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A Parallel Viterbi Decoding Algorithm

J.S. Reeve

Abstract

In this paper we express the Viterbi algorithm as a matrix-vector reduction in which multiplication is replaced
by addition and addition by minimisation. The resulting algorithm is then readily parallelised in a form suitable for
implementation on a systolic processor array. We describe the algorithm for BCH codes which have a task graph with
valence restricted to four inputs and four outputs. The method is also applicable to convolution codes but the complexity
of the task graph increases with the number of input bits for these codes. Results for BCH codes are given for two
general purpose parallel machines, an IBM SP2 and a Meiko CS2.
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I. Introduction

T
HE Viterbi algorithm[1] was developed as an asymptotically optimal decoding algorithm for con-
volution codes. It is nowadays commonly also used for decoding block codes since the usual[2],

[3] algebraic decoding methods are not always readily adaptable for soft decoding. In soft decision
decoding the modem returns a measure of the relative probability that the data bit is a 0 or a 1. In
these circumstances Viterbi decoding of Bose-Chaudhuri-Hocquenghem (BCH)[4], [5] and convolution
codes codes is found to be e�cient and robust for small codes. We illustrate the Viterbi algorithm for
hard decision decoding (data bits are delivered as either 0 or 1) only, as the adaption to soft decision
decoding is trivial.
Although the Viterbi algorithm is simple it requires O(2L) words of memory, where L is the length

of the generating shift register in bits, which consequently has 2L states. In practical situations it is
desirable to select codes with the highest minimum Hamming distance that can be practicably decoded
and an increased minimum Hamming distance dmin implies a longer shift register. Hence it is desirable
to have a parallel Viterbi decoder that distributes the memory requirements among processors.
We describe our method for BCH codes as these are more complex than the convolution decoding,

principally because of the presence of feedback in the generating shift register. The parallelisation
strategy for convolution codes is the same as that for BCH codes.

II. The Sequential Viterbi Algorithm

BCH codes are a class of cyclic codes that append n� k parity bits to a message of k bits so that
each code word is n bits long. The code parameters (n; k; dmin) are of the form n = 2m�1, n�k � mt
and the minimum Hamming distance is dmin � 2t + 1. The codes are speci�ed by their generator
polynomials in GF (2) which has the general form g0 + g1D + � � �+ gn�kD

n�k.
The encoding process is usually described in terms of a shift register. The general setup is shown

in Figure 1 in which switches s0 and s1 are closed and s2 open for the �rst k cycles while the message
mk of length k is input. For the next n� k cycles switch s2 is closed and switches s0 and s1 are open.
Although it is possible to program the functionality of the shift register encoder for a software

simulation of the encoding process, it is more convenient to generate the state transition matrix which
is necessary to implement the Viterbi decoder.
The state transition table has entries that are labelled by the state number - the base 10 number

represented by the bit reversal of the shift register bits. The state transition table for the BCH code
(7,4,1) with generator D3 + D + 1 is shown in Table I, in which for example state 4 goes to state 3
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Fig. 1. Shift Register Encoding using BCH Codes

TABLE I

The State Transition Table for the 7-4-3 BCH Code

in0 in1 State out0 out1
0 4 0 0 3
5 1 1 2 1
1 5 2 4 7
4 0 3 6 5
2 6 4 3 0
7 3 5 1 2
3 7 6 7 4
6 2 7 5 6

when a 0 bit is output and to state 0 when a 1 bit is output. Likewise state 4 is arrived at when state
2 outputs a 0 bit and also when state 6 outputs a 1 bit.
The sequential Viterbi decoding algorithm is best illustrated by example and by constructing the

corresponding trellis diagram.
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Fig. 2. The Viterbi Trellis for the BCH (7,4,3) Code with Input Sequence f0,0,0,0,0,0,0g

Figure 2 shows the decoding paths for the input sequence f0; 0; 0; 0; 0; 0; 0g. The state number on the
left hand side represents the state of the encoding shift register (bit reversed with respect to Figure 1).
The error corrected path is the one that starts and ends in state 0. Thick lines in the Figure 2 are
the path branches for input bit 0 and thin lines are the path branches for the input bit 1. The weight
of a path is its Hamming distance from the input stream, which in this case is simply the number
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of thin lines that it contains. Some of these weights are indicated by italic numbers on the diagram.
Where more than one path meets at a node the one with the lowest weight is selected and the others
discarded since these cannot result in complete paths with lesser weight. If paths at a node in the
trellis diagram have equal weight then an arbitrary decision has to be made. At step n � k there are
2n�k active paths, one in each state and after step k the number of surviving paths is halved.

III. The Parallel Viterbi Algorithm

Although the trellis representation of the Viterbi algorithm is informative, it highlights the sequential
nature of the algorithm. In this section we couch the Viterbi algorithm in terms of a path cost
minimisation problem that is closely related to matrix multiplication. The parallel algorithm is then
constructed by row-wise partitioning of this matrix. Our method is closely related to the parallelisation
reported by Kumar [6] of Floyd's [7] minimum cost path algorithm.
We represent the state of the Viterbi trellis at a given time by a weight vector ~w, each element,

ws, of which gives the Hamming weight of the current path in state s. The special value ws = dmin

indicates that there is no correctable path through state s. As an example consider the BCH (7,4,3)
code from the previous section. At the current time the weight of the path through each state is
w = (w0; w1; � � � ; w7). To �nd the weight of the path through a given state at the next time step we
look to the state table. For instance the state 0 can be reached from the state 0 if the data bit is 0
and from the state 4 if the input bit is 1. So the new value for the weight at the state 0 is

w0

0 =

(
minfw0; w4 + 1g on inputting a 0
minfw0 + 1; w4g on inputting a 1

For decoding purposes it is convenient to represent this table as a matrix S in which the elements
sij = 1 if state i can be arrived at from state j, otherwise sij = 0. The form of this matrix for the
BCH (15,7,2) code is shown in Figure 3.
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Fig. 3. The Form of the State Transition Matrix for the BCH (31,16,7) Code

Our parallelisation strategy is equivalent to distributing the S matrix in row-wise fashion so for the
particular code shown in Figure 3 cutting the matrix in half results in a two processor solution for
which the matrix-vector reduction is independently done on each processor although each processor
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requires all of the weight vector. If we continue to bisect the S matrix we generate more complex
task graphs, so that for 8 processors the task graph looks like Figure 4 in which the circles represent
processors and the arcs represent the transition of the paths and their Hamming weights, of those states
whose row number of the S matrix is resident on the originating processor. This parallel decoding
machine operates in lock step for n cycles for a (n; k; dmin) code. For BCH codes the in-valence of the
task graph never exceeds 4, whereas for convolution codes the in-valence depends on the number, k,
of input bits. The task graph for all k = 1 convolution codes of any constraint length on 8 processors
is exactly that of Figure 4.
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Fig. 4. Task Graph for the BCH (31,16,7) Code on 8 Processors

Thus our parallel Viterbi decoding algorithm for a (n; k; dmin) BCH code consists of n matrix multi-
plications each of which takes time proportional to n=p, where p is the number of processors. This gives
an overall time complexity of O(n2=p). The memory complexity of our method is O(2n�k) because the
paths and their weights must be stored for each state. The S matrix does not need storing as it is
e�ciently generated as the algorithm proceeds.

IV. Results

We have timed our algorithm on two di�erent general purpose parallel processors for a variety of
codes whose sizes (number of states) and task graph valences are given in Table II.

Code No of Procs Size
(n; k; dmin) 4 8 16 2n�k

(255,239,5) 2 4 4 216

(63,45,7) 4 4 4 218

(31,11,5) 2 4 4 220

(127,106,7) 2 2 4 221

TABLE II

Task graph valences of the codes used in the evaluation. The size is the number of states for each

code.

The �rst machine used was a Meiko CS2 which consists of 8 nodes each with two 125MHz SPARC
II processors sharing 128 Mbytes of memory. These nodes are interconnected by a layered cross-bar
switch of message latency � 4 � 10�4 seconds and an asymptotic bandwidth of 2 32-bit Mega-words
per second when coding in C and using the MPI libraries[8] to handle the communications. The results
for this machine are shown in Table III. There is insu�cient memory on a single node to time the
(127,106,7) code.
The other machine used was an IBM SP2 which consists of 16 nodes, each with a single 166MHz

RS6000 processor and 256 Mbytes of memory, interconnected by a layered cross-bar switch of message
latency � 2:5� 10�5 seconds and an asymptotic bandwidth of 4 32-bit Mega-words per second again
when coding in C and using the MPI libraries to handle the communications. The results for this
machine are shown in Table IV
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Code Number of Processors
(n; k; dmin) 1 2 4 8 16
(255,239,5) 41 24 16 19 19
(63,45,7) 66 35 18 8 6
(31,11,5) 98 51 25 14 12
(127,106,7) - 835 392 207 195

TABLE III

Timings (in seconds) to Decode Selected Codes on the CS2

Code Number of Processors
(n; k; dmin) 1 2 4 8 16
(255,239,5) 26 29 19 18 15
(63,45,7) 13 12 11 6 4
(31,11,5) 22 18 11 9 6
(127,106,7) 259 267 174 87 86

TABLE IV

Timings (in seconds) to Decode Selected Codes on the SP2

V. Summary

Although from the results tables it is not always apparent that our parallel version of the Viterbi
algorithm works e�ciently, this is solely the e�ect of the communications costs. We have demonstrated
this by running all the test cases without computing paths and weights but just passing the data. This
gives timings that are always within 5% of the completely computed results. The origins of the
communications costs lie in the large message latency and contention within the cross-bar switches.
Our algorithm is clearly systolic and could be implemented very e�ciently on a purpose built machine.
We are currently embarking on a project to construct a recon�gurable Viterbi decoder using FPGA
technology which will provide a machine architecture that directly maps the task graph for a particular
code. This will circumvent the network contention problem and reduce the overhead of general purpose
message passing software.
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