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Abstract

The best approach to parallelize multidimensional FFT algorithms has long been under de-

bate. Distributed transposes are widely used, but they also vary in communication policies and

hence performance. In this work we analyze the impact of di�erent redistribution strategies on

the performance of parallel FFT, on various machine architectures. We found that some re-

distribution strategies were consistently superior, while some others were unexpectedly inferior.

An in-depth investigation into the reasons for this behavior is included in this work.

Introduction

The performance of a parallel FFT algorithm depends on its scalar performance, eÆciency of com-

munication and load balance. Of these the best approach to communication eÆciency is most

debated, since near optimal load balance [15] and scalar performance are easily achieved (a com-

prehensive list of fast scalar FFT's can be found at http://www.�tw.org). In this paper we consider

the impact of di�erent communication approaches on the performance of the parallel FFT's in an

attempt to identify strategies that perform uniformly well on di�erent platforms.

An FFT algorithm presents a wide array of choices for parallelization. One can use transpose



based FFT's as opposed to the distributed ones. In a transpose based FFT, at least one data

dimension resides within the nodes at all times. The data distribution typically starts with at

least one dimension local and one or more of the other dimensions parallel. The local dimension

is transformed within the node, followed by a transpose. The transpose could be local if the next

dimension is sequential, or distributed if it is parallel. The transform itself is again local. The

same process is repeated for the third dimension if it exists. The distributed FFTs place no locality

restriction on any dimension. Here each dimension can be parallel, and pair-wise data exchange

takes place between nodes whenever non-local data are needed for the transform [6]. As a result,

communication is interspersed with computation for each parallel dimension, and the optimized

scalar FFT routines cannot be used. The range of communication is shorter in this method, but the

volume of data transferred is higher. Within each of these two broad categories there are several

alternatives for data distribution, and interprocessor communications [3, 11]. We concentrate on

the second category, since we consistently found distributed FFT's to be slower than the transpose

based ones, as also indicated in [7]. The distributed FFT's are useful only when the data distribution

constraints are favorable to them, for example when every dimension of the transform is parallel,

or when the data are distributed in block scattered fashion [6]. The typical data distribution for

applications using the parallel FFT is one where at least one of two or three dimensions is local.

Without any loss of generality, here we consider a three dimensional distribution with the third

dimension distributed over the processors.

The communication costs of the transpose based FFT's are limited to the distributed transpose.

The transpose itself can be based on di�erent communication policies such as collective versus

point-to-point communications, blocking versus non blocking protocols. We have incorporated

these variations in the di�erent kernels of the distributed transpose to study their impact on

the performance with di�erent machine architectures. All the implementations use MPI based

communications, in the interest of portability [8, 12]. They were analyzed using Medea [5], a tool

for workload characterization and performance diagnosis of parallel applications.

This work has a wider implication. Its results are applicable to codes that have large volumes of

structured data transfer [4]. The results also pin point the causes for the loss in performance, and



show some surprising deviations from theoretical expectations.

Analysis Strategy

The parallel performance of a code is dependent upon some factors which are inherent in a machine

(topology of the interconnecting networks, latency, bandwidth, routing strategies and eÆciency of

the underlying communication protocols), and some which are under the control of the applica-

tion programmers. These are: selection of appropriate protocols (e.g. point-to-point vs collective,

blocking vs non-blocking communications in MPI), and scheduling the data transfers to maximally

utilize the available bandwidth. For this study we have created �ve di�erent kernels of the dis-

tributed transpose (and hence parallel FFT) that highlight these variations in protocol and transfer

schedules.

The kernels were run on two di�erent machines and their behavior was analyzed. The machines used

in this study are IBM Sp2 and Cray T3E. They represent two very di�erent architectures commonly

used in the parallel computing framework. They di�er in all of the basic parallel paradigms; memory

addressing, interconnection networks, communication models, routing strategies and the system

software controlling individual nodes. The IBM Sp2 is a distributed memory machine with message

passing as the communication model. It has multi stage interconnecting network with a �xed multi

path routing [1, 14]. Each node runs a full operating system (AIX 4.1/POE) as its system software.

On the other hand, the Cray T3E has virtual shared memory as its communication model. The

interconnection network is a three dimensional torus with multiple path adaptive routing [13]. A

microkernel (UNICOS/mk) controls the running of individual nodes. In addition to these hardware

and software di�erences, the load of the two systems, i.e, simultaneously active parallel runs and

interactive users, is very di�erent and leads to di�erent communication characteristics.There are

several studies addressing speci�c machine characteristics [10, 16, 2]. In this work we have ignored

the machine peculiarities, instead we have focused on the e�ective exploitation of potentialities of

both the machines and the communication strategies.



All the FFT kernels use MPI-1 for portability. There is no performance loss from this choice since

both machines have extremely eÆcient implementations of MPI. All the kernels have the same

initial and �nal data distributions though the two distributions di�er (we have not included the

additional transpose needed to restore the data distribution). The amount of computation and

the total volume of data transfer are also identical for all the kernels. The di�erence is in the

number of MPI calls and scheduling of the data transfers. Optimized local FFT's were used in

both the machines with complete load balance at all times, to ensure best possible performance for

each individual implementation. Each of them has been instrumented by adding probes to monitor

various activities (i.e., communications, computations, and data redistributions). These probes

acquire detailed measurements about the monitored activities and collect them into trace�les.

Special care has been taken to minimize the perturbation in the kernel performance due to the

monitoring activity. Trace�les are then processed by Medea to derive high level performance

metrics, like speedup and computation/communication times. The timing reects 10 iterations per

run; each iteration consisting of one forward and one inverse FFT. The data distribution at the end

of one iteration is identical to the data distribution at the beginning of the iteration (the inverse

FFT performs another transpose that restores the data distribution). We have taken special care

to mimic the performance of our FFT kernels to large production runs where the start up costs

become negligible since they are amortized over a very large number of iterations.

FFT Kernels

In this section we give the details of the �ve di�erent kernels used in this study. We de�ne a three

dimensional problem of size of N3, distributed over P processors. The domain decomposition is slab

wise; where only one dimension is parallel at a time, and each processor has N=P planes. The planes

are transformed locally, followed by a distributed transpose, followed by a transform in the third

dimension. The initial data distribution, the �nal data distribution and the volume and range of

data transfer are identical for all the �ve kernels. The distributed transpose is essentially a complete

exchange[4]. It can be done with a single complete exchange step, where all planes are processed

together for communication, or in N=P steps, where each plane initiates its own complete exchange.



The second alternative can theoretically permit the overlap of communication with computation.

The complete exchange itself can be carried out with either point-to-point communications, or

with collective communications such as all-to-all. The point-to-point communications permit more

exibility in the code, since they can be scheduled by the user, and can be used in a non-blocking

mode.

Each kernel has been named based upon its communication mode. The �rst kernel is called The

Replace Kernel, since it uses send receive replace mode of communication. This is a point-to-

point blocking mode that uses the same bu�er for both send and receive. The contents of the bu�er

are replaced by the received data after the send is completed. This kernel processes one plane at a

time, resulting in (P�1)�N=P calls per node ((P�1) calls per plane). The second kernel, calledThe

Standard Kernel uses the standard send and receive calls for communication. This is also a point-

to-point blocking mode of communication. The di�erence from the �rst kernel is that the send and

receives can be scheduled separately and can use di�erent bu�ers. The number of communication

calls issued is twice that of the �rst kernel. The third kernel, The Overlap Kernel, uses non-

blocking send and receive calls in it. Thus by scheduling them carefully it is theoretically possible

to overlap communication with computation, hence better performance. In every other respect,

this kernel is identical to the second one. The �rst three kernels use point-to-point communications.

The fourth kernel is The Oneplane Kernel which uses collective communication all to all for each

plane separately. The number of communication calls issued per node is N=P . The send and

receive bu�ers are di�erent. This kernel could have exploited the communication and computation

overlap, if a non-blocking all to all call had been available. The �fth and �nal kernel, the Allplanes

Kernel, uses the collective communication for all the data on the node at once. Since only one

communication call is issued per node, this kernel has minimum setup overhead. We have not

included the kernels that process all planes together in point-to-point communications, since they

sometimes result in deadlocks.
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Figure 1: Execution times, in log-log scale, for a single FFT step, as a function of the number of

allocated processors, on a Cray T3E (a) and an IBM Sp2 (b).

Performance Results

In this section we analyze the performance of the FFT kernels described in the previous section on

both Cray T3E and IBM Sp2. As a preliminary overview of the kernel performance, Figure 1 plots

the wallclock execution time of a single forward and inverse FFT step as a function of the number

of allocated processors on both the machines. Note that, to improve their readability, these �gures

have been plotted using a log-log scale.

The wallclock time includes all communication and computation timings except the initial startup

times (e.g., broadcast of the problem grid size and its decomposition, initialization of the scalar

one/two dimensional FFT solvers). Figure 2 shows the time spent by each processor, in communi-

cation activities for each of executions depicted in Fig. 1. To improve their readability, also these

�gures use a log-log scale. Since we are interested in comparison of di�erent kernels rather than

the parallel machines, the data sizes and number of processors di�er on the two machines. This

is mainly because the machines themselves di�er in the number of available processors and the

amount of memory available per node. Hence the executions on the Cray T3E solve a grid of

256�256�256 points with a number of processors ranging from 32 up to 256 while the IBM Sp2

executions solve a grid of 128�128�128 points with up to 64 processors.
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Figure 2: Communication times, in log-log scale, for a single FFT step, as a function of the number

of allocated processors, on a Cray T3E (a) and an IBM Sp2 (b).

A few observations can be drawn from these �gures:

1. All FFT kernels scale quite well on both the machines even with relatively large number of

processors.

2. The performances of the kernels relative to each other are similar in both the machines,

despite their architectural di�erences.

3. Minimizing the communication time does not lead to minimum execution time.

4. Overlapping computation and communication may results in reducing performance rather

than enhancing it.

While there is a strong evidence of performance portability from one machine to another, the relative

performance of the FFT kernels is somewhat unexpected. The rule of thumb that minimizing the

communication time will result in maximizing the performance of parallel codes does not always

apply. For example, if we compare the total execution time on the Cray T3E (Fig. 1(a)) with its

communication counterpart (Fig. 2(a)), we can see that the Standard Kernel (with point-to-point

communication) has the minimum communication time but its total execution time is somewhere

in-between. This curious e�ect is because the time spent in MPI calls is just a part of the cost of



managing the communication activities.

Another surprising observation is that one of the worst performing kernel is the one with over-

lapping communication and computation, while the best performing one is the one with a single

MPI Alltoall call. Given the amount of exibility available in scheduling the data transfers, the

outcome was expected to be di�erent. The Cray T3E does not have a separate processor for com-

munication, hence the lack of performance gain in the overlap kernel is not surprising. However, the

actual loss in performance is unexpected. It is even more surprising to see performance loss, and its

extent in the Overlap kernel on the IBM Sp2 machine, since it does have separate communication

processors. For instance, the FFT of a 128�128�128 running on 32 IBM Sp2 processors takes

191ms for the overlap kernel, while the Allplanes kernel takes 91ms only. Also, the di�erence in

timing is not entirely due to communication activities, which is 105ms for the Overlap kernel and

42ms for the Allplanes. That still leaves 37ms timing di�erence unaccounted for. There is very

curious explanation for this which is explained later in the section.

To determine the software costs involved is message passing, we analyzed the performance data

using Medea. Note that by communication time we do not mean time to physically deliver the

message to the destination, but the time spent by the processors to handle the communications (that

is, performing MPI functions). Several tasks have to be accomplished by both the sender/receiver

processors. The sender has to copy the message from the program memory space to system bu�ers.

The issuing process is blocked until the message is either bu�ered or sent. This can result in delay if

the system bu�ers are full. For small messages usually eager protocols, which do not require special

care from the sender, are used. Unfortunately only a very limited number of small messages can be

dispatched with eager protocols due to bu�ering limits. The requirements of real life applications

do not allow communication policies based on eager protocols only but require rendezvous protocols

which require a special handling of outcoming messages. The sender has to ensure that there is

enough bu�er space in the receiver processor before sending the data. Hence it �rst sends a system

message (usually named "envelope") to the destination for reserving the bu�er. The receiver can

make the reservation or defer the sending until it has enough space. When the sender receives the

acknowledgement, it sends the message itself (usually referred as the payload). The receiver has
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Figure 3: Communication pro�les for allplane (a) and overlap (b) kernels solving a grid of

256�256�256 points with 128 processors of a Cray T3E.

(a) (b)

Figure 4: Communication pro�les for IBM Sp2 for allplane (a) and overlap (b) kernels solving a

grid of 128�128�128 points with 32 IBM Sp2 processors.

to move data from system to application bu�er after the message arrives. It is obvious that when

a lot of messages are sent to a processor it quickly consumes all the bu�ering space and starts to

defer communications.

This approach to message passing is very general and is deep inside the formal properties of message

passing paradigms. It is true also for Cray T3E, even though there is a virtual shared memory on

top of that. The cost of managing the communication is therefore directly linked to the number of

MPI calls. Even in the ideal case with no system bu�er contentions, the communication software has

to schedule few system tasks which manage the communication. These are executed concurrently

with the application and their impact on the overall performance may not be negligible.



The situation is worse with non-blocking point-to-point communications as illustrated by Fig-

ures 3 and 4. These �gures show the impact of communication by plotting the number of processors

involved in communication activities as a function of the execution time on both the Cray T3E and

IBM Sp2 respectively. Figures 3 (a) and 4 (a) show the time behavior of the processors performing

the collective MPI Alltoall data redistribution while Fig. 3 (b) and 4 (b) show the processors in-

volved in point-to-point non blocking communications (i.e., MPI ISend, MPI Irecv, and MPI Wait).

The communication pro�les show that processors are somewhat synchronized in the collective com-

munication, whereas in the overlap kernel there are a lot of uctuations. This is because the

non-blocking calls are costlier in their setup time, and need additional bu�ering and talking to the

hardware. Even when sophisticated hardware allows physical overlap of computation and commu-

nication activities, there is very little real bene�t. For example, on the IBM Sp2 the communication

processor is able to address the operating system bu�ers and to move data from/to them directly

by using DMA techniques. Hence, theoretically the main processor may execute the application

code concurrently with the communication activities. In truth, memory contentions limit the real

bene�ts in terms of overall execution time. Up to 70% of the memory bus bandwidth may be

used up by the communication processor, leaving very limited scope for concurrent processing by

the main processor. Some curious results come up because of this complexity. For instance, if

we compare the overall performance in Figure 1 with the corresponding communication times in

Figure 2, we �nd that the di�erence in the overall performance of the overlap and standard kernels

cannot be explained by the communication time alone, since in some cases the communication time

is actually lower. This is also true of the missing 37ms earlier in the section. This is due to the

hidden cost of non blocking communication, where the control is returned to the application before

the actual physical data transfer is complete. This data transfer steals memory bandwidth from the

main processor, thus the time of actual data transfer gets added to the computation rather than

communication. Thus in the example of the overlap and Allplanes executions with 32 processors

of an IBM Sp2, the computation time increases from the 49ms of Allplanes kernel to 86ms of the

overlap one, accounting for the missing 37ms.



Performance Modeling

By modeling the communication and computation performance of the FFT kernels, we could gain

enough insight to predict their behavior. For this we investigate the relationship of computation

and communication times of a single FFT step with the number of allocated processors and the

data redistribution policy. Further, we parameterize the analytical models by applying numerical

�tting to the timings. Figure 5(a) and (b) show the measured times (i.e., the points) and the

corresponding �tting model (i.e., the contiguous line) for communication and computation phases

respectively. The times depicted in the �gure are expressed in ms and are related to a single

iteration of the Allplanes FFT kernel reported as a function of the number of allocated processors

on the Cray T3E with a problem size of 256�256�256 points. Numerical �tting captures the

scalability of the Allplanes kernel. The analytical expression for the communication times is:

tCOMM = a0 +
a1

a2 + np

where:

a0 = -26.527

a1 = 13210.143

a2 = 47.447

32 � np � 256

Parameters a0 and a2 together represent the latency, while a1 represents the amount of exchanged

data, and np is the number of processors. Here we are looking at the average time spent by the

allocated processors in communication activities and hence the latency also include the software

costs, which usually overwhelm their corresponding hardware costs. A close to inversely propor-

tional relation between communication time and the number of allocated processors reects the

good scalability of the Allplanes kernel.

The time spent by the processors in computation can be expressed by:



(a) (b)

Figure 5: Communication and computation times together with their corresponding �tting curves

for a FFT step on the Cray T3E.

tCOMP = a0 +
a1

np

where:

a0 = -1.278

a1 = 25779.423

32 � np � 256

Here a1 represents the amount of computation required by the kernel, np is the number of processors.

a0 is a tuning parameter used to improve the numerical accuracy of the �tting function and to

express the amount of sequential computation in the kernel; it plays a very limited role since it

is more than four magnitude order less than a1. There is a stronger inverse relationship with the

number of processors in the computation time, since there is very little inherently scalar content

in the FFT kernels.

The accuracy of numerical modeling can be veri�ed by applying them to di�erent problem sizes.

Figure 6 shows the estimations (contiguous line) and the measured times (points) for the Allplane

kernel executions on the Cray T3E with a 128�128�128 problem. Figure 6 (a) is related to the

communication time while Fig. 6 (b) to its computation counterpart.



Note that the model predictions are very accurate for all the measured execution but the com-

munication time for the execution with 128 processors. In this case, the error (about 25% of

overestimation for the model) on the computation time is mainly due to the better cache exploita-

tion on the data transfers on a smaller grid. This is a case limit, because a problem of 128�128�128

points can be subdivided in at maximum 128 portions (i.e., each processor has a single plane).

(a) (b)

Figure 6: Communication and computation predictions together with their corresponding measures

for the Alltoall kernel on the Cray T3E.

(a) (b)

Figure 7: Communication and computation times together with their corresponding �tting curves

for a FFT step on the IBM Sp2.

Similar results have been derived from the executions on the IBM Sp2. Fig. 7 (a) and (b) show the

�tting curves for respectively the communication and computation times.



The analytical expression for the communication curve is the same as that for the Cray T3E, with

di�erence in the value of parameters. The �tting function for the computation times is somewhat

di�erent on the two machines. The expression for IBM Sp2 is :

tCOMP = a0 +
a1

a2 + np

where:

a0 = -16.66

a1 = 1381.833

a2 = -0.084

1 � np � 64

The di�erence is in the a2 parameter which is mainly a tuning parameter used by the �tting

algorithm to improve the numerical accuracy of the �tting function.

The basis structure of the models is very similar on both the machines, despite their architectural

di�erences. These models reiterate our observations that major characteristics of the kernels depend

more on the communication policies than the machine architectures.

Conclusions

The work reported in this paper clearly indicates that there are some type of communication

protocols which are superior to others for a particular application type. This holds true for di�er-

ent parallel machines with hardly any common architecture characteristics. The communication

libraries are designed for the so called loosely coupled applications. Hence benchmarks like ping-

pong timings [9] do not present the real picture of the performance as seen in real life applications.

These applications are much more complex, and have unexpected consequences from resource con-

tentions, since most often they stretch all available resources to limit. Hence it is quite likely that



superiority of a communication policy may be more application speci�c than machine or protocol

speci�c. Also, some theoretically superior protocols may actually do worse due to contentions and

overheads.
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