
This paper is revised and resubmitted to Concurrency: Practice and Experience for
publication.

Using Knowledge-Based Systems

for Research on Parallelizing Compilers

Chao-Tung Yang, Shian-Shyong Tseng
Yun-Woei Fann, Ting-Ku Tsai
Ming-Huei Hsieh, Cheng-Tien Wu

Ground System Section

National Space Program Office

8F, No. 9 Prosperity 1st Road

Science-Based Industrial Park

Hsinchu, Taiwan 300, ROC

email: ctyang@nspo.gov.tw

Tel: +886-3-5784208 ext.1563

Fax: +886-3-5779058

Nov. 3, 2000

Using Knowledge-Based Systems for Research on

Parallelizing Compilers∗

Chao-Tung Yang† Shian-Shyong Tseng‡

Yun-Woei Fann, Ting-Ku Tsai
Ming-Huei Hsieh, and Cheng-Tien Wu

Ground System Section Dept. Computer & Information Science
National Space Program Office National Chiao Tung University
Hsinchu, Taiwan 300, ROC Hsinchu, Taiwan 300, ROC

ctyang@nspo.gov.tw sstseng@cis.nctu.edu.tw

November 3, 2000

Abstract

The main function of parallelizing compilers is to analyze sequential programs, in particular, the loop
structure, to detect hidden parallelism and automatically restructure sequential programs into parallel
subtasks that are executed on multiprocessor. This paper describes the design and implementation of
an efficient parallelizing compiler to parallelize loops and achieve high speedup rates on multiprocessor
systems. It is well known that the execution efficiency of a loop can be enhanced if the loop is
executed in parallel or partially parallel, such as in a DOALL or DOACROSS loop. This paper also
reviews a practical parallel loop detector (PPD) that is implemented in our PFPC on finding the
parallelism in loops. The PPD can extract the potential DOALL and DOACROSS loops in a program
by verifying array subscripts. In addition, a new model by using knowledge-based approach is proposed
to exploit more loop parallelisms in this paper. The knowledge-based approach integrates existing loop
transformations and loop scheduling algorithms to make good use of their ability to extract loop
parallelisms. Two rule-based systems, called the KPLT and IPLS, are then developed using repertory
grid analysis and attribute ordering tables respectively, to construct the knowledge bases. These
systems can choose an appropriate transform and loop schedule, and then apply the resulting methods
to perform loop parallelization and obtain a high speedup rate. For example, the IPLS system can
choose an appropriate loop schedule for running on multiprocessor systems. Finally, a runtime technique
based on inspector/executor scheme is proposed in this paper for finding available parallelism on loops.
Our inspector can determine the wavefronts of a loop with any complex indirected array-indexing
pattern by building a DEF-USE table. The inspector is fully parallel without any synchronization.
Experimental results show that the new method can resolve any complex data dependence patterns
where no previous research can. One of the ultimate goals is to construct a high-performance and
portable FORTRAN parallelizing compiler on shared-memory multiprocessors. We believe that our
research may provide more insight into the development of a high-performance parallelizing compiler.

Keywords: Parallelizing Compiler; Knowledge-based System; Loop Parallelization; Multithreaded
OS; Program Restructuring;

∗This work was supported in part by National Science Council of Republic of China under Grants No. NSC86-2213-E009-
081 and NSC87-2213-E009-023.

†Corresponding author. Associate Researcher, National Space Program Office, Hsinchu, Taiwan 300, ROC. Phone: +886-
3-5784208 ext. 1563, Fax: +886-3-5779058. E-mail: ctyang@nspo.gov.tw.

‡Professor at Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan 300,
ROC. Phone: +886-3-5715900, Fax: +886-3-5721490. E-mail: sstseng@cis.nctu.edu.tw.

1

1 Introduction

The last decade has seen the coming of age of parallel computing. Many different classes of multiprocessor

systems have been designed and implemented in industry and academia, for example, IBM RP3, Cray

T3D, NEC SX-3, CONVEX C4, CONVEX SPP, and IBM SP2. To achieve high speedup of such systems,

it requires decomposition of tasks into several sub-tasks that can be executed on different processors in

parallel. Unfortunately, it possesses several difficulties for the users to write explicitly parallel programs.

First, they had to rewrite their existing sequential programs into parallel programs. Second, most of the

resulting explicitly parallel programs were not portable. Third, writing efficient parallel programs often

required optimizations that need intimate knowledge of the machine’s architecture and the program’s access

patterns, e.g., data distribution, prefecting, or blocking.

To address these difficulties, parallelizing compilers were developed to transform sequential programs

into parallel ones [16, 1, 9]. Parallelizing compilers can be broken into two components: a component

that identifies parallelism in a program, and a component that exploits this parallelism. The component

that identifies parallelism attempts to determine what parts of a program can be run in parallel. The

component that exploits parallelism determines which of these parallel parts should be run in parallel, as

well as how to generate efficient codes for them. Therefore, design of efficient parallelizing compiler is an

important part of achieving maximum parallelism on multiprocessors. However, the generation processes

of parallel object codes by parallelizing compilers are very difficult and complicated. Most investigations of

parallelizing compiler still focus on source-to-source transformation, for example, Parafrase-2 and Polaris

developed at UIUC [1, 10], ParaScope developed at Rice University [3], and SUIF developed at Stanford

University [8].

In addition to the advance in computer architecture, some operating systems also support parallelism.

Multithreading support seems to be the most obvious approach for helping programmers to take the

advantage of parallelism by operating system. For example, Mach, OSF/1, Solaris, Microsoft Windows

NT are operating systems that support multithreading. These operating systems usually have packages

for handling multithreads [2], e.g., the C Threads package in Mach and P Threads package in OSF/1.

Although a multithreading operating system for a multiprocessor system can be powerful, it still needs

good parallelizing compilers to help programmers exploit parallelism and gain performance benefit. So,

we wanted to design and implement a portable parallelizing compiler for multithreading operating system.

Our compiler can generate parallel object codes for running on multiprocessor systems rather than being

just a source-to-source restructurer [12, 14].

This paper describes the design and implementation of an efficient parallelizing compiler to parallelize

loops and achieve high acceleration rates on multiprocessor systems. In this paper we introduce how to

design and implement a portable FORTRAN parallelizing compiler (PFPC) on a shared-memory multi-

processor machine running multithreading operating system OSF/1. Our compiler is highly modularized

so that porting to other platforms will be very easy. Furthermore, the compiler can partition parallel loops

into multithreaded codes based on several DOALL loop-partitioning algorithms.

Then, this paper reports on the practical parallelism detector (PPD) that is implemented in PFPC at

2

NCTU to concentrate on finding available the parallelism on loops [15]. The PPD is used on extracting

the potential DOALL and DOACROSS loops in a program. Moreover, if DOACROSS loops are available,

an optimization of synchronization statements was made.

In a shared-memory multiprocessor system, scheduling decisions can be made either statically at com-

pile time or dynamically at runtime. Static scheduling is usually applied to uniformly distributed iterations

on processors. However, it has the drawback of load imbalance when the loop style is not uniformly dis-

tributed or the loop bounds cannot be known at compile time. In contrast, dynamic scheduling is more

suitable for load balancing; however, runtime overhead must be taken into consideration. Traditionally, the

parallelizing compiler dispatches the loop by using only one scheduling algorithm, either static or dynamic.

To exploit more parallelism, a new model by using knowledge-based techniques is proposed in this

paper [11]. The knowledge-based approach integrates existing loop transformations and loop scheduling

algorithms to make good use of their ability to extract loop parallelisms. Two rule-based systems, called the

KPLT (Knowledge-based Parallel Loop Transformation) and IPLS (Intelligent Parallel Loop Scheduling),

are then developed using repertory grid analysis and attribute ordering tables respectively, to construct

the knowledge bases. For instance, IPLS can choose an appropriate algorithm and then apply the resulting

algorithm to assigning parallel loops on multiprocessor systems to achieve high speedup rates [4].

Finally, a runtime technique based on inspector/executor scheme is proposed in this paper for finding

available parallelism on loops. Our inspector can determine the wavefronts of a loop with any complex

indirected array indexing pattern by building a DEF-USE table [13]. The inspector is fully parallel with-

out any synchronization. Experimental results show that the speedup delivered by our compiler is high.

Furthermore, for system maintenance and extensibility, our approach is obviously superior to others. As

an ultimate goal, a high-performance and portable FORTRAN parallelizing compiler on shared-memory

multiprocessors will be constructed.

2 The Model of Portable FORTRAN Parallelizing Compiler

2.1 An Overview

Multithreading support may be the most obvious approach to help programmers take the advantage of

parallelism by operating systems. Therefore, we propose a new model of parallelizing compiler for exploiting

potential power of multiprocessors and gaining performance benefit on multithreaded operating systems

OSF/1 [2]. The portable FORTRAN parallelizing compiler (PFPC) intended to produce parallel object

codes rather than just acting as a source-to-source restructurer is shown in Figure 1 [12, 14].

First, a practical parallelism detector (PPD) is used to test the data dependences of array references

and then restructure a sequential FORTRAN source program into a parallel form at compile-time [15],

i.e., if a loop can be parallelized or partially parallelized, then PPD marks that loop with DOALL loop or

DOACROSS loop by comments. If the access patterns of some arrays cannot be determined at compile-

time or have non-constant dependence vector, then PPD marks that loops with DOCONSIDER loop

by comments. The flow of loops parallelization is shown in Figure 2. The PPD (practical parallelism

detector) will analyze the loop’s array access patterns to find the data dependences of array references.

3

3!iqiVW

_�B��s8

_�s�${sj

_s�sjj�j$R8

*���{�B�

w__*D

3!iqiVWT

�BT]

]Bt%�����

wP1{D

7$t�j�T�BT

�Zj�$}j�

qY��sIR

q�stRjs�B�

wR18D

pW=

]]B8}$j��

w�{{D

e-�{Z�sAj�

]BI�R

_ qY��sIR

iZt�$8�

N$A�s�$�R

<�sI��

3$j�R

] et%$�Bt8�t�3!iqiVW et%$�Bt8�t�

�Tq�R�
�_N7 �_Nq

iZt�$8�

_s�sjj�j$9s�$Bt

Figure 1: The PFPC model running on OSF/1.

As we know, if the information of data dependence is not available until the program is running, i.e., defy

the static analysis, then PPD will mark it as a DOCONSIDER loop. If there is no dependence between

statements in a loop, or these dependences are loop-independent dependences, different iterations can be

executed in parallel on separate processors as DOALL loops. If dependence is occurring across different

iterations, i.e., is a loop-carried dependence, it is called a DOACROSS loop. The iterations are executed

either sequentially, or partially in parallel by means of enforced synchronization instructions within the

bodies of the concurrent loops, and incur some run-time overhead will be incurred. Otherwise, if the loop

dependency patterns are too complex to analyze by current algorithms, for example, with non-linear array

index expressions or with non-constant dependence distance, then we also can mark it as a DOCONSIDER

loop.

Second, because OSF/1 has no FORTRAN compiler and because multithreading only supports C

programming, a FORTRAN-to-C (f2c) converter is used to convert the FORTRAN program output by PPD

into its C equivalent. Third, the single-to-multiple threads translator (s2m) takes the program obtained

from f2c as input, and then generates the output in which the parallel loops (DOALL or DOACROSS) are

translated into sub-tasks by replacing them with multithreaded codes. For run-time parallelization, the

s2m will generate the inspector and executor codes for DOCONDISER loops at compile-time.

Finally, The resulting multithreaded program is then compiled and linked with the P Threads or C

Threads run-time libraries by using the native C compiler, e.g., GNU C compiler. Then, the generated

parallel object codes can be scheduled and executed in parallel on the multiprocessors to achieve high

performance. Based upon this model, we implemented a FORTRAN parallelizing compiler to help pro-

grammers take advantage of multithreaded parallelism on AcerAltos 10000 multiprocessor system, running

OSF/1.

4

]B8}$j�Tq$8� _s��jj�j$9s�$Bt PB�

*!VNN

7BZ�{� NBB}

I�}�tI�t{� stsjkR$R Ak __*

*B�R jBB} I�Pk R�s�${ stsjkR$R2

yR �Y��� stk

jBB}T{s��$�I I�}�tI�t{�2

yR I�}�tI�t{�

I$R�st{� Zt$PB�82

]B8}$j�Tq$8� _s��jj�j$9s�$Bt PB�

*!V]i!77

iZtTq$8� _s��jj�j$9s�$Bt PB�

*!]!W7y*ei

NBB} _s�sjj�j$9s�$Bt

O�R

O�R

WB

WB

O�R

WB

Figure 2: The flow of loop parallelization.

2.2 PPD: A Practical Parallel Loop Detector

PPD (in Figure 3) takes the traditional FORTRAN 77 source program as input and yields the corresponding

prompted parallel code. The framework of PPD is divided into two phases, analysis phase and codegen

phase. In analysis phase, a single-subscript testing algorithm, the I test, is used for checking if the linear

equation formed by array subscript has an appropriate integer solution. Instead of linearizing the subscript

of an array, we check it subscript-by-subscript since there is no certainty that either of them overrides the

other in precision. The effect of analysis phase is the determination of the execution modes of all loops.

The execution mode of a loop may be the one of the following three types: DOALL, DOACROSS, and

DOSEQ, where the former two ones point out that a loop can be executed in a fully or partial parallel

manner respectively, and the last one is the normal sequential style. In codegen phase, the outcome of

analysis phase is referred to produce the prompted parallel codes. The optimizations for synchronized

statements of DOACROSS loops are also taken.

5

Data
dependence

analysis

Loop
structure

Linear
system DDG Codegen

DDG

Loop
structure

Source
code

Parallel
code

(a) (b)

Figure 3: An overview of the analysis and codegen phases.

2.3 S2m: A Single-to-Multiple Threads Translator

The component, single-to-multiple threads translator (s2m), takes the program obtained from f2c as input,

and then generates the output in which the parallel loops (DOALL or DOACROSS) are translated into sub-

tasks by replacing them with multithreaded codes. The structure of single-to-multiple threads translator

(s2m) [12] consists of five modules as shown in Figure 4. The kernel module is written so as to be portable;

it calls functions in the thread-code generating module and calls functions in the DOALL loop-partition

module. The thread-code generating module contains several functions that are used to generate different

thread specific codes: P Threads or C Threads. The DOALL loop-partition and DOACROSS loop-partition

modules contain routines that partition DOALL and DOACROSS loops, respectively. In this paper, we

improve the power of s2m to partition and generate corresponding multithreaded codes for a DOACROSS

loop. The config module is very small and contains several arrays of functions. When the s2m kernel

calls a function in thread-code generating, DOALL loop-partition modules or DOACROSS loop-partition

modules, there must be an entry in the config module pointing to that called function so that the s2m kernel

can access the function through the config module. If users want to add their own thread-code generating

routines, DOALL loop-partition routines, or DOACROSS loop-partition routines, they can append their

own functions to these three modules and then append entries pointing to those functions in the config

module. Therefore, a new version of s2m can be produced by simply compiling the config module and user

functions directly, which can be ported to other platforms easily.

We will now explain how the s2m converts specific types of conventional sequential programs, i.e.,

DOALL loops, into their parallel equivalents with the P Thread runtime library codes embedded in them.

The general form of a DOALL loop program for s2m is shown in Figure 5. In this figure, there is one

for-loop enclosed in “/* /$DOALL$/ L???: */” and “/* /$END DOALL$/ L???: */” comments, these

two comments are used to indicate the for-loop enclosed by them is a DOALL loop. The ??? here stands

for the loop label used in the original FORTRAN program.

The output of the main program has the form shown in Figure 6 produced by s2m. There are six

rectangles in this figure; each corresponds to a session that performs a specific job. The first session,

thread-related definition, outputs thread-related definitions. Some variables for using the thread package

6

718

���t�j

8BIZj�

]BtP$�

8BIZj�

*!VNN

jBB} }s��$�$Bt$t�

�BZ�$t�R

*!]!W7y*ei

jBB} }s��$�$Bt$t�

�BZ�$t�R

qY��sIT{BI�

��t��s�$t�

�BZ�$t�R

*!V]i!77

jBB} }s��$�$Bt$t�

�BZ�$t�R

Figure 4: The structure of s2m.

main()

{
Variables declaration area

...

/* /$DOALL$/???: */

for (i=){
...

/* L???: */

}
/* /$END DOALL$/ ???: */

...

}

Figure 5: The DOALL loop of input program to s2m.

are defined in this session. The loop variable is an array of loop args, which is used to pass the begin

iteration, end iteration, and the iteration step for each pthread created later on. The ThCount variable

records the number of threads; this number is decreased by one when a thread is going to be terminated.

The second session is devoted to variables declaration. This session, is originally in the main function

of the input program (see Figure 5), s2m removes the variable declaration from the main function to make

them visible to the entire program. This eases the parameter passing problem when a thread forks since

all the necessary variables are global! Note that when this approach is applied to functions other than the

main function, the variables may need to be renamed to avoid conflicts.

The third session is mutex and condition variables initialization. This session initializes a mutex

object and a condition variable with default attributes since we need these two variables when performing

synchronization. The P Threads codes for this session are shown below.

pthread mutex init(&CountLock, pthread mutexattr default);

pthread cond init(&ThCond, pthread condattr default);

7

Thread related definition

Variables declaration area

main()

{
Mutex & condition variable initialization

...

Iterations calculation

Fork threads

Synchronization

...

}

Figure 6: Main program of the general output produced by s2m.

The fourth, fifth, and sixth sessions are for DOALL loops only. The iterations calculation session,

also called the loop partitioning session, partitions the DOALL loop according to the user-assigned loop-

partitioning algorithms. The default loop partitioning algorithm is CSS/4 which divides the iterations into

four chunks of equal size, but this can be changed with a command line option when s2m is invoked. At

the end of this session, the variable ThCount will have the number of threads that need to be created later

on. Start iteration, end iteration and the iteration step for the ith thread is stored in loop[i].begin,

loop[i].end and loop[i].step, respectively. This pre-calculation of tasks for each thread eliminates the

need for synchronization of loop indices in several loop scheduling algorithms. This makes our approach

faster. The fifth session is just to fork threads. The default number of threads to be created is four; however,

this number can be changed with a command line option when s2m is invoked. Usually, this session contains

a for-loop that performs threads creation. The sixth session uses previously initialized mutex objects and

condition variables for synchronization purposes. It waits for the thread count (ThCount variable) to reach

zero (the threads created for a particular parallel loop have all been finished) and then continues execution.

The thread count is initially the number of threads created, and is decreased by one before each thread is

terminated. This synchronization is necessary for ensuring the correctness of program execution. The P

Threads codes for this session may look like this:

pthread mutex lock(&CountLock);

while(ThCount != 0)

pthread cond wait(&ThCond, &CountLock);

pthread mutex unlock(&CountLock);

Figure 7 is the function definition of a DOALL loop for a thread. This function definition is mainly the

corresponding for-loop with minor change. First, the loop is executed from loop->begin to loop->end;

these two variables are calculated in the iteration calculation session. Second, the thread count (ThCount

variable) is decreased by one before the thread is terminated. We use mutex objects to ensure mutex

exclusion, and then decrease the thread count by one. The P Threads codes for this session are shown

below.

8

pthread mutex lock(&CountLock);

ThCount--;

pthread mutex unlock(&CountLock);

pthread cond signal(&ThCond);

void DOALL??(loop)

struct loop args *loop;

{
int i;

for (i=loop->begin; i<=loop->end; i++){
...

}
Decrease the thread count by 1

}

Figure 7: The DOALL function definition for an output thread produced by s2m.

3 Main Results

3.1 Using Knowledge-based Techniques on Loop Parallelization

It is well known that knowledge system is a system that depends on a vast base of knowledge to perform

difficult tasks. The knowledge is saved in a knowledge base separately from the inference component.

This makes it convenient to append now knowledge or update existing knowledge easily. The rule-based

approach is one of the commonly used forms in many knowledge-based systems. The primary difficulty in

building a knowledge base is how to acquire the desired knowledge. To ease acquisition of knowledge, one

primary technique among them is Repertory Grid Analysis (RGA). RGA is easy to use, but it suffers from

the problem of missing embedded meanings. For example, when a doctor expresses the features of catching

a cold are headache, cough and sneeze, he may have those features. However, in RGA, a person is not

considered to catch a cold except that he gets all of the features. To overcome the problem, the concept of

Attribute Ordering Table (AOT) is employed to elicit embedded meanings by recording the importance of

each. A knowledge-based system is composed of two parts: the development environment and the runtime

environment. The former is used to build the knowledge base, while the latter is used to solve the problem.

In this paper, the development environment is not discussed here. The runtime environment contains three

components, which are briefly described as follows:

• Knowledge Base: This component contains knowledge required for solving the problem of deter-

mining an appropriate test, scheduling, or transformation to be applied. The knowledge can be

organized in many different schemes, and can be encoded into many different forms. Therefore, there

exist many choices of building the knowledge base. In our implementation, the knowledge base is

constructed as a rule base, i.e., the knowledge is expressed in the form of production rules. These

rules can be coded by hand or generated by a translator. In our system, the latter method is used.

9

A translator, GRD2CLP, translates the repertory grid and attribute ordering table to CLIPS’s pro-

duction rules. This approach has great flexibility as we can add new scheduling algorithms to the

repertory grid and attribute ordering table, and then use GRD2CLP to convert the tables into CLIPS

rules. The process of generating a knowledge base is shown in Figure 9.

• Inference Engine: The inference engine is the interpreter of the knowledge stored in the knowledge

base. It examines the contents of the knowledge base and the data including the system characteristics

and the loop attributes provided by machine architecture and programmers to derive a conclusion,

an appropriate parallel loop-scheduling algorithm. The inference engine attempts to find connections

between the input attributes stated in section three and the selected loop-scheduling algorithm ac-

cording to RGA and AOT. An example of applying RGA/AOT is shown in Table 1. ‘X’ means that

the attribute has no relation with the scheduling algorithm. ‘D’ means that the attribute dominates

the scheduling algorithm, i.e., if the attribute is not equal to the entry value, it is impossible for the

scheduling algorithm to be implied. For those entries that are not labeled ‘X’ or ‘D’, integer numbers

are used represented the relative degree of importance for attribute does not dominate the object

but is of some degree of importance relative to other attributes. Larger integer number implies the

attribute being more important to the object. According to the table, four rules can be generated.

As we observe, [A1, S1]=1,5,6, [A2, S1]=YES, [A3, S1]=X; hence the resulting rule will be generated.

RULE:

If (A1 is in 1,5,6) and (A2=YES) Then Choose S1

Table 1: The repertory grid and the attribute ordering table.
S1 S2 S3 S4

A1 1,5,6/D X/X 3/D 2,4/D

A2 YES/D X/X YES/D X/X

A3 X/X NO/2 NO/D X/X

• Algorithm Library: The library collects several representative transformations and schedules, ei-

ther proposed by others or designed by ourselves. The question of how these transformations and

schedules are chosen in the development environment , so here we assume that it has been built. For

example, we have included eight scheduling algorithms in the library for loop scheduling, that are

static scheduling, SS, CSS, GSS, Factoring, TSS, AFS (MAFS, DAFS), and LDS. This is another ad-

vantage of using knowledge-based system; we can easily modify the rules and add any new scheduling

strategy.

3.2 IPLS: An Intelligent Parallel Loop Scheduling

In PFPC, we propose a system as shown in Figure 10, called intelligent parallel loop scheduling (IPLS), by

using knowledge-based techniques to select an appropriate loop-scheduling algorithm. The approach will

make good use of the advantages of the algorithms for loop parallelism. By the resulting algorithms for

10

Knowledge
base including
facts and rules

Algor i thm
libraries

Inference
component

by using
CLIPS

Data
dependence

Tests

Loop
schedul ing

Loop
transformation

Input data

Output data

Figure 8: Components of our new model

Æïõæó õêõíæ éæóæ

Äâïäæí½ Ãâäì Ïæùõ ¿

Reper tory Gr id

At t r ibute Order ing
Tab le

G R D 2 C L P T o o l CLIPS Rules

Expertise

Figure 9: The process of generating a knowledge base

assigning parallel loop on multiprocessor systems, it is believed that the applications can save execution

time and achieve high speedup. The runtime environment of IPLS contains two more components, which

are briefly described as follows:

• Profile Information - After the program applying the selected loop scheduling algorithm is executed,

some information about number of iterations, maximal time of iteration, minimal time of iteration,

total time of program, number of synchronization, number of remote memory accesses, and the

workload distribution of each processor will be recorded and saved in a profile file. The profile file

will be referred to modify the attributes by refining system.

• Refining System - When a program is embedded with some parallel loop scheduling algorithm, if we

can refine some attributes, such as the values of factors in the loop-scheduling algorithm by using the

profile information derived from the record of executing process of the program. Refining procedure

in order to get ideal values will modify the factors. It is obvious that this make the parallelism of

program higher and performance better.

11

3URILOH
,QIRUPDWLRQ

5HILQLQJ

6\VWHP

,QIHUHQFH

(QJLQH

.QRZOHGJH
%DVH

/RRS DQG

6\VWHP

3DUDPHWHUV
3UHSURFHVVLQJ 6FKHGXOLQJ

6HOHFWHG

,3/6

Figure 10: The system architecture of IPLS.

Tables 2 and 3 show the relationships between seventeen attributes and parallel loop scheduling al-

gorithms in UMA and NUMA models respectively. Besides, each table is districted by different kind of

loops, i.e., DOALL and DOACROSS loops. The features mentioned above are the attributes upon which

we constructed our attribute grid. ‘Machine model’ is classified into UMA and NUMA. ‘Memory access

ratio’ means the speed ratio of cache, memory and network. ‘CPU number’ denotes the system size, which

can be classified into three levels, small, medium, or large. ‘Loop style’ includes four kinds of loop, such

as U(uniform), I(increasing), D(decreasing) and R(random). ‘Program size’ shows the appropriate scale

that algorithms fit. ‘Data locality’ determines if loop data behavior has affinity or not. ‘Loop boundary’

determines if it must be known at compile time. ‘Loop level’ determines if nested loop is profitable to

algorithms. ‘Loop carried dependence’ is classified into DOALL and DOACROSS. ‘Easiness’ describes if

the implementation of algorithm is easy. ‘Factor’ means the variables, which can dynamically influence the

performance due to loop information and system states. The overheads of synchronization, communication

and thread management are roughly classified into four levels, none, light, normal, or heavy. ‘Start time’

determines whether all each processor starting time need to be equal or not.

In many parallel loop-scheduling algorithms, there are some attributes, such as factors, which influence

the performance of executing program. For example, the adaptive hybrid scheduling algorithm has two

factor, β and γ, determining the fetching processor whether or not to fetch more iterations form work queue

in dynamic level after executing the iterations coming from static level. These two factors, β and γ, should

be adjusted by the programmers according to the properties of parallel computers. However, how to select

appropriately the value of β and γ on different system is difficult. If we can refine values of the factors in

the loop-scheduling algorithm by using the profile information derived from the record of executing process

of the program, it is obvious that the new factors cyclically modified by refining procedure will make the

parallelism of program more clear and make the performance better. And we say this method stated above

has feedback-learning ability and is intelligent. In the paper, a refining system based upon the profile

12

Table 2: The attributive table for UMA models.

UMA Model
DOALL DOACROSS

Static SS CSS GSS TSS Factoring AHS SSS Enhanced CSS
UMA/NUMA UMA UMA UMA UMA UMA UMA UMA/NUMA UMA/NUMA UMA

No of Processor X X X X X X X X X
Memory Access Rate 1:10:200 1:10:200 1:10:100 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200

Loop Style U, D, I X U, R U, I, R X X X X U
Program Size X X Large X X Large X X Large

Loop Type 1-10 X 1-2, 5-7, 9-10 2-3, 7-8 1, 3-4, 7, 11 3-4, 7-8 X 1-3, 5-11 1, 6-7
Data Locality X No No No No No Yes Yes X

Loop Boundary Yes X No X X X Yes Yes X
LCD DOALL DOALL DOALL/(0,1) DOALL DOALL DOALL DOALL DOALL Doacross (>1)

Easiness X X X No X No No No No
Factor - - k - NS , NF x = 2 β, γ α, k K

Thread Overhead l, n h l, n h n n n, h n, h l, n
Comm. Overhead X l l l l, n l l, n 1, n l

Sync. Overhead X 1 2, 3, 4 2 3, 4 3, 4 4, 5 4, 5 3, 4, 5
Start Time Yes X Yes X X X Yes X Yes

Table 3: The attributive table for NUMA models.
NUMA Model

DOALL
AFS MAFS CAFS LAFS DAFS LDS GDCS ASS

UMA/NUMA NUMA NUMA NUMA NUMA NUMA NUMA NUMA NUMA
No of Processor S, M S, M S, M, L S, M, L S S, M S, M S

Memory Access Rate 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200
Loop Style X D, I, R X X X X X X

Program Size - - - X - - - -
Loop Type 2-3, 9-10 2, 4-5 1, 4, 8 1, 4, 8 2 , 5, 9, 11 1, 5, 6, 8, 10 2, 5, 9, 11 2, 4, 5, 6

Data Locality Yes Yes Yes Yes Yes Yes Yes Yes
Loop Boundary X X X X X X Yes X

Loop Level X X X X X X X X
LCD DOALL DOALL DOALL DOALL DOALL DOALL DOALL DOALL

Easiness No No No No No No No No
Factor 0.5 < α < 1 - K k - B α, β α = N

P2
Thread Overhead l, n l l, n l, n l l, n l, n l
Comm. Overhead l l l l l l, n, h l, n, h h

Sync. Overhead 3, 4 5 3, 4 3, 4 5 3, 4 4, 5 3, 4
Start Time X X X X X X X X

information consisting of the following seven items will be included into our model.

• The number of iteration

• Maximal time of iteration

• Minimal time of iteration

• Total time of program

• The number of synchronization

• The number of remote memory access

• The workload distribution of each processor

How to refine attributes and not to modify rules in the knowledge base is a problem, which is solved

in our refining system by storing attribute data into a file called Attri file and using data type of structure

(record) as condition testing of antecedent of if statement in rules. When a loop is executed and profile

information is generated, the refining system will input profile information to modify the attributes in

13

Attri file; therefore, the rules in knowledge base does not need to be changed and the inference engine does

not need to be recompiled.

There are several situations at which the refining system is suggested. Firstly, when IPLS is constructed

completely, maybe the attributes in knowledge base are crude that an optimal loop-scheduling algorithm to

transform a sequential program into an efficient multithread program cannot be selected. Secondly, when

IPLS is ported on a new environment, some attributes about system states, such as memory access rate,

need to be changed to influence the selection of scheduling method. In addition, perhaps an appropriate

loop-scheduling algorithm is selected by inference engine, but the bad values of factors in algorithm, such

as chunk size in CSS, will result in larger execution time. The factors had better be refined to reduce the

wasted considerable execution time if the executable code will be executed repeatedly. It seems that the

overhead from refining the attributes can be neglected because of its advantage. After all, to increase the

accuracy is to increase efficiency. The flow chart of refining system is shown in Figure 11. The programmer

can determine whether to use refining system before deriving an ideal loop-scheduling algorithm for the

program or not. When using the refining system, the programmer can also decide the number of loop-

scheduling algorithms selected by inference engine.

5XQ � DSSOLFDWRQV

DSSO\LQJ GLIIHUHQW

DOJRULWKPV

3URGXFH SURILOH

0RGLI\ WKH DWWULEXWHV

LQ NQRZOHGJH EDVH

<HV

1R

6FKHGXOLQJ

PHWKRG

VHOHFWHG

$QDO\]H SURILOH

LQIRUPDWLRQ

5HILQH WKH

6\VWHP"

,QIHUHQFH (QJLQH

VHOHFWV � DGHTXDWH

VFKHGXOLQJ

PHWKRGV LQ OLEUDU\

Figure 11: Flow chart of refining system

14

3.3 Run-Time Parallelization

The method of parallelizing our general inspector is to partition the entire range of iterations into consec-

utive segments, after which each segment is assigned to a different thread. Each thread produces a valid

parallel schedule for iterations in its segment and ignores any dependence with other iterations outside of

its segment. After all segments have finished, we have a schedule for each segment. Every such schedule,

called a sub-schedule, is a mapping from the iterations in the corresponding segment to the wavefronts of

that segment. The overall schedule is formed by concatenating the sub-schedules according to the order

of the segments in entire range of iterations. The number of segments can be set appropriately, and intu-

itively, we will set the number of processors to this number. However, if the number of segments is larger,

then it will increase the total number of wavefronts (i.e., depth) in overall schedule. A larger number of

wavefronts implies that there are fewer iterations in each wavefront, and then it will decrease the speedup

of run-time parallelization.

The executor performs the overall schedule extracted by the general parallel inspector. As a rule of

thumb, the executor performs the sub-schedule of each segment in order, i.e., visits the first wavefront

from first to last in a segment, then does for next segment’s first wavefront closely, and continues until

the last wavefront of the last segment have been visited. Every wavefront is sequentially executed, and,

ideally, all iterations in the same wavefront are executed concurrently. In practice, iterations in the same

wavefront are partitioned into equal-sized chunks and every chunk is enclosed in one thread. The number

of threads is automatically adapted according to the number of iterations in each wavefront by calling

function auto-adapted, and then the threads scheduled by OSF/1 operating system can be executed in

parallel manner.

Now, we will explain why the auto-adapted function is used in the executor phase. In the inspector

phase, the number of iterations in each wavefront will vary according to the distribution of data dependence

in a loop. Therefore not all wavefronts will have great quantities of iterations to obtain good parallelism.

In practice, if the executor engages large number of threads for a wavefront which has fewer iterations,

then it will incur additional run-time overheads or even let the iterations execute in sequential manner

(when number of threads > number of iterations in wavefront). Conversely, if the executor engages fewer

threads for a wavefront which has more iterations, then we cannot obtain the deserved parallelism.

Table 4: The auto-adapted mapping function.
Number of iterations 1 2 ∼8 ∼16 ∼32 ∼64 ∼128 ∼
Number of threads 1 2 3 4 5 6 8 12

For the sake of efficiency, we propose a strategy to solve above the problems, to get a tailored number

of threads for each wavefront; threads are dynamically engaged to a wavefront according to the number

of iterations in it. The auto-adapted function is a mapping function that maps number of iterations in

a wavefront to number of threads. For example, the auto-adapted function for our system (4 processors)

is shown in Table 4. It should be noted that this mapping function would be modified according to the

15

system environment.

We will now compare the methods described in this paper with several other techniques that have been

proposed to analyze and schedule DO loops at run-time. Most of this work has concentrated on developing

inspectors. A high level comparison of the various methods is given in Table 5. Since the process of the

inspector uses to find the wavefronts can be parallelized fully without any synchronization. Our executor

can execute the loop iterations concurrently.

Table 5: Comparison of the characteristics of several methods. The superscripts have the following mean-
ings: 1. Our parallel inspector perhaps cannot get an optimal schedule. 2. The bit-vector atomic
operation must be applied to avoid the use of global synchronization. Since most of parallel machines
don’t provide this operation, the performance of this run-time method is degraded.

Methods Get optimal No sequential No global No restrict No merge No large local Integrate
schedule portions syn. type of loops between pro. mem. required in compiler

Our Method No1 Yes Yes Yes Yes Yes Yes

Zhu and Yew No Yes No Yes Yes Yes No
Midkiff and Padua Yes Yes No Yes Yes Yes No

Chen et al. No Yes No Yes Yes Yes Yes
Rauchwerger et al. Yes Yes Yes Yes No No Yes

Saltz et al. Yes No No No Yes Yes Yes
Leung and Zahorjan Yes Yes No No Yes Yes Yes

Sheng et al. Yes Yes Yes2 Yes Yes Yes No

4 Experimental Results

4.1 Performance of PPD

To evaluate the performance of PPD for PFPC, experiments were performed using both practical and

contrived data. The practical data included two numerical packages, LINPACK and EISPACK, while the

contrived data included several examples that appeared in other papers. Another program parallelization

restructurer, Parafrase-2, was also applied to the same testing data, and the results compared with those

from our design. LINPACK and EISPACK are two well-known numerical packages. LINPACK is a

collection of FORTRAN subroutines that analyze and solve various systems of simultaneous linear algebraic

equations, while EISPACK is a collection of subroutines for evaluating the eigenvalues of matrices. Because

of their systemization and representatives, the packages have been widely adopted as benchmark programs

[16]. There is total of 256 DO loops distributed across the 52 subroutines in LINPACK. PPD was able to

exploit 51 DOALL loops and 0 DOACROSS loops, as was Parafrase-2. In the experiments using LINPACK,

we have examined all the DOALL loops detecting by PPD and Parefrase-2 carefully. PPD was able to

exploit the same 51 DOALL loops as Parafrase-2 was. Because there is no DO loop that can be translated

into DOACROSS loop by using our algorithm in the experiments of LINPACK. So, we show the other

experiments for demonstrating the DOACROSS loops detected by using PPD.

There are a total of 657 DO loops distributed across the 77 subroutines in EISPACK. PPD was able

to exploit 185 DOALL loops and 7 DOACROSS loops, while Parafrase-2 was able to exploit only the 185

DOALL loops. If there is a constant dependence distance in the loop, PPD will record the information for

16

generating the synchronization statements, and translate that loop into DOACROSS loop during codegen

phase. In our version, Parafrase-2 cannot detect the DOACROSS loops, so PPD was able to exploit 7

DOACROSS loops in the experiments using EISPACK, while Parafrase-2 was not. Comparative results

are shown in Table 8. PPD translated the loops into DOALL or DOACROSS loops conservatively. So,

it is not possible that PPD mistakenly marks non-DOALL loops as DOALL or non-DOACROSS loops as

DOACROSS.

The practical data, as shown in Figure 12(a), is a program segment that computing the transitive

closure of an adjacency matrix. Only loop K could be transformed into a DOALL loop by PPD, as shown

in Figure 12(b), while loops J and K are both transformed into DOALL loops by Parafrase-2, as shown

in Figure 12(c), but, parallelizing loop J seems wrong. We expose the mistake as follows: Suppose that

the iteration vector of the accesses A(I, K) is (J, I, K), and the one of the access A(J, K) is (J ′, I ′, K ′).

If loop J is a DOALL loop, then we cannot ensure execution order between, say (J, I, K) = (2, 3, 4) and

(J ′, I ′, K ′) = (3, 2, 4), with the result that the anti-dependence at memory location A(3, 4) can not be

preserved.

DO 10 J=1, 1000

DO 20 I=1, 1000

IF (A(J, I) .EQ. .TRUE.) THEN

DO 30 K=1, 1000

IF (A(I, K) .EQ. .TRUE.) THEN

A(J, K)= .TRUE.

END IF

30 CONTINUE

END IF

20 CONTINUE

10 CONTINUE

(a)

DO 10 J=1, 1000 CDOALL 10 J=1, 1000

DO 20 I=1, 1000 DO 20 I=1, 1000

IF (A(J, I) .EQ. .TRUE.) THEN IF (A(J,I) .EQ. .TRUE.) THEN

C DOALL 30 K=1, 1000 CDOALL 30 K=1, 1000

DO 30 K=1, 1000 IF (A(I,K) .EQ. .TRUE.) THEN

IF (A(I, K) .EQ. .TRUE.) THEN A(J,K)= .TRUE.

A(J, K)= .TRUE. END IF

END IF 30 CONTINUE

30 CONTINUE END IF

C ENDALL 30 20 CONTINUE

END IF 10 CONTINUE

20 CONTINUE

10 CONTINUE

(b) (c)

Figure 12: The transitive closure program.

4.2 Performance of IPLS

To demonstrate the performances of IPLS, there are two experimentations on UMA system and NUMA

system, the first one concerns each execution time and speedup of above ten applications, and the other

17

is a combined program, including ten applications. Under the implementation on UMA system, which is

2-processor machine, the execution time and the corresponding speedup are shown in Table 6.

Table 6: The execution time (ms)/speedup of 11 applications applying different scheduling algorithms.
Applications SERIAL CSS/2 GSS TSS Factoring SSS AHS IPLS

Adj Con 20104/1 15042/1.337 15055/1.335 10398/1.933 13974/1.439 12359/1.627 12352/1.628 as TSS
Gauss Eli 365359/1 256945/1.422 197157/1.853 202922/1.8 195016/1.873 208055/1.756 196852/1.856 as Factoring
Gauss Jor 7765/1 4245/1.829 5587/1.39 5599/1.387 5266/1.475 4333/1.792 4391/1.768 as CSS/2

Jacobi Iter 14047/1 10109/1.39 12836/1.094 12656/1.11 13125/1.07 9802/1.433 9758/1.44 as AHS
LU 40995/1 28094/1.459 33521/1.223 34356/1.193 33071/1.24 28505/1.438 28432/1.442 as CSS/2

Matrix Mul 23453/1 12281/1.91 12095/1.939 12229/1.918 12214/1.92 12187/1.924 12203/1.922 as CSS/2
Radj Con 27235/1 21274/1.28 14719/1.85 15587/1.747 15255/1.785 14336/1.9 15477/1.76 as SSS

SOR 109062/1 76891/1.418 82594/1.32 83943/1.299 86742/1.257 77376/1.41 77680/1.404 as CSS/2
Spath 63063/1 57032/1.106 58867/1.071 43146/1.462 61547/1.025 38126/1.654 38797/1.625 as SSS

Tran Clos 479188/1 298312/1.606 308844/1.552 325430/1.472 310469/1.543 295922/1.619 296078/1.618 as SSS
If Then 17125/1 9682/1.769 9693/1.767 8595/1.992 8667/1.976 8656/1.978 8620/1.987 as AHS

GSS performs poorly for Adjoint Convolution because the workload of iterations is decreasing, and TSS

is the most efficient algorithm for Adjoint Convolution. CSS/2 is suitable for the applications like Gauss

Jordan Elimination with random unbalanced workload, LU Decomposition with decreasing unbalanced

workload, and SOR with uniform balanced workload respectively. Factoring scheduling algorithm is suitable

for Gauss Elimination with random balanced workload. SSS is suitable for the applications like Reverse

Adjoint Convolution with increasing unbalanced workload, All Pairs Shortest Paths with random balanced

workload, and Transitive Closure with random unbalanced workload respectively. AHS is suitable for Jacobi

Iteration with random unbalanced workload. We can find that none of six scheduling algorithms on UMA

system is suitable for all applications. Alternatively, IPLS can choose an appropriate scheduling algorithm

and get good performance for most applications except Matrix Multiplication and If Then application. In

the case of Matrix Multiplication, IPLS does not apply the optimal approach, GSS, but chooses CSS/2,

because the workload of iterations in this program is uniform. Whereas the number of processor, 2, is so

small that CSS cannot exploit the ability fully. In the case of If Then application, IPLS does not apply

the optimal approach, TSS, but chooses AHS, because AHS is suitable for random workload of iterations

in the program. The reason for not selecting an optimal approach is like the case of Matrix Multiplication.

Although the selection of scheduling algorithms is not absolute accurate, we can solve the problem by

refining the attributes causing the error. Refining system in IPLS will be used afterwards. Traditionally,

once a scheduling algorithm is used, it will be used through the entire program. But in IPLS, it can always

choose an appropriate scheduling algorithm according to the behaviors of the loops among one program.

As the second experiment, IPLS chooses different scheduling algorithms for each loop in the combined

program integrated from the above eleven applications. For example, according to the loop behaviors,

IPLS selects TSS for the Adjoint Convolution part of the combined program and factoring for the Gauss

Elimination part, instead of only one scheduling method. Table 7 shows the experimental execution time

and the corresponding speedup for the combined program.

Table 7: The execution time (ms)/speedup of the combined program for different scheduling algorithms.
Applications Serial CSS/2 GSS TSS Factoring SSS AHS IPLS

All 1167396/1 789907/1.477 750968/1.554 754511/1.547 755346/1.545 709657/1.645 700640/1.666 693687/1.683

18

4.3 Performance of PFPC on Windows NT

Finally, we demonstrate the performance of PFPC, ten examples are used for DOALL loop parallelization

of S2m. Figures 13, 14 and 15 show the speedups of adjoint convolution, Gaussian elimination, matrix

multiplication, reverse adjoint convolution, transitive closure, SOR, Jacobi iteration, Gaussian-Jordan

elimination, LU decomposition, and all pairs shortest paths by using different program sizes loop. In

the experiments, CSS is used to partition every example and obtain their corresponding performances.

Obviously, speedup of parallel version is always higher than serial version. So, the S2m translator used in

Windows NT can perform high speedup on multiprocessor systems. Particularly, for the loop with uniform

workload, such as matrix multiplication shown in Figure 13 (c), it can achieve higher speedup, since the

CSS is suitable for the uniform workload loop.

+d, +e,

+g,+f,

Dgmrlqw Frqyroxwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@83 Q@433 Q@483

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Pdwul{ Pxowlsolfdwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@633 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Uhyhuvh Dgmrlqw Frqyroxwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@83 Q@433 Q@483

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Jdxvvldq Holplqdwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@633 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Figure 13: Part I: partial results of DOALL examples.

We examine the characteristics of adjoint convolution and reverse adjoint convolution. In Figure 16

(a), because adjoint convolution is with decreasing workload, we distribute 1/3 of all workload to the first

thread and 2/3 of workload to the second thread. As a result of workload is balanced, the speedup is

raised. Moreover, in Figure 16 (b), because reverse adjoint convolution is with increasing workload, we

distribute 2/3 of all workload to the first thread and 1/3 of workload to the second thread. As a result

of workload is balanced, the speedup is raised. Furthermore, for loop of increasing workload, GSS can

distribute workload more balanced, so its speedup is raised again.

In order to compare performances of different loop partition algorithms, we examine five representative

applications. Figure 17 shows speedup when applications was run with different loop-partitioning algo-

19

+h, +i,

+j, +k,

Wudqvlwlyh Forvxuh

3

315

317

319

31;

4

415

417

419

41;

5

Q@633 Q@833 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

VRU

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@633 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Mdfrel Lwhudwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@633 Q@833 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Jdxvv0Mrugdq Holplqdwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@633 Q@933

Orrs Vl}h
V
s
h
hg
x
s

Vhuldo

Sdudooho

Figure 14: Part II: partial results of DOALL examples.

rithms and arguments. For adjoint convolution and reverse adjoint convolution, Factoring obtains highest

performance. For matrix multiplication and transitive closure, CSS/2 obtains highest performance. For

Gaussian elimination, TSS obtains highest speedup.

We compared the performance of applications that run in various operating systems, such as OSF/1

and Windows NT. Due to machine architectures are different, such as the number of CPUs. In OSF/1,

the machine has four CPUs. In Windows NT, our target machine has two CPUs. Speedup is compared

between OSF/1 and Windows NT, and speedup which obtained in OSF/1 must be divided by 2 before

comparing each other. We still use five representative applications. The program size of adjoint convolution

and reverse adjoint convolution are 150× 150. The program size of Gaussian elimination is 750× 750. The

program size of matrix multiplication is 600× 600. The program size of transitive closure is 1000× 1000.

The speedup of applications which run in the two operating system show in Figure 18.

Figure 19 (a) shows the speedup of loop with distance 4. By using doacross scheduling, parallel version

can obtain higher performance than serial version. Figure 19 (b) shows the speedup of loop with anti-

dependence and distance 2. Due to synchronization and scheduling overhead is large, the speedup is not

good as we expected. But parallel version is still better than serial version.

In Figure 20, four examples with different types of loops are given to show the performance obtained

by using CSS scheduling method and the experimental environment described in the previous. In Figure 20

(a), every iteration of the outer loop has a constant workload. Figure 20 (b) is with an increase workload

and Figure 20 (c) is with a random workload. Both of them are originally obtained from the Perfect

20

+l, +m,

OX Ghfrpsrvlwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@633 Q@833 Q@933

Orrs Vl}h

V
s
h
hg
x
s

Vhuldo

Sdudooho

Doo Sdluv Vkruwhvw Sdwkv

3

315

317

319

31;

4

415

417

419

41;

5

Q@633 Q@833 Q@933

Orrs Vl}h

V
s
h
hg
x
s

Vhuldo

Sdudooho

Figure 15: Part III: partial results of DOALL examples.

+d, +e,

Dgmrlqw Frqyroxwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@573 Q@633

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

FVV25

Dgmxvwphqw

Uhyhuvh Dgmrlqw Frqyroxwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@573 Q@633

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

FVV25

Dgmxvwphqw

JVV

Figure 16: Results of adjusted adjoint and reverse adjoint convolution.

Club identified by other researchers as being parallel but not made parallel by current compilers [1, 7]. In

Figure 20 (d) is a synthetic loop with non-constant dependence distance and also has an increase workload.

In runtime, parallel version is obviously better than serial version. Although the speedup of a program

with parallel inspector is better than with sequential inspector, the experimental results are not satisfactory.

The results can be improved by using various scheduling strategy or adding the number of CPU.

4.4 Related Work

The Parafrase-2 compiler, a famous parallelizing compiler developed by Illinois University, aims at develop-

ing a source-to-source multilingual restructuring compiler and provides a reliable, portable, easy to extend,

and powerful research tool for exploring program transformation about parallelizing compiler. Normally,

the parallelizing compiler consists of two principal components, the front-end and the back-end . The front-

end of parallelizing compiler consists of the scalar analysis and data dependence analysis , which detect

dependence relations between procedures or statements and extract the parallelizable code segments for

back-end to generate parallel executable codes. The task of the back-end is to generate parallel machine

codes for some multiprocessor systems from its intermediate representation by using the analysis results

21

Dojrulwkpv zlwk gliihuhqw orrs sduwlwlrq

3

315

317

319

31;

4

415

417

419

41;

5

DgmFrqy UhyDgm Jdxvvldq Pdwul{ WudqFro

Dssolfdwlrqv

V
s
hh
g
x
s

FVV24

FVV25

FVV27

JVV

WVV

Idfwrulqj

Figure 17: Result of different loop-partitioning algorithms.

gathered in the front-end [5, 6]. This compiler supports preprocessor and postprocessor for C and FOR-

TRAN languages together with an intermediate representation. The preprocessor is used to transform each

input source code to the intermediate representation together with its corresponding set of data structures,

and the postprocessor is used to recreate the source program. The Parafrase-2 compiler is executed by a

pass list file consisting of several passes, each of which operates on the data structures and transforms the

input into some suitable form for subsequent execution. Parafrase-2 compiler coded by C language has a

convenient user interface, provides a means for user interaction at several levels during the transformation

processes, and also has high portability.

A new parallelizing compiler, called Polaris, is developed at the Center for Supercomputing Research

and Development (CSRD) in University of Illinois [1]. Polaris includes a powerful basic infrastructure for

manipulating FORTRAN programs and a number of improved analysis and transformation passes, notable

subroutine inline expansion, symbolic analysis, induction and reduction variable recognition, data depen-

dence analysis, array privatization, and runtime analysis. The most important techniques implemented in

Polaris resulted from a study of the effectiveness of commercial Fortran parallelizers. They compiled the

Perfect Benchmarks, a collection of conventional Fortran programs representing the typical workload of

high-performance computers, for the Alliant FX/80, an eight-processor multiprocessor popular in the late

1980s. For each program, they measured the quality of the parallelization by computing the speedup the

ratio of a program’s sequential execution time to the execution time of the automatically parallelized ver-

sion. Their study showed that extending the four most important analysis and transformation techniques

traditionally used for vectorization leads to significant increases in speedup. However, it is important to

note that Polaris’ innovation is in improved recognition of parallelism, which is a necessary step for porting

programs to any parallel machine available today.

Because independently developing an entire infrastructure is prohibitively expensive, compiler re-

22

Frpsdulvrq zlwk ydulrxv RV

3

315

317

319

31;

4

415

417

419

41;

5

DgmFrqy UhyDgm Jdxvvldq Pdwul{ WudqFro

Dssolfdwlrqv

V
s
hh
g
x
s

Zlqgrzv QW+5 fsx,

RVI24+5 fsx,

Figure 18: Comparison of speedup between OSF/1 and Windows NT.

+d, +e,

H{dpsoh 4

3

315

317

319

31;

4

415

417

419

41;

5

Q@5833 Q@6833 Q@8333

Orrs Vl}h

V
s
hh
g
x
s

Vhuldo

Sdudooho

H{dpsoh 5

3

315

317

319

31;

4

415

417

419

41;

5

Q@5333 Q@5833 Q@6333

Orrs Vl}h

V
s
hh
g
x
s

Vhuldo

Sdudooho

Figure 19: Results of DOACROSS examples.

searchers would benefit greatly from sharing investments in infrastructure development. Toward that end,

they are making the SUIF (Stanford University Intermediate Format) compiler system available to others.

They have developed SUIF as a platform for their research on compiler techniques for high-performance

machines. It is powerful, modular, flexible, clearly documented, and complete enough to compile large

benchmark programs. Their group has successfully used SUIF to perform research on topics including

scalar optimizations, array data dependence analysis, loop transformations for both locality and parallelism,

software prefetching, and instruction scheduling. Ongoing research projects using SUIF include global data

and computation decomposition for both shared and distributed address space machines, communication

optimizations for distributed address space machines, array privatization, interprocedural parallelization,

and efficient pointer analysis. The SUIF toolkit contains a variety of compiler passes. Fortran and ANSI

C front ends are available to translate source programs into SUIF. The system includes a parallelizer that

23

+d, +e,

+f, +g,

Xqlirup zrunordg

3

315

317

319

31;

4

415

417

419

41;

5

Q@6333 Q@8333 Q@43333

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Vhtxhqwldo Lqvs1

Sdudooho Lqvs1

Lqfuhdvlqj zrunordg

3

315

317

319

31;

4

415

417

419

41;

5

Q@5333 Q@5833 Q@6333

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Vhtxhqwldo Lqvs1

Sdudooho Lqvs1

Udqgrp zrunordg

3

315

317

319

31;

4

415

417

419

41;

5

Q@5333 Q@8333 Q@43333

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Vhtxhqwldo Lqvs1

Sdudooho Lqvs1

Qrq0frqvwdqw ghshqghqfh glvwdqfh dqg lqfuhdvlqj zrunordg

3

315

317

319

31;

4

415

417

419

41;

5

Q@4833 Q@5833 Q@8333

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Vhtxhqwldo Lqvs1

Sdudooho Lqvs1

Figure 20: Results of runtime parallelization.

can automatically find parallel loops and generate parallelized code. A SUIF-to-C translator allows us to

compile the parallelized code on any platform to which our parallel run-time library has been ported. The

system provides many features to support parallelization: data dependence analysis, reduction recognition,

a set of symbolic analyses to improve the detection of parallelism, and unimodular transformations to

increase parallelism and locality. Scalar optimizations such as partial redundancy elimination and register

allocation are also included.

In our PPD, the ZIV/I test is used for checking if the linear equation formed by array subscript has

an appropriate integer solution. Besides, we also proposed two ad hoc techniques that look for the trivial

contradiction on direction vectors to improve the drawbacks of traditional subscript-by-subscript testing

mechanism. PPD could detect the DOALL loops and DOACROSS loops which include synchronization

directives. In Parafrase-2, only GCD Test and Banerjee Test are employed on the builddep pass. The

accuracy of GCD and Banerjee tests is less than that uses the I test. Besides, Parafrase could not detect

the DOACROSS loops in a source program.

Traditionally, the parallelizing compiler dispatches the loop by using only one scheduling algorithm,

either static or dynamic. However, programs have different kinds of loops, including uniform workload,

increasing workload, decreasing workload, and random workload, loops, and every scheduling algorithm can

achieve good performance on a different loop style. To reduce the overhead and enhance load balancing,

the knowledge-based approach is feasible solution for parallel loop scheduling. An approach that integrates

24

existing static and dynamic scheduling algorithms and makes good use of their advantages is proposed

in the paper. We can use this approach to choose an appropriate scheduling algorithm base on some

features that include the loop style, loops bound, system status, data locality, and synchronization overhead,

and then apply the resulting algorithm to schedule the DOALL loop on processors. In this paper, we

concentrate on the fundamental phase, parallel loop scheduling, in parallelizing compilers running on

multiprocessor systems. A new model exploiting loop parallelization using knowledge-based techniques

is proposed. The knowledge-based approach integrates existing loop schedules to make good use of their

abilities in extracting more parallelism. Experimental results show that the high speedup obtained by using

IPLS on multiprocessors is obvious. Furthermore, for system maintenance and extensibility, our approach

is obviously superior to others. In addition, a run-time technique based on the inspector-executor scheme is

proposed to find available parallelism on loops. Our inspector can determine the wavefronts by building a

DEF-USE table for each loop of a program. The process of the inspector for finding the wavefronts can be

parallelized fully without any synchronization. Our executor can execute the loop iterations concurrently.

Additionally, our compiler is highly modularized so that porting to other platforms is very easy, and it

can partition parallel loops into multithreaded codes based on several loop-partitioning algorithms. The

experimental results clearly show that the compiler achieves good speedup on Windows NT OS.

5 Conclusions

This paper describes the design and implementation of an efficient and parallelizing compiler to parallelize

loops and achieve high speedup rates on multiprocessor systems. We first introduce how to design a portable

FORTRAN parallelizing compiler (PFPC) on a multiprocessor system by multithreading operating system

OSF/1. The main contribution of this paper is described as follows. A model of FORTRAN parallelizing

compiler on multithreading OSF/1 was also proposed in this paper. This paper also reviewed the practical

parallel loop detector (PPD) that was implemented in PFPC on finding the parallelism in loops as well.

Furthermore, if DOACROSS loops are available, an optimization of synchronization statements are made.

Experimental results showed that PPD was more reliable and accurate than previous approaches. In

addition, a new model by using knowledge-based techniques was proposed to exploit more loop parallelisms

in this paper. A new model exploiting loop parallelization using knowledge-based techniques is proposed.

The knowledge-based approach integrates existing loop schedules to make good use of their abilities in

extracting more parallelism. Experimental results show that the high speedup obtained by using IPLS

on multiprocessors is obvious. Furthermore, for system maintenance and extensibility, our approach is

obviously superior to others. In addition, a run-time technique based on the inspector-executor scheme is

proposed to find available parallelism on loops. Our inspector can determine the wavefronts by building a

DEF-USE table for each loop of a program. The process of the inspector for finding the wavefronts can be

parallelized fully without any synchronization. One of the ultimate goals is to construct a high-performance

and portable FORTRAN parallelizing compiler on shared-memory multiprocessor systems.

25

References

[1] W. Blume, R. Eigenmann, J. Hoeflinger, and D. Padua, P. Petersen, L. Rauchwerger, P. Tu, “Automatic detection of
parallelism: A grand challenge for high-performance computing,” IEEE Parallel & Distributed Technology , 2(3):37-47,
Fall 1994.

[2] J. Boykin, D. Kirschen, A. Langerman, and S. LoVerso, Programming under Mach, Addison Wesley, 1993.

[3] K. D. Cooper et al., “The ParaScope parallel programming environment,” Proc. IEEE , 81(2):244-263, Feb. 1993.

[4] Y. W. Fann, C. T. Yang, C. J. Tsai, and S. S. Tseng, “IPLS: An intelligent parallel loop scheduling for multiprocessor
systems,” Proc. of ICPADS’98 , Tainan, Taiwan, pp. 7751-782, Dec. 1998.

[5] C. D. Polychronopoulos, Parallel Programming and Compilers, Kluwer Academic Publishers, MA, 1988.

[6] C. D. Polychronopoulos, “Parafrase-2: An environment for paralleling, partitioning, synchronizing, and scheduling
programs on multiprocessors,” Int’l. J. High Speed Computing , 1(1):45-72, Jan. 1989.

[7] L. Rauchwerger, N. M. Amato, and D. Pauda, “Run-time methods for parallelizing partially parallel loops,” in Proc.
1995 Int’l. Conf. Supercomputing , Barcelona, Spain, July 1995.

[8] R. P. Wilson et al., “SUIF: An infrastructure for research on parallelizing and optimizing compilers,” ACM SIGPLAN
Notices, 29(12):31-37, Dec. 1994.

[9] M. Wolfe, High-Performance Compilers for Parallel Computing, 137-162, Addison-Wesley Publishing, New York, 1995.

[10] C. T. Yang, S. S. Tseng, and C. S. Chen, “The anatomy of parafrase-2,” Proceedings of the National Science Council
Republic of China (Part A), 18(5):450-462, Sep. 1994.

[11] C. T. Yang, S. S. Tseng, C. D. Chuang, and W. C. Shih, “Using knowledge-based techniques on loop parallelization for
parallelizing compilers,” Parallel Computing , 23(3):291-309, May 1997.

[12] C. T. Yang, S. S. Tseng, and M. C. Hsiao, “A model of parallelizing compiler on multithreading operating systems,”
Int’l. J. of Modelling and Simulation, 18(1):9-15, 1998.

[13] C. T. Yang, S. S. Tseng, M. H. Hsieh, and S. H. Kao, “An efficient run-time parallelization for do loops,” J. of Info.
Sci. and Eng. — Special Issue on Compiler Techniques for High-Performance Computing , vol. 14, no. 1, pp. 237-253,
1998, the previous version in Proc. ICPADS’97 , Korea, pp. 308-313, Dec. 1997.

[14] C. T. Yang, S. S. Tseng, M. C. Hsiao, and S. H. Kao, “A portable parallelizing compiler with loop partitioning,” to
appear in Proceedings of the National Science Council Republic of China (Part A), 1999.

[15] C. T. Yang, C. T. Wu, and S. S. Tseng, “PPD: A practical parallel loop detector for parallelizing compilers on multi-
processor systems,” IEICE Trans. Information and Systems, vol. E79-D, no. 11, pp. 1545-1560, Nov. 1996, the previous
version in Proc. ICPADS’96 , 274-281, Japan, June 1996.

[16] H. P. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers, Addison-Wesley Publishing and ACM
Press, New York, 1990.

26

Table 8: The comparative result using EISPACK.
LINPACK Parafrase-2 PPD PPD LINPACK Parafrase-2 PPD PPD
subroutines no. of no. of no. of subroutines no. of no. of no. of

list DOALL DOALL DOACR list DOALL DOALL DOACR

bakvec.f 2 2 1 balanc.f 5 5 0
balbak.f 1 1 0 bandr.f 8 8 0
bandv.f 3 3 0 bisect.f 1 1 0
bqr.f 5 5 0 cbabk2.f 1 1 0
cbal.f 5 5 0 cdiv.f 0 0 0
cg.f 0 0 0 ch.f 2 2 0

cinvit.f 5 5 0 combak.f 1 1 0
comhes.f 2 2 0 comlr2.f 12 12 0
comlr.f 4 4 0 comqr2.f 9 9 0
comqr.f 2 2 0 cortb.f 2 2 0
corth.f 2 2 0 csroot.f 0 0 0
elmbak.f 1 1 0 elmhes.f 2 2 0
eltran.f 4 4 0 epslon.f 0 0 0
figi2.f 1 1 0 figi.f 0 0 0
foo.f 1 1 0 hqr2.f 6 6 0
hqr.f 2 2 0 htrib3.f 3 3 0

htribk.f 3 3 0 htrid3.f 0 0 0
htridi.f 3 3 0 imtql1.f 0 0 1
imtql2.f 0 0 1 imtqlv.f 1 1 0
intvit.f 6 6 0 minfit.f 10 10 0
ortbak.f 2 2 0 orthes.f 2 2 0
ortran.f 4 4 0 otqlrat.f 2 2 1
pythag.f 0 0 0 qzhes.f 5 5 0
qzit.f 0 0 0 qzval.f 0 0 0
qzvec.f 2 2 0 ratqr.f 3 3 0
rebak.f 0 0 0 rebakb.f 0 0 0
reduc2.f 0 0 0 reduc.f 0 0 0

rg.f 0 0 0 rgg.f 0 0 0
rs.f 0 0 0 rsb.f 0 0 0
rsg.f 0 0 0 rsgab.f 0 0 0

rsgba.f 0 0 0 rsm.f 0 0 0
rsp.f 2 2 0 rst.f 2 2 0
rt.f 0 0 0 svd.f 14 14 0

tinvit.f 5 5 0 tql1.f 1 1 1
tql2.f 1 1 1 tqlrat.f 2 2 1

trbak1.f 1 1 0 trbak3.f 0 0 0
tred1.f 5 5 0 tred2.f 9 9 0
tred3.f 1 1 0 tridib.f 1 1 0
tsturm.f 6 6 0

27

