
A Survey of Concurrent Object-Oriented Languages

Michael Philippsen

Computer Science Department, University of Karlsruhe, Germany

During the last decade object-oriented programming has grown from marginal inuence into

widespread acceptance. During the same period, progress in hardware and networking has changed

the computing environment from sequential to parallel. Multi-processor workstations and clusters

are now quite common.

Unnumbered proposals have been made to combine both developments. Always the prime

objective has been to provide the advantages of object-oriented software design at the increased

power of parallel machines. However, combining both concepts has proven to be notoriously di�-

cult. Depending on the approach, often key characteristics of either the object-oriented paradigm

or key performance factors of parallelism are sacri�ced, resulting in unsatisfactory languages.

This survey �rst recapitulates well-known characteristics of both the object-oriented paradigm

and parallel programming, and then marks out the design space of possible combinations by

identifying various interdependencies of key concepts. The design space is then �lled with data

points: For 111 proposed languages we provide brief characteristics and feature tables. Feature

tables, the comprehensive bibliography, and web-addresses might help identifying open questions

and preventing re-inventions.

Categories and Subject Descriptors: C.2.4 [Computer Communication Networks]: Dis-

tributed Systems; D.1.3 [Programming Techniques]: Concurrent Programming|Distributed

Programming; D.1.3 [Programming Techniques]: Concurrent Programming|Parallel Pro-

gramming; D.1.5 [Programming Techniques]: Object-oriented Programming; D.2.2 [Software

Engineering]: Tools and Techniques; D.3.2 [Programming Languages]: Language Classi�ca-

tions|Concurrent, distributed, and parallel languages; D.3.2 [Programming Languages]: Lan-

guage Classi�cations|Object-oriented languages; D.3.3 [Programming Languages]: Language

Constructs and Features; F.1.2 [Computation by Abstract Devices]: Models of Computa-

tion|Parallelism and Concurrency; F.3.3 [Logics and Meanings of Programs]: Studies of

Program Constructs

General Terms: Programming Languages, Object-Orientation, Parallelism, Concurrency

Address: University of Karlsruhe, Institute for Program Structures and Data Organization, Am

Fasanengarten 5, D-76128 Karlsruhe, Germany; email: phlipp@acm.org.

This work was partially supported by ICSI, International Computer Science Institute, Berkeley.

2 � Michael Philippsen

1. INTRODUCTION

The prime objective for COOL (Con-

current Object-Oriented Language) de-

signs is to combine the advantages of ob-

ject-oriented design with the increased

power of parallel machines. This arti-

cle surveys proposed COOL designs and

shows that combining both concepts has

proven to be notoriously di�cult. Often

key characteristics of the object-oriented

paradigm or key performance factors of

parallelism are sacri�ced.

In section 2 we illustrate problems

that commonly occur when concurrency

is introduced into object-oriented lan-

guages. We derive remedies that can

either be applied by a COOL program-

mer as a programming style, or should

be goals of COOL designs. The issues

identi�ed in this section are discussed in

detail in the following sections.

Sections 3 and 4 present COOL mech-

anisms for initiation of parallel activities

and for coordination of concurrency (of-

ten called synchronization). Section 5

covers approaches to achieve adequate

performance on the underlying parallel

platforms by enhancing locality of ob-

jects and activities.

Sections 3 to 5 mainly address two

types of readers. For tutorial read-

ers, existing COOL ideas are presented

and organized to give a comprehensive

overview of the �eld. For language de-

signers the dimensions spanning the de-

sign space of concurrent object-oriented

programming languages are discussed.

We analyze advantages, disadvantages,

and interdependencies of certain lan-

guage features.

Throughout the survey, we represent

language features with graphical sym-

bols. By labeling each language with

a pictograph in appendix A, the reader

can visually understand and compare

language designs { for example to see

which of the common problems remain

unsolved in which COOLs. Instead of

adding citations wherever a COOL is

mentioned, we postpone all citations to

this appendix.

The languages discussed in this sur-

vey are primarily aimed at writing sin-

gle programs that solve a problem with

explicit parallelism. We do not consider

programming environments that are ori-

ented towards distributed programming,

i.e. that o�er an interface de�nition lan-

guage (IDL) to allow several programs

to cooperate on shared objects.

1.1 Related Work

[Andrews and Schneider 1983] survey

basic concepts of concurrent program-

ming; [Bal et al. 1989] discuss some

programming languages for distributed

computing. There are several survey ar-

ticles on aspects of concurrent object-

oriented languages. [Bal 1991] discusses

�ve languages. [Nuttal 1994] discusses

systems that provide process or object

migration. [Cheng 1993] describes a

collection of languages and tools, some

of which are object-oriented. [Yaoqing

and Kwong 1993] survey parallel and

distributed Smalltalks. [Wyatt et al.

1992] study several languages and dis-

cuss whether the parallelism is appro-

priately integrated into the languages.

[Karaorman and Bruno 1993a] elabo-

rate on the design space of parallel

object-oriented programming. Papath-

omas [1989, 1992] gives a �rst classi�-

cation of COOLs. He focuses mainly on

the combination of concurrency with ob-

jects (see part of section 4) and does

not classify the broad number of lan-

guages we look at. Neither does he take

more machine-oriented details into ac-

count, e.g., the way objects or activi-

ties are mapped to the underlying par-

allel hardware. Collections are due to

[Turcotte 1993] and [Philippsen 1995b].

A Survey of Concurrent Object-Oriented Languages � 3

[Briot et al. 1998] do not consider as

many languages, have a coarse classi�-

cation, and ignore the locality issues.

1.2 Basics of Object-Orientation

Let us briey recapitulate the concepts

of object-oriented languages to introduce

the terminology used in this article. Our

terminology is based on [Wegner 1987;

Cardelli and Wegner 1985; Korson and

McGregor 1990; Meyer 1988; Pressmann

1987].

An object is the basic programming

entity. It takes up space in memory and

has an associated address. The object

stores a \state" and o�ers a set of meth-

ods for meaningful operations on that

state. A language with objects provides

data abstraction (data encapsula-

tion) if the state encoding can be hidden

so that it can only be accessed through

methods instead of direct access to in-

stance variables.

A class is an implementation of a set

of objects. Objects of the same class

share the same implementation. A class

determines a concrete type, i.e., the in-

terface of methods that are o�ered by

that implementation. All objects of a

class have the same interface, they o�er

the same set of methods, implement the

same behavior, and therefore belong to

the same type. The di�erence between

the terms class and type is discussed

below in the context of inheritance.1

Languages with objects, but without

the notion of classes are called object-

based languages. Languages that o�er

both objects and classes are referred to

as class-based languages. Object-based

languages with a mechanism to clone ob-

jects, i.e., to make several objects ad-

1The di�erence between classes and Ada's pack-

ages [ANSI 1983] is that classes determine types

of the language. Objects of a class instantiate

this type. Packages cannot be used to instanti-

ate objects, but only encapsulate types.

hering to a common interface and imple-

mentation, are called prototype-based

languages [Borning 1986]. In class-based

programming languages, classes hide in-

formation regarding their internal de-

tails behind a well de�ned interface and

hence support a modular system design

[Parnas 1972]. A given class should be

easy to replace by an alternative imple-

mentation that o�ers the same interface.

An extension of the class-based approach

are classes with type arguments. These

generic classes or template classes

ease code reuse, since a useful abstract

data type needs to be implemented only

once. By specifying the type argument,

the generic class turns into a concrete

class which can then be used to instan-

tiate objects.

Inheritance is the essential feature

that turns class-based languages into

object-oriented languages. The gen-

eral concept is reuse in a broad sense,

namely that new or more speci�c im-

plementations can be made from exist-

ing or more general implementations.

There are three general types of inher-

itance; most object-oriented languages

have only one type.

class object

implemen-

tation

implementation

inheritance

interface type-based

inheritance

dele-

gation

It is called implementation inheri-

tance (or simply inheritance) if the im-

plementation of a subclass is de�ned by

extending an existing class with a new

feature or by specializing the implemen-

tation of a method.

Class-based inheritance can also be

de�ned based on types, i.e., the class

signatures alone. Note, that some

object-oriented languages o�er both im-

plementation inheritance and type based

inheritance. A class is below another

4 � Michael Philippsen

class in the type hierarchy, if the class

o�ers at least the same methods. To be

more exact: For all method calls (for

all types of parameters and return val-

ues) that are well de�ned for the upper

type, the lower type provides some im-

plementation. Depending on the partic-

ular language design, di�erent sub-type

relations (co-variance and contra-vari-

ance) are required for parameters and ar-

guments [Castagna 1995]. In contrast to

implementation inheritance it is not nec-

essary that a class and its subclass have

a common code base.

An alternative to class-based inheri-

tance is object-based inheritance, of-

ten called delegation [Snyder 1986]; see

the right column of the above table.

When a method is invoked that is not

explicitly provided by the object's im-

plementation, the object delegates the

call to another object that then is bound

to \self". This second object then in-

vokes the corresponding method unless

it again needs to delegate the call. Dele-

gation can also be used for object-based

and prototype-based languages.

An object-oriented language is said to

o�er multiple inheritance if a new

class can inherit from the implementa-

tions of more than one (unrelated) an-

cestors or if a new class can be in the

type hierarchy below two di�erent types,

i.e., the new class o�ers an interface that

is a combination of both interfaces of the

parent types. The semantics of the lan-

guage has to de�ne how various sorts of

conicts are resolved. It is a form of mul-

tiple inheritance if an object uses several

other objects to delegate method calls.

In addition to the software quality fea-

tures gained by class-based languages

(i.e., support for modular design and

reuse of generic classes), it is an addi-

tional bene�t that code can easily be ex-

tended and reused in subclasses. For full

extensibility, however, the following two

additional characteristics have to be of-

fered by the language: Polymorphism

and dynamic binding. A polymorphic

reference cannot only refer to objects of a

particular declared static type, A, but

as well to objects of any subtype of A.

The concrete type of an object that is

actually stored in a variable at run-time

is called dynamic type. Only if poly-

morphism is o�ered can an object of a

newly de�ned subtype substitute objects

of the ancestor type in old code. Poly-

morphism and dynamic binding are two

sides of the same coin. While polymor-

phism allows a variable to hold objects

of a type or its subtypes, with dynamic

binding method invocations are mapped

at run-time to the implementation that

belongs to the dynamic type.

2. COOL PROGRAMMING PROBLEMS

When concurrency is added to an object-

oriented language certain common prob-

lems are caused. Most of these problems

can be avoided by appropriate program-

ming style or language design.

2.1 Parallel Performance

The desire for performance originally

drove the development of COOLs. Three

aspects need to be considered.

Fan-Out. In general it is ine�cient to

spawn activities sequentially since on a

machine with p processors it takes p

steps until all processors are busy. In

COOLs that only support the creation

of a single new activity the programmer

can always use a binary creation tree

to reduce the time to dlog(p)e steps un-
til all p processors are busy. However,

such code is often hard to read and pro-

grammers tend to avoid it. For increased

expressiveness, COOLs should therefore

o�er spawning constructs with high

fan-out, i.e., COOLs should o�er ways

to create more than one new activity

A Survey of Concurrent Object-Oriented Languages � 5

at a time. In appendix A the lan-

guages that o�er such constructs are rep-

resented with a star that has one of its

upper arms shaded. Section 3 presents

ways to initiate concurrency in COOLs

and discusses each of the arms of the

star.

Intra-Object Concurrency. In many

COOLs, objects are implemented as

monitors without intra-object concur-

rency so that only one method is exe-

cuted at a time while concurrent invoca-

tions are delayed. Since in general such

delays are ine�cient, COOLs should al-

low intra-object concurrency, i.e.,

it should be possible to invoke several

methods of an object concurrently.

There are reasons for prohibiting

intra-object concurrency. First, without

intra-object concurrency it is easier to

reason about the correctness of a class

implementation, see section 2.2. Second,

the programmer does not need to im-

plement any form of concurrency coor-

dination to express whether and which

methods can correctly be executed con-

currently. Hence, most types of inheri-

tance anomalies can be avoided, see sec-

tion 2.3. Section 4 surveys and compares

mechanisms to express concurrency co-

ordination.

Locality. On distributed memory par-

allel machines, good parallel perfor-

mance can only be achieved if objects

and activities are co-located in the same

node to avoid slow remote access. Sec-

tion 5 discusses ways to achieve local-

ity in object-oriented languages. Inter-

estingly, more than half of the languages

we look at do not consider this problem

at all. Locality issues are not depicted

in appendix A.

2.2 Broken Encapsulation

In sequential languages, a modular de-

sign [Parnas 1972] divides a system into

smaller structures and reduces complex-

ity signi�cantly since correctness consid-

erations can often be limited to bound-

aries of modules that then can be tested

in isolation. This kind of encapsula-

tion is a central paradigm of object-

orientation and a major software qual-

ity factor. Encapsulation is needed for

COOLs as well.

To reason about the correctness

of sequential object-oriented programs

Meyer's principle of \design by contract"

[Meyer 1988; Meyer 1992] can be ap-

plied. A class C is locally correct if

|after instantiation of a new object of

C, the class invariant InvC holds and

|after execution of a method m of

class C both the class invariant InvC

and the post-condition Postm;C of

that method hold, provided that both

the invariant and the pre-condition

Prem;C were ful�lled at the time of the

invocation. Formally:

(I) InvC^Prem;C �!
m

InvC^Postm;C

A caller who knows the interface or the

speci�cation of a method can call it with-

out knowledge of its implementation de-

tails. Hence, the implementation can be

changed without a�ecting any callers.

Meyer's de�nition of local correctness

cannot easily be used for concurrent pro-

gramming. Since the implication (I)

does not say anything about whether the

invariant holds during the execution of

a method it cannot be concluded that

the class invariant holds at all times.

There might be interleavings of method

invocations that result in a broken in-

variant and thus incorrect code. How-

ever, there is a way to apply Meyer's

concept of local correctness to COOL

programming while allowing restricted

intra-object concurrency.

The idea of encapsulation by

callee-side coordination is to imple-

6 � Michael Philippsen

ment concurrency coordination at the

side of the callee, i.e., in the class that

is accessed concurrently.2 Language con-

structs that achieve callee-side coordina-

tion by design are called boundary co-

ordination mechanisms. As we discuss

in section 4.2, with such mechanisms

the class implementation can assure that

methods will only be executed concur-

rently if their interleaving does not af-

fect correctness. Interfering method in-

vocations will be delayed. With callee-

side coordination it is possible to rea-

son about the correctness of a class im-

plementation based on local information

since all coordination code is part of the

class implementation.

In contrast, in COOLs with activity-

centered coordination intra-object

concurrency is available, but the caller

is responsible for coordinating concur-

rency. The activities themselves must

make sure that access to shared data is

properly coordinated for avoiding race-

conditions. This may break encapsula-

tion for two reasons. First, the caller

must know the implementation details

of the invoked method to be convinced

that the method can be executed con-

currently without harmful interference.

Second, changing the implementation of

a (called) method requires careful anal-

ysis of all code positions that call this

method since the new implementation

might require coordination constraints

not yet implemented in all the callers.

Both problems are especially painful for

COOLs because of their support for code

reuse and dynamic binding. New sub-

classes may be provided later that will no

longer work correctly with older callers.

Therefore, if a particular COOL does

only o�er activity-centered coordination,

2We will see later that encapsulation can also

be preserved if concurrency is con�ned within

objects, see for example section 3.2.3.

the programmer should still try to code

according to the principle of callee-side

coordination.

����

HHAA
����
HHAA

?
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

� -
1 2 3 4

In appendix A, languages with only

boundary coordination mechanisms are

depicted with a star on the right (at

positions 3 or 4) of the slide-bar. For

boundary coordination mechanisms, the

interior of the star is re�ned and reveals

additional details, see below. Languages

that have activity-centered coordination

mechanisms are depicted on the left (po-

sitions 1 or 2). Some COOLs o�er both

activity-centered and boundary coordi-

nation. In these cases, the re�ned stars

is on the \activity side" of the slide-bar

(to take advantage of the redundancy).

2.3 Inheritance Anomalies

Even if encapsulation is preserved, i.e., if

concurrency coordination is always im-

plemented on the side of the callee there

are reuse problems.

The concept of inheritance is meant

to re�ne certain aspects of a class while

keeping other aspects stable and reusing

them. However, in an implementa-

tion with callee-side coordination, a class

implementation contains instance vari-

ables, code that implements the in-

tended functionality, and code that im-

plements the coordination constraints.

In general, there is a high interdepen-

dence between coordination constraints

of di�erent methods and instance vari-

ables. Concurrency coordination and

functionality is intimately interwoven.

Because of this interdependence, meth-

ods often cannot be re�ned in subclasses

without a�ecting other methods due to

modi�ed coordination constraints. The

other methods must be rede�ned in

the sub- or superclass as well, which

degrades maintainability and prevents

A Survey of Concurrent Object-Oriented Languages � 7

reuse. But even if the coordination code

is better isolated, it is often necessary

to re�ne the complete coordination code

for all methods instead of allowing lo-

cal extensions of parts of the coordina-

tion code. These and other related dif-

�culties of combining concurrency co-

ordination and inheritance are collec-

tively called Inheritance Anomaly.

For a more detailed discussion and for

examples see [Matsuoka and Yonezawa

1993; Fr�lund 1996; Kafura and Laven-

der 1996; McHale 1994; Kafura and Lee

1989; Briot and Yonezawa 1987; Amer-

ica 1987a; Thomas 1992; Papathomas

1989; Tomlinson and Singh 1989].

As an essence of the work on inher-

itance anomalies this survey considers

four major design goals for COOLs, two

of which are covered in section 2.4.

The e�ects of inheritance anomaly can

be reduced with isolated coordination

code, i.e., if concurrency coordination

code is isolated from code that imple-

ments class functionality. Only with

isolated coordination code, functionality

and concurrency coordination can be in-

herited separately.

But even with isolated coordination

code some inheritance anomalies still oc-

cur. If the concurrency coordination is

expressed in a centralized way, for ex-

ample with a single construct, it is often

necessary to re-program the complete co-

ordination code in a subclass even if that

subclass has just slightly di�erent co-

ordination constraints. Therefore, it is

desirable to have separable coordina-

tion code, where portions of the coor-

dination code can be re�ned while other

portions are reused.

A detailed discussion of the language

mechanisms and their treatment of in-

heritance anomalies is given in section 4.

This discussions can guide the program-

mer to achieve cleaner inheritance by

manually isolating and separating coor-

dination code if a particular COOL does

not o�er supporting constructs.

For COOLs with isolated coordination

code, the star is at position 4 of the slide-

bar in appendix A. Or it is at position

2 if the COOL also has activity-centered

coordination mechanisms. If the coor-

dination mechanism is not isolated, the

star is at position 3 (or 1).

2.4 Expressive Coordination Constraints

Callee-side coordination needs mecha-

nisms to express so-called proceed-

criteria that specify whether a method

invocation can proceed or must be de-

layed. As discussed in the previous sec-

tion, proceed-criteria need to be iso-

lated and separable to reduce inheri-

tance anomalies.

A di�erence between pre-conditions

and proceed-criteria is that the former

are not meant to be actually evaluated

during program execution. Pre-condi-

tions are helpful to �nd errors during the

implementation phase but they do not

contribute to the semantics of the pro-

gram. In contrast, proceed-criteria must

be checked at each method invocation.

Moreover, pre-conditions and proceed-

criteria are di�erent with respect to in-

heritance. Pre- and post-conditions are

determined by the algorithms and the

abstract data type o�ered by the class

or subclass. In contrast, proceed-cri-

teria represent coordination constraints

that are caused by the chosen implemen-

tation. They might change if a di�er-

ent implementation requires other con-

currency constraints. It is because of

these di�erences that inheritance of pro-

ceed-criteria is an issue in COOLs. Two

general types of proceed-criteria can be

identi�ed in COOL programming.

State proceed-criteria express that

a method call can proceed or must be

delayed because of a condition of the in-

ternal state of the object.

8 � Michael Philippsen

History proceed-criteria express

that a method call can proceed or must

be delayed because of the history of ear-

lier calls processed by the object.

Both types of proceed-criteria can be

implemented manually by means of ad-

ditional instance variable and additional

code. However, it has been shown by

[Matsuoka and Yonezawa 1993] that this

will cause inheritance anomalies. The

same is true if only one type of proceed-

criteria is supported by a COOL. To

implement the other type, again addi-

tional instance variables and code are

needed that cause inheritance anomalies.

COOLs should therefore provide lan-

guage elements to clearly express both

types of proceed-criteria.

Section 4 discusses the expressiveness

of coordination mechanisms in detail.

2.5 Language versus Library

Some COOLs extend existing object-ori-

ented languages by adding concurrency

in a library. Special classes are of-

fered that add for example semaphore

operations. [Buhr 1995] points out rea-

sons why such library extensions can in

general not be implemented correctly.

The basic insight is that the compiler

does not know about the special con-

current semantics of the the added li-

braries. Hence, it cannot be guaranteed

that compiler optimizations do not in-

terfere with these semantics. Let a be

an object that inherits both a lock and

an unlock method from a library class.

a.lock();

a.method();

a.unlock();

Inside of the critical section between the

call of lock and the call of unlock the

above code executes foo which presum-

ably causes some race-conditions if not

executed in isolation. However, a stan-

dard compiler that does not know about

the special concurrent semantics of lock

and unlock might change the evaluation

order if it can prove the absence of de-

pendences. The compiler will not change

the relative order of lock and unlock

but might move the call of foo out of the

critical section, because in general there

are no dependences between the instance

variables used to implement the lock and

the ones used in foo. This \optimiza-

tion" destroys the correctness of the code

and causes erratic behavior that is al-

most impossible to debug. Buhr points

out several related problems all of which

can be explained by the unawareness of a

standard compiler of the additional con-

current semantics.

3. INITIATING CONCURRENCY

The initial question of parallel program-

ming is how to initiate parallel execu-

tion. In this section we present various

proposals for expressing parallel execu-

tion in object-oriented programming lan-

guages and discuss whether these mecha-

nisms are appropriate. The mechanisms

are categorized into �ve groups each of

which is discussed in a subsection be-

low. Each subsection is labeled with a

star-shaped pictograph that is used in

appendix A for a visual comparison of

existing COOLs.
n

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp
����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp

1

We structure the discussion along two

axes. One axis deals with the number of

parallel activities that can be spawned

with a single language construct. One of

the lower two arms of the star is shaded

if a language o�ers constructs to spawn

a single new activity. If one of the upper

arms is shaded more than one parallel

activity can be spawned at a time.

thread-
bound ����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp object-
bound

A Survey of Concurrent Object-Oriented Languages � 9

The second axis reects di�erent un-

derstanding of parallelism. The left

half represents a thread-centered under-

standing: A new activity is created and

this activity is not coupled to any of the

objects in the program. The right half

represents a more object-centered under-

standing: Either the parallel activity is

intended to operate only on a particular

object or it is syntactically bound to a

special class or object.

3.1 Automatic Parallelization

����

HHAA
����
HHAA The sequential representation

provided by the programmer is auto-

matically converted into a parallel form.

Conceptually, automatic parallelization

�ts well to object-oriented programming

languages since it does not visibly inter-

fere with existing language characteris-

tics. We represent automatic paralleliza-

tion by a star with unshaded arms.

Although signi�cant progress has been

made on well de�ned sub-problems (ar-

ray based data dependence analysis

[Banerjee 1988; Wolfe 1989], pointer or

alias analysis [Banning 1979; Choi et al.

1993; Kooper and Kennedy 1989; Landi

et al. 1993], and other relevant tech-

niques [Bacon et al. 1994]), automatic

parallelization cannot achieve a su�-

cient degree of performance, especially

in object-oriented languages.

3.1.1 COOLs in this Category. Only

Mentat and Oz use data dependence

analysis to determine whether a method

call can be executed concurrently.3

Some COOLs use data dependence anal-

ysis to coordinate access to return val-

ues of procedures. This approach, called

wait by necessity, is further discussed

3Mentat has other mechanisms to initiate con-

currency, hence the automatic parallelization is

not apparent in the appendix.

in section 3.2.2.

3.2 Fork, Join, and Equivalents

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp

This section covers constructs

that start exactly one new concurrent ac-

tivity. This activity is not bound to ob-

jects but can operate on the data struc-

tures in the same way as the activity that

executed the construct.

3.2.1 Basic Fork and Join. The fork

statement is the oldest construct to ini-

tiate parallelism at the language level

[Conway 1963; Dennis and Van Horn

1966]. A method can be invoked

with the fork statement, but after the

start both the invoking and the invoked

method proceed concurrently. Together

with fork, often a join statement is in-

troduced. The process that executes

the join blocks unless/until the forked

method has terminated.

Discussion. Basic fork and join re-

strict parallel performance due to lim-

ited fan out and are a�ected by the li-

brary problem if fork is provided by a

separate library. Callee-side coordina-

tion is needed as a programming style

to achieve encapsulation.

Fork and join do not obey the single-

entry single-exit paradigm. Unless used

with discipline, the program is speckled

with fork and join statements. There

can be several join statements that re-

fer to a single fork but only one may

be used at run-time. Thus, it is di�-

cult to understand what methods could

be executed concurrently at any point of

a given program and which side e�ects

might occur. Since the relative execu-

tion speeds of di�erent activities are un-

known, race-conditions can occur.

3.2.2 Asynchronous Call and Future.

This and the following section discuss

variations of fork and join that are often

10 � Michael Philippsen

used in COOLs. These variations inherit

both the advantages and disadvantages

of the basic form although some disad-

vantages are avoided by further reducing

the parallel performance.

Several COOLs provide an asyn-

chronous method call that is equiva-

lent to the fork statement as long as

there are no return parameters. The

programmer cannot determine when the

asynchronously called method has ter-

minated since there is no join. If the

called method has a return parameter,

the caller depends on the availability of

the return value. One option for dealing

with this dependence is an automatic ap-

proach, called wait by necessity in Eif-

fel//: The compiler analyzes a given pro-

gram to determine when the return value

really is needed. By automatic insertion

of an implicit join, the compiler makes

sure that the caller only proceeds when

the result is available. Because of the

limits of data dependence analysis this

approach is restricted to obvious cases.

In complex situations the compiler falls

back to a synchronous call to be defen-

sive and to ensure the intended seman-

tics. Moreover, this approach does not

blend smoothly with languages that have

a clean exception model that requires ex-

plicit catch-clauses.

Many COOLs make this dependence

explicit: They introduce so-called fu-

tures that are special variables with the

following characteristic: After a value

has been written to the future, the fu-

ture behaves like a plain variable. An

activity that tries to read from an unini-

tialized future is blocked until another

activity writes to the future.

There are several variants of futures.

The basic futures can only hold a sin-

gle value. Some COOLs extend this by

de�ning futures as general communica-

tion bu�ers that implement for instance

an unbounded queue of result values.

An extension in another direction are

�rst-class futures that themselves can

be passed as parameters without forcing

their evaluation. This is useful to im-

plement call-forwarding: If a particular

method cannot provide the return value

which it is supposed to write into a fu-

ture, this method passes on the future

to another method that then returns a

result to the original caller.

Discussion. Asynchronous calls and

futures restrict parallel performance due

to limited fan-out and may break mod-

ularity unless encapsulation is preserved

by callee-side coordination.

Wait-by-necessity reduces parallel

performance since it restricts the paral-

lelism to those cases that can be handled

by data dependence analysis.

Since calls and futures do not obey the

single-entry single-exit paradigm, they

tend to be scattered throughout the pro-

gram. Thus it is hard (a) to understand

the set of potentially concurrently ex-

ecuting activities for each point of the

source code and (b) to anticipate harm-

ful interferences. Unless the mechanisms

are used with care and documentation,

programs are di�cult to maintain.

3.2.3 Post-Processing. Early return

(also known as post-processing) is dual

to asynchronous method calls. Whereas

in the case of the asynchronous method

call parallelism is introduced at the point

of the method call, post-processing re-

sults in initiation of parallelism at the

point of return. With post-processing

the called method can return a result but

continue to work. The two e�ects of a

classic return statement, namely to re-

turn a result and to return to the context

stack of the caller, are separated.

Post-processing is the natural way of

organizing the interplay between activi-

ties when methods are invoked by asyn-

chronous message passing (in contrast to

A Survey of Concurrent Object-Oriented Languages � 11

procedure calls). If one activity sends

an explicit message to an object to in-

voke one of its methods, the only way to

return a result is by sending a message

back to the �rst object. In this case,

there is no reason why the second ob-

ject should reply with the last statement

of the method; an earlier reply message

results in post-processing.

Discussion. Post-processing restricts

parallel performance due to limited fan-

out. Encapsulation can be achieved

by client-side coordination provided that

the post-processing part of a method is

re-entrant and guarantees not to inter-

fere with other activities by only work-

ing on private state variables. Since par-

allelism is restricted to the code lines

after the early return, it is easier to

understand which code could potentially

be executed in parallel. This restriction

eases debugging.

By means of post-processing existing

sequential libraries can gradually be re-

worked towards a parallel implementa-

tion. Such an approach is infeasible for

the other two mechanisms where existing

sequential, but not re-entrant libraries

are hard to use in parallel contexts.

3.2.4 COOLs in this Category.

ABCL/x (async. call, 1st class future, post-
processing)

Acore (async. call, post-processing)
ACT++ (async. call, 1st class future: [�rst,

last, queue], post-processing)
Act1 (async call, 1st class future [once,

queue], post-processing)
Actalk (async. call, post-processing)
ActorSpace (async. call, post-processing)
Actra (post-processing)
A-NETL (async. call, future, post)
Amber (thread object)
ASK (async. call, post-processing)
A'UM (async. call)
Cantor (async. call, post-processing)
CEi�el (async. call, wait by necessity)
CHARM++ (async. call)
CLIX (async. call, post-processing)
Compos. C++ (spawn command)
Conc. Aggregates (async. call, post-process-

ing)
Conc. Smalltalk (async. call, 1st class fu-

ture, post-processing)

cooC (async. call, wait by necessity)
COOL/Chorus (fork)
COOL/NTT (async. call)
COOL/Stanford (async. call)
Coral (async. call)
Correlate (async. call)
CST (async. call, future)
Demeter (thread object)
Distr. C++ (thread object)
Distr. Ei�el (async. call, 1st class future)
Distr. Smalltalk - Object (fork)
Distr. Smalltalk - Process (fork)
DOWL (thread object)
DROL (async. call, post-processing)
Ellie (async. call, 1st class future)
ES-Kit (async. call, manual futures)
ESP (async. call, 1st class futures)
Fragmented Objects, FOG/C++ (async.

call, potential for manual futures)
HAL (async. call, post-processing)
Harmony (thread object)
Heraklit (async. call)
HoME (fork)
Hybrid (async. call)
Karos (async. call)
LO (async. call)
Mediators (Life routine, see section 3.5,

spawn method execution)
MeldC (async. call)
Mentat (async. call, post-processing)
Meyer's Proposal (async. call)
MPC++ (async. call, 1st class future)
Multiprocessor-Smalltalk (fork)
Obliq (fork, join + return value)
Orca (fork)
Parallel Computing Action (async. call, 1st

class future)
Parallel Object-oriented Fortran (async.

call)
PO (async. call, future)
POOL (post-processing)
Presto (thread object)
Procol (async. call)
pSather (async. call, 1st class future

[queue])
PVM++ (thread object)
Python (thread/fork, library)
QPC++ (async. call, wait by necessity,

post-processing)
Rosette (async. call, post-processing)
SAM (async. call, post-processing)
Scoop (thread object)
Smalltalk (fork)
SR (async. call, post-processing)
Tool (async. call)
Trellis/Owl (thread object)
Ubik (async. call, post-processing)
UC++ (async. call)

Futures cannot only be used with asyn-

chronous method calls. In the following

COOLs they are used as general means

for communication and synchronization

between parallel activities.

Conc.Class Ei�el
Comp. C++
Distr. C++

12 � Michael Philippsen

Presto

3.3 Cobegin

����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp
This section covers constructs

that may start many concurrent activ-

ities at once. These activities are not

bound to objects but can operate on the

data structures in the same way as the

activity that executed the construct.

3.3.1 Cobegin. The cobegin state-

ment [Dijkstra 1968a] is a structured

form of initiating parallelism in a lan-

guage. In contrast to fork-join and

their equivalents, this control struc-

ture obeys the single-entry single-exit

paradigm. The execution of

cobegin StmtList1 j . . . j StmtListn end

creates n concurrent activities, each of

which executes the corresponding list

of statements. The essential di�erence

to fork-join is that the original thread

only continues when all n threads them-

selves have terminated. Whereas the

join statement was optional and several

join statements could refer to a single

fork, the cobegin statement syntacti-

cally enforces a synchronization.

Discussion. The construct may break

modularity unless encapsulation is pre-

served by callee-side coordination.

Cobegin is easy to understand because

it restricts the scope of parallel activity

to a textual portion of the code by means

of an enforced synchronization.

3.3.2 Par and Equivalents. The par

statement is similar to the cobegin

statement in its characteristic that the

original activity is blocked until all ac-

tivities that are spawned inside the par

statement are terminated.

par StmtList end

The par statement itself does not intro-

duce any parallelism but is solely used to

coordinate concurrency. Only if StmtList

itself initiates concurrency, the above

mentioned synchronization takes place.

A cobegin can be equivalently ex-

pressed by means of par and fork:
par

fork (StmtList1);

. . .

fork (StmtListn);

end

3.3.3 Activity Set. The programmer

can explicitly add activities to an activ-

ity set and then wait for the completion

of all those activities.

Discussion. Although the e�ect is

similar to the par statement, it does no

longer provide the ease of understand-

ing of potential concurrency. Whereas

the par statements narrows the concur-

rent activities to a couple of program

lines, the activity set can be modi�ed

anywhere in its scope.

3.3.4 COOLs in this Category.

ABCL/x (cobegin)
COOL/Stanford (waitfor statement)
Comp. C++ (cobegin)
Conc. Aggregates (cobegin)
DOWL (Activity Set)
Guide (cobegin)
LO (combination join)
Micro C++ (Block = thread boundary)
Proof (cobegin)
pSather (par statement, Activity Set)
Rosette (cobegin)
Scheduling Predicates (cobegin)
SOS (cobegin)
Spar (each cobegin)
SR (co-statement)
Trellis/Owl (Activity Set)

3.4 Forall, Aggregate, and Equivalents

����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp
This section covers constructs

that may start many concurrent activ-

ities at once. These activities are bound

to objects or speci�c data structures be-

cause each new activity is supposed to

only work on a particular object or data

element of a given data structure.

A Survey of Concurrent Object-Oriented Languages � 13

3.4.1 Forall. Various forms of the

cobegin statement found their way into

parallel languages. Most notably, the

forall, doall, and doacross forms. Sev-

eral instances of StmtList are executed

concurrently, one for each element in the

range.

forall i:[range] do StmtList(i) end

The forall statement is intended for a

�ne granularity and a high degree of par-

allelism. Although the forall statement

and its siblings can be understood as

being derived from the cobegin state-

ment, the new statements bridge the

thread-centered understanding of paral-

lelism with the notion of data-parallel

programming. The data-parallel pro-

grammer no longer focuses on threads

and on the statements executed by them

but thinks in terms of data elements to

which operations are applied in parallel.

Discussion. The forall may break

modularity unless encapsulation is pre-

served by callee-side coordination or by

strictly con�ning concurrency to individ-

ual data elements (one per instance of

the forall), i.e, by avoiding any data

dependence within the forall. Whereas

cobegin helps in determining which ac-

tivities could be executing concurrently,

the forall statements further reduce

complexity by restricting what the ac-

tivities can do to a single statement list.

3.4.2 Aggregate. Aggregate languages

o�er a mechanism to group together sev-

eral objects and then call a particular

member function for all objects of this

aggregate. Similar to the forall where

a data structuring concept of the lan-

guage, i.e., the array, is used to express

that an operation must be performed on

all elements, here the data structuring

concept of the aggregate is used.

Discussion. As aggregates can be

transformed into an equivalent forall

implementation, the same disadvantages

and advantages apply.

3.4.3 Multicast and Cluster Aggre-

gates. Languages that are based on ex-

plicit message passing sometimes de�ne

aggregates implicitly by de�ning lists of

recipients or by linking several recipients

to a single communication channel. This

is called multicast message passing.

Another form of aggregates is fre-

quently chosen by COOLs that target

distributed hardware, e.g., a network of

workstations. Here cluster aggregates

create a single object of a given class on

each node of the parallel machine. In

contrast to replication, the objects are

distinct and have di�erent state. When a

member function of a cluster aggregate is

called, one instance of the member func-

tion executes on each node of the cluster.

3.4.4 COOLs in this Category.

ActorSpace (aggregate)
A-NETL (multicast)
Arche (aggregate)
Blaze-2 (forall)
Braid (data-parallel)
C** (data-parallel)
CHARM++ (cluster aggregate)
Comp. C++ (forall)
Conc. Aggregates (aggregate)
dpSather (data-parallel)
EPEE (cluster aggregate)
Fragmented Objects, FOG/C++

(multicast)
HPJava (over forall)
Modula-3* (forall)
NAM (data-parallel)
parallel C++ (data-parallel)
Procol (multicast via type)
QPC++ (aggregate: processor set)
Spar (foreach)
SR (array of process: strip, co-stmt: quan-

ti�er)
Titanium (foreach)

3.5 Autonomous Code

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp

This section covers constructs

that start one new concurrent activity

at a time. This activity is bound to an

object, a speci�c data structure of the

language, or to a code sequence.

14 � Michael Philippsen

3.5.1 Process. Fork-join, cobegin,

forall, and aggregates initiate paral-

lelism at arbitrary points of an other-

wise sequential program. Instead, pro-

cess declarations make parallelism ex-

plicit and are targeted towards coarse

grain parallelism where a few clearly

identi�able tasks exist.

process P is

Procedure-Body

end

Processes do not express parallelism

within the object-oriented program; they

are a language concept that exists on top

of an otherwise object-oriented language.

Discussion. The construct restricts

parallel performance due to limited fan-

out and may break modularity unless

encapsulation is preserved by callee-side

coordination.

3.5.2 Autonomous Routine. An ex-

tension of process declarations is to

combine them with object declara-

tions. When an object is created,

an additional activity is spawned that

executes a speci�c member function,

called autonomous routine. Whereas in

some languages autonomous routines are

started automatically upon object cre-

ation, other languages require an explicit

start of that method.

COOLs that are library-based add-ons

to object-oriented languages often o�er

autonomous routines in a special library

class that has the added activity. Other

COOLs allow the programmer to explic-

itly label one or several methods of the

class implementation to be autonomous.

Discussion. The construct may break

modularity unless encapsulation is pre-

served by callee-side coordination. Ad-

ditional parallelism requires serial object

creation. Autonomous routines are often

a�ected by the library problem.

3.5.3 Life Routine. An autonomous

routine is called life routine if it is started

automatically upon object creation and

if it handles incoming method calls or

messages that are sent to the object.4

Life routines have explicit receive state-

ments within an endless loop or are

equipped with an interrupt mechanism.

If the life routine terminates, the object

can no longer be used.

Discussion. Life routines preserve en-

capsulation by object-con�ned concur-

rency as long as instance variables and

functionality code are private. Coordi-

nation is isolated in the life routine, re-

sulting in cleaner inheritance. However,

since there is one endless loop or one

interrupt handler, coordination code is

in general not separable. Hence, some

inheritance anomalies still occur; excep-

tions are discussed in section 4. Addi-

tional parallelism can only be spawned

with serial object creation, i.e., with re-

stricted parallel performance.

3.5.4 COOLs in this Category.

Arche (life routine, self start)
Atom (autonomous routine)
Beta (autonomous routine, separate start)
C++// (life routine, self start)
CEi�el (autonomous routine, self start)
COB (life routine, self start)
Conc. Class Ei�el (life routine, separate

start)
Correlate (autonomous routine, self start)
Distr. Ei�el (process, dynamic)
DoPVM (process, static)
Dragoon (autonomous routine, self start)
Ei�el// (life routine, self start)
Emerald (autonomous routine, self start)
Guide (process, static)
IceT (process)
Java (autonomous routine, separate start)
Java//, ProActive PDC (life routine, self

start)
Mediators (life routine, self start)
Mentat (life routine, self start)
Micro C++ (autonomous and life routine,

self start)
Moose (autonomous routine, self start)

4Some authors prefer the word \active" instead

of \life". We do not take on this phrasing since

the term \active objects" is heavily overloaded

in the literature.

A Survey of Concurrent Object-Oriented Languages � 15

Panda (autonomous routine, self start)
POOL (life routine, self start)
Proof (autonomous routine, self start)
QPC++ (life routine, self start)
SR (autonomous and life routine, self start)
Titanium (process)

3.6 Bird's-eye view

The constructs mentioned in the up-

per half of the following diagram have

a high fan-out and are thus advanta-

geous for achieving parallel performance.

The later a construct has been presented

above, the easier it is for the programmer

to understand what concurrent activities

might exist and what code these activi-

ties might be executing. All mechanisms

for initiation of concurrency need callee-

side concurrency coordination to avoid

breaking encapsulation.

3.3

Cobegin

Par

Activity Set

3.4

Forall

Aggregate

Multicast
n

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppthread object

1

3.2

Fork, Join

Async. Call

Futures

Post-processing

3.5

Process

Autonomous Code

Life Routine

4. COORDINATING CONCURRENCY

This section surveys coordination con-

structs found in COOLs. The main dis-

tinction is made with respect to the goal

of callee-side coordination, as discussed

in section 2.2. Activity-centered coordi-

nation mechanisms are discussed in sec-

tion 4.1; boundary coordination mech-

anisms and subgroups are presented in

section 4.2.

Structure of the Discussions. Below,

individual language constructs are stud-

ied with respect to the goals given in sec-

tion 2. This is the usual structure:

callee-side: We analyze whether the coor-

dination is enforced at the side

of the callee. Activity-centered

coordination mechanisms usu-

ally do not ful�ll this goal,

whereas boundary coordination

mechanisms do.

expressive: We check whether the mech-

anisms allow restricted intra-

object concurrency. More-

over, it is discussed whether

state proceed-criteria and his-

tory proceed-criteria can be ex-

pressed easily.

isolated: For boundary coordination, we

discuss whether the proceed-

criteria are isolated from func-

tionality code because oth-

erwise inheritance anomalies

must be expected. For activity-

centered coordination mecha-

nisms it depends on the pro-

gramming style whether the co-

ordination code is isolated (typ-

ically it is not).

separable: Similarly, we check whether

proceed-criteria can be ex-

pressed and inherited sepa-

rately since that would help

avoid inheritance anomalies.

4.1 Activity-Centered Coordination

m
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

� -
1 2

In the pictographs, languages with

activity-centered coordination are repre-

sented by a circled star on the left of the

slide-bar, typically at position 1. In gen-

eral, mechanisms in this group do not

ful�ll the goal of callee-side coordination

though some allow ful�lling it manually.

4.1.1 Synchronization by Termina-

tion. Most of the mechanisms for initiat-

ing parallelism (see section 3) provide a

simple way of synchronization. Whereas

in practice fork-join and cobegin pro-

grams rely on other means of coordina-

tion, data-parallel and aggregate pro-

gramming are solely based on synchro-

nization by termination. Consider the

example:

forall i:[range] do a[i] := i end;

forall i:[range] do b[i] := a[i-1] end

16 � Michael Philippsen

At �rst, all concurrent activities initial-

ize \their" element of a. Afterwards,

they set \their" element of b to the value

stored in the \neighboring" element of a.

Concurrency is coordinated by termina-

tion: Since after each assignment the ac-

tivities terminate, those from the second

forall cannot interfere with those from

the �rst forall.

Discussion.

callee-side: no

expressive: intra-object concurrency

isolated: n/a

separable: n/a

4.1.2 Semaphore, Mutex, Lock. The

semaphore is another basic concept of

organizing concurrent access to shared

data [Dijkstra 1968a; Dijkstra 1968b].

A semaphore is a non-negative integer

variable with two atomic operations. A

critical section of the code, i.e., a sec-

tion that operates on shared data, must

be enclosed by a pair of these opera-

tions. The P or wait operation blocks

until the variable is greater than zero

in which case the variable is decreased

atomically. The other operation, called

V or signal, increases the variable atom-

ically. When the value of the variable is

greater than 1, more than one activity

can pass. Blocked activities are queued.

Mutex and lock are special types of

semaphores that allow exactly one activ-

ity to enter a critical section. Both mu-

tex and lock can easily be implemented

with semaphore operations.

Discussion.

callee-side: no,

but can be achieved manually

expressive: intra-object concurrency

isolated: n/a

separable: n/a

4.1.3 Conditional Critical Region.

Conditional critical regions provide syn-

tactic support for conditional coordina-

tion of parallelism [Hansen 1972; Hansen

1973a; Hoare 1972]. Whereas in critical

regions de�ned by semaphores arbitrary

code can be executed and hence accesses

to arbitrary sets of data elements can

be coordinated, conditional critical re-

gions make the purpose of coordinating

accesses more transparent. The idea is

to collect variables in so-called resources.

Every variable v
i
can belong to at most

one resource.

resource r is v1, v2, . . . , vm;

Afterwards a critical region is declared:

region r when Condition

then StmtList end

Only when the Condition holds and no

other activity is in a region of the

same resource, an activity can execute

StmtList. Otherwise the activity blocks

until the condition holds and the re-

source is free.

Discussion. Only one activity can en-

ter a region at a time. But with small

regions some intra-object concurrency is

possible. Conditional critical regions in

general do not ful�ll the goal of callee-

side coordination. However, it can be

achieved manually, if the scope of the re-

source and the StmtList are restricted to

only class attributes.

With the when clause of the re-

gion statement it is much easier to

implement state proceed-criteria than

with semaphores. In comparison to

semaphores, conditional critical regions

solve a few of the problems introduced

by the generality of semaphores: It is

impossible to forget to close a critical re-

gion and it is easier to implement condi-

tional coordination since the conditions

are explicit. Other hard problems re-

main. It is still easy to run into dead-

locks and the code that works on vari-

ables from a particular resource is still

spread over the class.

callee-side: no,

but can be achieved manually

expressive: no intra-region concurrency,

A Survey of Concurrent Object-Oriented Languages � 17

state proceed-criteria

isolated: n/a

separable: n/a

4.1.4 Piggy-Backed Synchronization.

In pure message passing languages, con-

currently executing activities are often

synchronized by blocking communica-

tion commands. The receive statement

waits until a message m arrives from a

speci�c sender s. Thus, the synchroniza-

tion is piggy-backed on top of the com-

munication.

receive m [from s]

Discussion. Because the callers must

know the exact calling protocol, i.e., im-

plementation details of the called ob-

ject, piggy-backed synchronization does

not ful�ll the goal of callee-side coordi-

nation. Since piggy-backed synchroniza-

tion mechanisms can only accept a single

message at a time, these constructs can-

not be used to coordinate intra-object

concurrency. Only state proceed-criteria

can be implemented.

callee-side: no

expressive: no intra-object concurrency,

state proceed-criteria

isolated: n/a

separable: n/a

4.1.5 COOLs in this Category. COOLs

with asynchronous method calls, mes-

sages, and futures (section 3.2) o�er

some form of piggy-backed synchroniza-

tion. We do not repeat these languages

in the list below.

Amber (lock, barrier)
Atom (enable set, instead of \become" like

guarding conditions)
Beta (semaphore)
Blaze-2 (termination, lock)
Braid (termination)
C** (termination)
Comp. C++ (coordination future)
Conc. Aggregate (reader/writer lock)
Conc. Smalltalk (semaphore)
cooC (semaphore)
COOL/Chorus (semaphore)
CST (semaphore)
Distr. C++ (coordination future)
Distr. Ei�el (semaphore, lock)
Distr. Smalltalks (semaphore)

DoPVM (lock)
DOWL (lock)
dpSather (termination)
EPEE (termination)
ES-Kit (lock)
Harmony (semaphore)
HoME (semaphore)
HPJava (termination, piggy backed sync.)
IceT (piggy backed sync.)
Java (mutex)
Karos (termination)
LO (termination)
MeldC (mutex, semaphore)
Modula-3* (termination)
MPC++ (mutex)
Multiprocessor-Smalltalk (semaphore)
NAM (termination)
Obliq (mutex, lock)
Panda (semaphore)
parallel C++ (termination)
PO (semaphore)
Presto (lock, mutex, coordination future)
Proof (lock)
pSather (lock)
PVM++ (lock, semaphore)
Python (semaphore, mutex, lock)
QPC++ (semaphore)
Scoop (piggy backed sync.)
Smalltalk (semaphore)
Spar (termination, mutex)
SR (semaphore)
Titanium (termination, piggy backed sync.)
Trellis/Owl (lock)

Note that several COOLs in this cate-

gory, e.g. pSather, intentionally accept

the problems of activity-centered coordi-

nation in favor of performance since it is

well-known how to implement activity-

centered coordination mechanisms e�-

ciently.

4.2 Boundary Coordination

����

HHAA
����
HHAA

?
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

� -
3 4

In the graphical notation, languages

with boundary coordination (that ful�ll

the goal of callee-side coordination) are

represented by a star on the right of the

slide-bar. Depending on the type of co-

ordination, the star is re�ned. We dis-

tinguish three general forms of boundary

coordination mechanisms. The distinc-

tion is based on the division of responsi-

bility between the run-time system and

the object. The basic question is where

the coordination code is placed.

18 � Michael Philippsen

boundary
coordination

�
�
��

implicit
control

handshake
control

A
A
AA

reective
control

hijklm
����

HHAA
����
HHAA

}
����

HHAA
����
HHAA

me
����

HHAA
����
HHAA

Implicit Control. The language pro-

hibits intra-object concurrency and de-

�nes for all classes which of several con-

current method invocations to execute

next. Since the run-time system imple-

ments this rule, no explicit coordination

code is required. See section 4.2.1.

Handshake control. The dynamic in-

terface of the class can be modi�ed by

explicit coordination code in the class

implementation. This code can ex-

press which method invocation is to

be delayed by the run-time system and

when to allow intra-object concurrency.

Hence, class implementation and run-

time system work hand in hand.5 The

language constructs proposed in COOLs

heavily di�er with respect to isolation,

separability, and expressiveness of co-

ordination code. See sections 4.2.3

to 4.2.5.

Reective control. The dynamic inter-

face of the class can again be modi�ed

and some intra-object concurrency can

be allowed. But in contrast to hand-

shake control the programmer can pro-

vide the coordination code in an (asso-

ciated) meta-class that is consulted by

the run-time system whenever coordina-

tion is required. (Some authors claim

5In COOLs based on message passing instead

of method invocations, the input queues are

handled by the class. Since the other end of

the queues is handled by the run-time system,

we treat the coordination mechanisms as hand-

shake control as well.

that the meta-class almost belongs to the

run-time system.) Mechanisms in this

group o�er isolated coordination code;

they vary with respect to separability

and expressiveness. See section 4.2.6.

4.2.1 Implicit Control.

hijklm
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

COOLs based on boundary coordination

with implicit control de�ne for all classes

whether and which of concurrently in-

voked methods to execute. The pro-

grammer does not write explicit concur-

rency coordination code. The run-time

system is responsible for proper coordi-

nation. An object can neither inuence

which method call to execute if several

arrive concurrently nor in what order.

Discussion. Mechanisms in this group

ful�ll the goal of callee-side coordination

but lack intra-object concurrency. The

key advantage of this restriction is that

the de�nition of local correctness can

be used without alterations. It is thus

not more di�cult to implement correct

classes than it is in sequential object-ori-

ented languages.

4.2.1.1 Monitor. Implicit control is

an instance of the monitor concept [Dijk-

stra 1968a; Hansen 1973b; Hoare 1974].

In object-oriented terminology, a moni-

tor is an object that has internal vari-

ables to implement its state and o�ers

methods that operate on that state un-

der a mutual exclusion regime. In some

COOLs all objects are monitors by de�-

nition; in other COOLs the programmer

can identify monitor classes.

Discussion. Monitors forbid intra-ob-

ject concurrency and are not made to ex-

press proceed-criteria. Since there is no

explicit coordination code, the goals of

isolated and separable coordination code

A Survey of Concurrent Object-Oriented Languages � 19

are trivially met.

callee-side: yes

expressive: no intra-object concurrency

isolated: yes

separable: yes

Monitors inherit another disadvantage

from the underlying semaphores: care-

less usage can still result in deadlocks, cf.

nested monitor call problem [Had-

don 1977; Lister 1977; Wettstein 1978].

To increase expressiveness, extensions

of the monitor concept have been pro-

posed. But they no longer have isolated

and separable coordination code.

4.2.1.2 Condition Variables. In this

monitor extension [Hoare 1974], an ac-

tivity that has entered a monitor can

block inside of the monitor at the con-

dition variable by calling cond var.wait.

While it is blocked, another call can

proceed. The �rst activity blocks until

the other activity calls cond var.signal.

Since the monitor's one-activity-at-a-

time principle is obeyed it must be spec-

i�ed what happens after a signal call,

when conceptually at least two activities

are ready to proceed.

Discussion. While state proceed-cri-

teria can now be expressed, the goals of

isolated and separable coordination code

no longer hold since coordination code is

mixed into the methods that implement

functionality.

callee-side: yes, if condition variables are

private attributes of the class

expressive: no intra-object concurrency,

state proceed-criteria

isolated: no

separable: no

4.2.1.3 Conditional Wait. This vari-

ant of condition variables has been in-

troduced by [Kessels 1977] to improve

the conditional synchronization in moni-

tors. Kessels proposed to isolate the con-

ditions syntactically instead of spreading

wait and signal over the class.

condition identi�er : cond-expr;

With this declaration of a condition,

an activity can wait simply by calling

wait(identi�er) and relying on the run-

time system to signal the continuation

when cond-expr becomes true. Although

some of the problems are solved, it can-

not be speci�ed which of a collection of

blocking activities is continued when the

condition holds. It is much easier to

identify the relevant conditions in the

code, but the programmer can still be

tricked into deadlocks.

Discussion. Conditional wait ful�lls

the goal of callee-side coordination code

if the condition is a private part of the

class. Moreover, the condition itself

must be computed solely based on the

internal state of the object since other-

wise a calling activity could inuence the

coordination from the outside of the ob-

ject. Since wait commands can exist ev-

erywhere in the code, some inheritance

anomalies can occur.

callee-side: yes, in certain conditions.

expressive: no intra-object concurrency,

state proceed-criteria

isolated: no

separable: no

If the conditions use many in-

stance variables, the conditions must

be checked frequently at run-time, i.e.,

whenever one of the instance variables is

changed. This can degrade performance.

4.2.1.4 COOLs in this Category.

Amber (monitor)
A-NETL (monitor)
A'UM (monitor)
CHARM++ (monitor)
Conc. Smalltalk (monitor)
COOL/NTT (monitor)
COOL/Stanford (condition variable)
CST-MIT (monitor)
Emerald (monitor)
ESP (monitor)
Fleng++ (monitor)
Fragmented Objects, FOG/C++ (monitor)

Heraklit (defer6, conditional wait)

6A special form of condition variable is o�ered if
a method can defer its own execution. In terms
of condition variables, deferring is equivalent to

20 � Michael Philippsen

Mentat (monitor, sequential and persistent
objects)

Micro C++ (monitor)
Obliq (condition variable)
Orca (monitor)
Oz, Perdio (monitor)
Panda (monitor)
Presto (condition variable)
SAM (monitor)
Tool (monitor)
UC++ (monitor)

4.2.2 Running Example. A bounded

bu�er is the illustrative example used

throughout the rest of section 4. The

bu�er is implemented with a �xed-size

array. Several clients can put objects

into the bu�er or get objects from the

bu�er in a FIFO order. Invocations of

put or get must be delayed if the bu�er is

full or empty, respectively. Assume that

the bu�er implementation provides two

private methods isEmpty and isFull that

return the appropriate boolean value.

For brevity, we ignore the implementa-

tion details of the bu�er but only show

the coordination code.

class BBUFFER is

public interface:

put(t:OBJECT);

OBJECT:get();

implementation: -- see below

end BBUFFER;

The following exercise is recommended

to the reader: for each of the situations

below, try to add a method get2 that

returns two elements from the bu�er.

Originally, the bounded bu�er has three

di�erent states. A fourth state is needed

for an element count of one. It is instruc-

tive to experiment with the resulting in-

heritance anomalies.

4.2.3 Handshake Control.

}
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

� -
3 4

waiting at a condition variable with a guaran-
teed and immediate signaling. The execution of
the method is interrupted and returned to the
run-time system for later re-scheduling.

Boundary coordination with handshake

control (see above pictograph) divides

the responsibility for coordination be-

tween the object's implementation and

the run-time system (or the handler of

message queues). In general there is

code in the class that has the sole pur-

pose of specifying the concurrency coor-

dination, i.e., the object's dynamic in-

terface. The run-time system reacts ac-

cording to this speci�cation.

Handshake control mechanisms ful�ll

the goal of callee-side coordination; they

di�er with respect to the other goals.

inter-

woven

coord.

code

isola-

ted

coord.

code

single method entire interface

'

&

$

%

intra-object

parallelism

�
��

@
@R

@
@I

�
�	

We further re�ne the group of handshake

control mechanisms along the three di-

mensions of the above diagram.

|Interwoven Coordination Code.

COOLs that implement the coordi-

nation in the body of public meth-

ods fall into the lower half of the di-

agram. Mechanisms in this group do

not ful�ll the goal of isolated coordi-

nation code; they are discussed in sec-

tion 4.2.4. The star is at position 3

(or 1 if the COOL o�ers additional

activity-centered coordination mecha-

nisms.)

|Isolated Coordination Code.

COOL mechanisms in the upper half

(see section 4.2.5) have isolated coor-

dination code. The star is at position

4 (or 2).

A Survey of Concurrent Object-Oriented Languages � 21

|Intra-Object-Concurrency. A sec-

ond binary dimension distinguishes

COOLs that are based on the one-ac-

tivity-at-a-time principle (outer part

of the diagram) from COOLs that al-

low concurrent execution of methods

(inside of the oval). This distinction

is not visible in the pictographs.

|Single Method. On the left hand

side we discuss COOL coordination

mechanisms that a�ect the object's

dynamic interface with respect to a

single method, i.e., before a method is

executed, proceed-criteria are checked

that solely belong to this method.

|Entire Interface. On the right hand

side are COOL coordination mecha-

nisms that a�ect the entire dynamic

interface. The code that enables and

disables methods is in no direct and

close relation to the a�ected method.

The distinction between these two cat-

egories is also not shown in the pic-

tographs.

The subsequent discussion of hand-

shake control mechanisms follows the

isolated/interwoven dimension because

this dimension has a strong impact on

inheritance anomalies (see section 2.3).

4.2.4 Interwoven Handshake Control

}
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

The following diagram names the mech-

anisms that are discussed in this sec-

tion. They ful�ll the goal of callee-

side coordination, but fall short to meet

the goal of isolated coordination code

and thus cause inheritance anomalies.

Since the coordination code is not iso-

lated, the goal of separable coordination

code cannot be met. All four mecha-

nisms are based on the one-activity-at-

a-time principle; the two whose name

reaches into the oval of intra-object con-

currency allow post-processing (or can

be extended to allow it). All mechanisms

a�ect the entire dynamic object inter-

face. The proceed-criteria of a method

are not tightly connected to a particular

method. Instead proceed-criteria of one

method are computed in other methods.

inter-

woven

coord.

code

single method entire interface

& %

intra-object

concurrency

@
@R

�
�	

ActorModel
Beha vior
Abs traction

Include/Exclude

Delay Queue

4.2.4.1 Delay Queues. They can be

linked to methods that are to be hidden

from an object's interface. Delay queue

objects have two methods in their public

interface, namely open and close. If the

delay queue is open, a call of the method

can proceed, otherwise it is delayed.

Arbitrary proceed-criteria can be im-

plemented by conditional opening and

closing of delay queues. Multiple delay

queues can be used and several methods

can be linked to the same delay queue.

Example. To implement the bounded

bu�er, we need two delay queues (putQ

and getQ). The method put or get are

linked to putQ or getQ, respectively. At

the end of each method, the status of

the delay queues is set according to the

element count of the bu�er.

An additional counter method would

not need to touch the delay queues.

class BBUFFER is

public interface: -- see above

implementation:

private putQ, getQ : DELAYQUEUE;

put(t:OBJECT) link putQ is ...

getQ.open();

if isFull() then putQ.close();

end;

OBJECT:get() link getQ is ...

putQ.open();

22 � Michael Philippsen

if isEmpty() then getQ.close();

end;

end BBUFFER;

Discussion. Delay conditions ful�ll

the goal of callee-side coordination, pro-

vided that delay queues are private at-

tributes of the class that is accessed con-

currently. Delay queues need the one-ac-

tivity-at-a-time principle. Otherwise in

the example, concurrent execution of put

and get could result in illegal situations,

e.g., an open getQ with an empty bu�er.

callee-side: yes, if delay queues are private

expressive: no intra-object concurrency,

state proceed-criteria

isolated: no

separable: no

4.2.4.2 Include/Exclude. Include or

exclude commands add or remove

methods explicitly from an object's dy-

namic interface. Include/exclude imple-

ment proceed-criteria: When a method

is called that is currently excluded from

the dynamic interface, the call is delayed

until the method is included again.

Programs with include/exclude tend

to be more verbose than with delay

queue mechanisms since there is no way

to combine methods with similar coor-

dination constraints into one statement.

Instead all these methods must be in-

cluded and excluded individually.

Example. Initially, only put can be

called. In the public interface section of

the code this is indicated by the addi-

tional key word initial. After the �rst

element has been put into the bu�er,

both put and get can be called. Similarly,

put is excluded from the active interface

if the bu�er is full.

class BBUFFER is

public interface:

initial put(t:OBJECT);

OBJECT:get();

implementation:

put(t:OBJECT) is ...

include {get};

if isFull() then exclude {put};

end

OBJECT:get() is ...

include {put};

if isEmpty() then exclude {get};

end

end BBUFFER;

Although coordination code is somewhat

separated from the functionality code

the include and exclude commands are

still mixed into the functionality code.

An additional counter method would

leave the active interface unchanged.

Discussion. Include/exclude is based

on the one-activity-at-a-time principle;

this cannot be waived.

callee-side: yes

expressive: no intra-object concurrency,

state proceed-criteria

isolated: no

separable: no

4.2.4.3 Behavior Abstractions. While

delay queues and include/exclude

change the object interface directly, be-

havior abstractions introduce the addi-

tional concept of \state". The program-

mer is required to conceive the object

behavior in form of a �nite state automa-

ton. In each state, one of several meth-

ods is callable although only one method

can be invoked at a time. The become

statement is used to switch to another

state and to return from a method.

Example. The bounded bu�er has

three states, namely empty, partial,

and full. In the diagram below, the

states are represented by ovals. The ar-

rows mark acceptable methods that are

declared in the behavior section of the

code below.

empty partial full
put

get

put

put (almost full)

get

get (almost empty)

A Survey of Concurrent Object-Oriented Languages � 23

class BBUFFER is

public interface: -- see above

behavior:

empty = {put}

partial = {put, get}

full = {get}

implementation:

put(t:OBJECT) is ...

if isFull() become full

else become partial;

end

OBJECT:get() is ...

if isEmpty() become empty

else become partial;

end

end BBUFFER;

Discussion. Whereas delay queue op-

erations, includes, and excludes are

spread across the class and make it dif-

�cult to reason about which methods

are hidden at any given time, behavior

abstractions make the set of available

methods visible at method termination

time. They need an if-cascade at the

end of the methods for deciding to which

state to switch. That causes inheritance

anomalies if a state is partitioned.

callee-side: yes

expressive: no intra-object concurrency,

post-processing feasible,

state + history proceed-criteria

isolated: no

separable: no

Behavior abstractions rely on the one-

activity-at-a-time principle for the same

reasons discussed for delay queues and

include/exclude. In contrast to those

mechanisms however, it is easier to

weaken the restriction here. Since there

is a single point in the implementation

of a method that determines the new

state, a concurrent method could be

started immediately afterwards, even if

the �rst method has not yet terminated.

This is an application of post-process-

ing. The increased parallelism sacri�ces

the goal of callee-side coordination un-

less the post-processing part guarantees

that the class invariant is ful�lled at any

time during its execution.

Although coordination code is more

isolated from the functionality code,

there is still coordination code mixed

into the functionality code, namely the

become statements and the static en-

coding of the following state.

4.2.4.4 Actor Model. The pure Actor

model [Agha 1986] combines the con-

cept of objects with the concept of dy-

namic interfaces. When the dynamic

interface of an actor, i.e. an object, is

changed, this actor becomes a new actor

with a di�erent behavior, albeit with the

same values of the instance variables. In-

stead of dynamically changing whether a

method can be called or not, in the Ac-

tor model the code that implements the

actor behavior is switched dynamically.

Example. In languages based on the

Actor model, each of the three states

of the bu�er is implemented separately.

In some Actor languages the become

statement can be omitted if the current

state is not changed. To indicate that,

the above code has lines in brackets.

Actor EmptyBB is

public interface:

put(t:OBJECT);

implementation:

put(t:OBJECT) is ...

become PartialBB(state);

end

end EmptyBB; -------------------------

Actor PartialBB is

public interface:

put(t:OBJECT);

OBJECT:get();

implementation:

put(t:OBJECT) is ...

if isFull() become FullBB(state)

[else become PartialBB(state)];

end

OBJECT:get() is ...

if isEmpty() become EmptyBB(state)

[else become PartialBB(state)];

24 � Michael Philippsen

end

end PartialBB; -----------------------

Actor FullBB is

public interface:

OBJECT:get();

implementation:

OBJECT:get() is ...

become PartialBB(state);

end

end FullBB;

Discussion. The Actor model uses

post-processing: After a become state-

ment, a new method can be started while

the �rst method can continue.

callee-side: yes

expressive: intra-object concurrency

by means of post-processing,

state + history proceed-criteria

isolated: no

separable: no

Some extended Actor models have the

notion of unserialized methods that

are re-entrant, i.e., that can be executed

by several callers concurrently. An un-

serialized method does not change the

behavior of the actor, i.e., the become

statement sets the current state again.

In the example, the additional method

counter could be an unserialized method.

We further discuss the issue of serial-

ized/unserialized methods in more detail

in section 4.2.5.

4.2.4.5 COOLs in this Category.

ABCL/1 (Actor)
ABCL/f (Actor)
Acore (Actor)
ACT1 (Actor)
Actalk (Actor)
ActorSpace (Actor)
Actra (Actor)
ASK (Actor)
Cantor (Actor)
Distr. C++ (delay queue)
Ellie (include/exclude)
Hybrid (delay queue)
Parallel Object-Oriented Fortran

(include/exclude)
Ubik (Actor)

4.2.5 Isolated Handshake Control

}
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

The following diagram names the mech-

anisms discussed in this section that ful-

�ll the goal of callee-side coordination

code and are closer to ful�lling the goal

of isolated coordination code than pre-

vious mechanisms. Some mechanisms

meet the goal of separable coordina-

tion code; some allow intra-object con-

currency. Note that three mechanisms

are located both inside and outside of

the oval since they { although originally

designed for the one-activity-at-a-time

principle { have straightforward exten-

sions to handle intra-object concurrency.

isola-

ted

coord.

code

single method entire interface

' $

� �

Method Guard

(Un-)Serialize
Reader/
Writer

Life Routine

Path Expr.

Enable Set

4.2.5.1 Method Guard. With method

guards, proceed-criteria can be ex-

pressed similar to pre-conditions. Before

a guarded method is executed its condi-

tion is evaluated. If it holds, the method

is invoked, otherwise the call is delayed.

The condition can be an expression over

all instance variables of the object.

Example. There is a special guard

section in the class that speci�es pro-

ceed-criteria for every method. The

methods put or get can only be executed

when the bu�er is not full or not empty,

respectively.

class BBUFFER is

public interface: -- see above

guards:

put: !isFull()

get: !isEmpty()

implementation:

put(t:OBJECT) is ... end

OBJECT:get() is ... end

end BBUFFER;

A Survey of Concurrent Object-Oriented Languages � 25

Discussion. Although the coordina-

tion code seems to be isolated from

the code that implements functionality,

there are still interdependencies and thus

inheritance anomalies. Since the guards

use instance variables to check the ele-

ment counter, the coordination code is

connected to the functionality code that

uses the same instance variables. If the

instance variables are changed, the out-

come of the conditions might change as

well. However, isolation of coordination

code is much better than in the mech-

anisms discussed earlier since methods

and guards can be inherited separately.

To further reduce inheritance anomalies,

[Fr�lund 1996] has proposed to use nega-

tive guards that express when a method

cannot be called. Subclasses do not over-

write the guards but instead combine the

negative guards: all guards along the in-

heritance chain must evaluate to false

before a method can be called.

callee-side: yes

expressive: rarely intra-object concurrency,

state proceed-criteria

isolated: almost yes

separable: yes

Method guards are often based on the

one-activity-at-a-time principle. Some-

times it is expressible that a method

can/cannot be executed while (other)

methods are executed concurrently.

There are two di�erent proposals for it:

Counters are prede�ned functions to

be used in the guarding conditions. For

example, there might be a counter for

the number of currently active method

executions (in total or for a speci�c

method). Other counters return the

number of pending invocations, of com-

pleted method executions, and so on.

With these counters, a guard expression

can check concurrency conditions.

Compatibilities are a feature of CEif-

fel. In a method guard the program-

mer can specify the names of methods

that are allowed to execute concurrently.

When a method is called, the run-time

system checks whether a method is ex-

ecuted that is not in the list of concur-

rently executable methods. If so, the call

is delayed; otherwise it proceeds.

Conditions that use many instance

variables must be checked frequently at

run-time, i.e., whenever one of the in-

stance variables is changed. This can

degrade performance.

4.2.5.2 Enable Set. One of the re-

maining problems with behavior ab-

stractions is that each method has to

perform a possibly complex analysis to

determine the new behavior in the tran-

sition phase. When the sets of possible

states change in subclasses, this analy-

sis must be re-worked in otherwise unaf-

fected methods.

Enable sets ease this problem: Instead

of a become statement that requires the

name of a state, enable sets are �rst class

citizens of the language. Hence, the pro-

grammer can call a method in the be-

come statements that returns the new

state. The complex analysis is then hid-

den in this method. When the sets of po-

tential states change, hopefully only this

method is a�ected. [Kafura and Laven-

der 1996] reason that �rst class citizen-

ship of enable sets is a requirement for

avoiding inheritance anomalies.

Example. The become statements in

the public methods call the private

method next that returns an enable set.

(It would be better but longer to have

separate next methods for put and get to

reduce inheritance anomalies.)

class BBUFFER is

public interface: -- see above

implementation:

private EnableSet:next() is

if isFull()

return new EnableSet(get);

if isEmpty()

26 � Michael Philippsen

return new EnableSet(put);

return new EnableSet(put,get);

end

put(t:OBJECT) is ...

become next();

end

OBJECT:get() is ...

become next();

end

end BBUFFER;

Discussion. Enable sets are not made

for intra-object concurrency, and this re-

striction cannot be removed. The rea-

son is the same as for delay queues,

include/exclude, and behavior abstrac-

tions. Compared to behavior abstrac-

tions, enable sets almost ful�ll the goal of

isolated coordination code since determi-

nation of the successor state is moved to

separate methods. At this new position,

the coordination code can be inherited

and modi�ed separately, usually with-

out a�ecting the methods that imple-

ment class functionality. Some problems

remain if the state-determining method

uses class attributes that are used by

other methods as well. In this case the

same mild forms of inheritance anomaly

can be noticed that have been discussed

for method guards.

Since it is possible to achieve a one-to-

one mapping between (regular) methods

and private state-determining methods,

the coordination code is separable.

callee-side: yes

expressive: no intra-object concurrency,

state + history proceed-criteria

isolated: almost yes

separable: yes

Extension: Default Transition. At the

end of each method, the new state must

be determined. Hence, an extension

of enable sets is to identify a default

method that is called automatically for

this purpose. This removes the become

statement from the language. If a func-

tionality method needs a di�erent algo-

rithm for determining the successor be-

havior, there are syntactic means to link

it to an additional transition method.

With respect to inheritance, this exten-

sion performs slightly better than classic

enable sets.

4.2.5.3 Path Expression. A grow-

ing monitor code causes both sequen-

tial bottlenecks and code for conditional

synchronization that is spread over the

class. A path expression [Campbell and

Habermann 1974] is a single collection of

all dependences between potentially con-

current operations.

path path list end

The path list is essentially a list of

method names, enhanced in a regular

expression style, i.e., choice (j), repeti-
tion (fg), concurrency (*) etc. can be

expressed. The path list speci�es which

operations can be called in what order,

and which operations can be executed

concurrently.

Example. There is no generally appli-

cable path expressions for the running

example. The following code assumes a

bu�er size of 3.

class BBUFFERsize3 is

public interface: -- see above

path:

(put,get|(put,get|(put,get)*)*)*

implementation:

put(t:OBJECT) is ... end

OBJECT:get() is ... end

end BBUFFERsize3;

Discussion. Whereas sometimes path

expressions seem elegant, they do not al-

ways allow to encode the intended se-

mantics because they inherit the moni-

tor's de�ciency to properly express con-

ditional synchronization [Bloom 1979].

The main inheritance problem of path

expressions is their lacking separability.

A subclass can either inherit the whole

path expression or completely rede�ne

it. There is no way to just alter a part

A Survey of Concurrent Object-Oriented Languages � 27

of a path expression.

callee-side: yes

expressive: intra-object concurrency,

history proceed-criteria

isolated: yes

separable: no

4.2.5.4 Life Routine. The basics have

been discussed in section 3.5.3. Whereas

previous mechanisms use a declarative

speci�cation, life routines specify coordi-

nation procedurally. The constructs dis-

cussed below use the message terminol-

ogy instead of understanding messages

as method calls.

Receive Statement. This can be used

to explicitly wait for the arrival of a

message. Often an additional condition

or the sender can be speci�ed (receive

. . . when or receive . . . from).

Guarded Commands. [Dijkstra 1975]:

If, in the if statement below, one of

the boolean conditions (guards) G1{Gn

holds, the corresponding list of state-

ments is executed; for example a partic-

ular message can be received.

if G1 �! StmtList1
[] G2 �! StmtList2
. . .

[] Gn �! StmtListn
end

If several guards hold, then one of them

is selected randomly. Guarded com-

mands are often provided in the syntac-

tic form of select statements.

Example. If put is called for a bu�er

that is not full, the select statement en-

ters its �rst branch. Inside this branch

the method my put is started with a fork

statement. Therefore, the life routine

is immediately able to accept the next

incoming message. Calls of get are not

spawned for concurrent execution; while

my get is processed, further method calls

will be delayed.

class BBUFFER is

public interface: -- see above

implementation:

life body is

loop -- forever

select

[] !isFull()

-> receive "put(t:OBJECT)";

fork my_put(t);

[] !isEmpty()

-> receive "get()";

my_get();

end;

end;

end;

my_put(t:OBJECT) is ... end

OBJECT:my_get() is ... end

end BBUFFER;

Discussion. Life routines ful�ll the

goal of callee-side coordination code.

Coordination code is isolated, provided

that all coordination code and no func-

tionality code is in the life routine. In-

tra-object concurrency can be added to

life routines: The life routine (a) uses

for example a fork command to exe-

cute a requested method concurrently

and (b) checks whether an incompatible

method is currently processed. Coordi-

nation code is not separable. Below we

discuss an extension of life routines for

cleaner inheritance.

callee-side: yes, in life routine

expressive: intra-object concurrency,

state proceed-criteria

isolated: yes

separable: no

It is challenging to implement life

routines without polling or to evaluate

guards as rarely as possible to achieve

good performance.

Extension: Standard Life Routine. In

Ei�el// standard life routines can be

inherited from a library of generalized

life routines. The programmer pro-

vides both the functionality methods

and boolean guard functions. To use the

inherited life routine, the programmer

must initialize a table that stores infor-

mation about the combination of guard

28 � Michael Philippsen

function and method. The prerequisite

of inherited life routines is that meth-

ods are �rst class citizens of the lan-

guage, otherwise functions cannot be ta-

ble entries.7 Since there is no longer ex-

plicit coordination code, subclasses in-

herit the intended life behavior implic-

itly. Often only very few table entries

must be modi�ed in the subclass. This

is very similar to boundary coordination

with implicit control, where the coordi-

nation constraints are implicit and thus

do not interfere with inheritance.

Since methods are stored in a ta-

ble, it is di�cult to optimize away dy-

namic method dispatch or to do inlining.

This may degrade performance in some

COOL implementations.

4.2.5.5 (Un-)Serialized Method and

Object. Several COOLs that otherwise

rely on the one-activity-at-a-time prin-

ciple allow labeling of methods or even

objects as \unserialized". Unserialized

methods are purely functional and free

of obtrusive side e�ects and can be exe-

cuted by several concurrent activities.

The labeling is a step towards the ex-

pressibility of intra-object concurrency,

but there is no way to express for ex-

ample the mutual incompatibility of two

re-entrant methods.

COOLs with (un-)serialized methods

or objects often have an additional

activity-centered coordination mecha-

nism. The language list below names

that mechanism where appropriate.

Discussion. (Un-)serialized methods

ful�ll most goals, except that they of-

fer very limited expressiveness. Because

of this restriction, this construct is of-

ten combined with another mechanism;

then the other mechanism determines

whether and which goals are met.

7With these prerequisites, the same approach

can used as a programming style.

callee-side: yes

expressive: some intra-object concurrency

isolated: yes

separable: yes

4.2.5.6 Reader/Writer Protocol.

Methods can be labeled readers (some-

times called observers) or writers (mod-

i�ers). The run-time system can then

ensure that modifying methods have ex-

clusive access to the object whereas sev-

eral observing methods can be executed

concurrently.

Discussion. See section 4.2.5.5 for a

discussion of (un-)serialized methods.

callee-side: yes

expressive: some intra-object concurrency

isolated: yes

separable: yes

4.2.5.7 COOLs in this Category.

Acore (unserialized method)
ACT++ (enable set, called: behavior set)
ASK (serialized)
Arche (enable set, reader/writer)
Blaze-2 (serialized method, also: lock)
C++// (life routine, 1st class methods)
CEi�el (method compatibility, method

guard)
CLIX (method guard)
COB (life routine)
Comp. C++ (serialized, also: coordination

future)
Conc. Aggregate (unserialized, also: read-

er/writer lock)
Conc. Class Ei�el (life routine)
cooC (serialized, also: semaphore)
COOL/Stanford (serialized, also: condition

variable)
Correlate (method guard)
Demeter (serialized, method guard)
Distr. Ei�el (method guard, reader/writer)
Distr. Smalltalk { Process (method guard,

serialized, also: semaphore)
Dragoon (method guard, counter)
Ei�el// (life routine, 1st class methods)
Guide (method guard, counter)
HAL (method guard)
Java (serialized, also: mutex)
Java//, ProActive PDC (life routine, 1st

class methods)
Mediators (life routine, receive, method

guard, counter)
Mentat (life routine, receive)
Meyer's Proposal (method guard)
Micro C++ (life routine, receive)
Moose (method guard)
Obliq (serialized, also: mutex, lock)
Orca (method guard)
Parallel Computing Action (method guard)
PO (method guard)
POOL (life routine, receive)

A Survey of Concurrent Object-Oriented Languages � 29

Procol (path expression, method guard)
Proof (method guard)
QPC++ (life routine, receive)
Rosette (serialized, enable set)
Scheduling Predicates (method guard,

counter)
SOS (method guard, counter)

Note that some COOLs o�er two co-

ordination mechanisms. For example,

Procol o�ers both path expressions and

method guards. Both serialized meth-

ods and reader/writer can easily be com-

bined with other mechanisms.

4.2.6 Reective Control

me
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

COOLs based on boundary coordination

with reective control keep class imple-

mentations free of coordination code. In

contrast to implicit control, where there

is no explicit coordination code, with re-

ective control the programmer can ex-

plicitly formulate the coordination con-

straints in meta-classes.

Example. In addition to the unmodi-

�ed bu�er from section 4.2.2, there is a

meta-class with two methods in its inter-

face, namely entry and exit.

class BBUFFER_SHADDOW is

public interface:

entry (method-id) is ... end;

exit (method-id) is ... end;

end BBUFFER_SHADDOW;

Before a bu�er b can be used, the run-

time system must be informed that its

coordination is handled by an object

bshadow of the meta-class.

SYSTEM::attach(b,bshadow);

For an incoming method call for b, the

run-time system then �rst starts the

method entry of the shadow object, then

invokes the called method of b, and �-

nally calls the method exit of the shadow

object. The shadow object can thus im-

plement any form of delay.

Discussion. Reective control mecha-

nisms ful�ll the goals of callee-side coor-

dination and isolated coordination code.

If the shadow object can be used like a

standard life routine and the program-

mer refrains from implementing func-

tionality in the shadowing class, the co-

ordination code is separable. Otherwise

it is not: To change the coordination

constraints, the shadowing class must be

completely re-programmed.

callee-side: yes

expressive: intra-object concurrency,

state proceed-criteria

isolated: yes

separable: no, possibly yes.

Since each object is shadowed by a sec-

ond object, storage consumption and ob-

ject creation removal might noticeably

degrade performance.

4.2.6.1 COOLs in this Category.

ABCL/R2
ABCL/R3
DROL (protocol object, 1-activity/time)
HAL
MeldC (shadow object, intra-object conc.)

4.3 Bird's-eye view

Whereas activity-centered coordination

mechanisms do not ful�ll the goal of

callee-side coordination, mechanisms for

boundary control do. None of the mech-

anisms discussed can ful�ll all goals,

some of the mechanisms in the lower

part of the diagram do considerably

better than the monitor. Mechanisms

based on interwoven handshake control

do not have isolated coordination code,

which causes some inheritance anoma-

lies. Method guards, standard life rou-

tines, and enable sets do best with re-

spect to the goals. Of those three, only

enable sets do not have an obvious hid-

den performance penality. The reective

control mechanisms are the most exible

ones, since the programmer can use them

to implement other forms of coordina-

tion. However, there might be a perfor-

30 � Michael Philippsen

mance penalty for the increased object

consumption.

Intra-Object Concurrency
History Proceed-Criteria
State Proceed-Criteria

Separable Coordination Code
Isolated Coordination Code
Callee-side Coordination

Activity-Centered Coord.

m
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Synchronization by Termination

Semaphore, Mutex, Lock

Conditional Critical Region

Piggy-Bagged Synchronization

Boundary Coordination

4.2.1 Implicit Control

hijklm
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Monitor

Condition Variable

Conditional Wait

4.2.4 Interwoven Handshake

}
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Delay Queue

Include/Exclude

Behavior Abstraction

Actor Model

4.2.5 Isolated Handshake

}
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Method Guard

Enable Set

Path Expression

Life Routine

Standard Life Routine

(Un-)Serialized Method

Reader/Writer

4.2.6 Reective Control

me
����

HHAA
����
HHAAy

t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

5. LOCALITY

A COOL that is implemented on a paral-

lel computer faces the mapping problem,

i.e., the COOL must provide for a map-

ping of objects and activities to memory

modules and processing elements. On

parallel computers, the notion of local-

ity is essential for achieving appropriate

run-time performance since access times

to memory are more non-uniform than

they are for single processor computers.

Especially for distributed memory com-

puters, network latency easily amounts

to thousands of processor cycles or more.

To achieve good performance, objects

that are used together should preferably

reside in the same memory module and

activities should be assigned to proces-

sor elements that have local access to the

accessed objects.

For various reasons, more than half

of the languages do not consider this

problem at all: Some languages have

only been implemented in a prototypi-

cal way on a single workstation where

network latencies do not occur; their de-

velopers have mainly been interested in

the design of coordination mechanisms

and a proof of concept. Other lan-

guages are restricted to shared mem-

ory multiprocessors, they rely on the

cache systems provided by those ma-

chines. The remainder of the COOLs

target distributed systems but do not

elaborate on the strategy used to map

objects and activities to the underlying

machine. Those COOLs that consider

the mapping problem are di�erent in

their approaches to attack it, i.e., in the

way the responsibility for achieving ap-

propriate locality is shared among com-

piler, run-time system, and programmer.

There are two extrema.

Utmost performance and weakest

portability can be achieved if the pro-

grammer hard-codes all aspects of dis-

A Survey of Concurrent Object-Oriented Languages � 31

tribution to best exploit the topology of

a given machine. If the machine plat-

form changes, a major code reworking is

necessary. The following languages are

in this category.

CHARM++ (PE number in index expres-
sions)

Dragoon (assign jobs to real PEs)
Fragmented Objects, FOG++
Parallel OO Fortran (explicit placement)

At the other end of the spectrum com-

piler and run-time system implement

heuristic strategies to achieve good lo-

cality { completely transparent for the

programmer. This approach results in

portable application code. However, the

mapping problem is NP-complete [Mace

1987], the quality of automatic mapping

strategies is debatable, especially since

no comparative quantitative results are

known that would allow a proper judge-

ment of the heuristics. The following

languages and compiler systems are in

this category.

C** (optimized caching)
CFM (object grouping algorithm based on

communication cost estimates)
CHARM++ (programmer selects from sev-

eral mapping strategies)
Orca (static compiler analysis guides run-

time placement decisions)
PO (mapping based on static communica-

tion analysis)
Proof (automatic object clustering)
Spar (automatic mapping for distributed ar-

rays)

For most locality-sensitive COOLs, a so-

lution is selected that is between both

ends of the spectrum. In the remainder

of this section, we discuss �ve common

approaches for expressing locality.

A problem with all approaches is that

they do not merge nicely with reuse if

di�erent modules, packages, or libraries

independently specify locality for their

objects. For avoiding this problem,

the application programmer is often re-

quired to specify locality constraints for

the whole system, including all reused

parts. This either results in uninformed

locality decisions for reused code or in

a break of modularity, because the im-

plementation details of reused codes are

taken into account. Even more inheri-

tance anomalies may be caused.

Another problem with all approaches

is that it is almost impossible to �nd

published performance analyses. It is

unclear how good compared to explicit

speci�cation of mappings various forms

of heuristics and automatic mapping

functions work for collections of bench-

marks and for real applications.

5.1 Meta-Level Locality

COOLs with reective concurrency con-

trol (see section 4.2.6) usually extend the

reective approach to the mapping prob-

lem. Distribution is completely trans-

parent, i.e., given an object reference, it

is impossible to decide statically whether

the object is stored locally or on a re-

mote processor. The programmer is in

charge to implement appropriate map-

ping strategies procedurally in the meta-

class. No locality-enhancing work need

be done by the run-time system and

compiler. When a new object is created,

the meta-object assigned to the class is

consulted �rst. Since every method in-

vocation goes through the meta-object

�rst, it is possible to implement object

migration.

Discussion. All-purpose mapping

code in a meta-class results in portable

but potentially slow code. Speci�c meta-

level mapping code performs better but

reects details of both the application

and the underlying topology, thus ren-

dering the system non-portable, at least

with respect to performance.

An advantage of meta-level locality is

that application code and locality code

can be kept separate. This allows for

two-phase code development. In the �rst

phase the application is encoded without

any distribution aspects. When it is run-

32 � Michael Philippsen

ning correctly, distribution can be added

and debugged in a modular way.

Cools in this Category.

ABCL/R2
ABCL/R3
Conc. Class Ei�el
Correlate
DROL
Java//, ProActive PDC
JavaParty
MeldC

5.2 External Locality

COOLs with external locality have ob-

ject placement that is beyond the scope

of the language. The user is in charge

of the mapping, by manually placing ob-

jects on various machines and registering

their location with a name server. The

user then binds variables to possibly re-

mote objects by asking the name server

for a reference. Distribution is transpar-

ent, i.e., except for varying performance

there is no di�erence between local and

remote objects. Dynamically changing

locality preferences cannot be expressed,

i.e., objects do not migrate.

Discussion. COOL programs based

on external locality are portable. The

user must change the mapping of objects

to processing elements when using a dif-

ferent topology. Although this approach

is appropriate for systems with few ob-

jects, it is no longer practical for the user

if many objects are involved.

Cools in this Category.

COOL/NTT
Java/RMI
Obliq
Procol

5.3 Internal Locality

The programmer can optionally specify

the processor that must be used to store

an object or to execute a thread. If the

speci�cation is omitted, an automatic

default mapping strategy is applied.

Often, the new statement is aug-

mented with an optional processor num-

ber or the statements to initiate concur-

rency have an additional syntactic fea-

ture to guide thread creation. Except for

the optional syntactic element, distribu-

tion is transparent in the code. Explicit

object migration can be added by means

of more optional syntactic elements.

Discussion. The disadvantage of in-

ternal locality is its dependence on a

given machine topology. If the topol-

ogy changes, all explicit processor num-

bers that occur in the code might require

modi�cation. Although in general there

are less such places than in the purely ex-

plicit approach, bad portability remains,

at least with respect to performance.

An advantage is that typically in most

sections of the code automatic map-

ping results in su�ciently e�cient code.

Manual mapping can be restricted to

those segments of the code that are cru-

cial for run-time performance.

Moreover, application and distribu-

tion can be developed separately and in

two phases resulting in the same advan-

tages as in meta-level locality.

Cools in this Category.

ABCL/1
ABCL/f
Amber
Beta
Cool/Stanford
DOWL
Emerald
Guide
JavaParty
Mentat
Panda
POOL
Rosette
UC++

5.4 Virtual Topology/Scope Locality

The di�erence between internal local-

ity and virtual topology/scope locality

is that the programmer has an abstract

model of the parallel machine in mind.

Objects and threads are mapped onto

this model, e.g. by means of abstract

processor numbers, instead of mapping

A Survey of Concurrent Object-Oriented Languages � 33

them directly to the hardware. The ab-

stract model is automatically mapped to

the underlying machine topology.

In addition to abstract processor num-

bers, two other abstract machine models

are known. First, data-parallel COOLs

use the model of a multi-dimensional

grid and express the mapping of arrays

with respect to this grid. By mapping

array elements of di�erent arrays to the

same position in the grid, object local-

ity can be expressed. The same gen-

eral approach is used in non-object-ori-

ented data-parallel languages, like For-

tran D [Fox et al. 1990] and HPF [Koel-

bel et al. 1994]. Second, scope local-

ity o�ers a partitioning of the language

name space into segments. The visibility

rules reect locality, i.e., only elements

that are declared in the same segment

are stored locally and can be accessed di-

rectly, access to other elements requires

additional syntactic overhead, reecting

the cost of non-locality.

Most COOLs in this category do not

o�er object migration. There are no dy-

namically changing virtual topologies.

Discussion. A virtual topology is an

additional level of abstraction that en-

hances portability since the system auto-

matically maps the virtual topology and

the segments of the name space to the

underlying machine platform. On the

other hand, the programmer can guide

the system to map objects to the same

processor when they are used together.

The COOLs with this approach to lo-

cality do not support the same type of

two-phase development as above. In-

stead, the distribution aspects are a cen-

tral part of the total design. The reason

is that most COOLs in this category do

not properly decouple the mapping from

the application. A later change of the

mapping often results in the necessity

to slightly change object access code in

large fractions of the code. This is espe-

cially obvious for scope locality, because

di�erent locality is reected in di�erent

access syntax. But similar e�ects can

be noticed in some data-parallel COOLs

as well, where local and spread array di-

mensions are accessed di�erently.

COOLs in this Category.

Braid (data-parallel, arrays)
comp. C++ (scope)
distrib. C++ (scope)
distrib. Ei�el (scope)
dpSather (data-parallel)
EPEE
HPJava (data-parallel, at, on)
MPC++
NAM
parallel C++
pSather (zones)
SR (scope)
Titanium (zones)

5.5 Group Locality

In the approaches discussed so far,

the mapping is speci�ed procedurally

or declaratively. In contrast, COOLs

with group locality specify characteris-

tics that shall be ful�lled by all potential

mappings. It can be expressed that cer-

tain objects should be kept together by

the automatic mapping. Often, objects

are \attached" to other objects. The

programmer explicitly forms networks of

objects that belong together. The run-

time system then maps the networks to

the underlying topology. Distribution is

transparent. The run-time system can

use transparent object migration to en-

hance performance.

Discussion. Again, a two-phase devel-

opment style can be used since locality

constraints can be added later. Perfor-

mance is portable because object group-

ing is abstract and independent of the

topology. Group locality has the poten-

tial of avoiding the general problem of in-

tegrating locality and object-orientation,

because the programmer only expresses

relations between objects that are known

to him. Relationships between reused

34 � Michael Philippsen

objects are speci�ed in reused code; they

transparently extend the network of ob-

ject relationships.

Unfortunately, group locality as intro-

duced so far does not adhere to the style

of structured programming. Instead, lo-

cality constraints are often encoded in

object attributes which are modi�ed at

various places of the user code. There-

fore, it is di�cult to understand and

maintain the general distribution archi-

tecture of an application. Conicting lo-

cality hints are hard to detect in large

codes especially if they are caused in

reused code.

COOLs in this Category.

Amber
A-NETL
Beta
Conc. Aggregates
COOL/Stanford
COOL/Chorus
Dowl
Emerald
Mentat

6. CONCLUSION

The combination of parallel and object-

oriented paradigms in the design of

COOLs raises various di�culties, since

these paradigms have some contradic-

tory issues. The aspect of concurrency

coordination is well researched: Enable

sets, standard life routines, and reec-

tive control solve most of the concur-

rency coordination problems. There are

two major aspects that need more at-

tention. First, to specify how to map

objects and activities for locality there

are almost no mechanisms that would

blend with object- or class-based pro-

gramming. Second, the area lacks quan-

titative and empirical data. The COOLs

are not used for enough application code,

almost no performance data is published

for quantitative evaluations and compar-

isons, and there are no comparative �g-

ures about programming error probabil-

ity and maintenance time.

ACKNOWLEDGMENTS

Thanks to Jerome Feldman and ICSI for

the support of most the research that

resulted in this survey. Seth C. Gold-

stein helped �nd and structure the ma-

terial. Thanks to Claudio Fleiner, Bern-

hard Haumacher, Lutz Prechelt, Walter

Tichy, and Wolf Zimmermann for com-

menting on earlier drafts. An anony-

mous reviewer made helpful suggestions

on how to improve the presentation.

APPENDIX

A. LANGUAGE FEATURES

ABCL/1 [Yonezawa 1990]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp }
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://web.yl.is.s.u-tokyo.ac.jp

ftp://camille.is.s.u-tokyo.ac.jp
group address �! abcl@is.s.u-tokyo.ac.jp
A. Yonezawa �! yonezawa@is.s.u-tokyo.ac.jp

ABCL/f [Taura et al. 1994]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp }
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://web.yl.is.s.u-tokyo.ac.jp
group address �! abcl@is.s.u-tokyo.ac.jp
A. Yonezawa �! yonezawa@is.s.u-tokyo.ac.jp

ABCL/R2 [Masuhara et al. 1992;
Yonezawa 1990]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����

HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp me
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://web.yl.is.s.u-tokyo.ac.jp
ftp://camille.is.s.u-tokyo.ac.jp
group address �! abcl@is.s.u-tokyo.ac.jp
A. Yonezawa �! yonezawa@is.s.u-tokyo.ac.jp

ABCL/R3 [Masuhara et al. 1994]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp me
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://web.yl.is.s.u-tokyo.ac.jp
group address �! abcl@is.s.u-tokyo.ac.jp
A. Yonezawa �! yonezawa@is.s.u-tokyo.ac.jp

Acore [Manning 1988]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

A Survey of Concurrent Object-Oriented Languages � 35

ACT++ [Kafura 1988; Kafura and
Lavender 1990; Kafura and Lee 1990;
Kafura et al. 1993; Kafura and Lee 1989;
Kafura and Lavender 1996]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://actor.cs.vt.edu/�kafura/act++/
Dennis Kafura �! kafura@cs.vt.edu

Act1

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Actalk [Briot 1988]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://web.yl.is.s.u-
tokyo.ac.jp/members/briot/actalk/actalk.html

ftp://ftp.ibp.fr/ibp/softs/litp/actalk
Jean-Pierre Briot �! briot@is.s.u-tokyo.ac.jp

ActorSpace [Agha and Callsen 1993;
Callsen and Agha 1994]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp}
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://biobio.cs.uiuc.edu/pub/papers
ftp://biobio.cs.uiuc.edu/pub/theses
Christian J. Callseen �! chris@iesd.auc.dk
Gul Agha �! agha@cs.uiuc.edu

Actra [McA�er and Duimovich 1990;
Thomas et al. 1988]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Amber [Chase et al. 1989]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp hijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

A-NETL [Baba 1990; Yoshinaga and
Baba 1991]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppphijklm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://aquila.is.utsunomiya-
u.ac.jp/index English.html

Arche [Benveniste and Issarny 1992]

����

HHAA
����

HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp

����

HHAA
����

HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp}
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Marc Benveniste �! mbenveni@irisa.fr
Val�erie Issarny �! issarny@irisa.fr

ASK [Santo and Iannello 1990]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Guilia Iannello �! iannello@udsab.dia.unisa.it

ATOM [Papathomas and Andersen
1997]

����

HHAA
����

HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

M. Papathomas �! michael@comp.lancs.ac.uk

A'UM [Yoshida and Chikayama 1988]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp hijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

BETA [Brandt and Madsen 1993; Mad-
sen et al. 1993; Madsen 1993]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.daimi.aau.dk/�beta
news:comp.lang.beta
http://www.mjolner.dk
information �! info@mjolner.dk

Blaze 2 [Mehrotra and Rosendale 1987;
Mehrotra and Rosendale 1988]

����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp pppm}
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Piyush Mehrotra �! pm@icase.edu

Braid, Data-Parallel Mentat [West
1994; West and Grimshaw 1995]

����

HHAA
����

HHAA

pppppppp ppppppp pppppp ppppp pppp ppp pppm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Andrew S. Grimshaw �! grimshaw@virginia.edu
group �! mentat@virginia.edu

C++// [Caromel et al. 1996], see Eif-
fel//

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Denis Caromel �! caromel@mimosa.unice.fr

36 � Michael Philippsen

C** [Larus 1992; Larus et al. 1992;
Larus et al. 1994]

����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp pppm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.cs.wisc.edu/�wwt
James R. Larus �! larus@microsoft.com

Cantor [Athas and Boden 1988]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

CEi�el [L�ohr 1992; L�ohr 1993]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Klaus-Peter L�ohr �! lohr@inf.fu-berlin.de

CFM [Uehara and Tokoro 1990]

?
����

HHAA
����

HHAAy
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

� -

CHARM++ [Kale and Krishnan 1993]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppphijklm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://charm.cs.uiuc.edu

ftp://a.cs.uiuc.edu/pub/CK
Laxmikant V. Kale �! kale@cs.uiuc.edu
Sanjeev Krishnan �! sanjeev@cs.uiuc.edu

CLIX [Hur and Chon 1987]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

COB [Hosokawa and Nakamura 1989]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Compositional C++, CC++ [Carlin
et al. 1993; Chandy and Kesselman 1992;
Chandy and Kesselman 1993; Foster
1994]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp pppm}
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://globus.isi.edu/ccpp
Carl Kesselman �! carl@compbio.caltech.edu

Concurrency Class for Ei�el

[Karaorman and Bruno 1993a; Karaor-
man and Bruno 1993b]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Murat Karaorman �! murat@cs.ucsb.edu
John Bruno �! bruno@cs.ucsb.edu

Concurrent Aggregates, CA [Chien
1990; Chien 1993; Chien et al. 1994;
Karamcheti and Chien 1993; Plevyak
et al. 1995]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����

HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp
����

HHAA
����

HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp}
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www-csag.ucsd.edu
Andrew A. Chien �! achien@cs.ucsd.edu

ConcurrentSmalltalk [Yokote and
Tokoro 1986]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp mhijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

cooC [Trehan et al. 1993]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://isl.rdc.toshiba.co.jp/pub/toshiba
group �! cooc@isl.rdc.toshiba.co.jp

COOL (Chorus) [Amaral et al. 1992;
Lea et al. 1993; Lea and Weightman
1991]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://ftp.chorus.fr/pub
news:comp.os.chorus
group �! info@chorus.com

COOL (NTT), ACOOL [Maruyama
and Raguideau 1994]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp hijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://ftp.ntt.jp/pub/lang
K. Maruyama �! maruyama@nttmfs.ntt.jp

A Survey of Concurrent Object-Oriented Languages � 37

COOL (Stanford) [Chandra et al.
1990; Chandra et al. 1993; Chandra
et al. 1994]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp hijklm}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www-ash.stanford.edu/cool/cool.html
Rohit Chandra �! rohit@cool.stanford.edu

Coral [Chang 1990]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp ?

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

� -

Correlate [Joosen et al. 1997]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.cs.kuleuven.ac.be/�xenoops/CORRELATE

CST, Concurrent Smalltalk (MIT)

[Dally and Chien 1988; Horwat et al.
1989]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp mhijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

William Dally �! dally@ai.mit.edu
Andrew Chien �! achien@cs.uiuc.edu

Demeter [Lopes and Lieberherr 1994]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.ccs.neu.edu/home/lieber/demeter.html
Karl Lieberherr �! lieber@ccs.neu.edu
Cristina Lopes �! lopes@parc.xerox.com

Distributed C++, DC++ [Carr
et al. 1993b; Carr et al. 1993a]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://cs.utah.edu/pub/dc++
Harold Carr �! carr@cs.utah.edu

Distributed Ei�el [Gunaseelan and
LeBland 1992]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Distributed Smalltalk { Object

[Bennet 1987; Decouchant 1986; McCul-
lough 1987; Nascimento and Dollimore
1992; Schelvis and Bledoeg 1988]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Distributed Smalltalk { Process
[Lee et al. 1991]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

DoPVM [Hartley and Sunderam 1993]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://mathcs.emory.edu/pub/vss
V. S. Sunderam �! vss@mathcs.emory.edu
Charles Hartley �! skip@mathcs.emory.edu

DOWL, distributed Trellis/Owl

[Achauer 1993a; Achauer 1993b]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

B. Achauer �! bruno@tk.uni-linz.ac.at

dpSather [Schmidt 1992]

����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp pppm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Schmidt �! Heinz.Schmidt@fcit.monash.edu.au

Dragoon [Atkinson et al. 1991; Atkin-
son et al. 1990]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Colin Atkinson �! atkinson@cl.uh.edu
Marco De Michele �! demichel@txt.it

DROL [Takashio and Tokoro 1992]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp me

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Ei�el// [Caromel 1988; Caromel 1989;
Caromel 1990a; Caromel 1990b; Car-
omel 1993; Caromel and Rebu�el 1993]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www-sop.inria.fr/croap/ei�el-ll
Denis Caromel �! caromel@mimosa.unice.fr

38 � Michael Philippsen

Ellie [Andersen 1992; Andersen 1993]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://ftp.diku.dk/diku/dists/ellie/papers
B. Andersen �! andersen@informatik.uni-kl.de

Emerald [Hutchinson et al. 1987; Jul
1989; Jul et al. 1988]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pphijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://ftp.diku.dk/pub/diku/dists/emerald
Eric Jul �! eric@diku.dk

EPEE, Ei�el Parallel Execution

Env. [Hamelin et al. 1994; J�ez�equel
1992; J�ez�equel 1993; J�ez�equel 1993]

����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp pppm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.irisa.fr/EXTERNE/projet/pampa/EPEE
Jean-Marc J�ez�equel �! jezequel@irisa.fr

ES-Kit Software [Smith 1991; Tie-
mann 1988]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.mcc.com

ESP { Extensible Software Plat-
form [Chatterjee 1993]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp hijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

David Croley �! croley@mcc.com
Arun Chatterjee �! arun@mcc.com

Fleng++ [Tanaka 1991]

����

HHAA
����
HHAA
hijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Fragmented Objects, FOG/C++

[Gourhant and Shapiro 1990; Makpan-
gou et al. 1993]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppphijklm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://pauillac.inria.fr/cdrom a graver/projs/sor/eng.htm
Yvon Gourhand �! gourhant@corto.inria.fr

Guide [Chevalier et al. 1993; De-
couchant et al. 1989; Hagimont et al.
1994; Krakowiak et al. 1990; Lacourte
1991; Riveill 1992]

����

HHAA
����

HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp

����

HHAA
����

HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp }
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.imag.fr
ftp://ftp.imag.fr/pub/GUIDE

HAL [Houck and Agha 1992; Kim and
Agha 1992]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://yangtze.cs.uiuc.edu
Gul Agha �! agha@cs.uiuc.edu

Harmony [MacKay et al. 1988]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Heraklit [Hindel 1988]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp hijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www2.informatik.uni-erlangen.de/IMMD-
II/Research/Projects/HERAKLIT
P. Arius �! arius@informatik.uni-erlangen.de
W. Betz �! betz@informatik.uni-erlangen.de

HoME [Ogata et al. 1992]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

HPJava [Carpenter et al. 1997; Carpen-
ter et al. 1998]

����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp pppm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.npac.syr.edu/projects/pcrc/HPJava/

Hybrid [Nierstrasz 1987; Nierstrasz
1992; Papathomas 1992]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Oscar Nierstrasz �! oscar@iam.unibe.ch

A Survey of Concurrent Object-Oriented Languages � 39

IceT [Gray and Sunderam 1997]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.mathcs.emory.edu/icet
Paul Gray �! gray@mathcs.emory.edu

Java

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppm}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://java.sun.com
group �! java@java.sun.com

Java's model on parallel machines

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppm}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

|Java/DSM [Yu and Cox 1997]

|JavaParty [Philippsen and
Zenger 1997; Philippsen and Haumacher 1998;
Philippsen et al. 2000]

http://wwwipd.ira.uka.de/JavaParty/

|Manta [Maassen et al. 1999]

http://www.cs.vu.nl/manta

|Do! [Launay and Pazat 1996]

Java//, ProActive PDC [Caromel
et al. 1998], see Ei�el//

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.inria.fr/sloop/javall
Denis Caromel �! caromel@mimosa.unice.fr

Karos [Guerraoui 1992]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

LO [Andreoli et al. 1991]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Mediators [Grass and Campbell 1986]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

MeldC [Kaiser et al. 1993; Kaiser et al.
1993; Popovic et al. 1990]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp mme

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

group �! MeldC@cs.columbia.edu
Gail E. Kaiser �! kaiser@cs.columbia.edu

Mentat [Grimshaw 1993a; Grimshaw
1993b; Grimshaw and Vivas 1991;
Grimshaw et al. 1993; Grimshaw et al.
1994; Group 1995]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pphijklm}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.cs.virginia.edu/�mentat
ftp://uvacs.cs.virginia.edu
group �! mentat@virginia.edu
Andrew S. Grimshaw �! grimshaw@virginia.edu

Meyer's Proposal [Meyer 1993]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Betrand Meyer �! bertrand@ei�el.com

Micro C++, �C++ [Buhr et al. 1992;
Buhr and Ditch�eld 1992; Buhr and
Stroobosscher 1993]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://plg.uwaterloo.ca/�pabuhr/uC++.html
group �! usystem@maytag.uwaterloo.ca

Modula-3* [Heinz 1993]

����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp pppm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Ernst A. Heinz �! heinze@ira.uka.de

MPC++ [Ishikawa 1994; Ishikawa
et al. 1993]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.rwcp.or.jp/people/mpslab/mpc++
Yutaka Ishikawa �! ishikawa@rwcp.or.jp

Moose [Waldorf and Bagrodia 1994]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://may.cs.ucla.edu/projects/moose

Multiprocessor Smalltalk [Pallas and
Ungar 1988]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

40 � Michael Philippsen

NAM [Lee and Chen 1993]

����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp pppm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Obliq [Cardelli 1994; Cardelli 1995]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp mhijklm}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.research.digital.com/SRC/home.html
Luca Cardelli �! luca@src.dec.com

Orca [Bal 1991; Bal 1993; Bal et al.
1992; Bal and Kaashoek 1993; Heinzle
et al. 1994; Tanenbaum et al. 1992]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp hijklm}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.cs.vu.nl/orca
Henri E. Bal �! bal@cs.vu.nl

Oz, Perdio, Distributed Oz [Henz
1994; Smolka 1994; Smolka 1995; Smolka
et al. 1995; Haridi et al. 1997]

����

HHAA
����
HHAA
hijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.mozart-oz.org
group �! oz@dfki.uni-sb.de
Gerd Smolka �! smolka@dfki.uni-sb.de

Panda [Assenmacher et al. 1993]

����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppmhijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.uni-kl.de/AG-Nehmer

Parallel C++, pC++ [Bodin et al.
1993; Bodin et al. 1993; Lee and Gannon
1991]

����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp pppm
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.extreme.indiana.edu/sage
Dennis Gannon �! gannon@cs.indiana.edu

Parallel Computing Action [Saleh
and Gautron 1991a; Saleh and Gautron
1991b]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Hayssam Saleh �! saleh@litp.ibp.fr
Philippe Gautron �! gautron@litp.ibp.fr

Parallel Object-Oriented Fortran

[Reese and Luke 1991]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://ftp.erc.msstate.edu
Donna Reese �! dreese@erc.msstate.edu

PO [Corradi and Leonardi 1988; Corradi
et al. 1992]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

POOL, POOL-T, POOL-I [America
1987a; America 1987b; America 1990a;
America 1990b; Spek 1990; Wester and
Hulshof 1990]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Presto [Bershad et al. 1998; Bershad
1988]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://ftp.cs.washington.edu/pub

Procol [Bos and La�ra 1989; La�ra and
van den Bos 1990a; La�ra and van den
Bos 1990b]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp}
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Proof [Yau et al. 1991]

����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppm}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

pSather [Stoutamire 1995; Philippsen
1995a; Stoutamire 1997]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.icsi.berkeley.edu/�sather
news:comp.lang.sather
David Stoutamire �! davids@icsi.berkeley.edu

A Survey of Concurrent Object-Oriented Languages � 41

PVM++ [Pozo 1992]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Roldan Pozo �! pozo@nist.giv

Python

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.python.org

QPC++ [Boles 1993]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppm}

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

D. Boles �! boles@informatik.uni-oldenburg.de

Rosette [Tomlinson et al. 1988; Tom-
linson and Singh 1989; Tomlinson et al.
1991]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����

HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp }
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

ftp://biobio.cs.uiuc.edu

SAM [Prelle et al. 1990]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp hijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Scheduling Predicates [McHale 1994;
McHale et al. 1991]

����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp }
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Scoop [Vaucher et al. 1988]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Smalltalk-80 [Goldberg and Robson
1983]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Sos [McHale 1994]

����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp }
y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Spar [van Reeuwijk et al. 1997]

����

HHAA
����
HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp }
����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
pp

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://pds.twi.tudelft.nl/projects/spar

Synchronizing

Resources, SR [Andrews and Olsson
1993; Andrews 1981; Olsson et al. 1992]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp
����

HHAA
����

HHAA

p p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp pp
����

HHAA
����

HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp
����

HHAA
����

HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.cs.arizona.edu/sr/www
group �! sr-project@cs.arizona.edu
Gregory R. Andrews �! greg@cs.arizona.edu

Titanium [Yellick et al. 1998;
Stoutamire 1997]

����

HHAA
����
HHAA

pppppppp ppppppp pppppp ppppp pppp ppp ppp
����

HHAA
����
HHAA pppppppp ppppppp pppppp ppppp pppp ppp p
ppm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.cs.berkeley.edu/projects/titanium

Tool [Carvalho 1993]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp hijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.inf.puc-rio.br/�sergio/tool
S. E. R. de Carvalho �! sergio@inf.puc-rio.br

Trellis/Owl [Moss and Kohler 1987;
Scha�ert et al. 1986; Scha�ert et al.
1985]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp m

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Ubik [de Jong 1990]

����

HHAA
����
HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp }

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

Peter De Jong �! pdjong@vnet.ibm.com

UC++ [Winder et al. 1992]

����

HHAA
����

HHAAp p p p p p p pp p p p p p pp p p p p pp p p p pp p p pp p pp
pp hijklm

y
t
i
v
i
t
c
a

y
r
a
d
n
u
o
b

http://www.dcs.kcl.ac.uk/UC++
Russel Winder �! russel@dcs.kcl.ac.uk

42 � Michael Philippsen

REFERENCES

Achauer, B. 1993a. The DOWL dis-

tributed object-oriented language. Com-

munications of the ACM 36, 9, 48{55.

Achauer, B. 1993b. Implementation of

distributed Trellis. In ECOOP , LNCS

707, pp. 103{117. Springer.

Agha, G. and Callsen, C. J. 1993. Ac-

torSpaces: An open distributed pro-

gramming paradigm. In 4th ACM Symp.

on Principles & Practice of Parallel Pro-

gramming, pp. 23{32.

Agha, G. A. 1986. ACTORS: A Model

of Concurrent Computation in Dis-

tributed Systems. MIT Press.

Amaral, P., Jacquemot, C., Jensen, P.,

Lea, R., and Mirowski, A. 1992.

Transparent object migration in COOL2.

In ECCOP Workshop on Dynamic Ob-

ject Placement and Load Balancing in

Parallel and Distributed Systems.

America, P. 1987a. Inheritance and sub-

typing in a parallel object-oriented lan-

guage. In ECOOP , LNCS 276, pp. 234{

242. Springer.

America, P.

1987b. POOL-T: A parallel object-o-

riented language. In A. Yonezawa and

M. Tokoro Eds., Object-Oriented Con-

current Programming, pp. 199{220. MIT

Press.

America, P. 1990a. A parallel object-ori-

ented language with inheritance and sub-

typing. In ECOOP OOPSLA, pp. 161{

168.

America, P. 1990b. POOL: Design and

experience. In ECOOP OOPSLA Work-

shop on Object-Based Concurrent Pro-

gramming, pp. 16{20.

Andersen, B. 1992. Ellie - a general,

�ne-grained, �rst class object based lan-

guage. J. of Object-Oriented Program-

ming 5, 2, 35{42.

Andersen, B. 1993. E�ciency by type-

guided compilation. In OOPSLA Work-

shop on E�cient Implementation of

Concurrent Object-Oriented Languages,

pp. e1{e5.

Andreoli, J.-M., Pareschi, R., and

Bourgois, M. 1991. Dynamic pro-

gramming as multiagent programming.

In ECOOP Workshop on Object-Based

Concurrent Computing, pp. 163{176.

Andrews, G. R. 1981. Synchronizing re-

sources. ACM TOPLAS 3, 4, 405{430.

Andrews, G. R. and Olsson, R. A.

1993. The SR Programming Lan-

guage: Concurrency in Practice. Ben-

jamin/Cummings Publishing.

Andrews, G. R. and Schneider, F. B.

1983. Concepts and notations for con-

current programming. ACM Computing

Surveys 15, 1, 3{43.

Goos, G. and Hartmanis, J. Eds. 1983.

The Programming Language Ada Ref-

erence Manual. ANSI. MIL-STD-1815A-

1983.

Assenmacher, H., Breitbach, T., Buh-

ler, P., H�ubsch, V., and Schwarz,

R. 1993. PANDA { supporting dis-

tributed programming in C++. In

ECOOP , LNCS 707, pp. 361{383.

Springer.

Athas, W. C. and Boden, N. J. 1988.

Cantor: An Actor programming system

for scienti�c computing. In SIGPLAN

Workshop on Object-Based Concurrent

Programming, pp. 66{68.

Atkinson, C., Goldsack, S., Maio, A. D.,

and Bayan, R. 1991. object-orient-

ed concurrency and distribution in DRA-

GOON. J. of Object Oriented Program-

ming 4, 1, 11{20.

Atkinson, C., Maio, A. D., and Bayan, R.

1990. Dragoon: an object-oriented no-

tation supporting the reuse and distribu-

tion of ada software. In Ada Letters, pp.

50{59.

Baba, T. 1990. A network-topology in-

dependent task allocation strategy for

parallel computers. In Supercomput-

ing'90 , pp. 878{887.

Bacon, D. F., Graham, S. L., and Sharp,

O. J. 1994. Compiler transforma-

tions for high-performance computing.

ACM Computing Surveys 26, 4, 345{420.

Bal, H. E. 1991. A comparative study of

�ve parallel programming languages. In

Spring Conf. on Open Distributed Sys-

tems, EurOpen, pp. 209{228.

Bal, H. E. 1993. Comparing data syn-

chronization in Ada9X and Orca. Tech-

nical Report IR-345, U. of Amsterdam.

Bal, H. E. and Kaashoek, M. F.

1993. Object distribution in Orca us-

ing compile-time and run-time tech-

niques. In OOPSLA, pp. 162{177.

A Survey of Concurrent Object-Oriented Languages � 43

Bal, H. E., Kaashoek, M. F., and Tanen-

baum, A. S. 1992. Orca: A language

for parallel programming of distributed

systems. IEEE ToSE 18, 3, 190{205.

Bal, H. E., Steiner, J. S., and Tanen-

baum, A. S. 1989. Programming lan-

guages for distributed computing sys-

tems. ACM Computing Surveys 21, 3,

261{322.

Banerjee, U. 1988. Dependence Analy-

sis for Supercomputing. Kluwer.

Banning, J. P. 1979. An e�cient way

to �nd the side-e�ects of procedure calls

and the aliases of variables. In 6th ACM

Symp. on Principles of Programming

Languages, pp. 29{41.

Bennet, J. K. 1987. The design and im-

plementation of distributed Smalltalk. In

OOPSLA, pp. 318{330.

Benveniste, M. and Issarny, V. 1992.

Concurrent programming notations in

the object-oriented language Arche.

Technical Report 690, IRISA, France.

Bershad, B. N. 1988. The PRESTO

user's manual. Technical Report 88-01-

04, U. of Washington, Seattle.

Bershad, B. N., Lazowska, E. D., and

Levy, H. M. 1998. Presto: A sys-

tem for object-oriented parallel program-

ming. Software { Practice and Experi-

ence 18, 8 (August), 713{732.

Bloom, T. 1979. Evaluating synchro-

nization mechanisms. In 7th Symp. on

Operating Systems Principles, pp. 24{

32.

Bodin, F., Beckman, P., Gannon, D.,

Narayana, S., and Yang, S. X. 1993.

Distributed pC++: Basic ideas for an

object parallel language. Scienti�c Pro-

gramming 2, 3.

Bodin, F., Beckman, P., Gannon, D.,

Yang, S. X., Kesavan, S., Malony, A.,

and Mohr, B. 1993. Implementing a

parallel C++ runtime system for scalable

parallel systems. In Supercomputing'93 ,

pp. 588{597.

Boles, D. 1993. Parallel object-oriented

programming with QPC++. Structured

Programming 14, 158{172.

Borning, A. H. 1986. Classes versus pro-

totypes in object-oriented languages. In

ACM/IEEE Fall Joint Computer Conf..

Bos, J. and Laffra, C. 1989. PROCOL:

A parallel object language with proto-

cols. In OOPSLA, pp. 95{102.

Brandt, S. and Madsen, O. L. 1993.

object-oriented distributed programming

in BETA. In ECOOP Workshop on

Object-Based Distributed Programming ,

LNCS 791, pp. 185{212. Springer.

Briot, J.-P. 1988. From objects to Ac-

tors: Study of a limited symbiosis in

Smalltalk-80. Technical Report 88-58,

Laboratoire Informatique Th�eorique et

Programmation, Paris, France.

Briot, J.-P., Guerraoui, R., and L�ohr,

K.-P. 1998. Concurrency and distri-

bution in object-oriented programming.

ACM Computing Surveys 30, 3 (Septem-

ber), 291{329.

Briot, J.-P. and Yonezawa, A. 1987.

Inheritance and synchronization in con-

current oop. In ECOOP , LNCS 276, pp.

33{40. Springer.

Buhr, P. A. 1995. Are safe concurrency

libraries possible? Communications of

the ACM 38, 2, 117{120.

Buhr, P. A. and Ditchfield, G. 1992.

Adding concurrency to a programming

language. In USENIX C++ Technical

Conf., pp. 207{223.

Buhr, P. A., Ditchfield, G., Strooboss-

cher, R. A., Younger, B. M., and

Zarnke, C. R. 1992. �C++: con-

currency in the object-oriented language

C++. Software { Practice and Experi-

ence 22, 2, 137{172.

Buhr, P. A. and Stroobosscher, R. A.

1993. �C++ Annotated Reference

Manual, Version 3.7. U. of Waterloo.

Callsen, C. J. and Agha, G. 1994.

Open heterogeneous computing in Ac-

torSpace. J. of Parallel and Distributed

Computing 21, 3, 289{300.

Campbell, R. H. and Habermann, A. N.

1974. The speci�cation of synchroniza-

tion by path expressions. LNCS 16, 89{

102.

Cardelli, L. 1994. Obliq: A language

with distributed scope. Technical Re-

port 122, Digital Equipment Corpora-

tion, Systems Research Center.

Cardelli, L. 1995. A language with dis-

tributed scope. Computing System 8, 1,

27{59.

Cardelli, L. and Wegner, P. 1985. On

understanding types, data abstractions,

and polymorphism. ACM Computing

Surveys 17, 4, 471{522.

44 � Michael Philippsen

Carlin, P., Chandy, M., and Kesselman,

C. 1993. The Compositional C++

Language De�nition, Revision 0.9. Cali-

fornia Institute of Technology, Pasadena.

Caromel, D. 1988. A general model for

concurrent and distributed object-orient-

ed programming. In SIGPLAN Work-

shop on Object-Based Concurrent Pro-

gramming, pp. 102{104.

Caromel, D. 1989. Service, asynchrony

and wait-by-necessity. J. of Object-Ori-

ented Programming 2, 4, 12{22.

Caromel, D. 1990a. Programming ab-

stractions for concurrent programming.

In TOOLS Paci�c, pp. 245{253.

Caromel, D. 1990b. A solution to the

explicit/implicit control dilemma. In

ECOOP OOPSLA, pp. 21{25.

Caromel, D. 1993. Toward a method of

object-orient-

ed concurrent programming. Communi-

cations of the ACM 36, 9, 90{102.

Caromel, D., Belloncle, F.,

and Roudier, Y. 1996. The C++//

System. MIT Press.

Caromel, D., Klauser, W., and

Vayssi�ere, J. 1998. Towards seam-

less computing and metacomputing in

Java. Concurrency: Practice and Expe-

rience 10, 11{13, 1043{1061.

Caromel, D. and Rebuffel, M. 1993.

Object-based concurrency: Ten language

features to achieve reuse. In TOOLS

USA, pp. 205{214.

Carpenter, B., Chang, Y.-J., Fox, G.,

Leskiw, D., and Li, X. 1997. Ex-

periments with \HPJava". Concurrency:

Practice and Experience 9, 6, 579{619.

Carpenter, B., Zhang, G., Fox, G., Li, X.,

and Wen, Y. 1998. HPJava: data

parallel extensions to Java. Concurrency:

Practice and Experience 10, 11{13, 873{

877.

Carr, H., Kessler, R. R., and Swanson,

M. 1993a. Compil-

ing distributed C++. In 5th Symp. on

Parallel and Distributed Processing, pp.

496{503.

Carr, H., Kessler, R. R., and Swanson,

M. 1993b. Distributed C++. ACM

SIGPLAN Notices 28, 1, 81.

Carvalho, S. 1993. The object and

event oriented language TOOL. Techni-

cal Report MCC06-93, Ponti�cia U., Rio

de Janeiro, Brazil.

Castagna, G. 1995. Covariance and con-

travariance : conict without a cause.

ACM TOPLAS 17, 3, 431{447.

Chandra, R., Gupta, A., and Hennessy,

J. L. 1990. COOL: A language for

parallel programming. In Languages and

Compilers for Parallel Computing , pp.

126{148. MIT Press.

Chandra, R., Gupta, A., and Hennessy,

J. L. 1993. Data locality and load

balancing in COOL. In ACM Symp. on

Principles and Practice of Parallel Pro-

gramming , pp. 249{259.

Chandra, R., Gupta, A., and Hen-

nessy, J. L. 1994. COOL: An ob-

ject-based language for parallel program-

ming. IEEE Computer 27, 8, 13{26.

Chandy, K. M. and Kesselman, C. 1992.

Compositional C++: Compositional

parallel programming. In 5th Int. Work-

shop on Languages and Compilers for

Parallel Computing, Number 757 in

LNCS, pp. 124{144. Springer.

Chandy, K. M. and Kesselman, C.

1993. CC++: A declarative concur-

rent object-oriented programming nota-

tion. In G. Agha, P. Wegner, and

A. Yonezawa Eds., Research Directions

in Concurrent Object-Oriented Program-

ming, pp. 281{313. MIT Press.

Chang, D. T. 1990. CORAL: A con-

current object-oriented system for con-

structing and executing sequential, par-

allel and distributed applications. In

ECOOP OOPSLA Workshop on object-

based concurrent programming, pp. 26{

30.

Chase, J. S., Amador, F. G., Lazowska,

E. D., Levy, H. M., and Littlefield,

R. J. 1989. The Amber system: Par-

allel programming on a network of mul-

tiprocessors. Technical Report 89-04-01,

U. of Washington, Seattle.

Chatterjee, A. 1993. Distributed ex-

ecution of C++ programs. In OOP-

SLA Workshop on E�cient Implemen-

tation of Concurrent Object-Oriented

Languages, pp. b1{b6.

Cheng, D. Y. 1993. A survey of parallel

programming languages and tools. Tech-

nical Report RND-93-005, NASA Ames.

Chevalier, P. Y., Freyssinet, A., Hagi-

mont, D., Krakowiak, S., Lacourte,

S., and de Pina, X. R. 1993. Expe-

rience with shared object support in the

A Survey of Concurrent Object-Oriented Languages � 45

Guide system. In Symp. on Experiences

on Distributed Systems and Multiproces-

sors.

Chien, A. A. 1990. Concurrent Aggre-

gates: Using multiple-access data ab-

stractions to manage complexity in con-

current programs. In ECOOP OOP-

SLA Workshop on object-based concur-

rent programming, pp. 31{36.

Chien, A. A. 1993. Concurrent Ag-

gregates: Supporting Modularity in

Massively-Parallel Programs. MIT Press.

Chien, A. A., Karamcheti, V., Plevyak,

J., and Zhang, X. 1994. Concurrent

Aggregates (CA) Language Report. U. of

Illinois at Urbana-Champaign.

Choi, J.-D., Burke, M., and Carini, P.

1993. E�cient ow-sensitive interpro-

cedural computation of pointer-induced

aliases and side e�ects. In 20th ACM

Symp. on Principles of Programming

Languages, pp. 232{245.

Conway, M. E. 1963. A multiproces-

sor system design. In AFIPS Fall Joint

Computer Conf., pp. 139{146.

Corradi, A. and Leonardi, L. 1988.

PO an object model to express par-

allelism. In SIGPLAN Workshop on

Object-Based Concurrent Programming,

pp. 152{155.

Corradi, A., Leonardi, L., and Vigo, D.

1992. Massively parallel programming

environments: How to map parallel ob-

jects on transputers. In Transputers'92 ,

pp. 125{141.

Dally, W. J. and Chien, A. A. 1988.

object-oriented concurrent programming

in CST. In SIGPLAN Workshop on

Object-Based Concurrent Programming,

pp. 28{31.

de Jong, P. 1990. Concurrent organi-

zational objects. In ECOOP OOPSLA

Workshop on object-based concurrent

programming, pp. 40{44.

Decouchant, D. 1986. Design of a

distributed object manager for the

Smalltalk-80 system. In OOPSLA, pp.

444{452.

Decouchant, D., Krakowiak, S., Mey-

sembourg, M., Riveill, M., and

de Pina, X. R. 1989. A synchroniza-

tion mechanism for typed objects in a

distributed system. In SIGPLAN Work-

shop on Concurrent Object-Based Lan-

guage Design, pp. 105{107.

Dennis, J. B. and Van Horn, E. C.

1966. Programming semantics for mul-

tiprogrammed computations. Communi-

cations of the ACM 9, 3, 143{155.

Dijkstra, E. W. 1968a. Cooperating se-

quential processes. In F. Genuys Ed.,

Programming Languages. New York:

Academic Press.

Dijkstra, E. W. 1968b. The structure

of the `THE' multiprogramming system.

Communications of the ACM 11, 5, 341{

346.

Dijkstra, E. W. 1975. Guarded com-

mands, nondeterminacy, and formal

derivation of programs. Communications

of the ACM 18, 8, 453{457.

Foster, I. 1994. Designing and Build-

ing Parallel Programs, pp. 167{205.

Addison-Wesley.

Fox, G., Hiranandani, S., Kennedy, K.,

Koelbel, C., Kremer, U., Tseng, C.-

W., and Wu, M.-Y. 1990. Fortran D

language speci�cation. Technical Report

TR90079, CRPC, Rice U.

Fr�lund, S. 1996. Coordinating Dis-

tributed Objects. MIT Press.

Goldberg, A. and Robson, D. 1983.

Smalltalk-80: The Language and Imple-

mentation. Addison-Wesley.

Gourhant, Y. and Shapiro, M. 1990.

FOG/C++: a fragmented-object gener-

ator. In USENIX C++ Conf., pp. 63{74.

Grass, J. E. and Campbell, R. H. 1986.

Mediators: a synchronization mecha-

nism. In 6th Int. Conf. on Distributed

Computing Systems, pp. 468{477.

Gray, P. A. and Sunderam, V. S.

1997. IceT: Distributed computing in

Java. Concurrency: Practice and Expe-

rience 9, 11, 1161{1167.

Grimshaw, A. S. 1993a. Easy to use

object-oriented parallel programming.

IEEE Computer 26, 5, 39{51.

Grimshaw, A. S. 1993b. The Mentat

computation model { data-driven sup-

port for object-oriented parallel process-

ing. Technical Report CS-93-30, U. of

Virginia, Charlottesville.

Grimshaw, A. S. and Vivas, V. E. 1991.

FALCON: A distributed scheduler for

MIMD architectures. In Symp. on Ex-

periences with Distributed and Multipro-

cessor Systems, pp. 149{163.

Grimshaw, A. S., Weissan, J. B., and

Strayer, W. T. 1993. Portable run-

46 � Michael Philippsen

time support for dynamic object-orient-

ed parallel processing. Technical Report

CS-93-40, U. of Virginia, Charlottesville.

Grimshaw, A. S., Weissman, J. B., West,

E. A., and Loyot, Jr., E. C. 1994.

Metasystems: An approach combin-

ing parallel processing and heteroge-

neous distributed computing systems.

J. of Parallel and Distributed Comput-

ing 21, 3, 257{270.

Group, M. R. 1995. Mentat 2.5 pro-

gramming language reference manual.

Technical report, U. of Virginia, Char-

lottesville.

Guerraoui, R. 1992. Dealing with atom-

icity in object-based distributed systems.

OOPS Messenger 3, 3, 10{13.

Gunaseelan, L. and LeBland, R. J.

1992. Distributed Ei�el: A lan-

guage for programming multi-granular

distributed objects. In 4th Int. Conf. on

Computer Languages (IEEE).

Haddon, B. K. 1977. Nested monitor

calls. Operating Systems Review 11, 4,

18{23.

Hagimont, D., Chevalier, P.-Y.,

Freyssinet, A., Krakowiak, S., La-

courte, S., Mossi�ere, J., and de Pina,

X. R. 1994. Persistent shared object

support in the Guide system: Evaluation

& related work. In OOPSLA, pp. 129{

144.

Hamelin, F., J�ez�equel, J.-M., and Priol,

T. 1994. A multi-paradigm object

oriented parallel environment. In 8th Int.

Parallel Processing Symp. IPPS'94 .

Hansen, P. B. 1972. Structured mul-

tiprogramming. Communications of the

ACM 15, 7, 574{578.

Hansen, P. B. 1973a. Concurrent pro-

gramming concepts. ACM Computing

Surveys 5, 4, 223{245.

Hansen, P. B. 1973b. Operating System

Principles. Prentice Hall.

Haridi, S., Van Roy, P., and Smolka, G.

1997. An overview of the design of dis-

tributed Oz. In Prod. of the 2nd Int.

Symp. on Parallel Symbolic Computa-

tion, PASCO'97 , pp. 176{187.

Hartley, C. L. and Sunderam, V. S.

1993. Concurrent programming with

shared objects in networked environ-

ments. In 7th Int. Parallel Processing

Symp., pp. 471{478.

Heinz, E. A. 1993. Modula-3*: An e�-

ciently compilable extension of Modula-

3 for explicitly parallel problem-oriented

programming. In Joint Symp. on Paral-

lel Processing, pp. 269{276.

Heinzle, H.-P., Bal, H. E., and Langen-

doen, K. 1994. Implementing ob-

ject-based distributed shared memory on

Transputers. In Transputer Applications

and Systems '94 .

Henz, M. 1994. The Oz notation.

Technical report, DFKI, German Re-

search Center for Arti�cial Intelligence,

Saarbr�ucken, Germany.

Hindel, B. 1988. An object-oriented pro-

gramming language for distributed sys-

tems: HERAKLIT. In SIGPLAN Work-

shop on Object-Based Concurrent Pro-

gramming , pp. 114{116.

Hoare, C. A. R. 1972. Towards a the-

ory of parallel programming. In C. A. R.

Hoare and R. H. Perrott Eds., Op-

erating Systems Techniques, pp. 61{71.

New York: Academic Press.

Hoare, C. A. R. 1974. Monitors: An

operating system structuring concepts.

Communications of the ACM 17, 10,

549{557.

Horwat, W., Chien, A. A., and Dally,

W. J. 1989. Experience with CST:

programming and implementation. In

ACM Conf. on Programming Language

Design and Implementation, pp. 101{

109.

Hosokawa, K. and Nakamura, H. 1989.

Concurrent programming in COB. In

Proc. of the Japan/UK Workshop on

Concurrency: Theory, Language and

Architecture, pp. 142{156.

Houck, C. and Agha, G. 1992. HAL:

A high-level Actor language and its dis-

tributed implementation. In 21st Int.

Conf. on Parallel Processing, ICPP '92 ,

Volume II, pp. 158{165.

Hur, J. H. and Chon, K.

1987. Overview of a parallel object-ori-

ented language CLIX. In ECOOP , LNCS

276, pp. 265{273. Springer.

Hutchinson, N. C., Raj, R. K., Black,

A. P., Levy, H. M., and Jul, E. 1987.

The Emerald programming language re-

port. Technical Report 87-10-07, U. of

Washington, Seattle.

Ishikawa, Y. 1994. The MPC++ pro-

gramming language v1.0 speci�cation

A Survey of Concurrent Object-Oriented Languages � 47

with commentary. Technical Report TR-

94014, Tsukuba Research Center, Real

World Computing Partnership, Japan.

Ishikawa, Y., Hori, A., Konaka, H.,

Maeda, M., and Tomokiyo, T. 1993.

MPC++: A parallel programming lan-

guage and its parallel objects support. In

OOPSLA Workshop on E�cient Imple-

mentation of Concurrent Object-Orient-

ed Languages, pp. j1{j5.

J�ez�equel, J.-M. 1992. EPEE: an Eif-

fel environment to program distributed

memory parallel computers. In ECOOP ,

LNCS 615, pp. 197{212. Springer.

J�ez�equel, J.-M. 1993. EPEE: an Eif-

fel environment to program distributed

memory parallel computers. J. of Object

Oriented Programming 6, 2, 48{54.

J�ez�equel, J.-M. 1993. Transparent par-

allelisation through reuse: between

a compiler and a library approach.

In ECOOP , LNCS 707, pp. 384{405.

Springer.

Joosen, W., Robben, B., Van Wulpen,

H., and Verbaeten, P. 1997. Ex-

periences with an object-oriented paral-

lel language: The Correlate project. In

Proc. International Scienti�c Comput-

ing in Object-Oriented Parallel Environ-

ments Conf..

Jul, E. 1989. Migration of light-weight

processes in Emerald. IEEE Operating

Sys. Technical Committee Newsletter,

Special Issue on Process Migration 3, 1,

25{30.

Jul, E., Levy, H., Hutchinson, N., and

Black, A. 1988. Fine-grained mobil-

ity in the Emerald system. ACM Trans.

on Computer Systems 6, 1, 109{133.

Kafura, D. 1988. Concurrent object-ori-

ented real-time systems research. In SIG-

PLAN Workshop on Object-Based Con-

current Programming, pp. 203{205.

Kafura, D. and Lavender, G. 1990.

Recent progress in combining Actor

based concurrency with object-oriented

programming. In ECOOP OOPSLA, pp.

55{58.

Kafura, D. and Lee, K. H. 1990.

ACT++: Building a concurrent C++

with Actors. J. of Object Oriented Pro-

gramming 3, 1, 25{37.

Kafura, D., Mukherji, M., and Lavender,

G. 1993. ACT++ 2.0: A class library

for concurrent programming in C++ us-

ing Actors. J. of Object Oriented Pro-

gramming 6, 6, 47{55.

Kafura, D. G. and Lavender, R. G.

1996. Concurrent object-oriented lan-

guages and the inheritance anomaly. In

T. Casavant, P. Tvrdik, and F. Pl�asil

Eds., Parallel Computers: Theory and

Practice, pp. 221{264. IEEE Computer

Society Press.

Kafura, D. G. and Lee, K. H. 1989. In-

heritance in Actor based concurrent ob-

ject-oriented languages. In ECOOP , pp.

131{145.

Kaiser, G. E., Hseush, W., Lee, J. C.,

Wu, S. F., Woo, E., Hilsdale, E.,

and Meyer, S. 1993. MeldC: A re-

ective object-oriented coordination lan-

guage. Technical Report CUCS-001-93,

Columbia U., New York.

Kaiser, G. E., Hseush, W., Popovich,

S. S., and Wu, S. F. 1993. Mul-

tiple concurrency control policies in

an object-oriented programming sys-

tem. In G. Agha, P. Wegner, and

A. Yonezawa Eds., Research Directions

in Concurrent Object-Oriented Program-

ming, pp. 195{210. MIT Press.

Kale, L. V. and Krishnan, S. 1993.

Charm++: A portable concurrent object

oriented system based on C++. In OOP-

SLA, pp. 91{109.

Karamcheti, V. and Chien, A. 1993.

Concert { e�cient runtime support for

concurrent object-oriented programming

languages on stock hardware. In ACM

Supercomputing'93 , pp. 598{607.

Karaorman, M. and Bruno, J. 1993a.

Design and implementation issues for

object-oriented concurrency. In OOP-

SLA Workshop on E�cient Implemen-

tation of Concurrent Object-Oriented

Languages, pp. m1{m9.

Karaorman, M. and Bruno, J. 1993b.

Introduction of concurrency to a sequen-

tial language. Communications of the

ACM 37, 9, 103{116.

Kessels, J. L. W. 1977. An alterna-

tive to event queues for synchroniza-

tion in monitors. Communications of the

ACM 20, 7, 500{503.

Kim, W. and Agha, G. 1992. Compi-

lation of a highly parallel Actor-based

language. In 5th Int. Workshop on Lan-

guages and Compilers for Parallel Com-

puting , LNCS 757, pp. 1{12. Springer.

48 � Michael Philippsen

Koelbel, C. H., Loveman, D. B.,

Schreiber, R. S., Jr., G. L. S., and

Zosel, M. E. 1994. The High Per-

formance Fortran Handbook. MIT Press.

Kooper, K. D. and Kennedy, K. 1989.

Fast interprocedural alias analysis. In

16th ACM Symp. on Principles of Pro-

gramming Languages, pp. 49{59.

Korson, T. and McGregor, J. D. 1990.

Understanding object-oriented: A uni-

fying paradigm. Communications of the

ACM 33, 9, 40{60.

Krakowiak, S., Meysembourg, M., Van,

H. N., Riveill, M., Roisin, C., and

de Pina, X. R. 1990. Design and

implementation of an object-oriented,

strongly typed language for distributed

applications. J. of Object Oriented Pro-

gramming 3, 3, 11{22.

Lacourte, S. 1991. Exceptions in Guide,

an object-oriented language for dis-

tributed applications. In ECOOP , LNCS

512, pp. 268{287. Springer.

Laffra, C. and van den Bos, J. 1990a.

Constraints in concurrent object-orient-

ed environments. In ECOOP OOPSLA

Workshop on object-based concurrent

programming, pp. 64{67.

Laffra, C. and van den Bos, J. 1990b.

Propagators and concurrent constraints.

In ECOOP OOPSLA Workshop on ob-

ject-based concurrent programming , pp.

68{72.

Landi, W., Ryder, B. G., and Zhang,

S. 1993. Interprocedural modi�ca-

tion side e�ect analysis with pointer

aliasing. In ACM Conf. on Programming

Language Design and Implementation,

pp. 56{67.

Larus, J. 1992. C**: A large-grain

object-oriented, data-parallel program-

ming language. In 5th Int. Workshop

on Languages and Compilers for Paral-

lel Computing, LNCS 757, pp. 326{341.

Springer.

Larus,

J. R., Richards, B., and Viswanathan,

G. 1992. C**: A large-grain object-o-

riented, data-parallel programming lan-

guage. Technical Report UWTR-1126,

U. of Wisconsin, Madison.

Larus, J. R.,

Richards, B., and Viswanathan, G.

1994. LCM: Memory system support

for parallel language implementation. In

6th Int. Conf. on Architectural Support

for Programming Languages and Oper-

ating Systems, pp. 208{218.

Launay, P. and Pazat, J.-L. 1996. Inte-

gration of control and data parallelism in

an object oriented language. In Proc. of

6th Workshop on Compilers for Parallel

Computers, CPC'1996 .

Lea, R., Jacquemot, C., and Pillevesse,

E. 1993. COOL: System support for

distributed programming. Communica-

tions of the ACM 36, 9, 37{46.

Lea, R. and Weightman, J. 1991. Sup-

porting object oriented languages in an

distributed environment: The COOL ap-

proach. In TOOLS USA.

Lee, J. K. and Chen, Y.-Y. 1993. Com-

piler and library support for aggregate

object communications on distributed

memory machines. In OOPSLA Work-

shop on E�cient Implementation of

Concurrent Object-Oriented Languages,

pp. d1{d10.

Lee, J. K. and Gannon, D. 1991. Ob-

ject oriented parallel programming { ex-

periments and results. In Supercomput-

ing'91 , pp. 273{282.

Lee, Y. S., Huang, J. H., and Wang, F. J.

1991. A distributed Smalltalk based on

process-object model. In 15th Int. Com-

puter Software and Applications Conf.,

pp. 465{471.

Lister, A. 1977. The problem of nested

monitor calls. Operating Systems Re-

view 11, 3, 5{7.

L�ohr, K.-P. 1992. Concurrency annota-

tions. ACM SIGPLAN Notices 27, 10,

327{340.

L�ohr, K.-P. 1993. Concurrency annota-

tions for reusable software. Communica-

tions of the ACM 36, 9, 81{89.

Lopes, C. V. and Lieberherr, K. J. 1994.

Abstracting process-to-function relations

in concurrent object-oriented applica-

tions. In ECOOP , LNCS 821, pp. 81{99.

Springer.

Maassen, J., van Nieuwport, R.,

Veldema, R., Bal, H. E., and Plaat,

A. 1999. An e�cient implementation

of Java's remote method invocation. In

Proc. of the 7th ACM SIGPLAN Symp.

on Principles and Practice of Parallel

Programming, PPoPP , pp. 173{182.

Mace, M. E. 1987. Memory Storage Pat-

terns in Parallel Processing. Kluwer.

A Survey of Concurrent Object-Oriented Languages � 49

MacKay, S., Gentleman, W., Stewart,

D., and Wein, M. 1988. Harmony

as an object-oriented operating system.

In SIGPLAN Workshop on Object-Based

Concurrent Programming, pp. 209{211.

Madsen, O. L. 1993. Building abstrac-

tions for concurrent object-oriented pro-

gramming. Technical report, Aarhus U.,

Denmark.

Madsen, O. L., Moller-Pedersen, B., and

Mygaard, K. 1993. Object-Orient-

ed Programming in the BETA Program-

ming Language. Addison-Wesley.

Makpangou,

M., Gourhant, Y., Le Narzul, J.-P.,

and Shapiro, M. 1993. Fragmented

objects for distributed abstractions. In

T. L. Casavant and M. Singhal Eds.,

Readings in Distributed Computing Sys-

tems. IEEE Computer Society Press.

Manning, C. 1988. A peek at Acore,

an Actor core language. In SIGPLAN

Workshop on Object-Based Concurrent

Programming, pp. 84{86.

Maruyama, K. and Raguideau, N. 1994.

Concurrent object-oriented language

COOL. ACM SIGPLAN Notices 29, 9,

105{114.

Masuhara, H., Matsuoka, S., Watanabe,

T., and Yonezawa, A. 1992. object-

oriented concurrent reective languages

can be implemented e�ciently. In OOP-

SLA.

Masuhara, H., Matsuoka, S., and

Yonezawa, A. 1994. An object-ori-

ented concurrent reective language for

dynamic resource management in highly

parallel computing. In IPSJ SIG Notes,

pp. 57{64.

Matsuoka, S. and Yonezawa, A. 1993.

Analysis of inheritance anomaly in ob-

ject-oriented concurrent programming

languages. InG. Agha, P. Wegner, and

A. Yonezawa Eds., Research Directions

in Concurrent Object-Oriented Program-

ming, pp. 107{150. MIT Press.

McAffer, J. and Duimovich, J. 1990.

Actra { an industrial strength concurrent

object oriented programming system. In

ECOOP OOPSLA Workshop on object-

based concurrent programming , pp. 82{

84.

McCullough, P. L. 1987. Transparent

forwarding: First steps. In OOPSLA, pp.

331{341.

McHale, C. 1994. Synchronization in

concurrent, object-oriented languages:

Expressive power, genericity and inher-

itance. Ph. D. thesis, Trinity College,

Dublin, Ireland.

McHale, C., Walsh, B., Baker, S.,

and Donnelly, A. 1991. Scheduling

predicates. In ECOOP Workshop on Ob-

ject-Based Concurrent Computing, pp.

177{193.

Mehrotra, P. and Rosendale, J. V.

1987. The BLAZE language: A paral-

lel language for scienti�c programming.

Parallel Computing 5, 339{361.

Mehrotra, P. and Rosendale, J. V.

1988. Concurrent object access in

BLAZE 2. In SIGPLAN Workshop on

Object-Based Concurrent Programming ,

pp. 40{42.

Meyer, B. 1988. Object-Oriented Soft-

ware Construction. Prentice Hall.

Meyer, B. 1992. Applying design by

contract. IEEE Computer 25, 10, 40{51.

Meyer, B. 1993. Systematic concurrent

object-oriented programming. Commu-

nications of the ACM 36, 9, 56{80.

Moss, J. E. B. and Kohler, W. H. 1987.

Concurrency features for the Trellis/Owl

language. In ECOOP , LNCS 276, pp.

171{180. Springer.

Nascimento, C. and Dollimore, J. 1992.

Behavior maintenance of migrating ob-

jects in a distributed object-oriented en-

vironment. JOOP 25, 9, 25{33.

Nierstrasz, O. 1987. Active objects in

Hybrid. In OOPSLA, pp. 243{253.

Nierstrasz, O. 1992. A tour of Hybrid:

A language for programming with active

objects. In D. Mandrioli and B. Meyer

Eds., Advances in Object-Oriented Soft-

ware Engineering , pp. 167{182. Prentice

Hall.

Nuttal, M. 1994. A brief survey of sys-

tems providing process or object mi-

gration facilities. Operating Systems Re-

view 28, 4, 64{80.

Ogata, K., Kurihara, S., Inari, M., and

Doi, N. 1992. The design and im-

plementation of HoME. In ACM Conf.

on Programming Languages, Design and

Implementation, pp. 44{54.

Olsson, R. A., Andrews, G. R., Coffin,

M. H., and Townsend, G. M. 1992.

SR { a language for parallel and dis-

tributed programming. Technical Report

50 � Michael Philippsen

TR 92-09, U. of Arizona, Tucson.

Pallas, J. and Ungar, D. 1988. Mul-

tiprocessor Smalltalk a case study of a

multiprocessor-based programming envi-

ronment. In SIGPLAN Conf., pp. 268{

277.

Papathomas, M. 1989. Concurrency is-

sues in object-oriented programming lan-

guages. In D. Tsichritzis Ed., Object

Oriented Development, pp. 207{245. U.

of Geneva, Switzerland.

Papathomas, M. 1992. Language de-

sign rationale and semantic framework

for concurrent object-oriented program-

ming. Ph. D. thesis, U. of Geneva,

Switzerland.

Papathomas, M. and Andersen, A.

1997. Concurrent object-oriented pro-

gramming in Python with ATOM. In

Proceedings of the 6th Int. Python Conf.,

pp. 77{87.

Parnas, D. L. 1972. On the criteria

to be used in decomposing systems

into modules. Communications of the

ACM 15, 12, 1053{1058.

Philippsen, M. 1995a. Enabling com-

piler transformations for pSather 1.1.

Technical Report TR-95-040, Int. Com-

puter Science Institute, Berkeley.

Philippsen, M. 1995. Imperative concur-

rent object-oriented languages: An an-

notated bibliography. Technical Report

TR-95-049, Int. Computer Science Insti-

tute, Berkeley.

Philippsen, M. and Haumacher, B. 1998.

Locality optimization in JavaParty by

means of static type analysis. In 7th

Int. Workshop on Compilers for Parallel

Computers, CPC'1998 (Link�oping, Swe-

den, June 29 { July 1, 1998), pp. 34{41.

Philippsen, M., Haumacher, B., and

Nester, C. 2000. More e�cient se-

rialization and RMI for Java. Concur-

rency: Practice and Experience, to ap-

pear.

Philippsen, M. and Zenger, M. 1997.

JavaParty: Transparent remote objects

in Java. Concurrency: Practice and Ex-

perience 9, 11, 1225{1242.

Plevyak, J., Zhang, X., and Chien, A. A.

1995. Obtaining sequential e�ciency

for concurrent object-oriented languages.

In 22nd SIGACT{SIGPLAN Symp. on

Principles of Programming Languages,

pp. 311{321.

Popovic, S. S., Kaiser, G. E., and Wu,

S. F. 1990. MELDing transactions

and objects. In ECOOP OOPSLAWork-

shop on object-based concurrent pro-

gramming , pp. 94{98.

Pozo, R. 1992. A stream-based inter-

face in C++ for programming heteroge-

neous systems. In CRNS-NSF Workshop

on Environment and Tools for Parallel

Scienti�c Computing, pp. 162{177. Else-

vier.

Prelle, M. J., Wollrath, A. M., Brando,

T. J., and Bensley, E. H. 1990. The

impact of selected concurrent language

constructs on the SAM run-time system.

In ECOOP OOPSLA Workshop on ob-

ject-based concurrent programming, pp.

99{103.

Pressmann, R. S. 1987. Software En-

gineering. McGraw-Hill Book Company,

New York.

Reese, D. S. and Luke, E. 1991. Ob-

ject oriented Fortran for development of

portable parallel programs. In 3rd IEEE

Symp. on Parallel and Distributed Pro-

cessing , pp. 608{615.

Riveill, M. 1992. An overview of the

Guide language. In 2nd Workshop on

Objects in Large Distributed Applica-

tions.

Saleh, H. and Gautron, P. 1991a. A

concurrency control mechanism for C++

objects. In ECOOP Workshop on object-

based concurrent computing , pp. 195{

210.

Saleh, H. and Gautron, P. 1991b. A

system library for C++ distributed ap-

plications on Transputer. In 3rd Int.

Conf. on Applications of Transputers,

pp. 638{643.

Santo, M. D. and Iannello, G. 1990.

Implementing actor-based primitives on

distributed-memory architectures.

In ECOOP OOPSLA Workshop on ob-

ject-based concurrent programming, pp.

45{49.

Schaffert, C., Cooper, T., Bullis, B.,

Kilian, M., and Wilpolt, C. 1986.

An introduction to Trellis/Owl. In OOP-

SLA, pp. 9{16.

Schaffert, C., Cooper, T., and Wilpolt,

C. 1985. Trellis { object-based en-

vironment: Language reference manual.

Technical Report DEC-TR-372, East-

ern Research Lab, DEC, Hudson, Mas-

A Survey of Concurrent Object-Oriented Languages � 51

sachusetts.

Schelvis, M. and Bledoeg, E. 1988.

The implementation of a Distributed

Smalltalk. In ECOOP , LNCS 322, pp.

212{232. Springer.

Schmidt, H. W. 1992. Data parallel ob-

ject-oriented programming. In 5th Aus-

tralian Supercomputer Conf., pp. 263{

272.

Smith, R. J. 1991. Experimental sys-

tems kit { �nal project report. Technical

report, Microelectronics and Computer

Technology Corporation, MCC, Austin,

Texas.

Smolka, G. 1994. The de�nition of ker-

nel Oz. Technical report, DFKI, Ger-

man Research Center for Arti�cial Intel-

ligence, Saarbr�ucken, Germany.

Smolka, G. 1995. An Oz primer. Tech-

nical report, DFKI, German Re-

search Center for Arti�cial Intelligence,

Saarbr�ucken, Germany.

Smolka, G., Henz, M., and W�urtz, J.

1995. object-oriented concurrent con-

straint programming in Oz. In P. van

Hentenryck and V. Saraswat Eds.,

Principles and Practice of Constraint

Programming, pp. 27{48. MIT Press.

Snyder, A. 1986. Encapsulation and in-

heritance. In OOPSLA, pp. 38{45.

Spek, J. 1990. POOL-X and its im-

plementation. In Parallel Database Sys-

tems. PRISMA Workshop, pp. 309{344.

Stoutamire, D. 1995. The pSather 1.0

manual and speci�cation. Technical Re-

port, Int. Computer Science Institute,

Berkeley.

Stoutamire, D. 1997. Portable, modu-

lar expression of locality. Ph. D. thesis,

U. of California at Berkeley. Available as

ICSI technical report 97-056.

Takashio, K. and Tokoro, M. 1992.

DROL: An object-oriented programming

language for distributed real-time sys-

tems. In OOPSLA, pp. 276{294.

Tanaka, H. 1991. A parallel object

oriented language FLENG++ and its

control system on the parallel ma-

chine PIE64. In Concurrency: Theory,

Language and Architecture. Japan/UK

Workshop Proc., pp. 157{172.

Tanenbaum, A. S., Kaashoek, M. F., and

Bal, H. E. 1992. Parallel program-

ming using shared objects and broadcast-

ing. IEEE Computer 25, 18, 10{19.

Taura, K., Matsuoka, S., and Yonezawa,

A. 1994. ABCL/f: A future-based

polymorphic typed concurrent object-o-

riented language { its design and im-

plementation. In DIMACS workshop on

Speci�cation of Parallel Algorithms.

Thomas, D. A., LaLonde, W. R.,

Duimovich, J., Wilson, M., McAffer,

J., and Barry, B. 1988. Actra - a

multitasking/multiprocessing Smalltalk.

In SIGPLAN Workshop on Object-Based

Concurrent Programming, pp. 87{89.

Thomas, L. 1992. Extensibility and

reuse of object-oriented synchronization

components. In Proc. Int. Conf. on

Parallel Languages and Environments,

LNCS 605, pp. 261{275. Springer.

Tiemann, M. D. 1988. Solving the

RPC problem in GNU C++. Technical

Report ESKIT-285-88, Microelectronics

and Computer Technology Corporation,

MCC, Austin, Texas.

Tomlinson, C., Kim, W., Scheevel, M.,

Singh, V., Will, B., and Agha, G.

1988. Rosette: an object-oriented con-

current system architecture. In SIG-

PLAN Workshop on Object-Based Con-

current Programming , pp. 91{93.

Tomlinson, C., Scheevel, M., and Singh,

V. 1991. Report on Rosette 1.1. Ob-

ject-Oriented and Distributed Systems

Laboratory, Microelectronics and Com-

puter Technology Corp., MCC.

Tomlinson, C. and Singh, V. 1989.

Inheritance and synchronization with

Enabled-sets. In OOPSLA, pp. 103{112.

Trehan, R., Sawashima, N., Morishita,

A., Tomoda, I., Imai, T., and ichi

Maeda, K. 1993. Concurrent object

oriented `C` (cooC). ACM SIGPLAN

Notices 28, 2, 45{52.

Turcotte, L. H. 1993. A survey of soft-

ware environments for exploiting net-

work computing resources. Technical re-

port, Mississippi State U.

Uehara, M. and Tokoro, M. 1990. An

adaptive load balancing method in the

computational �eld model. In ECOOP

OOPSLAWorkshop on object-based con-

current programming , pp. 109{113.

van Reeuwijk, K., van Gemund, A. J. C.,

and Sips, H. J. 1997. Spar: A pro-

gramming language for semi-automatic

compilation of parallel programs. 9, 11

(November), 1193{1205.

52 � Michael Philippsen

Vaucher, J., Lapalme, G., and Malen-

fant, J. 1988. SCOOP { struc-

tured concurrent object-oriented prolog.

In ECOOP , pp. 191{210.

Waldorf, J. and Bagrodia, R. 1994.

Moose: A concurrent object oriented

language for simulation. Int. Journal of

Computer Simulation 4, 2, 235{257.

Wegner, P. 1987. Dimensions of ob-

ject.based language design. In OOPSLA,

pp. 168{182.

West, E. A. 1994. Combining control

and data parallelism: Data parallel ex-

tensions to the Mentat programming lan-

guage. Ph. D. thesis, U. of Virginia.

West, E. A. and Grimshaw, A. S. 1995.

Braid: Integrating task and data paral-

lelism. In Frontiers'95, 5th Symp. on the

Frontiers of Massively Parallel Compu-

tation, pp. 211{219.

Wester, R. H. H. and Hulshof, B. J. A.

1990. The POOMA operating system.

In Parallel Database Systems. PRISMA

Workshop, pp. 396{323.

Wettstein, H. 1978. The problem of

nested monitor calls revisited. Operating

Systems Review 12, 1, 19{23.

Winder, R., Roberts, G., and Wei, M.

1992. CoSIDE and parallel object-ori-

ented languages. In Addendum to OOP-

SLA, pp. 211{213.

Wolfe, M. 1989. Optimizing Super-

compilers for Supercomputers. Research

Monographs in Parallel and Distributed

Computing. Pitman, London.

Wyatt, B., Kavi, K., and Hufnagel,

S. 1992. Parallelism in object-orient-

ed languages: a survey. IEEE Com-

puter 11, 6, 56{66.

Yaoqing, G. and Kwong, Y. C. 1993. A

survey of implementations of concurrent,

parallel and distributed Smalltalk. ACM

SIGPLAN Notices 28, 9, 29{35.

Yau, S. S., Jia, X., Bae, D.-H., Chi-

dambaram, M., and Oh, G. 1991.

An object-oriented approach to software

development for parallel processing sys-

tems. In 15th Int. Computer Software

and Applications Conf., pp. 453{5{8.

Yellick, K., Semenzato, L., Pike, G.,

Miyamoto, C., Liblit, B., Krish-

namurthy, A., Hilfinger, P., Gra-

ham, S., Gay, D., Colella, P., and

Aiken, A. 1998. Titanium: A high-

performance java dialect. Concurrency:

Practice and Experience 10, 11{13, 825{

836.

Yokote, Y. and Tokoro, M. 1986. The

design and implementation of Concur-

rentSmalltalk. In OOPSLA, pp. 331{340.

Yonezawa, A. 1990. ABCL: An Ob-

ject-Oriented Concurrent System { the-

ory, language, programming, implemen-

tation, and application. MIT Press.

Yoshida, K. and Chikayama, T. 1988.

A'UM = stream+object+relation. In

SIGPLAN Workshop on Object-Based

Concurrent Programming, pp. 55{58.

Yoshinaga, T. and Baba, T. 1991.

A parallel object-oriented language A-

NETL and its programming environ-

ment. In 15th Int. Computer Software

and Applications Conf., pp. 459{464.

Yu, W. and Cox, A. 1997. Java/DSM:

A platform for heterogeneous comput-

ing. Concurrency: Practice and Experi-

ence 9, 11, 1213{1224.

