for the large-scale functional programs we are interested in.

The approach used in GpH is intermediate between purely implicit and purely explicit ap-
proaches. The runtime system manages most of the parallel execution, only requiring the pro-
grammer to indicate those values that might usefully be evaluated by parallel threads and, since
our basic execution model is a lazy one, perhaps also the extent to which those values should be
evaluated. We term these programmer-speci�ed aspects the program's dynamic behaviour.

Parallelism is introduced in GpH by the par combinator, which takes two arguments that
are to be evaluated in parallel. The expression p `par` e (here we use Haskell's in�x operator
notation) has the same value as e, and is not strict in its �rst argument, i.e. ? `par` e has the
value of e. Its dynamic behaviour is to indicate that p could be evaluated by a new parallel thread,
with the parent thread continuing evaluation of e. We say that p has been sparked, and a thread
may subsequently be created to evaluate it if a processor becomes idle. Since the thread is not
necessarily created, p is similar to a lazy future [MKH91].

Since control of sequencing can be important in a parallel language [Roe91], we introduce a
sequential composition operator, seq. If e1 is not ?, the expression e1 `seq` e2 also has the
value of e2; otherwise it is ?. The corresponding dynamic behaviour is to evaluate e1 to weak
head normal form (WHNF) before returning e2.

This section gives an abridged introduction to our parallel programming technique called eval-
uation strategies. We focus on the language features necessary to achieve the basic functionality
and highlight the advantages of this parallel programming technique. A complete description and
discussion of evaluation strategies can be found in [THLP98].

2.1 Evaluation Strategies

Even with the simple parallel programming model provided by par and seq we �nd that more
and more code is inserted in order to obtain better parallel performance. In realistic programs the
algorithm can become entirely obscured by the dynamic-behaviour code.

2 GPH | A PARALLEL FUNCTIONAL LANGUAGE 4

Evaluation strategies use lazy higher-order functions to separate the two concerns of specifying
the algorithm and specifying the program's dynamic behaviour. A function de�nition is split into
two parts, the algorithm and the strategy, with values de�ned in the former being manipulated
in the latter. The algorithmic code is consequently uncluttered by details relating only to the
dynamic behaviour. In fact the driving philosophy behind evaluation strategies is that it should
be possible to understand the semantics of a function without considering its dynamic behaviour.

A strategy is a function that speci�es the dynamic behaviour required when computing a value
of a given type. A strategy makes no contribution towards the value being computed by the
algorithmic component of the function: it is evaluated purely for e�ect, and hence it returns just
the empty tuple ().

type Strategy a = a -> ()

2.1.1 Strategies Controlling Evaluation Degree

The simplest strategies introduce no parallelism: they specify only the evaluation degree. The
simplest strategy is termed r0 and performs no reduction at all. Perhaps surprisingly, this strategy
proves very useful, e.g. when evaluating a pair we may want to evaluate only the �rst element but
not the second.

r0 :: Strategy a

r0 _ = ()

Because reduction to WHNF is the default evaluation degree in GpH, a strategy to reduce a value
of any type to WHNF is easily de�ned:

rwhnf :: Strategy a

rwhnf x = x `seq` ()

Many expressions can also be reduced to normal form (NF), i.e. a form that contains no redexes,
by the rnf strategy. The rnf strategy can be de�ned over both built-in and user-de�ned types,
but not over function types or any type incorporating a function type | few reduction engines
support the reduction of inner redexes within functions. Rather than de�ning a new rnfX strategy
for each data type X, it is better to have a single overloaded rnf strategy that works on any data
type. The obvious solution is to use a Haskell type class, NFData, to overload the rnf operation.
Because NF and WHNF coincide for built-in types such as integers and booleans, the default
method for rnf is rwhnf.

class NFData a where

rnf :: Strategy a

rnf = rwhnf

For each data type an instance of NFData must be declared that speci�es how to reduce a value
of that type to normal form. Such an instance relies on its element types, if any, being in class
NFData. Consider lists and pairs for example.

instance NFData a => NFData [a] where

rnf [] = ()

rnf (x:xs) = rnf x `seq` rnf xs

instance (NFData a, NFData b) => NFData (a,b) where

rnf (x,y) = rnf x `seq` rnf y

2 GPH | A PARALLEL FUNCTIONAL LANGUAGE 5

2.1.2 Data-Oriented Parallelism

A strategy can specify parallelism and sequencing as well as evaluation degree. Strategies speci-
fying data-oriented parallelism describe the dynamic behaviour in terms of some data structure.
For example parList is similar to seqList, except that it applies the strategy to every element
of a list in parallel.

parList :: Strategy a -> Strategy [a]

parList strat [] = ()

parList strat (x:xs) = strat x `par` (parList strat xs)

Data-oriented strategies are applied by the using function which applies the strategy to the data
structure x before returning it.

using :: a -> Strategy a -> a

using x s = s x `seq` x

A parallel map is an example of data-oriented parallelism, and is used in several of the programs.
The parMap function de�ned below applies its function argument to every element of a list in
parallel. Note how the algorithmic code map f xs is cleanly separated from the strategy. The
strat parameter determines the dynamic behaviour of each element of the result list, and hence
parMap is parametric in some of its dynamic behaviour.

parMap :: Strategy b -> (a -> b) -> [a] -> [b]

parMap strat f xs = map f xs `using` parList strat

As an alternative to such a using-based design of parallel code we have also introduced a new
construct, $||, called strategic function application. As an extension to the standard function
application, $, in Haskell, the construct f $|| s $ x applies the strategy s to the argument x in
parallel with applying the function f to x. This construct is especially useful for de�ning data-
oriented parallelism over complex data-structures. This is due to the typical design of functional
programs as compositions of small, exible sub-functions [Hug89]. Compared to the above parMap
function this new construct makes it possible to de�ne data-oriented parallelism without changing
the de�nition of map itself. For example the expression g $ parMap rnf f xs can also be written
as

g $|| parList rnf $ map f xs

In the latter expression the strategy is separated from the algorithmic code and the sequential sub-
functions are unchanged, thus describing parallelism on a higher level in the program. Variants
of this idea are sequential strategic function application, $|, which adds a synchronisation barrier
and thus is useful for de�ning pipelines, and strategic function composition in a parallel, .||, and
a sequential version, .|, respectively.

2.2 Summary

The prime motivation in the design of evaluation strategies has been the separation of algorithmic
and behavioural code. This separation will be discussed together with the applications in Sec-
tion 4. A comparison of pre-strategy with strategic code, as given in [Loi97], shows that such a
separation aids the performance tuning process of parallel programs and enables the programmer
to experiment with several parallel versions of the code.

Because evaluation strategies are written using the same language as the algorithm, they have
additional desirable properties. Strategies are powerful: simpler strategies can be composed, or
passed as arguments to form more elaborate strategies. Strategies are extensible: indeed in the
parallelisation of several of the programs in Section 4 we have de�ned new application-speci�c
strategies. Strategies can be de�ned over all types in the language, and o�er some level of type
safety because the normal type system applies to strategic code. Strategies have a clear semantics,
which is precisely that used by the algorithmic language.

3 PARALLEL PROGRAMMING ENVIRONMENT 6

3 Parallel Programming Environment

GpH programs are developed with an integrated suite of software tools, based on the Glasgow
Haskell Compiler, GHC [Pey96]. Guidelines for the use of these tools are given in the following
subsection. The suite includes both a development environment and dynamic analysis tools, as
outlined below. A more detailed discussion of the parallel programming environment is given in
[TBD+98].

� The Hugs interpreter, for fast development, experimentation and debugging of sequential
code. Being an interpreter, Hugs o�ers fast turn-around time for code changes and an inter-
active development environment. This comes at the expense of higher execution time com-
pared to GHC. In an ongoing project these two components, Hugs and GHC, are combined
into a single environment, which we could reuse in our parallel programming environment.

� The GHC compiler and sequential runtime system for fast execution of sequential code. GHC
is a state-of-the-art optimising compiler for Haskell. Thus our programs do not sacri�ce
sequential performance in order to achieve good parallelism. Another advantage of this
embedding of GpH into Haskell is, that all future work on sequential program analysis and
optimisation can be automatically reused in the parallel system. Most importantly, the
parallel program has the same semantics as its sequential counterpart.

� The GHC compiler and GUM parallel runtime system for parallel execution on multiproces-
sors. GUM is e�cient, robust and portable: being available on both shared- and distributed-
memory architectures, including the Sun SPARCServer shared-memory multiprocessor and
both a CM5 [Dav96] and networks of Sun and Alpha workstations. An IBM SP2 port is
nearing completion. We discuss the architecture-independent aspect of our parallel system
in [TBD+98]. GUM is freely available and has users and developers worldwide [THM+96].

The suite also has a number of analysis tools, most of them dynamic analysers, or pro�lers. Those
used to construct the programs in Section 4 are as follows.

� Sequential time and space pro�lers are supplied with GHC [SP95]. They have proven indis-
pensable in tuning large Haskell programs such as GHC itself.

� The GranSim parameterisable parallel simulator [HLP95, Loi98] is closely integrated with
the GUM runtime system giving accurate results. It is parameterisable to emulate di�erent
target architectures, including an idealised machine, and provides a suite of visualisation
tools to view aspects of the parallel execution of the program. The GUM runtime system
produces a subset of the GranSim pro�le data and so can produce some of the pro�les.

We are currently working on the development of a parallel pro�ler, which enables the programmer
to connect points in an execution pro�le with statements in the source code. Initial results with
GranCC, the prototype of a parallel pro�ler obtained by merging GranSim and sequential cost
center pro�ling, achieved promising results and helped in the parallelisation of Naira [HLT97].
Currently, this approach is more tightly integrated into the parallel runtime system, and extended
by tracking the evaluation history of parallel threads.

3.1 Parallelisation Guidelines

From our experiences engineeringGpH programs we have developed some guidelines for construct-
ing large non-strict functional programs. The guidelines are discussed in detail in [LT97, THLP98].

1. Sequential implementation. Start with a correct implementation of an inherently-parallel
algorithm.

2. Parallelise and tune.

4 PARALLEL PROGRAMS 7

� Seek top-level parallelism. Often a program will operate over independent data items,
or the program may have a pipeline structure.

� Time Pro�le the sequential application to discover the \big eaters", i.e. the computa-
tionally intensive pipeline stages.

� Parallelise Big Eaters using evaluation strategies.

� Idealised Simulation. Simulate the parallel execution of the program on an idealised
execution model, i.e. with an in�nite number of processors, no communication latency,
no thread-creation costs etc. This is a \proving" step: if the program isn't parallel on
an idealised machine it won't be on a real machine.

� Realistic Simulation. GranSim can be parameterised to closely resemble the GUM
runtime system for a particular machine, forming a bridge between the idealised and
real machines.

3. Real Machine. The GUM runtime system supports some of the GranSim performance
visualisation tools. This seamless integration helps understand real parallel performance.

4 Parallel Programs

4.1 Introduction

This sections outlines �ve GpH programs, that cover a range of applications domains. The Alpha-
Beta search is an AI search application; Accident Blackspots is a data-intensive application; Lin-
Solv is a symbolic computation application; Naira is a compiler, and Lolita is a natural language-
processor. Detailed descriptions of these programs have already been published in separate papers.
Here we focus on common aspects of the programs and of the parallelisation process.

All of the programs except Alpha-Beta solve real problems with real data, although LinSolv
should be viewed as a component of a larger system. The Alpha-Beta search program is included
�rst because it is simple, and illustrates our approach.

The programs manipulate symbolic, rather than numerical data, using complex data structures,
e.g. the forests of SGML trees found in Lolita, or arbitrary precision integers rather than oating
point numbers in LinSolv.

None of the programs have a regular parallel structure. A typical program has a number of
stages, and these can be linked in a pipeline and each stage uses a di�erent parallel paradigm,
e.g. data-parallel or divide-and-conquer. Some programs, like Naira, exhibit even deeper levels of
nested parallelism. Because of this complex parallelism, neither the number of threads nor the
granularity of the threads can be determined statically.

4.2 Alpha-Beta Search

4.2.1 Program Description

The Alpha-Beta search algorithm is typical of arti�cial intelligence applications. It is mainly used
for game-playing programs to �nd the best next move. The sequential version of the algorithm
presented here has been developed by John Hughes [Hug89] in order to demonstrate the strengths
of lazy functional languages. Most notably, this algorithm relies on laziness to improve the e�-
ciency of the naive sequential algorithm by pruning the search tree based on intermediate results.
Therefore, the parallel version has to retain the laziness expressed in the sequential algorithm
in order to avoid redundant work. In this section we parallelise this lazy functional algorithm
and study the parallel runtime behaviour. We investigate the use of strategies to develop an e�-
cient parallel algorithm without sacri�cing the advantages of the original lazy algorithm. A more
detailed discussion of two variants of this parallel algorithm is given in [LT97].

The Alpha-Beta algorithm examines the possible next moves and picks the best move for the
player, assuming that the opponent picks the worst move for the player. The result is either

4 PARALLEL PROGRAMS 8

bestMove depth p f g = last .|| rwhnf $ -- list of approx
 (mise f g) .|| rwhnf $ -- cropped eval tree
 cropTree .|| rwhnf $ -- static eval tree
 (mapTree (static p)) .|| rwhnf $ -- pruned search tree
 (prune depth) .|| rwhnf $ -- full search tree
 repTree (newPositions p)
 (newPositions (opposite p))

Figure 1: Parallel pipeline structure of choosing the best next move

0 ?

min min

max

3 1

[3,1] [0,..]1

1

Figure 2: Pruning subtrees in the optimised Alpha-Beta algorithm

the maximum (player's move) or the minimum (opponent's move) of the evaluations of all next
positions. Following a typical functional programming style, this algorithm can be very naturally
described as a sequence of function compositions performing the following tasks (see Figure 1
ignoring the bold face parts of the code):

1. Build a tree with positions as nodes and all possible next moves as subtrees. Since this tree
is built lazily no restrictions to its size apply. The higher-order function repTree is used to
repeatedly apply a newPosition function to the nodes in the tree, alternating between the
functions for the two players.

2. Prune the tree, which might be in�nite at this stage, to a �xed depth to bound the search
via prune.

3. Map a static evaluation function over all nodes of the tree, via mapTree.

4. Crop o� subtrees from winning or losing positions, via cropTree. If such a position is found
it is not necessary to search deeper in a subtree.

5. Pick the maximum or minimum of the resulting evaluations in order to determine the value
of the current position via mise f g. The functions f and g represent the combination
functions for the two players and alternate when traversing the tree.

6. The last element in the list of approximations returned by the mise function is the �nal
value of the evaluation.

One crucial optimisation of the algorithm outlined above is the pruning of subtrees inside the
mise function based on intermediate results. Figure 2 shows an example of the pruning process
realised via lazy evaluation. Based on the result of the left subtree, the overall result must be

4 PARALLEL PROGRAMS 9

at least 1, the last element of the list of approximations. Propagating this information as an
intermediate result into the right subtree, we can prune this whole subtree after �nding a value
smaller than 0: since a minimum function is used to combine the result, it will be at most 0, which
is smaller than the value we already have. It is not necessary to evaluate the unknown value in
the rightmost subtree at all.

This dynamic behaviour is encoded as follows. The algorithm returns an increasing list (player's
move) of approximations with the exact value as last list element rather than a single value. The
main pruning function inside mise, minleq, has to test whether the opponent's move from a
subtree, represented as a decreasing list, can be ignored. This is the case if the worst result of the
decreasing list l, i.e. its minimum, is no better, i.e. less than or equal to, the intermediate result x.
Or more formally: min l � x ,: minleq l x. Since minleq works on decreasing lists it can stop
examining the list as soon as it �nds a value less than x. Thus, laziness is used to ignore parts
of the list of approximations, which amounts to pruning subtrees in the search tree. A complete
description of this lazy functional pruning algorithm can be found in [Hug89].

4.2.2 Parallelisation

Pipeline Parallelism. Considering the structure of the algorithm as a composition of several
functions, our initial attempt of parallelising this algorithm was to add pipeline parallelism to the
top level structure of the code. This approach has the advantage of modifying only a small portion
of the overall code and has proven successful in parallelising large programs such as Lolita (see
Section 4.5). The code in Figure 1 uses the strategic function composition operator .|| to de�ne
the parallelism and the evaluation degree on the arguments of the individual functions.

Alas, the data dependencies of the algorithm do not permit the use of aggressive strategies.
Therefore, only the weakest evaluation degree, rwhnf, is used in every stage, amounting to a
pipeline structure with extremely short stages. Most of the work has to be performed by the �nal
stage, resulting in virtually no speed up at all.

Data Parallelism. More promising than the pipeline parallel version is a data parallel approach.
Our goal is to evaluate all possible next moves in parallel. The only necessary change to achieve
this form of data parallelism a�ects the mise function in Stage 5 of the algorithm, shown in
Figure 3. This function has to combine the results of all subtrees into a result at the current node.
The parallel version of this function is shown in Figure 3. The only di�erence to the sequential
version is the use of the parMap rnf strategy to capture a data parallel dynamic behaviour of this
function. Depending on whether it is the player's or the opponent's move, the binary function max

or min is taken as argument and folded over the list of results from the subtrees. Note that the
functions f and g change position in the recursive call to record the switch in turns.

-- This does simple minimaxing without pruning subtrees
mise :: Player -> Player -> (Tree Evaluation) -> Evaluation
mise f g (Branch a []) = a
mise f g (Branch _ l) = foldr f (g OWin XWin) (parMap rnf (mise g f) l)

Figure 3: Data parallel combination function in the Alpha-Beta search algorithm

Unfortunately, this naive use of data parallelism generates a lot of redundant work because
no pruning of subtrees is performed any more. This is indicated by the use of rnf, which fully
evaluates the individual subtrees. Detailed measurements of variants of this algorithm in [LT97]
reveal that the performance of this parallel algorithm is even worse than that of a naive parallel
algorithm that omits any pruning of subtrees. Although the version in Figure 3 generates a lot of
parallelism, most of it is speculative and therefore potentially redundant.

Data Parallelism with Pruning. In order to control the degree of speculative parallelism in
the algorithm we force the evaluation of only an initial segment in the list of possible next positions.

4 PARALLEL PROGRAMS 10

-- Parallel version of the pruning version
mise :: Player -> Player -> (Tree Evaluation) -> [Evaluation]
mise f g (Branch a []) = [a]
mise f g (Branch _ l) = -- force the first n elems of the result list
 f ((map (mise g f) l)
 ‘using‘ \ xs -> if force_len==-1 -- infinity
 then parList rnf xs ‘par‘ ()
 else parList rnf (take force_len xs) ‘par‘
 parList rwhnf (drop force_len xs) ‘par‘ ())

Figure 4: Strategy for a pruning Alpha-Beta search with a static force length

minimax_mg 3 +RTS -bP -bp32 -bl64 -b-G -by2 -be -H10M

running runnable fetching blocked migrating
0 2.0 M 4.0 M 6.0 M 8.0 M 10.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

55

60

65
Average Parallelism = 10.6

 cycles M11.4Runtime =

GrAnSim minimax_mg 3 +RTS -bP -bp32 -bl64 -b-G -by2 -be -H10M

running runnable fetching blocked migrating
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M 4.5 M 5.0 M 5.5 M 6.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Average Parallelism = 29.9

 cycles M6.2Runtime =

GrAnSim

Figure 5: Data parallel versions with static force lengths of 0 and 4

We call the length of this segment the \force length". This parameter therefore represents a handle
to tune the degree of speculative computation in the program. We have experimented with static
force lengths as well as dynamic force lengths that depend on the level in the search tree. To
date the best results have been obtained from using a static force length as shown in the code in
Figure 4. The strategy in this code checks the value of the global variable force len to decide how
many possible next moves to evaluate. Since strategies are simply Haskell functions, the prelude
function take for selecting an initial segment of a list can be used together with the corresponding
function drop, which returns the rest of the list. Whereas rnf forces the evaluation of the whole
list of approximations corresponding to a possible next move, rwhnf only evaluates the top level
list cell, delaying any further computation.

Measurements. In order to demonstrate the e�ect of the force length parameter, Figure 5
compares the dynamic behaviour of Alpha-Beta search with a simple tic-tac-toe game, using two
di�erent force lengths. In all test runs we used a realistic GranSim setup modelling a tightly
connected distributed memory machine with 32 processors, a latency of 64 machine cycles, and
pre-fetching of data. In this case increasing the force length improves the average parallelism from
10.8 to 29.9, but the runtime only drops from 11.4 to 8.2 Mcycles. This indicates a high degree of
speculative computation in the right hand graph.

More detailed measurements of this algorithm show that the largest speedup of 15.7 is obtained
from a setup with a force length of 4. Of course, the optimal force length depends on the position
to be analysed. For example if a winning position is found early on in the sequential algorithm only
a poor speedup is achieved. However, with this additional parameter it is possible to control how
much e�ort should be invested into potentially redundant work. Concrete runtimes and speedups
for various variants of this algorithm and for di�erent force lenghts are given in [LT97].

4 PARALLEL PROGRAMS 11

4.2.3 Discussion

The main interest in this algorithm lies in the interplay between lazy and parallel evaluation.
Since the e�ciency of this algorithm relies on the lazy traversal of the search tree, this laziness
must be preserved in the parallel algorithm. Measurements in [LT97] show that in some cases a
naive parallel algorithm without pruning is faster than a parallel algorithm with pruning, because
in the latter the data parallel strategy destroys almost all possibilities of pruning.

On the other hand, Figure 5 shows that a conservative approach towards parallelism in the
pruning version yields a very poor degree of parallelism. In order to improve the e�ciency of the
parallel version we had to introduce speculative parallelism into the program. We had to add
an additional parameter to the key function in the program and we used strategies in order to
express the speculative computation based on this parameter. Although the runtime-system of
GranSim and GUM does not automatically kill threads that turn out to be unnecessary, thus
running the risk of wasting resources, the resulting performance clearly exceeds the conservative
parallel version. One di�culty in the tuning of the algorithm then lies in �nding the right level
of speculation in the program. In practice, this has to be chosen based on the concrete search
problem that is implemented via an Alpha-Beta search algorithm.

4.3 Accident Blackspots

4.3.1 Program Description

The University of London Centre for Transport Studies wishes to analyse road tra�c accident
data. Given a set of police accident records (modi�ed to preserve privacy) the task is to discover
accident blackspots: locations where two or more accidents have occurred. A number of criteria
can be used to determine whether two accident reports are for the same location. Two accidents
may be at the same location if they occurred at the same junction number, at the same pair of
roads, at the same grid reference, or within a small radius of each other. The radius is determined
by the class of the roads, type of the junction etc. The problem is obviously data-intensive, and
too complex for conventional database query languages like SQL.

Locating blackspots amounts to combining several partitions of a set into a single partition.
For example if the partition on road pairs is {{2,4,5},{3},{6,7}} and on grid references is
{{2,5},{3},{4,6},{7}}, the combined partition is {{2,4,5,6,7},{3}}. The problem of union-
ing disjoint sets, union �nd, has been much studied by algorithm designers as it has an interesting
sequential complexity. For n union and m �nd operations, an algorithm with an amortised com-
plexity of O(n + F(m,n)) can be given, where F is a very small function (the inverse of the
Ackermann function) [Tar75]. These RAM algorithms are not directly applicable in our applica-
tion because not all of a large data set may be randomly accessed in memory. We have adopted
an index-, or tree-, based solution with complexity O(n log n) if n is the number of elements in
the sets. The motivation for this choice is that for very large data sets not all of the tree need be
memory resident at any time.

Sequential Implementations. The application was originally written at the Centre for Trans-
port Studies [WH96] in PFL and has subsequently been rewritten in Haskell. PFL is an interpreted
functional language [PS93], designed speci�cally to handle large deductive databases. Unusually
for a functional language, PFL provides a uniform persistent framework for both data and pro-
gram. The PFL program uses selectors, a special bulk-data manipulating construct, and hence an
algorithm that is slightly di�erent from that used in the Haskell program. It comprises approxi-
mately 500 lines.

The Haskell implementation constructs a binary sameSite relation containing an element for
each pair of accidents that match under one of the four conditions. The combined partition is
formed by repeatedly �nding all of the accidents reachable in sameSite from a given accident. The
program has four major phases: reading and parsing the �le of accidents; building indices over
the accident data; constructing sameSite, and indices over sameSite; forming the partition. The
program is a 300-line module, together with 3 library modules totalling 1300 lines.

4 PARALLEL PROGRAMS 12

Table 1: Idealised simulation

Parallel Variant Work Average Run Time
(MCycles) Parallelism (MCycles)

Pipeline only 327 1.2 273
Par. Pipeline Stages

327 2.8 124
Par. Pipeline Stages
& preconstructed Ixs 304 3.5 87
Geographically
Partitioned (Tiled) 389 3.7 105

Table 2: Realistic SPARCserver simulation

Parallel Variant Work Average Run Time
(MCycles) Parallelism (MCycles)

Par. Pipeline Stages
& preconstructed Ixs 393 2.3 171
Geographically
Partitioned (Tiled) 394 3.7 105

The original data set comprises 7310 accident reports, and the programs discover 1229 multiple-
accident sites where a total of 5450 accident occur. The programs are run on similar, but not
identical, workstations: PFL on a Sun ELC, and Haskell on a Sun Sparc Classic. The runtimes
of the programs are as follows, PFL: 1105 seconds, Haskell: 123 seconds. The faster execution of
the Haskell program is attributed to it being both compiled and highly optimised, where PFL is
an interpreted research language. More measurements of the PFL and Haskell programs, together
with a more detailed discussion can be found in [THLP98].

4.3.2 Parallelisation

Simulated Parallel Variants. Following the guidelines, we initially investigated the applica-
tion's parallelism using an idealised simulation. Once adequate parallelism was obtained, we used
a realistic simulation of our �rst 4-processor shared-memory target machine. Tables 1 and 2
report the results obtained from the simulators when just 1000 accidents are partitioned, runtimes
and work are in units of 106 GranSim machine cycles.

Pipeline only. The �rst version simply converted the 4 phases of the program outlined in
section 4.3.1 into a pipeline. The speedup of 1.2 is low because the pipeline is blocked by the trees
passed between stages.

Parallel Pipeline Stages. The next version introduces parallelism within each pipeline stage
using a variety of paradigms, as discussed below.

Parallel Pipeline Stages and Preconstructed Indices. Parallelism is further improved
by merging the �rst two pipeline stages. That is, the indices on the accident data were constructed
before the program is run, and the program reads the indices from a �le rather than constructing
them. The resulting parallelism is satisfactory on an idealised simulation of a 4-processor machine,
but poor under a realistic simulation. The poor realistic results are due to the �ne grain of
parallelism and the volume of data being communicated.

Geographically Partitioned (Tiled). A very di�erent, coarse-grained, parallel structure
can be obtained by splitting the accident data into geographical areas. Each area, or tile, can

4 PARALLEL PROGRAMS 13

Table 3: Monolithic and tiled runtimes

Program Variant Work Average Run Time
(MCycles) Parallelism (MCycles)

Sequential
Monolithic 498 1.0 498
Sequential Tiled 394 1.0 394
Parallel Tiles 394 3.7 105

be partitioned in parallel before aggregating the results, using this standard technique [MS95].
Accidents occurring near the edges of a tile must be treated specially. This approach is only
feasible because every accident has a grid reference and we assume that accidents occurring more
than 200m apart cannot be at the same site. Accidents occurring within 100m of the nominal edge
between two tiles are duplicated in both tiles. Splitting the original data into 4 tiles results in a
4% increase in data volume. As a result of the duplicated border accidents, some multiple-accident
sites may be discovered in more than one tile.

Breaking the data into tiles reduces the work required to form a partition as long as the
the border is su�ciently smaller than the body of the tile. Less work is required because each
accident is compared with fewer accidents: the trees constructed during the partition are smaller.
Table 3 shows the runtimes for a sequential partition of the original (monolithic) set of accidents,
a sequential partition of the data in 4 tiles, and a parallel partition of the 4 tiles. More formally,
for the n accidents in the monolithic data, the algorithm is O(n logn), whereas if we assume that
the borders are su�ciently small, then the tiled algorithm is O(n logn=4).

Parallel Machine Measurements. The program is measured on two very di�erent machines,
making use of the portability of the GUM runtime system. One is a shared-memory architecture
and the other distributed-memory. The shared-memory machine is a Sun SPARCserver with 4
Sparc 10 processors and 256Mb of RAM. The machine is shared with other users, but measure-
ments are performed when it is very lightly loaded. The distributed-memory machine is a network
of up to 16 Sun 4/15 workstations each with 24Mb of RAM, and connected on a single ethernet
segment. Both architectures use a shared �le system, i.e. any PE can access any �le. On the
network of workstations the �les are stored on a single �le server and accessed via NFS.

Data. The original data set of 7310 accident reports occupies 0.3Mb and is too small to obtain
good results on the parallel machines. For the purposes of this section, the data is replicated 6
times. The larger data set could be kept in larger tiles, or in more tiles of the same size, and
the latter approach is taken for the following reasons. As shown in Section 4.3.2, as long as the
tiles are large relative to the border area, many smaller tiles are more e�cient than a few large
tiles. Peak resource usage is reduced because if there is one tile per PE then all of the �le reading
occurs at the start of the program, inducing intense network tra�c. With mulitple tiles per PE
the �le reading is spread through the program execution. Multiple tiles utilise the dynamic load
management provided by GUM, demonstrating that the GpH program is independent both of
the number of PEs and of the number and size of tiles. In contrast a small number of large tiles
could be statically allocated to PEs. However it is a tedious task to maintain the allocation as the
number of tiles and PEs change.

The replicated data occupies 1.8 Mb and is split into 40 tiles with two di�erent sizes. There
are 32 small tiles, each containing approximately 1000 accidents and occupying 37Kb, and 8 large
tiles each containing approximately 2000 accidents and occupying 73Kb.

4 PARALLEL PROGRAMS 14

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

No. Processors

Sun Network, 40 Hetero. Tiles

Absolute Speedups
Relative Speedups

Ideal Speedups

0

1

2

3

4

5

0 1 2 3 4

S
p
e
e
d
u
p

No. Processors

SPARCserver, 40 Hetero. Tiles

Absolute Speedups
Relative Speedups

Ideal Speedups

Figure 6: Speedups of Blackspots on heterogeneous tiles

6

8

10

12

14

0 1 2 3 4 5

R
u
n
t
i
m
e

(
S
e
c
s
)

No. Processors & Data-set Size

SPARCserver

User Time
User+System

Elapsed
Sequential

25

30

35

40

45

50

55

0 2 4 6 8 10 12 14 16

R
u
n
t
i
m
e

(
S
e
c
s
)

No. Processors & Data-set Size

WorkStation Network

User Time
User+System

Elapsed
Sequential

Figure 7: Application scaleup

Program. Only one change is required to the GranSim version of the program to enable it
to run under GUM. GUM processes don't inherit �le handles from the main thread, and hence
to permit them to read �les the program uses the `unsafe' C-interface supported by GHC [LP95].
On both machines the program is warm started, i.e. it is run at least once before measurements
are taken. Warm starts reduce runtime because the data is preloaded into RAM disk caches in
the �le system.

Measurements. Figure 6 shows the speedups obtained when the blackspots program is run on
both the SPARCserver multiprocessor and the network of workstations. In each graph the top
line is linear speedup. The second line is the relative speedup, i.e. compared to a single processor
running the parallel program. The third line is the absolute or wall-clock speedup, i.e. compared to
a single processor running the optimised sequential code. The workstation speedups are good, with
16 workstations relative speedup reaches 12 and absolute speedup reaches 10. The 4-processor
SPARCserver runtime is signi�cantly less than on the workstations, but the speedups are less
impressive, reaching 2.8 relative and 2.2 absolute.

Scaling. In addition to speedups, an important measure for data-intensive applications is scaleup,
i.e. can a machine twice the size process twice the volume of data in the same time? Figure 7
shows the scaleup for the two machines. There are as many large tiles as there are processors. The
scaleup of the workstations is satisfactory: a 44% increase in runtime between 1 and 16 processors.
Also note that much of the increase occurs as soon as a second processor is added. Scaleup on the
SPARCserver is not nearly so impressive: a 32% increase in runtime with just 4 processors.

4 PARALLEL PROGRAMS 15

4.3.3 Discussion

The GpH blackspots program solves a real problem using real data and exhibits good wall-clock
speedups and acceptable scaleup on two very di�erent parallel architectures. The sequential
Haskell implementation is an order of magnitude faster than the (interpreted) PFL implemen-
tation, and on 16 workstations the GpH program is an order of magnitude faster still.

The simulator and strategies have allowed us to carry out low-cost experiments with several
possible parallel variants of the program. The tiled variant is selected for execution on the parallel
architectures because it delivers good coarse-grained parallelism under both idealised and realistic
simulation. In some ways the parallelism exhibited by this variant is insu�ciently irregular to
exhibit the strengths of GpH.

The parallelism exploited by the variants of the program is very di�erent. For simplicity we
contrast two extremes, by comparing the parallel-pipleline-stages variant with the tiled variant.

The parallel-pipleline-stages variant introduces parallelism within each pipeline stage using a
variety of paradigms. The �le reading and parsing stage is made data parallel by partitioning the
data and reading from n �les. Control parallelism is used to construct the accident indices. The
stages constructing the same-site relation and the partition both use benign speculative parallelism.
A total of 8 strategies are used in the parallel-pipleline-stages variant, some of which are hand
crafted. The strategy that speculatively evaluates the �rst n elements of a list is used twice within
the program and may be useful in other programs.

The tiled variant has very simple top-level data parallelism. Essentially the partition function
is mapped in parallel over a list of tiles, prior to being aggregated to produce the result. The
parallel map function is a standard parallel higher-order. In all the variants parallelisation entails
minimal restructuring of the algorithm.

4.4 Naira

4.4.1 Program Description

Naira is a parallel, parallelising compiler for a rich, purely functional programming language. It
processes, and its front-end is written in, a subset of the standard Haskell 1.2 language with
type classes as the main feature omitted. The front-end comprises about 5,000 lines of Haskell
code organised in 18 modules. The back-end is written, following popular tradition, in the C
programming language.

The main motivation for writing Naira is to explore the prospects and problems of parallelising
a modern functional language compiler [Jun98]. Another aspect is to make the compiler accept
parallelised program inputs and to generate multithreaded parallel code so that we can assess the
e�ciency of the resulting parallel code. These two aspects of Naira | that it is itself parallel
and that it generates parallel code | makes it, to our knowledge, the �rst functional language
compiler of its kind. It is also the second largest parallelised Haskell program, following the Lolita
natural language parser described in Section 4.5.

The front-end of Naira, which we parallelise, compiles to a graph-reducing parallel abstract
machine with a strong dataow inuence. In this section we highlight the structure, parallelisation
and performance analysis of the compiler on the GranSim simulator as well as on a network of
Sun workstations. A more detailed exposition of the various aspects of the compiler is given
in [JDH97] and in the PhD Thesis [Jun98].

The top-level structure of the compiler in terms of the pipeline of its main phases is shown
in Figure 8. The �rst, analysis, pass consists of the lexical analyser and the parser. The next
four passes implement the pattern matching compiler, the lambda lifter, the type checker and the
intermediate language optimiser, respectively. The detailed organisation and implementation of
these passes is described elsewhere [Jun98].

The two-way split after the lambda lifting pass indicates that the result of the lambda lifter
can be piped simultaneously to both the type checker and the optimiser and that these latter
two phases can proceed in parallel combining their results, using showModule, to produce the
intermediate code which is input to the code generator.

4 PARALLEL PROGRAMS 16

Lexer and
Parser

Pattern
matcher

lambda
lifter

Type
checker

Lambda
lifter Back end

OptimisermkDefs lLift

optimiseParseTree

tcModule

showModule

parseModule

Figure 8: The pipeline structure of Naira's main phases

4.4.2 Parallelising Naira

The compiler is parallelised using evaluation strategies [THLP98] and an allied parallel name-
server, which is used to minimise data-dependencies and thus expose more parallelism [JDH97].
The parallelisation proceeded top-down, starting with the top-level pipeline, then proceeding to
the lower-levels to parallelise four main passes of the compiler | the pattern matcher, lambda
lifter, type checker, and the optimiser | as summarised below.

Top-level Parallelisation. The top-level pipeline is parallelised in a data-oriented fashion by
annotating (with evaluation strategies) the intermediate data structures used to communicate
analyses results between the the compiler phases. The laziness of the language is crucial here to
ensure that the output of one phase is made available incrementally to the next phase(s) so that
the analyses in the phases can proceed in parallel.

analyseModule �leName modName imports exports symbTabs defs =
showModule modName impVals dats exports $ jj

parPair parForceList parForceList $

fork (optimiseParseTree �leName exports stOpt aInfo;
tcModule �leName stTE exports tInfo syns) $ jj parForceList $

lLift �leName stPM $ jj parForceList $
mkDefs �leName stPM $ jj parForceList $ funs

where (stPM ;stTE ;stOpt) = symbTabs

(dats ;syns ;funs) = defs

(aInfo;tInfo;impVals) = imports

fork (f ; g) inp = (f inp; g inp)
parForceList = parList rnf

Figure 9: analyseModule rewritten using Pipeline Strategies

Figure 9 shows the function, analyseModule, that implements the top-level pipeline. We use
strategic function application, $||, to combine the individual passes into a complete program and
at the same time de�ne parallelism over the intermediate data structures. The underlined portions
show the only code that need to be added to ensure the parallelisation of the top-level pipeline.

Parallelising Individual Passes. The pattern matcher, lambda lifter and the intermediate
language optimiser are parallelised, generally, in a data-parallel manner by ensuring that the
respective analyses in each phase are applied to all function de�nitions in a module in parallel.
Results of parallelising each of these phases gave only modest speedups of up 2.4 under an idealised

4 PARALLEL PROGRAMS 17

GranSim simulation. A more detailed discussion of the parallelisation of these phases is reported
in [Jun98].

Cost-centre pro�ling [SP97] reveals that, as is often the case, the type checker is the most
expensive part of the compiler, both in terms of space usage and runtime. Therefore, in order to
get good overall parallel performance, more attention was paid to the parallelisation of the type
inference phase than to the other compiler phases.

The type checker is parallelised using a parallel name server to minimise data dependencies
and thus avoid sequentialising the inference process. For instance, to typecheck two quantities d1
and d2, we analyse them simultaneously in the current type environment, each returning a type
and a substitution record. If a variable v common to both d1 and d2 is assigned (possibly di�erent)
types t1 and t2 from these two independent operations, t1 and t2 will be uni�ed in the presence
of the resulting substitutions and the uni�ed type associated with v.

Table 4: Performance of Naira with idealised and realistic 8-processor GranSim simulations

Idealised Simulation Realistic Simulation
SMP DMP

Avg. Par. Speedup Avg. Par. Speedup Avg. Par. Speedup

Best 8.4 8.13 4.9 4.68 5.6 5.32
Worst 1.9 1.40 1.8 1.39 1.8 1.35
Mean 5.5 4.36 4.0 3.95 3.5 3.55

Parallelism has been exploited at four di�erent stages in the type checker:

� in a data-parallel fashion when typechecking de�nitions in a module;

� in typechecking local de�nitions in parallel with the top-level ones;

� on calls to frequently used functions; and

� in typechecking aggregate expressions.

The �rst stage of the parallelisation yields signi�cant parallelism and speedup with the paralleli-
sation of the other stages also leading to modest improvements. Most notably, the overall perfor-
mance obtained for parallelising the type checker is higher than that obtained after parallelising
the top-level pipeline (the latter achieved a mean speedup of 2.4 in an idealised simulation).

Measurements. The compiler has been measured on both idealised and standard setups of
GranSim simulating both shared-memory (SMP) and distributed memory (DMP) architectures.
The results are summarised in Table 4. The idealised simulation achieved a speedup of up to
8.13, with 4.36 as the mean value for all inputs. The results of realistic simulations on a 8
processor machine show a mean speedup of 3.95 in a shared-memory setup and of 3.55 in a
distributed-memory setup. The input programs used in the experiments are the compiler's own
source modules, 18 in total with 5,000 lines of code. The �gures in the table summarise the best,
worst and mean results for all modules using idealised, shared-memory and distributed-memory
simulations.

Naira has also been measured on a network of Sun workstations (SPARCstations 4/20), running
Solaris 2 and connected to a common Ethernet segment. Figure 10 shows the result of measuring
Naira on GUM. Overall this �gure shows a wall-clock speedup of 2.46, and a relative speedup
of 2.73 on a network of �ve workstations. These results are in agreement with those obtained
using GranSim which predicted a speedup of 3.01 simulating such a high latency network (this
GranSim estimate is based on a simulated distributed-memory machine with a latency of 50K
cycles).

4 PARALLEL PROGRAMS 18

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9

S
p
e
e
d
u
p

No. of Processors

Naira’s speedups on a Network of Sun stations

Absolute Speedups
Relative speedups

Ideal speedups

Figure 10: Speedup summary of Naira on GUM

4.4.3 Discussion

At the overall parallelisation stage, where we activated parallelisation code in all the stages, we
found that the parallelism measured fell short of the sum of the parallelism �gures obtained in
the individual stages. This indicates that the evaluation strategies in the di�erent places interfere
with one another. Without a more detailed parallel pro�ler it is quite hard to understand and
predict the performance of this rather large program: small changes in the parallelisation code
can lead to signi�cant changes in parallel behaviour for some inputs.

Further experimentation with di�erent evaluation strategies could not achieve signi�cant over-
all performance improvements. This led us to re-examine more closely the algorithms on which
the individual phases of the compiler were based. We found that composition of substitutions,
which is performed quite often in Naira, forms the main bottleneck in the parallel performance of
the compiler. We revised our implementation of this algorithm and �ne-tuned our strategic code
resulting in substantial performance improvements (see [Jun98] for details).

We have experimented with lists and sorted (unbalanced) binary trees to represent the data
structures used in the compiler. Although a tree structure exposes parallelism faster than a list
(for the data-parallel processing of the components), the computations needed to maintain the
sorting of the trees can be more expensive. Consequently, our experimental results using these
representations were, by and large, the same.

Careful study of the parallelism pro�les, using the tools of [SP97, HLT97], reveals that �le
I/O and parsing account for a signi�cant part of the remaining sequential component of the
computation and therefore by Amdahl's law represent a major limitation on further optimisation.
Parallelising I/O can be quite di�cult, and is beyond the scope of the work reported here.

4.5 Lolita

4.5.1 Program Description

This section discusses the Lolita natural language engineering system [MSS94], which has been
developed at Durham University. A more detailed presentation of the parallelisation together

4 PARALLEL PROGRAMS 19

with measurements of the parallel runtime behaviour can be found in [LMT+97]. The goal of
parallelising this application is mainly to reduce runtime but also to increase functionality within
an acceptable response-time. The overall structure of the program bears some resemblance to that
of a compiler, being formed from the following large stages:

� Morphology (combining symbols into tokens; similar to lexical analysis);

� Syntactic Parsing (similar to parsing in a compiler);

� Normalisation (to bring sentences into some kind of normal form);

� Semantic Analysis (compositional analysis of meaning);

� Pragmatic Analysis (using contextual information from previous sentences).

Depending on how Lolita is to be used, a �nal additional stage may perform a discourse analysis,
the generation of text (e.g. in a translation system), or it may perform inference on the text to
extract the required information.

Central to Lolita's exibility is the semantic network, called SemNet, a graph based knowledge
representation used in the core of Lolita. In SemNet concepts and relationships are represented
by nodes and arcs respectively, with knowledge being elicited by graph traversal. The task of the
analysis stages is to transform the possibly ambiguous input into a piece of SemNet. Application-
dependent backend stages can then extract pieces of the SemNet and present it in the required
form. Currently, SemNet comprises approximately 100,000 nodes or 12Mb.

Since every text has to be translated into a piece of SemNet the parallelisation of this process
o�ers the largest payo� in reduced runtime. Therefore, most of our e�ort has gone into the
parallelisation of this part of the system.

4.5.2 Parallelisation

Pipeline Parallelism. Our immediate goal in parallelising this system is to expose su�cient
parallelism to fully utilise a 4-processor shared-memory Sun SPARCserver, our target machine.
Following our guidelines for developing parallel programs, we use a pipeline approach to achieve
this relatively small degree of parallelism. Each stage listed above is executed by a separate thread.
These threads are linked to form a pipeline. In contrast to classical pipelines, which require a large
input set to achieve good parallelism, the lazy evaluation mechanism makes it possible to overlap
stages of the pipeline operating on the same piece of data.

In order to analyse the parallelism generated by this version it is crucial to understand how
this algorithm depends on a lazy evaluation mechanism. The parsing stage generates a forest of
possible parse trees. The analysis stages then examine individual trees and pick the most likely
tree as the result. Since the analyses in general do not require the full parse tree, it is often
possible to avoid generating all of an unlikely tree in the parsing stage, although its probability is
determined no earlier than in the analyses stages.

This dynamic behaviour requires special care in the design of the parallel algorithm. It must
be guaranteed that no unnecessary parse trees are generated, because sequential pro�ling indicates
that parsing amounts to up to 20% of the overall execution time.

Data-Oriented Parallelism. In order to add data-oriented parallelism to the above program
we de�ne strategies on the complex intermediate data structures (e.g. parse trees) which are used
to communicate between these stages. This approach simpli�es the top-down parallelisation of
this very large system, since it is possible to de�ne the parts of the data structure that should be
evaluated in parallel without considering the algorithms that produce the data structures. It is
not necessary to break the abstraction provided by the sub-functions.

4 PARALLEL PROGRAMS 20

Parallel Stages. Finally, we introduce parallelism in the most time consuming stage, the syn-
tactic parsing stage. Again we have used cost-centre pro�ling to determine the most expensive
stage in the program. The parallelism in this module has the overall structure of a parallel tree
traversal. To avoid an excess of parallelism in this stage it is necessary to use a thresholding
strategy, which improves the granularity of the parallel threads. This strategy is applied to a
system parameter, which reects the depth in the tree. In fact the same polymorphic thresholding
strategy can be applied to two lists of di�erent types.

Speculative Parallelism. Speculative parallelism can be used to improve the quality of the
analysis by applying the semantic and pragmatic analyses in a data-parallel fashion on di�erent
possible parse trees for the same sentence. Because of the complexity of these analyses the se-
quential system always picks the �rst parse tree, which may cause the analysis to fail, although it
would succeed for a di�erent parse tree.

Combined Parallelism. Figure 11 shows the parallel structure arising when all of the sources
of parallelism described above are used. Note that the analyses also produce information that is
put into a `global context' containing information about the semantics of the text. This creates
an additional dependence between di�erent instances of the analysis (indicated as vertical arcs).
Lazy evaluation ensures that this does not completely sequentialise the analyses, however.

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

Back End

Morpholgy Synt. Parsing

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

stream

Text

SGML Tree Parse Forest Parse Tree

Normalisation

Sentence 1

Sentence 3

Sentence 2

Figure 11: Detailed Structure of Lolita

The code of the top level function wholeTextAnalysis in Figure 12 clearly shows how the al-
gorithm is separated from the dynamic behaviour in each stage. The only changes in the algorithm
are

1. the use of parList in the de�nition of rawParseForest to describe the data parallelism in
the parsing stage;

2. the evalScores strategy which de�nes data parallelism in the analysis stages over possible
parse trees; and

3. the use of strategic function applications to describe the overall pipeline structure.

The strategies used in parse2prag are of special interest. The parse forest rawParseForest
contains all possible parses of a sentence. The semantic and pragmatic analyses are then applied

4 PARALLEL PROGRAMS 21

wholeTextAnalysis opts inp global =
 result
 where
 -- (1) Morphology
 (g2, sgml) = prepareSGML inp global
 sentences = selectEntitiesToAnalyse global sgml

 -- (2) Parsing
 rawParseForest = map (heuristic_parse global) sentences ‘using‘ parList rnf

 -- (3)-(5) Analysis
 anlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2

 -- (6) Back End
 result = back_end anlys opts

-- Pick the parse tree with the best score from the results of
-- the semantic and pragmatic analysis. This is done speculatively!

parse2prag opts parse_forest global =
 pickBestAnalysis global $|| evalScores $
 take (getParsesToAnalyse global) $
 map analyse parse_forest
 where
 analyse pt = mergePragSentences opts $ evalAnalysis
 evalAnalysis = stateMap_TimeOut analyseSemPrag pt global
 evalScores = parList (parPair rwhnf (parTriple rnf rwhnf rwhnf))

-- Pipeline the semantic and pragmatic analyses
analyseSemPrag parse global =
 prag_transform $|| rnf $
 pragm $|| rnf $
 sem_transform $|| rnf $
 sem (g,[]) $|| rnf $
 addTextrefs global $| rwhnf $
 subtrTrace global parse

back_end inp opts =
 mkWholeTextAnalysis $| parTriple rwhnf (parList rwhnf) rwhnf $
 optQueryResponse opts $|| rnf $
 traceSemWhole $|| rnf $
 addTitleTextrefs $|| rnf $
 unifyBySurfaceString $|| rnf $
 storeCategoriseInf $|| rnf $
 unifySameEvents opts $| parPair rwhnf (parList (parPair rwhnf rwhnf)) $
 unpackTrees $| parPair rwhnf (parList rwhnf) $
 inp

Figure 12: The top level function of Lolita

4 PARALLEL PROGRAMS 22

to a prede�ned number (speci�ed in global) of these parses. The strategy that is applied to
the list of these results (parList (parPair ...)) demands only the score of each analysis (the
�rst element in the triple), and not the complete parse. This score is used in pickBestAnalysis

to decide which of the parses to choose as the result of the whole text analysis. Since Lolita
makes heavy use of laziness it is very important that the strategies are not too strict. Otherwise
redundant computations are performed, which yield no further improvements in runtime.

Measurements. Realistic simulations of the pipeline parallel version of Lolita show an average
parallelism of 1.6, which is rather satisfactory for only a few top-level changes in the program. The
parallelised parsing stage can easily produce several hundred threads. Therefore it is important
to tune the thresholding parameter in this stage to avoid excess parallelism. We have not system-
atically measured the possible improvements in the quality of the result that should be possible
by the speculative parallelism described above. A more detailed discussion of the parallel variants
of Lolita is given in [LMT+97].

A realistic simulation of Lolita showed an average parallelism between 2.5 and 3.1, using just
the pipeline parallelism and parallel parsing. Since Lolita was originally written without any
consideration for parallel execution and contains a sequential front end (written in C) of about
10{15%, we are pleased with this amount of parallelism. In particular the gain for a set of rather
small changes is quite remarkable.

In contrast, under GUM with two processors and small inputs we only obtain an average par-
allelism of 1.4 (see Figure 13). With more processors the available physical memory is insu�cient
and heavy swapping causes a drastic degradation in performance, which prohibits any wall-clock
speedup. The reason for this behaviour is that GUM, which is designed to support distributed-
memory architectures uniformly, loads a copy of the entire code, and a separate local heap, onto
each processor. Lolita is a very large program, incorporating large static data segments (totaling
16Mb), and requires 100Mb of virtual memory in total in its sequential incarnation.

lolita.exec +RTS -N2 -q -H48M -I48M

running runnable fetching blocked
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

55

60

64
Average Parallelism = 1.4

 ms101123Runtime =

GUM

Figure 13: Activity pro�le of Lolita run under GUM with 2 processors

Figure 13 shows the activity pro�le of running Lolita under GUM with 2 processors. The
sequential front end in Figure 13 is caused by the sequential part of the parsing process. The
middle third of the graph shows a high degree of parallelism generated by the parallelised parsing
stage. In this setup we have tuned the thresholding parameter to produce only a small amount of

4 PARALLEL PROGRAMS 23

parallelism to avoid high memory consumption, which is the main reason for not achieving further
reductions in runtime when using a 3 or 4 processor setup. In the �nal third of the execution the
pipeline parallelism of the analysis stages generates a good utilisation of the machine.

4.5.3 Discussion

The most intriguing aspect in the parallelisation of Lolita is that the parallelism is achieved using
a very small number of changes to the Haskell parts of the application. We have been able to
use a top-down approach of the parallelisation to an extent, which would be very di�cult in
a strict language. All of the parallelism has been speci�ed by evaluation strategies acting on
the data structures passed between modules. As a result, the parallelism has been introduced
without changing, and indeed without understanding most of the program. This abstraction is
crucial when working on an application of this size. For example, introducing top-level parallelism
entailed changing just one out of around three hundred modules.

We have used speculative parallelism in order to improve the quality of the results. This
underlines the importance of speculative parallelism, which we have already seen in parallelising
the Alpha-Beta algorithm. The integration of the C code into the parallel version complicated the
parallel algorithm because foreign language calls implicitly fully evaluate their results, bypassing
the strategic description of the dynamic behaviour. Finally, we have found a need for limited
support of persistence. The SemNet is a conceptually persistent data structure, because it is
required by every invocation of Lolita. In the absence of support for persistence the current code
uses foreign language calls to achieve e�cient I/O. Again, these calls interfere with the strategies
de�ned in the program.

The achieved average parallelism of Lolita lies between 2.5 and 3.1 under GranSim emulating
a 4-processor shared-memory machine. The corresponding speedup, however, does not exceed
2.4. This is partly due to overhead caused by very �ne-grained parallelism and partly due to
strategies that perform speculative computations (although we avoided speculation on potentially
expensive components). The GUM version does not achieve signi�cant wall-clock speedups, yet.
This, however, is not due to a lack of parallelism but due to the very high memory consumption
of the application, which exceeds the available main memory in the current setting.

4.6 LinSolv

4.6.1 Program Description

The linear system solver that is discussed in this section, and in more detail in [Loi97], is an
application from the area of symbolic computation and uses an approach that is very common for
computer algebra algorithms: a multiple homomorphic images approach [Lau82]. The main idea
of this approach is to solve a problem in a set of simpler domains, called homomorphic images,
and then to reconstruct the overall solution from the solutions in the individual domains.

In the case of the LinSolv algorithm the original domain is Z, the set of all integer values,
and the homomorphic images are the domains Zp, the set of integers modulo p with p being a
prime number. The advantage of this approach becomes clear when the input numbers are very
big and each prime number is small enough to �t into one machine word. In this case the basic
arithmetic in the homomorphic images is ordinary �xed precision arithmetic with the results never
exceeding one machine word. No additional cost for handling arbitrary precision integers has to
be paid. Only in the combination phase will the big numbers appear again. In the case of Z as
original domain the well-studied Chinese Remainder Algorithm (CRA) can be used in the combine
step [Lip71]. This overall structure of the algorithm is shown in Figure 14.

In the solution phase we use an algorithm based on Cramer's rule, which describes how the
components of the result vector can be computed as the ratio of two determinants. Although
this algorithm is less e�cient than alternatives like Gaussian elimination in the sequential case,
it is very attractive because of its high potential of parallelism. In this algorithm the result is
computed by evaluating n+1 independent determinants. The determinant computation itself can
be parallelised using a divide-and-conquer structure.

4 PARALLEL PROGRAMS 24

.. .

.. .

CRA

Zp1

Zp1

Zp1 pk
Zpk

pk

pk
p1 pk

ba

s
t

s
t

x

Forward Mapping

Cramer’s Rule

Lifting

s
t

Z

Zpk

Z

p1

Z

Z

p1

Figure 14: Structure of the LinSolv algorithm

Figure 15 shows the top level of the LinSolv algorithm. Note that xList is an in�nite list of
solutions in homomorphic images corresponding to prime numbers in the in�nite list primes. The
CRA computation itself is hidden in list cra, which basically performs a left associative fold
operation, accumulating the product of all prime numbers met so far until this product becomes
larger than snn! (n is the size of the matrix a and s is the maximal element in a and b). The
gen xList function has to check whether the determinant in the homomorphic image generated
by the prime p is 0. In this case the result cannot be used in the lifting stage in order to compute
the overall solution. The corresponding prime number is termed unlucky.

The strategy strat in the body of the let construct describes the dynamic behaviour of the
code separately from the algorithmic code. For the sequential version the default strategy rwhnf is
used. The following section discusses a strategy that describes a parallel version of this algorithm.

4.6.2 Parallelisation

Algorithm. In the parallelisation of this algorithm it is important to de�ne evaluation degree
and parallelism over the in�nite list xList. Without controlling the parallelism on this data
structure the CRA will demand each solution sequentially, because the most e�cient version of
the CRA uses a list fold operation.

The de�nition of strat in Figure 16 represents the �nal strategy in the performance tuning
of the algorithm. In order to avoid a dependency between the solution phases, this strategy
guesses the number of primes needed to compute the overall result and uses a parListN strategy
to generate data parallelism over an initial segment of the in�nite list xList of the solutions in all
homomorphic images. Using parList inside the par sol strat strategy causes each component of
the result to be evaluated in parallel. However, it is necessary to check whether the homomorphic
image of the original matrix is zero to avoid redundant computation if the prime is unlucky. In
order to minimise data dependencies in the algorithm we do not already check the determinant

4 PARALLEL PROGRAMS 25

linSolv a b =
 let
 {- forward mapping and solution via Cramer’s rule -}
 ...
 xList :: [[Integer]] -- infinite list of solutions in hom images
 xList = gen_xList primes

 gen_xList (p:ps) =
 let
 modDet = toHom p (determinant (toHom p a))
 pmx = [toHom p (determinant (replaceColumn j (toHom p a) (toHom p b)))
 | j <- [jLo..jHi]]
 ((iLo,jLo),(iHi,jHi)) = bounds a
 in
 if modDet /= 0
 then (p : modDet : pmx) : gen_xList ps
 else gen_xList ps

 {- combination via CRA -}
 ...
 detList = projection 1 xList

 det = list_cra pBound primes detList detList
 x_i i = list_cra pBound primes x_i_List detList
 where x_i_List = projection (i+2) xList

 x = map x_i [0..n-1]
 in
 x ‘using‘ strat

Figure 15: Top level code of the LinSolv algorithm

rnf noOfPrimes ‘seq‘
parListN noOfPrimes par_sol_strat xList ‘par‘
parList rnf xs
where
 par_sol_strat :: Strategy [Integer]
 par_sol_strat = \ (p:modDet:pmx) -> rnf modDet ‘seq‘
 if modDet /= 0
 then parList rnf pmx
 else ()

Figure 16: Strategy of the parallel LinSolv algorithm

when computing noOfPrimes. If some primes turn out to be unlucky the list cra will evaluate
more results by demanding a so far unevaluated list element. The �nal strategy application
parList rnf xs speci�es that all elements of the result should be combined in parallel. Without
this component there would be a sequence of combination steps at the end of the execution, one
for each element in the result vector.

Measurements. In developing this parallel algorithm we have used GranSim in a realistic
setup, simulating a closely-connected 32 processor machine. Whereas earlier versions showed
bottlenecks at some points during the computation, the activity pro�le for this �nal version in
Figure 17 shows a consistently high degree of parallelism.

Our measurements of LinSolv under GUM on a 3 processor shared-memory machine corre-
spond to the behaviour predicted by the GranSim simulator. We achieved relative speedups of
up to 2.1 and absolute speedups of up to 1.7. More details of these measurements can be found
in [Loi97].

In the performance tuning of this algorithm the visualisation tools have been crucially im-
portant. Early parallel versions of the algorithm showed bottlenecks caused by the sequential
demand on the solutions generated by the list-structured lifting phase. This behaviour resulted
in a sequence of parallel executions with regular drops in-between. The code in Figure 16 avoids

4 PARALLEL PROGRAMS 26

testLS_mg 2 +RTS -bP -bp32 -bl100 -bG -bQ0 -by2 -be -H32M

running runnable blocked
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M

ta
sk

s

0

20

40

60

80

100

120

140

160

180

200

Average Parallelism = 25.6

 cycles M4.323Runtime =

GrAnSim

Figure 17: Activity pro�le of �nal LinSolv

this bottleneck by guessing the number of primes that are needed and by using data parallelism
via a parListN strategy. A more detailed discussion of the performance tuning of the parallel
algorithm is given in [Loi97].

4.6.3 Discussion

Several properties of evaluation strategies have been important in parallelising the algorithm.
We made use of strategies being higher-order to describe nested parallelism: an outer strategy
de�nes the parallelism over xList with a strategy par sol strat as argument that de�nes the
parallelism over the elements of this list. Thereby the strategy reects the nested data-structure
over which the parallelism is de�ned. The separation between algorithmic and behavioural code
made it possible to experiment with di�erent versions of the parallel code, without changing the
algorithm. This was very important during the performance tuning of the algorithm. It is worth
noting that all parallelism can be described on top level, unlike in the pre-strategy code where a
lot of the parallelism was de�ned in sub-functions.

The strategy in Figure 16 also demonstrates how conservative parallelism can be de�ned over
an in�nite data structure. There is no need to rewrite the algorithmic code that generates the
data structure in order to express a degree of parallelism that does not generate any speculative
computation.

The development and performance tuning of LinSolv predated the design of evaluation strate-
gies. This gives us the possibility to directly compare the pre-strategy with a strategic version
of the code. The pre-strategy version of the code combined the computation of the result with a
speci�c dynamic behaviour suitable for parallelism. For example a tree-structured CRA algorithm
has been used in order to force the computation of the individual solutions independently. Because
some homomorphic images may turn out to be not suitable for computing the overall result, a
separate \fail handler" had to be used in order to compute more results if necessary. The result-
ing control parallelism yielded rather opaque code with parallelism de�ned in one sub-function,
namely the CRA. In contrast, the strategy version only uses data parallelism and cleanly separates
the parallelism from the algorithmic code.

The multiple homomorphic images approach is used in many computer algebra algorithms such
as resultant computation [HL94] and p-adic computation [LL93]. It should be possible to use the
same overall structure of parallelism for these versions, only replacing the function that guesses the
number of primes and the strategy de�ning the inner parallelism. In this case the polymorphism

5 PROGRAM COMPARISON 27

Table 5: Results summary

Program Lines of code Wall-clock Simulated Best wall-clock
speedup on speedup speedup
few procs (no. procs) (arch:no. procs)

(arch:no. procs)
Blackspots 1,300 3.14 (WkStn:4) 3.7 (4) 10.00 (WkStn:16)
Blackspots 1,300 2.16 (SMP:4) 3.7 (4) 2.16 (SMP:4)
Naira 5,000 2.33 (WkStn:4) 3.0 (4) 2.46 (WkStn:5)
Lolita 47,000 0.90 (SMP:2) 2.4 (4) 0.90 (SMP:2)
LinSolv 800 1.66 (SMP:3) 2.3 (4) 1.66 (SMP:3)

of strategies enables a code reuse for de�ning parallelism.

5 Program Comparison

Where the previous section described the implementation and measurement of individual pro-
grams, this section discusses common aspects of the programs. We focus on the parallel paradigms
used in the programs, and the large-scale issues encountered. We also summarise the results al-
lowing approximate comparison.

5.1 Comparative Measurements

The most signi�cant result of this paper is that we are able to achieve modest wall-clock speedups
for all of the programs, except Lolita. The simulated speedup for Lolita is good, and we believe
that it is only limitations on physical memory that prevent a wall-clock speedup of Lolita.

It is also important to emphasise that the programs have been measured on several parallel
systems, utilising di�erent ports of the GUM runtime-system. In a separate paper [TBD+98]
we focus on this aspect of architecture-independent parallelism, and its practical impact on the
development of parallel GpH programs. The following measurements are based on networks of
workstations and shared-memory multiprocessors, as detailed in Section 4. The systems represent
two very di�erent classes of parallel architectures: shared- and distributed memory machines. The
wall-clock speedups on both architectures underline the exibility of our parallel programming
system.

Table 5 summarises the results for each program, and the columns are interpreted as follows.
The �rst column gives the program name. The second column gives the approximate number
of lines of source-code, including libraries. The third column is the wall-clock speedup of the
program on a small number of processors, together with the number of processors and the parallel
architecture | a network of workstations (WkStn) or a shared-memory multiprocessor (SMP).
Wall-clock speedup is measured by dividing the elapsed time for parallel execution by the elapsed
time for the same program compiled and optimised for sequential execution. The fourth column
gives the simulated speedup achieved under GranSim emulating the target architecture. The last
column gives the best wall-clock speedup achieved, together with the number of processors used
and the architecture.

The Blackspots program achieves the greatest wall-clock speedup, but although it uses some
complex algorithms, it has a simple data parallel structure, and only a small amount of irreg-
ularity in the thread sizes. Although the speedups for the Naira compiler are smaller, it more
truly represents the class of programs that we expect GpH to be used for. That is Naira as a
complex symbolic computation with an elaborate parallel structure. Lolita is similar in being
symbolic and having an irregular parallel structure. It is also very large and multi-lingual (Haskell

5 PROGRAM COMPARISON 28

and C). Unfortunately, while a realistic simulation of Lolita delivers good speedups, exhibiting a
large amount of inherent parallelism, the wall-clock �gures are poor because of the high resource
utilisation. LinSolv is symbolic, and has irregular parallelism de�ned over a potentially-in�nite
data structure. It delivers modest wall-clock speedups on a shared-memory machine.

5.2 Parallel Paradigms

The programs use a number of parallel paradigms, often nesting one paradigm inside another. For
example both Naira and Lolita nest a pipeline within a data-parallel paradigm. Version II of the
Blackspots program is still more elaborate having a pipeline with stages using data-parallelism,
control-parallelism, and benign speculation. The following parallel paradigms have been used in
the development of the parallel algorithms discussed in this paper:

� Data parallelism: Naira, Lolita.
In the data parallel paradigm every element of a data-structure is evaluated in parallel.
Naira is data parallel over the function de�nitions in a module. Lolita is data parallel over
the sentences in the text.

� Pipeline parallelism: Naira, Lolita.
In the pipeline parallel paradigm a sequence of stream-processing functions is composed
together, each consuming the stream of values constructed by the previous stage and pro-
ducing new values for the next stage. Pipelines in a non-strict language are very exible
over the data type they operate on and have �ne-grained parallelism. That is, a pipeline can
be de�ned over any data-structure passed between stages, e.g. both Naira and Lolita pass
forests of trees between pipeline stages. The �ne granularity means that the producer and
consumer may synchronise on every node of a data structure, or the producer may construct
all of the structure before any of it is consumed or, more likely, something in-between. As
a result of this �ne granularity, pipelines in a non-strict language can be e�ective even for
small input data sets.

� Task Farm: Blackspots (Version III).
In the task farm paradigm a `farmer' process has a collection of tasks, and `worker' processes
obtain a task from the farmer, and on completing it, obtain another. In Blackspots the task
farm has a special form because each task is to evaluate some data structure, and such a
farm is more accurately termed a data farm [MS95].

� Divide-and-conquer: LinSolv, Lolita.
In the divide-and-conquer paradigm the problem to be solved is decomposed into smaller
problems that are solved in parallel and the solutions are recombined to produce the result.
It is easy to generate a great deal of parallelism with this paradigm: the number of tasks is
exponential in the number of division steps. The unfortunate corollary is that there may be
a large number of very �ne-grained tasks generated. We maintain a good thread granularity
by including a threshold in the strategy that ensures that small tasks are not sub-divided
but evaluated sequentially.

� Speculation: Alpha-Beta, Blackspots (Version II), Lolita.
GpH does not support general speculation, e.g. speculative and mandatory threads are not
distinguished, and there is no mechanism for killing unwanted speculative threads. We do,
however, use a restricted form of speculation, which we term benign. The restriction is that
the speculative threads must perform only a small amount of work and create no new threads.
Often speculation is controlled by a parameter of the speculative strategy, and selecting an
appropriate value is crucial to avoid wasting resources [LMT+97]. It is interesting that
several of the programs use speculation because it is a technique that cannot easily be
introduced by automatic parallelisation methods.

5 PROGRAM COMPARISON 29

Some parallel paradigms not explored in these programs include branch and bound, SPMD,
bounded bu�er and general speculation. We have strategies, and some toy examples, for bounded
bu�ers and SPMD. It appears that general speculation and branch and bound are more problem-
atic within GpH.

Another important aspect of the parallel runtime-system is dynamic load management. It has
previously proven to be essential for obtaining good speedups on some programs executed on the
GRIP architecture [HP92]. In the context of GUM the importance of dynamic load management
is best reected by the �nal version of the Blackspots program. This version uses dynamic load
management to obtain an even load when evaluating the tiles of a geographically partitioned data
set.

5.3 Large-Scale Issues

In the implementation of the programs we encounter a number of aspects of parallel programming
in-the-large.

� Application-speci�c strategies can be rather easily reused in large applications. One example
is the merging of lists of a polymorphic type in Lolita, which is used in two places. Clearly,
the polymorphic nature of the language aids code reuse in this case.

� Some of the programs were made parallel by someone other than the original author, most
notably Lolita. In these circumstances the largely-implicit parallel programming model
is crucially important, because parallelisation does not require the explicit introduction,
and synchronisation, of threads. Instead parallelisation is similar to sequential performance
tuning in that it entails understanding time and space consumption, data dependencies,
and often controlling evaluation degree. In that sense parallelisation does not add a new
dimension of complexity to the program design, it merely complicates the existing process
of performance tuning. We believe that it would be much harder to parallelise a second
author's program using an explicitly parallel programming model.

� Parallelism can be described at a high-level, and this means that only a small part of a large
system needs to be understood, changed, and recompiled. For example adding parallelism
entails changing just two out of three hundred modules in Lolita, and one out of �ve in
Blackspots.

� The parallel version of a large programmay have very large resource utilisation. This is likely
to be a problem on shared-resource machines, e.g. multi-processors with shared memory or
disks. For example the sequential variant of Lolita uses 100Mb of heap, and the parallel
variant needs approximately 64Mb per processor. Similarly, in Blackspots every processor
initially reads a �le, generating intense network and disk tra�c.

� A major task in parallelising a large program is to de�ne basic strategies over the data types,
in particular a strategy to reduce values of the type to normal form (rnf). Fortunately the
rnf function can be derived automatically from the type, and we have constructed a tool that
allows us, inter alia to automatically add basic strategic de�nitions to a module [Win97].

� Strategies may also be required over library data types, e.g. parSet. Unfortunately this
entails using a private copy of the library module.

� A GpH program can be used to prototype alternative parallelisations of an imperative pro-
gram. Experimenting with alternative parallelisations is easier in GpH than in imperative
languages. Parallel prototyping has been used in LinSolv to tune the algorithm.

� Many of the programs had been written without the intention of making them parallel, e.g.
Naira and Lolita. It is still possible to obtain parallelism, albeit modest, without restructur-
ing these programs.

6 EVALUATION OF GPH PROGRAMMING 30

6 Evaluation of GpH Programming

In this section we reect on our experiences programming in GpH, i.e. in a functional language
with largely-implicit parallelism. We both analyse and consider future directions for the language,
the co-ordination mechanism (evaluation strategies) and the programming environment.

The most important language result is that despite the apparent tension between parallel an
lazy computation, they can be usefully combined to produce a programming model with a high
degree of modularity. This modularity is due to the data-oriented style of programming o�ered
by a lazy parallel programming model. This means that it is su�cient to de�ne the parallelism
only on a few crucial data structures, which typically are passed between sub-functions at the
top level of the program. Because lazy evaluation delays the generation of the result until it is
needed, strategies can be used to de�ne evaluation degree and parallelism outside the function
generating the data structure. This achieves a level of modularity not encountered in languages
with a strict evaluation mechanism. Most importantly, the programmer can de�ne the parallelism
without breaking the abstraction of individual functions, which is an important property for large
programs where the parallelisation is probably not performed by the author of the program.

In optimising the performance of programs written in a language with lazy evaluation it is
sometimes di�cult to track the implicit evaluation degree of some data structures. This stems from
the high-level semantics of the language, which makes it more di�cult to track the operational
behaviour of the program execution. Although this property allows the programmer to write
shorter and more exible programs, it poses a di�culty when optimising the code. With our
model of parallel lazy evaluation, evaluation strategies can be used to make evaluation degree
explicit where required, and thus to enforce a certain operational behaviour.

In short, evaluation strategies can be used for both sequential and parallel performance tun-
ing. In this sense, parallelisation is just a re�nement of the performance tuning process, which
o�ers even faster computation. Most notably, however, there is no need to extend the underlying
programming language by e.g. introducing an explicit notion of threads. Our experiences with
the use of evaluation strategies on large lazy functional programs indicate that a lazy parallel
programming model o�ers the prospect of cheap, modular parallelism with only a minimal coding
e�ort.

6.1 Language

The parallel language we are using, GpH, is only explicit in exposing parallelism in the source
code. The management of the parallelism is completely hidden by the runtime-system. In this
approach many classical problems of concurrent programming such as generating deadlocks or
race conditions between threads do not arise. However, it is still possible to tune the parallelism
by specifying the size of the parallel computation and the evaluation order.

The features of the language that we found to be most important are as follows.

� Determinism makes parallel program development easier because the algorithmic part of
the program can be developed in a sequential context. Inserting strategies to introduce par-
allelism does not change the value computed, and will not change the termination conditions
as long as the strategies are no more strict than the original function, i.e. the parallelism is
conservative.

� Largely-implicit parallelism ensures that only a small amount of additional code is re-
quired to introduce parallelism. In particular, it is only necessary to expose parallelism, by
marking expressions.

6.2 Evaluation Strategies

For any program, the primary bene�ts of the evaluation strategy approach are similar to those that
are obtained by using laziness to separate the di�erent parts of a sequential algorithm [Hug89]: the

6 EVALUATION OF GPH PROGRAMMING 31

separation of concerns makes both the algorithm and the dynamic behaviour easier to comprehend
and modify [THLP98].

In large programs, strategies allow us to raise the level of abstraction because the programmer
introducing parallelism need not understand the low-level details of the whole program. Strategies
allow us to

� Describe top-level parallelism. Often some initial parallelism can be obtained by par-
allelising the top-level of the program with a very shallow understanding of the algorithms
used in the program.

� Preserve module abstraction. Parallelism can often be speci�ed on the data structures
passed between modules. The programmer need only know which items of the data structure
can be computed independently, which is often simpler than understanding the algorithm
used to compute them. Indeed the type of the data structure may even give a hint on which
strategy to use for parallelising the program.

This style of programming o�ers a level of abstraction to the programmer that does not exist
in parallel imperative languages. However, if it is necessary, the evaluation can be controlled
in more detail, yielding parallelism described on a similar level as in more conventional parallel
programming models.

The presented programs use the power of strategies. In most of the programs strategies are
de�ned over many types, program-speci�c strategies are constructed, and some of the new strate-
gies are created by composing existing strategies. The speci�c features that proved most useful
are mainly the high-level constructs. Many of the strategies are:

� Polymorphic. Strategies that can be used at many types are easier to re-use, for example
the polymorphic mergeStrategy strategy is re-used in Lolita.

� Parametric. The behaviour of a strategy can be modi�ed by parameters. For example the
number of elements of a list to evaluate in parallel is a parameter in the Blackspots program,
and the similar force-length parameter in Alpha-Beta.

� Higher-order. This is particularly useful when a strategy takes another strategy as a
parameter, thus capturing a class of behaviours as determined by the argument strategy. In
LinSolv, for example, a list strategy is passed to another list strategy to describe parallelism
over a list of lists. Nesting strategies in this way is a natural means of achieving nested
parallelism.

Finally it should be noted that evaluation strategies must be used with care to avoid conict and
malignant speculative computations. The latter can yield higher parallelism because of the extra
speculative computations but can also adversely a�ect a program's completion time. For example
generating more possible syntactic parses in Lolita would produce more speculative parallelism,
because each of the parse can be analysed in parallel, but it would not reduce the total runtime,
because only the best result will be chosen at the end.

6.3 Programming Environment

It has proved essential to develop the programs in a rich execution environment. Several programs
were initially developed using the Hugs interpreter, where the interactive mode facilitates debug-
ging. All programs were run under GHC's sequential runtime system. Almost all of the programs
used time and heap pro�ling to identify computationally-intensive components.

To develop the parallelism the programs are �rst run under GranSim to produce idealised,
and then realistic simulations. We �nd that visualising the parallel execution in several ways is
essential to the programmer's understanding, and hence improving, the parallelism. The most
useful means of visualising the execution are activity pro�les like Figure 17 and thread granularity
pro�les, which show the total runtimes of the individual threads as a histogram.

7 RELATED WORK 32

Using GUM the parallel performance of the programs is measured on a number of platforms.
Some of the programs are measured on a network of workstations, e.g. Naira. Other programs
are measured on a shared-memory SUNserver, e.g. Lolita. Blackspots has been measured on
both workstations and SUNserver. It is unusual to have both shared- and distributed-memory
measurements for a single program. We discuss the architecture-independent nature of GpH
programming in detail in [TBD+98].

7 Related Work

In his 1993 thesis [Cla93] concerning the implementation of a large parallel rule-based interpreter
written in Haskell, Clayman observed with some chagrin that

\the current facilities for executing functional programs in parallel environments are
not e�ective for large applications. The use of hand-coded annotations may be �ne for
small programs but it is unsuitable for large programs. Furthermore, there is a lack of
parallel systems on which programs can be executed."

Clearly, in the last 5 years some considerable progress has been made towards addressing the
criticisms raised in Clayman's thesis. In our own setting we have:

� demonstrated that it is possible to write large parallel applications in Haskell;

� introduced evaluation strategies [THLP98] to allow simple and exible control of parallel
programs, so addressing Clayman's criticism of hand-coded annotations; and

� produced an implementation based on standard portable message passing libraries, so vastly
extending the number of parallel systems on which our programs may be run.

Although our work is not isolated, and other groups have produced systems that possess similar
characteristics to those we espouse (e.g. Sisal [Ske91], NESL [Ble96], Concurrent Clean [NSvP91],
Id [Nik91], or Paralation Lisp [DGF97]), Clayman's criticisms do still apply to some extent in
a general setting, however. Despite the fact that many parallel implementations of functional
languages have been produced, there are relatively few systems that have been developed beyond
the prototype stage, and fewer that can also claim to demonstrate architecture independence.
Those that can make this claim have been surveyed in an independent paper [TBD+98].

This section surveys existing large parallel functional programs which, like those introduced
in this paper, either form complete real end-user applications or are realistic in being taken from
a real application domain rather than arti�cially designed to demonstrate some benchmarking
issue. We have therefore excluded such benchmarks, unless they form part of some larger, more
interesting application.

The term \large" is not precisely de�ned, of course { we have taken it to mean over about
500 lines of functional code (which corresponds to an imperative program of some 1,500-5,000
lines). For comparison, all the applications described in this paper apart from the alpha-beta
search algorithm comprise more than 800 lines of code each. Unlike the Lolita program which
was described earlier, however, the majority of the applications presented here are not large in a
strict software engineering sense, since they have been written by single users rather than as large
collaborative projects.

The applications described in this section cover a wide variety of problem domains, from
numerical applications written in Sisal [Ske91, Can92] or NESL [Ble93] to theorem provers [RW95]
and real-time commercial telephony systems [Arm96]. We have not, however, attempted to cover
individual implementations or language constructs in depth. The interested reader is referred to
the more general literature on parallel functional programming for coverage of these and other
signi�cant issues (e.g. [Ham94, HM98]). The most closely related approaches to parallelisation,
our earlier work on the FLARE applications [RW95] and the Dutch Parallel Reduction Machine
project [BvH+87], are briey surveyed in Section 7.7.

7 RELATED WORK 33

7.1 Compilers and Rule-Based Systems

While Naira is unique, as far as we know, in being the �rst complete functional language compiler to
have been parallelised [Jun98], there have been a few parallel systems with similar characteristics.

Clayman's thesis described one such application: a functional version of the OPS5 rule-based
system that is often used to implement expert systems [Cla93]. This application has a similar
structure to Naira, comprising a rule compiler plus production matcher and evaluator. The rule
compiler includes pattern-matching and other components. The production matcher and evaluator
are best regarded as being analogous to Naira's runtime-system.

Unfortunately, as hinted above, despite mapping out the parallelisation process that he in-
tended to pursue, Clayman was ultimately frustrated by the state of the compiler and implemen-
tation technology in 1993, and therefore never achieved his goal of successfully parallelising his
program. We are therefore deprived of a potentially interesting comparison between two similar
applications. We hope that we are now in a position where Clayman's work could be completed
in order to allow a good comparison between these systems.

While not directly usable as part of the compilation process itself, Boucher and Feeley have
constructed a parallel implementation of an LR(0) parser generator in MultiLisp [BF94]. The
parallelisation process involves the creation of all reachable states in parallel. Simple locks are
used in place of the sequential hash table to prevent several tasks working on the same state
simultaneously, and to ensure atomic update for each state.

Overall, the parser generator achieves an absolute speedup of 10.4 on 32 processors. The
parallel overhead was particularly serious for this system, generating a slowdown of a factor of 3
on one parallel processor, so this represents an impressive superlinear relative speedup (a factor
of 33.6 on 32 processors). Given that the overhead exists in the one-processor case, and that
the algorithm exhibits super-linear speedup, it seems unlikely that this overhead is simply a
consequence of poor locality, as the authors suggest. The super-linearity is claimed to reect
decreased garbage collection costs in the parallel implementation.

Finally, although it has not yet been executed on a parallel machine as far as we are aware, the
Id in Id compiler from MIT is, of course, parallel in principle. Id is untyped so the parallel type
inference algorithm that gave e�ective performance improvements in the Naira compiler would be
of no direct use (it might conceivably be exploited for e.g. code generation, however). Work we
have done in relieving dependencies in the Naira symbol table and pipeline stages seems likely to
�nd a counterpart in any parallel version of the Id compiler, however.

Theorem Provers

There have been several attempts to parallelise functional theorem-provers. As part of the FLARE
project [RW95], Hanna and Howell parallelised the 8500 line tautology checker that forms the core
of the Veritas theorem prover. This parallelisation was achieved using only the basic par and
seq combinators described earlier. Granularity control was introduced using thresholding based
on the size of the propositions to be checked. Performance results for the GRIP multi-processor
showed that an absolute speedup of a factor of 18 could be achieved on 20 processors. Work on
this application and others from the FLARE project motivated the design of evaluation strategies
to help simplify the parallelisation process.

There have also been several implementations of the Boyer-Moore theorem prover. For exam-
ple, Sodan and Bock's automatically parallelising Lisp system, ParLisp, has achieved a simulated
speedup of between 5.1 and 29.5 on an idealised con�guration of the MANNA machine containing
an in�nite number of processors [SB95]. In conducting these experiments Sodan and Bock observe
that it is important to check the potential parallelism of the application before proceeding along an
expensive implementation route. This is in accordance with the methodology we have propounded
both in this paper and elsewhere [THLP98], of using �rst an ideal simulation to demonstrate par-
allel feasibility and then re�ning the simulation to deliver more accurate information for particular
classes of target architecture.

The Boyer-Moore theorem prover has also be implemented in Id as part of the Impala bench-

7 RELATED WORK 34

mark suite [Sha98], but we are not aware of any parallel performance results that can be used for
comparison.

7.2 Image Processing

Graphical applications are obvious candidates for parallelisation. While imperative parallel graph-
ics applications generally depend on partitioning (updatable) arrays, more sophisticated data
structures may simplify the partitioning process and o�er better long-term opportunities for par-
allelism. Several applications have been produced that perform complex graphical manipulations,
including ray tracing to determine the intensity of light that falls on an object, and the computer
vision applications prototyped by Michaelson and Scaife in Standard ML.

Ray Tracing

The simple ray tracer that was originally developed in Kelly's thesis for the Caliban coordination
language [Kel89] has formed the basis for a number of subsequent studies, including as one of
the FLARE applications described above. In the latter case we were able to demonstrate good
speedup for this application running on GRIP under a variety of conditions, achieving an absolute
speedup of 10.5 on 17 processors, with no evidence of a software performance bound [HMP94].
Relative speedup for the same con�guration was a factor of 14.

In his thesis [Tay97], Taylor studies this same ray tracer in the context of Advanced Caliban.
Advanced Caliban extends the Caliban coordination language in a number of new and interest-
ing ways that parallel the development of evaluation strategies (for example, the use of nested
moreover clauses to control placement is similar to our use of strategies to describe process struc-
tures). Unlike evaluation strategies, however, Caliban remains �rmly routed in a static model
of process placement, and the target architecture is restricted to a distributed, closely-coupled
parallel machine (in Taylor's case, the 48-node AP1000 at the Imperial College Parallel Cen-
tre, London). Using a static process farm, with limited speculative evaluation, Taylor achieves
a relative speedup of 17 on 35 processors for this implementation of the ray tracer. With the
introduction of manual granularity control, performance can be boosted to a relative speedup of
24 on 35 processors. This is broadly in line with the GRIP results cited above, though speedup is
slightly lower.

Bratvold also studied the performance of the ray tracer application [Bra94] using his automat-
ically parallelising skeleton-based compiler for SML, SkelML. Bratvold's thesis results show that
a speedup of 9.5 on 22 Transputers could be achieved for the largest example that was tried. In
contrast to the dynamic approach we have used in our implementation and in accordance with
the Caliban philosophy adopted by Taylor, Bratvold's approach uses a static cost-modeling step
to guide the choice of skeleton from a �xed library.

Kesseler also used the ray tracer as a benchmark for Concurrent Clean [Kes95, Kes96]. Kesseler's
system adopts a similar skeleton approach to that taken by Bratvold, and also targets a Transputer
system. Kesseler reports a speedup of 10.0 on 16 processors, rising to 33.5 on 64 processors, where
he is clearly encountering some performance bound. From our own experience, we conjecture that
this may be due to poor distribution as a consequence of static process allocation.

While it is hazardous to compare only speedup and not look at absolute performance, it is
interesting that the systems using static placement do not exhibit better speedup results than the
system of dynamic placement used in GRIP. This is, of course, partly due to the lower communi-
cation latencies that apply in GRIP hardware. However, we feel it is a strong indicator that our
model of dynamic process placement can yield good parallel performance whilst requiring rather
less programmer e�ort than precise static placement, despite the greater overheads of dynamic
control.

7 RELATED WORK 35

Parallel Vision

Michaelson and Scaife [MS95] describe the implementation of several components of a parallel
vision system. The overall purpose of the system is to recognise 3D objects in a 2D scene by using
information about the relative intensity of light throughout the scene. The parallel algorithms are
prototyped using a skeleton-based SML implementation, before being translated to Occam and
executed on a distributed-memory Meiko machine (based on Transputers). The SML prototype
required 1700 lines against the 3000 lines of the �nal OCCAM implementation. It was used to
verify the general line of parallelism to be taken in the �nal implementation, in a similar way to
our own simulator-based proo�ng steps.

The primary algorithm used in this application is the Hough transform for solving sets of
underdetermined equations. This is parallelised in a data-oriented fashion using a farm skeleton to
realise a parallel map over a nested list. Performance was optimised by splitting the data into more
sets of equations, so introducing more small tasks which can be managed more e�ciently to improve
the overall load balance. This con�rms our own observations concerning task granularity [LH95] as
well as theoretical analyses [BR94]: �ner-grained programs are much easier to manage dynamically,
and result in much better balanced computation. Overall, Michaelson and Scaife achieve an
absolute speedup of 10.5 on the 30-processor Meiko. This performance was less than hoped for,
possibly as a consequence of poor load-balancing and/or high communication costs that may arise
from the nature of the farm skeleton, which will tend to introduce communication bottlenecks to
the farming processor.

Mitrovic and Trobina have implemented some components of a computer vision system in
Sisal [MT93]: speci�cally the Gaussian smoothing and Canny edge detector algorithms that are
also used by Michaelson and Scaife. The Sisal program was about 300 lines, compared with 600 for
the C version, and took 2 days to write, compared with about a week for the C program. The �nal
stage of the vision system (image compilation) was however slightly larger than the corresponding
C program (600 lines versus 500). Overall the Sisal program ran 10% faster than the C program
when run sequentially and achieved a relative speedup of 3.1 on a 4-processor shared-memory SGI
machine, without requiring further coding e�ort. This is clearly a very creditable performance
gain for such programmer modest e�ort. Similar performance results have been veri�ed by other
Sisal applications [Can92], some of which are described below (Section 7.4).

7.3 Data Intensive Applications

There have been relatively few attempts to produce large-scale data-intensive functional appli-
cations, and even fewer that have been successfully parallelised. One of the most interesting is
the AGNA system, which implements read-only selections (lookups) over a parallel functional
database [HN91].

AGNA

The AGNA system uses list comprehension to structure read-only queries over an on-disk database.
Since each lookup is independent of the results of any other lookup, parallelisation is straightfor-
ward and very high parallelism can be achieved with a good prospect of scalability. Heytens and
Nikhil [HN91] report a speedup of 31 on a 32 processor distributed-memory machine for non-
indexed lookup. Indexed lookup is much faster, but speedup is limited to a factor of 8, due to
task creation and result construction costs in the implementation that was adopted.

Parade

As part of the EPSRC Parade project we have investigated parallel functional database transaction
processing where the transactions involve not simply queries, as with AGNA, but also update op-
erations that may introduce dependencies with subsequent database transactions [AHPT93]. Our
results show that acceptable parallel performance can be achieved through the use of techniques
to reduce the \hot-spot" that arises from contention on the root of the B-tree data structure that

7 RELATED WORK 36

forms the index to the on-disk database. Overall, we achieved an absolute speedup of 12.6 on 15
GRIP processors. Larger data sets gave better performance than smaller ones, so it seems likely
that these results could be scaled to larger systems with higher throughput. Unlike AGNA, our
results apply only to in-memory copies of the database, however, with simulated disk accesses.

The same project also studied the accident blackspots program, whose performance results are
presented in Section 4.3.

7.4 Numerical and Symbolic Applications

Perhaps surprisingly, some of the most successful parallel functional applications have been nu-
merical programs. In addition to the bene�ts of much higher-level coding, which include shorter,
simpler (and hopefully more maintainable) code, several Sisal applications not only approach the
speed of slow imperative implementations such as C, but exceed the performance produced by the
fastest Fortran compilers. For parallel code, this is usually achieved without requiring any changes
to the source code. Similar, though slightly less spectacular, results have been achieved for the
NESL language [Ble93], mainly for generic problems such as the n-body problem [BN97]. Other
generic numerical problems that have been studied in a parallel functional context include conju-
gate gradient algorithms [YA93, GMZ94] and various Eigen-Solver implementations [SB94, BH95].

This section surveys the most signi�cant parallel numerical applications that have been written
in these and other languages.

The Australian weather system

The Australian weather prediction model is a 10,000 line Fortran program for short-term (36-
hour) weather forecasting [Les85]. Egan has re-implemented the kernel of this application as a
500-line Sisal program [Ega93] that can be called from the original Fortran shell. No signi�cant
restructuring of the code was performed, however. The parallelising Fortran compiler for the
Cray-90 was unable to locate any parallelism within this subroutine.

For the Sisal version, Egan achieved a speedup of 3.7 on a 4-processor Cray-90. This repre-
sented a performance improvement of 34% over the sequential Fortran code. Subsequent work
on the compiler has improved the performance of Sisal relative to Fortran, to the extent that it
is now possible to achieve a relative speedup of 6.1 on an 8-processor Cray Y-MP/864 (20 iter-
ations), representing a speedup of 5.8 over the equivalent Fortran program running on a single
processor [LAN98]. The �nal Sisal program comprises 33 source modules { a signi�cantly large
program by most standards.

Photon Transport

The 750-line Id program Gamtebwas written by researchers from Los Alamos National Laboratories
to simulate the trajectory of photons through a carbon rod that has been divided into a number
of cells of a given geometry. Each photon can be tested independently exploiting data parallelism.
On the 8-processor prototype Monsoon dataow machine, this highly-parallel application achieved
a speedup of 7.4 for a problem containing 40,000 particles [HCAA93].

The same application has been written in Sisal [HLB95, HB97], but the speedups achieved
on a 4-processor shared-memory Sun were not signi�cant (1.9 relative, 1.3 absolute for 50,000
particles). The overall performance was also signi�cantly less than for C { sequential C was 8.8
times faster than the one-processor parallel Sisal program. The poor performance is perhaps due
to ine�ciencies creating large intermediate data structures.

Nucleic Acids

Feeley et al. have worked on a parallel application for determining the three-dimensional structure
of nucleic acids [FTL94]. This application involves solving a set of constraints that collectively
de�ne all legal 3D structures that can be built from the input set of nucleotides.

7 RELATED WORK 37

Each nucleotide contains one free variable describing its three-dimensional position relative to
other nucleotides. This position constrains the placement of other nucleotides in the structure. The
parallel implementation of the algorithm involves checking each possible solution for a nucleotide's
position in parallel. The application is written as a 3500-line MultiLisp program and uses lazy
task creation [MKH91, Ito96] to introduce parallel tasks.

This application has been tested on two interesting data sets. For the larger of the two data
sets, pseudoknot, it is possible to achieve a maximum absolute speedup of 13.7 on 24 processors.
This represents the limit of parallelism | additional processors result in lower speedups due to
added contention. While the parallel overhead is a quite reasonable 21%, the single-processor
parallel case is still 2.4 times slower than sequential C. The smaller data set, anticodon displays
good absolute speedup of 49 on 64 processors.

Fluid Dynamics

A second large application that was developed as part of the FLARE project was the Swansea
computational uid dynamics program [RW95, GSWZ95]. In its sequential incarnation, this 2000-
line program made heavy use of arrays. In order to produce a parallel implementation, quadtree
and trie data structures were used instead to yield a straightforward parallel decomposition of the
problem domain.

Overall, the absolute speedup achieved by this application was 2.3 on a 4-processor GRIP.
Additional processors gave slight performance improvements, up to a factor of 3 on 17 processors,
but gave much worse processor utilisation. This was in sharp contrast to idealised simulated
results, which showed available parallelism of up to 100 simultaneous tasks. The discrepancy is
probably best explained by tight data dependencies introducing signi�cant communication costs in
the real implementation. This highlights the importance of providing accurate as well as idealised
simulation, as we have done in the parallel workbench described above.

A further lesson obtained from this application was the importance of providing good support
for large data structures, for example distributed applicative arrays [KG91]. We have not yet
implemented support for such structures, so would not expect good performance for programs
that made heavy use of array structures in our system.

A similar application to the Swansea program is the 1000-line Id program simple whose pur-
pose is to simulate hydrodynamics and heat-conduction. On an 8-processor Monsoon, Hicks et
al. [HCAA93] report a speedup of 6.3 for 100 iterations of a 100�100 grid of nodes containing
information about position and velocity, over a series of zones with di�erent uid characteristics.
This application has also been implemented in Sisal, where researchers achieved relative speedups
of 4.3 on an 8-processor Cray Y-MP/864 and 13.9 on a 20-processor Sequent Symmetry for 62 it-
erations [LAN98]. In both cases the Sisal version was signi�cantly faster than the single-processor
Fortran code, representing speedups over Fortran of 4.1 and 13.7 respectively.

Tidal Prediction

Hartel et al. have used Miranda to produce a 560 line tidal prediction program, using skeletons
to expose the parallelism in this program [HHL+95]. A \communication lifting" transformation is
applied in order to exploit wavefront parallelism in a grid performing computational uid dynam-
ics operations that involve solving partial di�erential equations in a data-parallel fashion. The
program uses a tile-based partitioning approach similar to that we have used for the Accident
Blackspots program.

The relative speedup achieved for this application is 2.5 on a 4-processor shared-memory ma-
chine, though the application would presumably scale to larger shared-memory systems if these
were available, by simply introducing additional tiles. Unfortunately, this is still 58% slower
than sequential C, however, and therefore considerably slower than could be expected for a Sisal
implementation of this application.

7 RELATED WORK 38

Global Ocean Circulation

A similar application to the tidal prediction problem is the global ocean circulation model that
has been converted to Id from the Fortran original [SAC+98]. This program has a regular control
structure (the central part is a triply nested loop) but an irregular data structure. The application
was tuned for parallel execution on Monsoon using loop unrolling and the introduction of k-
bounded loops [AN90] for throttling excess parallelism. While no absolute speedup �gures are
available, performance results for realistic data-sets showed clearly that the Id application required
fewer clock cycles to execute each required operation on the 8-processor Monsoon prototype than
Fortran on a 128-processor CM-5.

Symbolic Computation and Computer Algebra

Schreiner has applied his small strict para-functional language pD to a number of problems taken
from computer algebra: a linear equation solver that is similar to the one presented in Section 4.6;
two programs to compute multivariate polynomial resultants; and part of a polynomial factorisa-
tion algorithm.

Highly signi�cantly, Schreiner's performance results show that good absolute speedup can be
achieved using his approach [Sch95]. Compared with sequential C, Schreiner achieved performance
of 14 on a 16-processor shared-memory system for the linear equation solver (his best result).
Sequential performance is also broadly in line with that obtained for the corresponding C programs.
Although these applications are small, they do suggest that parallel symbolic computation is
amenable to exploitation by functional programming techniques.

7.5 Digital Signal Processing

In his thesis, Reekie describes the design of a parallel digital signal processing system written
using a visual dialect of Haskell [Ree95]. While no performance �gures are available, the thesis
is interesting in introducing a number of laws concerning functional process networks that could
perhaps apply to behavioural code written using evaluation strategies, such as the applications
described in this paper.

Dennis has studied a similar application in a static dataow context [Den95], as an exercise
in parallelisation. This Sisal program is the core of a system that could be used to process
information obtained from a sky-scanning optical surveillance device. A series of �lters work as a
parallel pipeline over several input stream of values, representing data obtained by the surveillance
sensors. The application is highly parallel to the extent that throttling and other load management
strategies would probably be required in a real implementation. Unfortunately, the application
has not yet been implemented on real parallel hardware so no performance results are available
for this application either.

7.6 Telephony

Finally, while not a purely functional implementation, and di�ering from the goals of our research
in representing a distributed implementation of a concurrent language with explicit process control
for semantic modeling, Erlang [AWWV96] has produced the �rst commercial distributed functional
applications of which we are aware [Arm96]. The Erlang applications are both \fast enough" for
real commercial use and use less memory than their counterparts in C. The largest application
that has so far been programmed in Erlang is the 230,000 line Mobility Server, which acts as an
intelligent call routing system linked to an internal telephone exchange, and which is in widespread
use. Clearly, taken with the Lolita application which we have described here, there is a strong
body of evidence to show that functional languages can be used for real, complex applications.

7 RELATED WORK 39

7.7 Related Approaches to Parallelism

The FLARE Applications

The applications produced by the FLARE project [RW95] formed a direct precursor to those de-
scribed here, representing the �rst real attempt to write a number of reasonably large applications
in a purely functional language and to produce parallel implementations of those programs. Like
the applications described in this paper, the applications considered in the FLARE project were
drawn from a wide variety of application areas: notably a computational uid dynamics problem,
a proof assistant, text compression and a geometric modeling system. The uid dynamics program
and the proof assistant (Veritas) are described above.

The attempts to parallelise the FLARE applications motivated the use of simulation (in this
case using an idealised simulator, hbc-pp [RW93]) as well as real-machine execution, and spurred
the long-term development of evaluation strategies for more precise machine control (the FLARE
applications used only the primitive par and seq annotations). They also demonstrated the limi-
tations of the GRIP prototype in executing such large programs, and highlighted the desirability
of using stock parallel machines that could be made more generally available.

Overall parallel performance results were, however, quite promising. Depending on the appli-
cation type, absolute speedups of between 4 and 15 were achieved on a 16-processor GRIP.

The Dutch Parallel Programming Toolkit

The toolkit developed as part of the Dutch Parallel Machine Project [BvH+87, HHL+95] takes
an approach to parallel program development that is similar to the one we have described in this
paper. As in our approach, the Dutch system provides both an interpreter and a compiler for
sequential algorithmic debugging and initial overall performance optimisation, together with both
simulated and real parallel machine implementations for parallel performance optimisation. The
simulator supports three levels of detail: task-level, instruction-level and bus-cycle simulation.
Like the GranSim simulator, the instruction-level simulation is acceptably accurate, delivering
predictions that are 15%{23% too optimistic, though. The system has been used to develop the
560 line tidal prediction program discussed earlier.

Finally, it is worth noting that the compiler used in this project, FAST/FCG, has limited
support for code optimisation. GHC provides many more optimisations, as well as source-level
pro�ling (both sequential and parallel) through the use of cost-centre pro�les [SP97]. These
bene�ts are of great signi�cance for large parallel programs.

7.8 Summary

This section has surveyed a variety of large-scale parallel functional applications mainly repre-
senting symbolic applications with irregular parallelism and written in many languages. These
applications cover a wide range of programming domains from data-intensive applications such
as database transaction managers to high-performance numerical calculations such as weather
prediction systems or determining the structure of chemical compounds. Many applications have
demonstrated that good relative speedups can be achieved, and several, notably those written in
strict languages such as Sisal, MultiLisp and pD, have shown that the performance of conventional
imperative languages such as C or Fortran can be exceeded with minimal programmer e�ort. The
distributed language Erlang has shown that distributed functional applications can achieve com-
mercial success, eclipsing their imperative counterparts through ease of construction and overall
performance. These are positive and encouraging results for the work that we are undertaking.

8 CONCLUSIONS 40

8 Conclusions

8.1 Summary

We have described the development of several parallel symbolic programs in Glasgow Parallel
Haskell (GpH). The programs are large, cover a range of application areas, and have been measured
on networks of workstations, and a shared-memory multiprocessor. From our experiences with
developing these applications we draw conclusions on the applications, the programming language,
and the programming environment.

On the applications level the most signi�cant result is that we are able to achieve modest
wall-clock speedups over the optimised sequential versions for all but one of the programs, despite
the fact that some of the programs were not written with the intention of being parallelised (see
Table 5 in Section 5.1). We �nd that it is easy to use di�erent parallel programming paradigms
in GpH, and even to combine the paradigms within a single program.

On the language level we have been able to evaluate some long-standing claims about parallel
functional programming. Both the determinism of the language proves helpful, as does the largely-
implicit nature of the parallelism. Our new parallel programming technique, evaluation strategies,
has been proven successful on a large scale. Particularly important for large programs we �nd
that strategies allow a high level of abstraction to be maintained. There are two aspects to
this abstraction: we can describe top-level parallelism, and also preserve module abstraction by
describing parallelism over the data structures provided at the module interface (\data-oriented
parallelism"). The bene�ts of this approach are elaborated in more detail via developing several
versions of parallel programs in the PhD thesis [Loi98][Chapter 4].

On the programming environment level we have shown the importance of an integrated parallel
programming environment, with facilities for prototyping parallel code, optimising the program,
and visualising parallel behaviour. Although not the focus of this paper, the GpH programming
environment has been developed alongside the programs, and is still being extended as detailed
below.

Our motto in exploiting parallelism in large applications is \low pain, moderate gain." The
goal of this approach is to bring the power of parallel processing, increasingly o�ered by the
latest generation of desktop machines, to non-specialists in parallel programming. To achieve such
\desktop parallelism" we use a programming model o�ering largely-implicit parallelism, namely
parallel functional programming. However, our model is not restricted to machines with modest
parallelism, and indeed it is possible to specify details of the parallel computation if necessary.
Overall, our approach di�ers signi�cantly from that usually used in the supercomputing area. In
the latter it is feasible to spend a lot of e�ort in parallelising a program and the parallelisation is
usually done by a specialist in parallel processing. With the applications presented in this paper
we also hope to have demonstrated the merit of such a \desktop parallelism" approach in order
to make the power of parallel processing more easily available to programmers.

8.2 Future Work

We are extending the work in several directions. Even with the existing suite of pro�ling and visu-
alisation tools available it is hard to fully understand the parallel behaviour, of large irregularly-
parallel programs. Additional tools are under construction and the most signi�cant of these are
as follows. The GranCC pro�ler attributes the work done by a thread to a cost centre, i.e. an
expression in the program [HLT97]. The strategic pro�ler attributes a thread to the strategy that
induced it. A standard format for pro�ling data is being designed, and the tools may be o�ered in
a user-friendly environment. We have experimented with a number of di�erent ways of visualising
the execution of parallel functional programs. We �nd that some are far more useful than others,
and we intend to describe our experiences with the pro�lers and visualisations.

It would be useful to reason more formally about the strategies used in our programs. For
example to demonstrate that two strategies are equivalent w.r.t. the amount of parallelism they
generate, or that one generates more parallelism than another. We currently reason informally,

REFERENCES 41

and have some identities that we believe to be true, e.g. that (par x) is idempotent. We would
like to develop a model for the threads created by a strategy, and use it to prove identities about
strategies. The strategic identities can then be used to prove equalities, and inequalities between
strategic functions.

We intend to improve and extend the GUM runtime system, and to port it to new platforms.
Many aspects of GUM could be improved, including the work-stealing algorithm and the message-
processing as suggested by measurements in [LH96b]. There are a number of obvious extensions to
GUM, e.g. to introduce thread migration, i.e. the relocation of a running thread from one processor
to another. A number of GUM ports are under way or planned, including to a Fujitsu AP1000, a
Fujitsu AP3000, and a Beowulf platform.

In the longer-term, we would like to develop an even more implicitly-parallel language. One
means of doing so would be to automatically insert strategies into a program, guided by static
analyses of the program text. Strictness analysis [BHA86] indicates when it is safe to introduce
parallelism, and granularity analysis [LH96a] indicates when it is worthwhile to do so. Because
strategies are part of GpH it is then possible for the programmer to tune the parallel performance
by re�ning the automatically generated strategies.

References

[AHPT93] G. Akerholt, K. Hammond, S.L. Peyton Jones, and P. Trinder. Processing Trans-
actions on GRIP. In PARLE'93 | Parallel Languages and Architectures Eu-

rope, Munich, Germany, June 14{18, 1993. URL: ftp://ftp.dcs.gla.ac.uk/pub/glasgow-
fp/papers/grip-transactions.ps.Z.

[Arm96] J. Armstrong. Erlang { a Survey of the Language and its Industrial Applications.
In INAP'96 | Exhibitions and Symposium on Industrial Applications of Prolog, pp.
16{18, Hino, Tokyo, Japan, October 1996.

[AWWV96] J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Concurrent Programming
in Erlang. Prentice-Hall, 1996.

[AN90] Arvind and R.S. Nikhil. Executing a Program on the MIT Tagged-Token Dataow
Architecture. IEEE Transactions on Computers, 39(3), March 1990.

[BvH+87] H.P. Barendregt, M.C.J.D. van Eekelen, P.H. Hartel, L.O. Hertzberger, M.J.
Plasmeijer, and W.G. Vree. The Dutch Parallel Reduction Machine Project.
Future Generation Computer Systems, 3:261{270, December 1987. URL:

ftp://ftp.cs.kun.nl/pub/CSI/SoftwEng.FunctLang/papers/barh87-PRMprojekt.ps.gz.

[Ble93] G.E. Blelloch. NESL: A Nested Data-Parallel Language (Version 2.6). Technical
Report CMU-CS-93-129, Carnegie-Mellon University, April 1993.

[Ble96] G.E. Blelloch. Programming Parallel Algorithms. Communications of the ACM,
39(3):85{97, March 1996. URL: http://www.cs.cmu.edu/~scandal/cacm.html.

[BN97] G. Blelloch and G. Narlikar. A Practical Comparison of N -Body Algo-
rithms. In Parallel Algorithms, Series in Discrete Mathematics and The-
oretical Computer Science. American Mathematical Society, 1997. URL:

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/dimacs-

nbody.ps.gz.

[BF94] D. Boucher and M. Feeley. Construction Parall�ele de l'Automate LR(0): Une Ap-
plication de MultiLisp �a la Compilation. In 6i�eme Rencontres Francophones du Par-

all�elisme, Universit�e de Montr�eal, June 1994.

REFERENCES 42

[BH95] W. B�ohm and B. Hiromoto. Functional Implementations of the Jacobi Eigen-Solver.
In HPFC'95 | High Performance Functional Computing, Denver, Colorado, April
10{12, 1995. URL: http://www.cs.colostate.edu/~dataow/papers/sp95.ps.gz.

[Bra94] T.A. Bratvold. Skeleton-Based Parallelisation of Functional Programs. PhD the-
sis, Department of Computing and Electrical Engineering, Heriot-Watt University,
Edinburgh, November 1994. URL: ftp://ftp.cee.hw.ac.uk/pub/funcprog/tab.phd.ps.Z.

[BHA86] G.L. Burn, C. Hankin, and S. Abramsky. Strictness Analysis for Higher Order Func-
tions. Science of Computer Programming, 7:249{278, November 1986.

[BR94] F.W. Burton and V.J. Rayward Smith. Worst Case Scheduling for Parallel Functional
Programming. Journal of Functional Programming, 4(1):65{75, January 1994.

[Can92] D. Cann. Retire Fortran? A Debate Rekindled. Communications of the ACM,
35(8):81{89, August 1992.

[Cla93] S. Clayman. Developing and Measuring Parallel Rule-Based Systems in a Functional

Programming Environment. PhD thesis, Department of Computer Science, University
College London, 1993.

[Dav96] K. Davis. MPP Parallel Haskell. In IFL'96 | International Workshop on the Imple-

mentation of Functional Languages, pp. 49{54, Bad Godesberg, Germany, September
1996. Draft Proceedings.

[Den95] J. Dennis. Static Mapping of Functional Programs: an Example in Signal Process-
ing. In HPFC'95 | High Performance Functional Computing, pp. 149{163, Denver,
Colorado, April 10{12, 1995.

[DGF97] D. Dinapoli, M. Giordano, and M.M. Furnari. A PVM-Based Distributed Parallel
Symbolic System. Journal of Advances in Engineering Software, 28(5):303{312, 1997.

[Ega93] G. Egan. Implementing the Kernel of the Australian Weather Prediction Model in
Sisal. In SISAL'93, pp. 11{17, San Diego, CA, USA, October 1993.

[FTL94] M. Feeley, M. Turcotte, and G. LaPalme. Using MultiLisp for Solving Constraint
Satisfaction Problems: an Application to Nucleic Acid 3D Structure Determination.
Lisp and Symbolic Computation, 7:231{247, 1994.

[GSWZ95] P.W. Grant, J.A. Sharp, M.F. Webster, and X. Zhang. Experiences of Parallelizing
Finite-Element Problems in a Functional Style. Software { Practice and Experience,
25(9):947{974, September 1995.

[GMZ94] K.D. Gremban, G.L. Miller, and M. Zagha. Performance Evaluation of a
New Parallel Preconditioner. Technical Report CMU-CS-94-205, School
of Computer Science, Carnegie Mellon University, October 1994. URL:

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS-94-

205.ps.gz.

[HB97] J. Hammes and W. B�ohm. On the Performance of Functional Program-
ming Languages on Realistic Benchmarks. In PDPTA'97 | International

Conference on Parallel and Distributed Processing Techniques, 1997. URL:

http://www.cs.colostate.edu/~hammes/documents/�nal1.ps.Z.

[HLB95] J. Hammes, O. Lubeck, and W. B�ohm. Comparing Id and Haskell in a Monte Carlo
photon transport code. Journal of Functional Programming, 5(3):283{316, July 1995.

REFERENCES 43

[Ham94] K. Hammond. Parallel Functional Programming: An Introduction. In
PASCO'94 | International Symposium on Parallel Symbolic Computation, vol-
ume 5 of Lecture Notes Series on Computing, pp. 181{193, Hagenberg/Linz,
Austria, 26{28 September, 1994. World Scienti�c. URL: http://www.dcs.st-

and.ac.uk/~kh/papers/pasco94/pasco94.html.

[HLP95] K. Hammond, H-W. Loidl, and A. Partridge. Visualising Granularity in Parallel
Programs: A Graphical Winnowing System for Haskell. In HPFC'95 | High Per-

formance Functional Computing, pp. 208{221, Denver, Colorado, April 10{12, 1995.
URL: http://www.dcs.st-and.ac.uk/~kh/papers/hpfc95/hpfc95.html.

[HLT97] K. Hammond, H-W. Loidl, and P.W. Trinder. Parallel Cost Centre Pro�ling. In
Glasgow Workshop on Functional Programming, Ullapool, Scotland, September 15{
17, 1997.

[HM98] K. Hammond and G. Michaelson, editors. Research Directions in Parallel Functional

Programming. 1998. To appear.

[HMP94] K. Hammond, J.S. Mattson Jr., and S.L. Peyton Jones. Automatic Spark Strate-
gies and Granularity for a Parallel Functional Language Reducer. In CON-

PAR'94 | Conference on Algorithms and Hardware for Parallel Processing, LNCS
854, pp. 521{532, Linz, Austria, September 6{8, 1994. Springer-Verlag. URL:

ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/papers/.

[HP92] K. Hammond and S.L. Peyton Jones. Pro�ling Scheduling Strategies on the GRIP
Multiprocessor. In IFL'92 | International Workshop on the Parallel Implementa-

tion of Functional Languages, pp. 73{98, RWTH Aachen, Germany, September 1992.
URL: ftp://ftp.dcs.gla.ac.uk/pub/glasgow-fp/papers/grip-scheduling.ps.gz.

[HHL+95] P.H. Hartel, R.F.H. Hofman, K.G. Langendoen, H.L. Muller, W.G. Vree, and
L.O. Hertzberger. A Toolkit for Parallel Functional Programming. Con-

currency | Practice and Experience, 7(8):765{793, December 1995. URL:

ftp://ftp.fwi.uva.nl/pub/computer-systems/functional/reports/CPE toolkit.ps.Z.

[HN91] M. Heytens and R.S. Nikhil. List Comprehensions in Agna, a Parallel, Persistent
Object System. In FPCA'91 | Conference on Functional Programming Languages

and Computer Architectures, LNCS 523, pp. 569{591, Harvard, MA, USA, 1991.
Springer-Verlag.

[HCAA93] J. Hicks, D. Chiou, B.S. Ang, and Arvind. Performance Studies of the Mon-
soon Dataow Processor. Journal of Parallel and Distributed Computing, July
1993. URL: http://www.csg.lcs.mit.edu:8001/monsoon/monsoon-performance/monsoon-

performance.html.

[HL94] H. Hong and H-W. Loidl. Parallel Computation of Modular Multivariate Polynomial
Resultants on a Shared Memory Machine. In CONPAR'94 | Conference on Parallel

and Vector Processing, LNCS 854, pp. 325{336, Linz, Austria, September 6{8, 1994.
Springer-Verlag. URL: http://www.dcs.gla.ac.uk/~hwloidl/publications/resultant.ps.gz.

[Hug89] R.J.M. Hughes. Why Functional Programming Matters. The Computer Journal,
32(2):98{107, April 1989. URL: http://www.cs.chalmers.se/~rjmh/Papers/whyfp.ps.

[Ito96] T. Ito. E�cient Evaluation Strategies for Structured Concurrency Constructs in
Parallel Scheme Systems. LNCS 1068, pp. 22{52. Springer-Verlag, 1996.

[JSC96] Special Issue on Parallel Symbolic Computation of the Journal of Symbolic Compu-

tation, 21(4/6), April/June 1996. Academic Press.

REFERENCES 44

[JDH97] S. Junaidu, A. Davie, and K. Hammond. Naira: A Parallel2 Haskell Compiler. In
IFL'97 | International Workshop on the Implementation of Functional Languages,
LNCS 1467, pp. 215{231, September 10{12, St. Andrews, Scotland, 1997. Springer-
Verlag.

[Jun98] S. Junaidu. A Parallel Functional Language Compiler for Message Passing Multicom-

puters. PhD thesis, School of Mathematical and Computational Sciences, University
of St. Andrews, March 1998.

[Kel89] P.H.J. Kelly. Functional Programming for Loosely-Coupled Multiprocessors. Research
Monographs in Parallel and Distributed Computing. MIT Press, 1989.

[Ken94] J.R. Kennaway. A Conict Between Call-by-Need Computation and Par-
allelism. In Workshop on Conditional Term Rewriting Systems, LNCS
968, pp. 247{261, Jerusalem, Israel, 1994. Springer-Verlag. URL:

ftp://ftp.sys.uea.ac.uk/pub/kennaway/publications/rootseq.ps.Z.

[Kes95] Marco Kesseler. Constructing Skeletons in Clean: The Bare Bones. In HPFC'95

| High Performance Functional Computing, pp. 182{192, Denver, Colorado, April
10{12, 1995. URL: ftp://sisal.llnl.gov/pub/hpfc/papers95/paper30.ps.

[Kes96] M. Kesseler. The Implementation of Functional Languages on Parallel Machines with

Distributed Memory. PhD thesis, University of Nijmegen, 1996.

[KG91] H. Kuchen and G. Geiler. Distributed Applicative Arrays. Technical Report AIB
91-5, RWTH Aachen, 1991.

[LAN98] Sisal Performance Data. WWW page, June 1998. URL:

http://www.llnl.gov/sisal/PerformanceData.html.

[Lau82] M. Lauer. Computing by Homomorphic Images, in B. Buchberger, G. Collins, R. Loos
& R. Albrecht, editors, Computer Algebra | Symbolic and Algebraic Computation,
pp. 139{168. Springer-Verlag, 1982.

[Les85] L.M. Leslie et al. A High Resolution Primitive Equations NWP Model for Operations
and Research. Australian Metereological Magazine, 33:11{35, 1985.

[Loi98] H-W. Loidl. Granularity in Large-Scale Parallel Functional Programming. PhD the-
sis, Department of Computing Science, University of Glasgow, March 1998. URL:

http://www.dcs.gla.ac.uk/~hwloidl/publications/PhD.ps.gz.

[Loi97] H-W. Loidl. LinSolv: a Case Study in Strategic Parallelism. In Glasgow Work-

shop on Functional Programming, Ullapool, Scotland, September 15{17, 1997. URL:
http://www.dcs.gla.ac.uk/~hwloidl/publications/LinSolv.ps.gz.

[LH95] H-W. Loidl and K. Hammond. On the Granularity of Divide-and-Conquer
Parallelism. In Glasgow Workshop on Functional Programming, Workshops
in Computing, Ullapool, Scotland, July 8{10, 1995. Springer-Verlag. URL:

http://www.dcs.gla.ac.uk/~hwloidl/publications/GlaFp95.ps.gz.

[LH96a] H-W. Loidl and K. Hammond. A Sized Time System for a Parallel Functional Lan-
guage. In Glasgow Workshop on Functional Programming, Ullapool, Scotland, July
8{10, 1996. URL: http://www.dcs.glasgow.ac.uk/fp/workshops/fpw96/Loidl.ps.gz.

[LH96b] H-W. Loidl and K. Hammond. Making a Packet: Cost-E�ective Commu-
nication for a Parallel Graph Reducer. In IFL'96 | International Work-

shop on the Implementation of Functional Languages, LNCS 1268, pp. 184{
199, Bad Godesberg, Germany, September 1996. Springer-Verlag. URL:

http://www.dcs.gla.ac.uk/~hwloidl/publications/IFL96.ps.gz.

REFERENCES 45

[LT97] H-W. Loidl and P.W. Trinder. Engineering Large Parallel Functional
Programs. In IFL'97 | International Workshop on the Implementa-

tion of Functional Languages, LNCS 1467, pp. 179{198, University of
St. Andrews, Scotland, September 10{12, 1997. Springer-Verlag. URL:

http://www.dcs.gla.ac.uk/~hwloidl/publications/IFL97.ps.gz.

[LMT+97] H-W. Loidl, R. Morgan, P.W. Trinder, S. Poria, C. Cooper, S.L. Peyton
Jones, and R. Garigliano. Parallelising a Large Functional Program; Or:
Keeping LOLITA Busy. In IFL'97 | International Workshop on the Im-

plementation of Functional Languages, LNCS 1467, pp. 199{214, University
of St. Andrews, Scotland, September 10{12, 1997. Springer-Verlag. URL:

http://www.dcs.gla.ac.uk/~hwloidl/publications/IFL97.ps.gz.

[LL93] C. Limongelli and H-W. Loidl. Rational Number Arithmetic by Parallel P-adic Algo-
rithms. In ACPC'93 | Parallel Computation | Second International ACPC Confer-

ence, LNCS 734, pp. 72{86, Gmunden, Austria, October 4{6, 1993. Springer-Verlag.
URL: http://www.dcs.gla.ac.uk/~hwloidl/publications/p-adic.ps.gz.

[Lip71] J. D. Lipson. Chinese Remainder and Interpolation Algorithms. In SYMSAM'71 |

Symposium on Symbolic and Algebraic Manipulation, pp. 372{391. Academic Press,
1971.

[LP95] J. Launchbury and S.L. Peyton Jones. State in Haskell. Lisp and Symbolic Compu-

tation, 8(4):293{342, December 1995.

[MKH91] E. Mohr, D.A. Kranz, and R.H. Halstead Jr. Lazy Task Creation: A Tech-
nique for Increasing the Granularity of Parallel Programs. IEEE Transac-

tions on Parallel and Distributed Systems, 2(3):264{280, July 1991. URL:

ftp://cag.lcs.mit.edu/pub/papers/futures.ps.Z.

[MS95] G. Michaelson and N. Scaife. Prototyping a Parallel Vision System in Stan-
dard ML. Journal of Functional Programming, 5(3):345{382, July 1995. URL:

ftp://ftp.cee.hw.ac.uk/pub/funcprog/ms.jfp95.ps.Z.

[MT93] S. Mitrovic and M. Trobina. Computer Vision Algorithms in Sisal. In SISAL'93, pp.
114{119, San Diego, CA, USA, October 1993.

[MSS94] R.G. Morgan, M.H. Smith, and S. Short. Translation by Meaning and Style in Lolita.
In International BCS Conference | Machine Translation Ten Years On, Cran�eld
University, November 1994.

[Nik91] R.S. Nikhil. ID Reference Manual. Technical Report CSG Memo 284-
2, Laboratory for Computer Science, M.I.T., July 1991. URL: ftp://csg-

ftp.lcs.mit.edu/pub/papers/csgmemo/memo-284-2.ps.gz.

[NSvP91] E.G.J.M.H. N�ocker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer.
Concurrent Clean. In PARLE'91 | Parallel Architectures and Languages Europe,
LNCS 505, pp. 202{219, Veldhoven, The Netherlands, June 1991. Springer-
Verlag. URL: ftp://ftp.cs.kun.nl/pub/CSI/SoftwEng.FunctLang/papers/noce91-

concurrentclean.ps.gz.

[Pey96] S.L. Peyton Jones. Compiling Haskell by Program Transformation: a Report
from the Trenches. In ESOP'96 | European Symposium on Programming, LNCS
1058, pp. 18{44, Link�oping, Sweden, April 22{24, 1996. Springer-Verlag. URL:

http://www.dcs.gla.ac.uk/fp/authors/Simon Peyton Jones/comp-by-trans.ps.gz.

REFERENCES 46

[PHA+97] J.C. Peterson, K. Hammond, L. Augustsson, B. Boutel, F.W. Burton, J.H. Fasel,
A.D. Gordon, R.J.M. Hughes, P. Hudak, T. Johnsson, M.P. Jones, S.L. Peyton Jones,
A. Reid, and P.L. Wadler. Report on the Non-Strict Functional Language, Haskell,

Version 1.4, 1997.

[PS93] A.P. Poulovassilis and C. Small. A Domain-Theoretic Approach to Logic and Func-
tional Databases. In VLDB'93 | International Conference on Very Large Databases,
pp. 415{426, 1993.

[Ree95] H.J. Reekie. Realtime Signal Processing: Dataow, Visual and Functional Program-

ming. PhD thesis, School of Electrical Engineering, University of Technology at
Sydney, 1995.

[Roe91] P. Roe. Parallel Programming using Functional Languages. PhD thesis, Department
of Computing Science, University of Glasgow, February 1991.

[RW93] C. Runciman and D. Wakeling. Pro�ling Parallel Functional Computations (without
Parallel Machines). In Glasgow Workshop on Functional Programming, Workshops
in Computing, pp. 236{251, Ayr, Scotland, July 5{7, 1993. Springer-Verlag.

[RW95] C. Runciman and D. Wakeling. Applications of Functional Programming. UCL Press,
1995.

[SP95] P.M. Sansom and S.L. Peyton Jones. Time and Space Pro�ling for Non-Strict Higher-
Order Functional Languages. In POPL'95 | Symposium on Principles of Pro-

gramming Languages, San Francisco, California, January 1995. ACM Press. URL:

ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/papers/pro�ling.ps.Z.

[SP97] P.M. Sansom and S.L. Peyton Jones. Formally Based Pro�ling for
Higher-Order Functional Languages. ACM Transactions on Program-

ming Languages and Systems, 19(2):334{385, March 1997. URL:

http://www.dcs.gla.ac.uk/fp/authors/Patrick Sansom/1997 pro�ling TOPLAS.ps.gz.

[Sch95] W. Schreiner. Application of a Para-Functional Language to Problems in Computer
Algebra. In HPFC'95 | High Performance Functional Computing, pp. 182{192,
Denver, Colorado, April 10{12, 1995.

[Sha98] A. Shaw. Impala Application Suite. WWW page, January 1998. URL:

http://www.csg.lcs.mit.edu:8001/impala/.

[SAC+98] A. Shaw, Arvind, K.-C. Cho, C. Hill, R.P. Johnson, and J. Marshall. A Comparison
of Implicitly Parallel Multithreaded and Data Parallel Implementations of an Ocean
Model. Journal of Parallel and Distributed Computing, 48(1):1{51, January 1998.

[SMT+95] E. Smirni, A. Merlo, D. Tessera, G. Haring, and G. Kotsis. Modeling Speedup of
SPMD Applications on the Intel Paragon: a Case Study. In HPCN'95 | High

Performance Computing and Networking, LNCS 919, pp. 94{101, Milan, Italy, May
1995. Springer-Verlag.

[SB95] A.C. Sodan and H. Bock. Extracting Characteristics from Functional Programs
for Mapping to Massively Parallel Machines. In HPFC'95 | High Performance

Functional Computing, pp. 134{148, Denver, Colorado, April 10{12, 1995. URL:

ftp://sisal.llnl.gov/pub/hpfc/papers95/paper14.ps.

[Ske91] S. Skedzielewski. Parallel Functional Languages and Compilers, chapter Sisal. Fron-
tier Series. ACM Press, 1991.

REFERENCES 47

[SB94] S. Sur and W. B�ohm. Analysis of Non-Strict Functional Implemen-
tations of the Dongarra-Sorensen Eigensolver. In ICS'94 | Interna-

tional Conference on Supercomputing, Manchester, U.K., June 1994. URL:

http://www.cs.colostate.edu/~dataow/papers/ics94b.ps.gz.

[Tar75] R.E. Tarjan. E�ciency of a Good, but not Linear Set Union Algorithm. Journal of
the ACM, 22:215{225, 1975.

[Tay97] F.S. Taylor. Parallel Functional Programming by Partitioning. PhD thesis, Depart-
ment of Computing, Imperial College, London, 1997.

[TG95] G. Tremblay and G.R. Gao. The impact of laziness on parallelism and
the limits of strictness analysis. In HPFC'95 | High Performance Func-

tional Computing, pp. 119{133, Denver, Colorado, April 10{12, 1995. URL:

ftp://sisal.llnl.gov/pub/hpfc/papers95/paper11.ps.

[TBD+98] P.W. Trinder, E. Barry Jr., M.K. Davis, K. Hammond, S.B. Junaidu, U. Klusik, H-W.
Loidl, and S.L. Peyton Jones. GPH: An Architecture-Independent Functional Lan-
guage. IEEE Transactions on Software Engineering, 1998. Submitted for publication.

[THLP98] P.W. Trinder, K. Hammond, H-W. Loidl, and S.L. Peyton Jones. Algorithm + Strat-
egy = Parallelism. Journal of Functional Programming, 8(1):23{60, January 1998.
URL: http://www.dcs.glasgow.ac.uk/~hwloidl/publications/strategies.ps.gz.

[THM+96] P. Trinder, K. Hammond, J.S. Mattson Jr., A.S Partridge, and S.L. Peyton Jones.
GUM: a Portable Parallel Implementation of Haskell. In PLDI'96 | Programming

Languages Design and Implementation, pp. 79{88, Philadelphia, PA, USA, May 1996.
URL: ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/authors/Philip Trinder/gumFinal.ps.Z.

[Win97] N. Winstanley. A Type-Sensitive Preprocessor for Haskell. In Glasgow Workshop

on Functional Programming, Ullapool, Scotland, September 15{17, 1997. URL:

http://www.dcs.gla.ac.uk/~nww/Papers/GlaFP.ps.Z.

[WH96] J. Wu and L. Harbird. A Functional Database System for Road Accident Analysis.
Advances in Engineering Software, 26(1):29{43, 1996.

[YA93] D. Yeung and A. Agarwal. Experience with Fine-Grain Synchronization in
MIMD Machines for Preconditioned Conjugate Gradient. In PPoPP'93 | Sym-

posium on Principles and Practice of Parallel Programming, May 1993. URL:

ftp://cag.lcs.mit.edu/pub/papers/�ne-grain.ps.Z.

