
Effective Multicast Programming in Large Scale

Distributed Systems: The DACE Approach∗

Romain Boichat† Patrick Th. Eugster† Rachid Guerraoui† Joe Sventek‡

† Swiss Federal Institute of Technology, Lausanne

‡ Agilent Laboratories Scotland, Edinburgh

Abstract

Many distributed applications have a strong requirement for efficient dissemination of large

amounts of information to widely spread consumers in large networks. These include applications

in e-commerce and telecommunication. Publish/subscribe is considered one of the most important

interaction styles to model communication at large scale. Producers publish information for a topic

and consumers subscribe to the topics they wish to be informed of. The decoupling of producers

and consumers in time and in space makes the publish/subscribe paradigm very attractive for large

scale distribution, especially in environments like the Internet.

This paper describes the architecture and implementation of DACE (Distributed Asynchronous

Computing Environment), a framework for publish/subscribe communication based on an object-

oriented programming abstraction in the form of Distributed Asynchronous Collection (DAC). DACs

capture the different variations of publish/subscribe, without blurring their respective advantages.

The architecture we present is tolerant to network partitions and crash failures. The underlying

model is based on the notion of Topic Membership: a weak membership for the parties involved

in a topic. We present how Topic Membership enables the realization of a robust and efficient

reliable multicast for large scale. The protocol ensures that, inside a topic, even a subscriber that

is temporarily partitioned away eventually receives a published message.

Keywords: Concurrency, asynchrony, distribution, scalability, reliability, multicast, membership,

partitions

Contact author: Patrick Th. Eugster

Email: Patrick.Eugster@epfl.ch

Phone: +41 21 693 52 68

Fax: +41 21 693 67 70

1 Introduction

This paper presents the multicast capabilities of DACE (Distributed Asynchronous Computing Envi-

ronment): a middleware solution based on publish/subscribe interaction schemes. In particular, this
∗This work is partially supported by Agilent Laboratories and Lombard Odier & Co.

1



paper focuses on how DACE enables the efficient and reliable multicast of information at large scale,

despite process and network failures.

Motivation. Most research efforts in the context of distributed computing is either undertaken to

find protocols for various reliability requirements [Pow96], or to develop more easy-to-use programming

abstractions for remote interaction [BGL98]. The multitude of existing multicast protocols for various

system and failure models are very good examples for the first class. The second research axis has

brought out, within others, derivatives of the commonly employed remote procedure call. Middleware

packages, like CORBA [OMG98a], DCOM [Mic99] and Java RMI [Sun99], seem to show the path for

the future of practical distributed computing. Protocols developed without programming models in

mind lead to low-level service implementations which make usage very cumbersome. On the other

hand, remote object invocations are intuitive but tie applications to rigid client/server-like interactions.

We present in this paper an approach where the programming abstractions are tailored to reflect the

underlying protocols, and conversely these protocols have been designed with a clear vision of the

programming abstraction that will encapsulate them.

Communication Model and Programming Abstraction. The most popular programming ab-

straction for distributed computing nowadays is the remote procedure call. The success of object-

oriented middleware solutions originates from the relatively short learning phase which enables them

to be put to work quickly. However, derivatives of the remote procedure call communication model

present two major drawbacks. First, they do not address the increasing demand for one-to-many

invocation semantics. Multicast and broadcast mechanisms have been a topic of intense research and

development for many years. A recent study [LAJ98] shows that 30 percent of internet traffic is mul-

ticast and forsees a growth up to 50 percent in the next few years. Second, solutions based on the

remote method invocation model try to hide distribution, which is both dangerous and misleading,

since distributed interactions are inherently unreliable and often introduce a significant latency that

is hardly comparable to that of a local interaction, especially in the presence of network or component

failures [Gue99].

The publish/subscribe interaction style has proven its ability to overcome these shortcomings

[OPSS93]. In contrast to the remote procedure call paradigm, it does not force synchronization

between information producers and consumers; the participants are anonymous with respect to each

other, i.e., they do not have to be known whether by number nor by identity or location. The partic-

ipants are therefore decoupled in time as well as in space, and this bifold decoupling represents a key

to scalability.1

There are different established variants of the publish/subscribe interaction model, each one pre-
1Time decoupling: the interacting parties do not need to be up at the same time. Space decoupling: the interacting

parties do not need to know each other.

2



senting its respective advantages as well as shortcomings. The classical topic-based or subject-based

style involves a static classification of the messages by introducing group-like notions [Pow96], and is

incorporated by most industrial strength solutions, e.g., [Cor99, TIB99]. A more recent alternative

is content-based (property-based [RW97]) publish/subscribe [CRW98, SA97, BCM+99]. The latter

removes entirely the “arbitrary” division of the message space, and lets consumers delineate their

individual interests by expressing properties of messages they wish to receive. However it introduces

an important overhead due to matching of the messages with the subscribers criteria. In [EGS00], we

furthermore introduce a new variant, called type-based, which uses a classification of message objects

based on their type. These alternatives are very promising and still being explored.2

Instead of emphasizing their differences, we bring all these variants to a common denominator.

To capture the variants of publish/subscribe, we propose a high-level abstraction called Distributed

Asynchronous Collection (DAC). A DAC differs from a conventional collection by its distributed

nature and the way objects interact with it: besides representing a collection of objects (set, bag,

queue, etc.), a DAC can be viewed as a publish/subscribe engine of its own. In fact, when querying a

DAC for objects fulfilling certain conditions, the client expresses its interest in such objects. In other

words, the invocation of an operation on a DAC expresses the notion of future notifications and can be

viewed as a subscription. The DAC abstraction enables the unification of different publish/subscribe

styles in a single framework. The Distributed Asynchronous Computing Environment (DACE) can be

seen as an extension of a conventional collection framework, like JGL [Obj99]. It is composed of a

hierarchy of DAC interfaces and classes, spanning multiple publish/subscribe variants and qualities

of service. In this paper we describe the protocols underlying the implementation of a DACE sample

class, which guarantees reliable delivery of events to all subscribers in spite of failures.

System and Failure Model. The protocols we use in DACE have been designed specifically to

meet the properties of our DAC programming abstraction, which means that they are targeted at

large scale applications. In that context, partitionings3 of the communication network is an extremely

important aspect. It might result in service degradation but it should not affect the liveness of

an application. There are several partition models in distributed group communication, like the

primary-partition model (e.g., [Bir93]), where only processes in the partition that contains a majority

of processes are allowed to make progress. With the minority-partition or partitionable model (e.g.,

[KS92]), processes in multiple partitions progress even if they receive only a subset of the messages,

increasing the availability of the system.

In the context of this paper, we focus on a new failure model made-to-measure for the strongly

decoupled nature of publish/subscribe. It tolerates crash failures as well as partitionings, and does not
2For brevity, these styles are not presented in detail in this paper.
3In the context of this paper, we define partitioning as the creation of at least two partitions, while a partition is a

subset of the participating processes.

3



rely on a strongly consistent view shared by members, but achieves its goal through an exchange of

views that is strongly self-stabilizing in a sense similar to the notion of self-stabilizing systems defined

by Dijkstra [Dij74]. The approach is comparable to anti-entropy protocols [Gol92, PST+97]. It is

less restrictive than the majority-partition and minority-partition models that rely on consensus, and

requires less application support than the partition-aware [BDMS97] model.

The Topic Membership protocol we present in this paper coordinates the local views of participants

of a topic in two phases. During the stabilization phase, participants exchange their views. Eventually,

they converge to the same view. Then, the participants are in a stabilized phase. With the stabilization

property and with partition information sharing, we are able to realize a reliable broadcast in partitions

on top of Topic Membership.

The reliable broadcast protocol for topic-based publish/subscribe called Topic Broadcast that we

present as an example, ensures that every subscriber eventually receives a message even if the publisher

or the subscriber, itself, has crashed or has been partitioned away temporarily.4 In the stabilized phase,

the protocol uses partition information to efficiently route messages. During the stabilization phase,

the protocol enables the sending of messages, although these might not be delivered in an optimal

manner.

Roadmap. The remainder of this paper is organized as follows. Section 2 gives an overview of our

publish/subscribe system focusing on topic-based publish/subscribe. Section 3 presents the DACE

framework and the underlying DAC programming abstraction. The system and failure model we

adopt are outlined in Section 4, which allows us to formally specify the lightweight topic membership

used in DACE in Section 5. As an example Section 6 illustrates our reliable broadcast based on

TopicMembership. In Section 7 we outline the implementation of our framework and discuss some

performance issues, and Section 8 contrasts our efforts with related work. Finally Section 9 summarizes

our work and concludes the paper.

2 Overview of DACE

This section gives a general overview of our DACE framework for large scale communication. DACE

can be seen as a message-oriented middleware solution. It is inherently object-oriented, and is used

as a lightweight library. The different layers are shown in Figure 1 and introduced in a top-down

order. They are presented in more detail in the following sections. As mentioned above, we focus on

topic-based publish/subscribe in the context of this paper.
4Of course this is only provided if the publisher crashes after it finished publishing the message and the subscriber

eventually recovers.

4



Application

DAC

Topic Membership

Failure Detector

Topic Multicast/Broadcast

add() contains()

TR-broadcast()

TM-cast()

send()

receive()

TR-deliver()

TM-deliver()TM-ack() TM-updateView()

UDP

FD-updateChannelState()

remove() contains() ...

Figure 1: Layers

2.1 The Application Layer

Applications using the DACE publish/subscribe framework basically interact with a DAC (Distributed

Asynchronous Collection). The add() method for instance enables the addition of new objects to the

collection, which comes to publishing new message objects. The interaction scheme shown in Figure 1

illustrates the push model where subscribers are called back (primitive contains()) upon incoming

messages. However, DAC s offer a variety of possibilities of interacting with them, as we will see in

Section 3.

2.2 The DAC Layer

This layer is composed of the classes that implement the API of the DAC programming abstraction for

publish/subscribe interaction. They are rather lightweight classes, which delegate general functionality

to the underlying layer. Their tasks are similar to centralized container classes, i.e., they mainly take

care of the local management of message objects. Section 3 explains in more detail how a DAC

represents a topic in the context of topic-based publish/subscribe.

The DAC applies a predefined threading model, by assigning notifications to threads. The class we

use as an illustration in this paper is the DAStrongSet class, which guarantees exactly-once delivery

semantics to a publisher. Published messages are passed to the underlying broadcast layer through

the TR-broadcast() primitive, and messages are received through the TR-deliver() primitive.

5



2.3 The Topic Multicast/Broadcast Layer

This layer enables the multicast and broadcast of messages with different semantics to the subscribers

of a topic. While the Topic Broadcast enables the broadcast of messages to all subscribers of a topic,

the Topic Multicast is used in the context of content-based publish/subscribe [EGS00]. As depicted

earlier, a subscriber can delineate its individual requirements based on the properties of the messages.

In such a scenario, a message must not be broadcast to all subscribers, but only to a subset, which

proves the need for a multicast primitive. Section 6 gives an inside view of this layer focusing on

broadcast issues.

Both broadcast and multicast come with reliable, stubborn [GOS97] or simple (best-effort) se-

mantics. This layer also takes care of broadcasting subscription information if a subscriber wants to

join in or modify its subscription parameters. To send and receive messages, the subscriber uses the

primitives TM-cast() and TM-deliver() respectively. The upper layer receives acknowledgements for

successful message sends through TM-ack().

2.4 The Topic Membership Layer

The Topic Membership layer maintains a local view of the present and reachable subscribers for every

given topic. The Topic Membership protocol is basically represented through the states of commu-

nication channels with other participants. This layer receives channel state updates either locally

from the channel failure detector (FD) or externally from other processes, exactly like information

about subscriptions and unsubscriptions. This layer indicates membership changes to the Topic Mul-

ticast/Broadcast layer with the primitive TM-updateView(), and sends and receives messages through

the primitives send() and receive() of the UDP layer.

2.5 The Failure Detector Layer

The Channel Failure Detector layer is used to administer a network topology and define the views of

reachable subscribers. It is shared by several DAC instances hosted by the same process. Channel

state changes as perceived by the failure detetector are advertised to the Topic Membership layer

through the FD-updateChannelState() primitive.

2.6 The UDP Layer

Our entire publish/subscribe architecture is implemented on top of UDP. As conveyed by its name,

UDP is a non reliable protocol, which offers the looseness required for the decoupled nature of pub-

lish/subscribe. Our Java implementation of DACE uses the standard Java classes for UDP sockets

and datagrams (java.net.DatagramPacket and java.net.DatagramSocket), which are pretty close

to the metal. These classes are wrapped into more powerful abstractions for communication channels

6



(see Section 4).

3 DACE Programming Model: A General Survey

This section gives a brief summary of our DACE (Distributed Asynchronous Computing Environment)

framework for publish/subscribe interaction. We start by presenting the Distributed Asynchronous

Collection (DAC) as programming abstraction, which enables the capture of the different styles of pub-

lish/subcribe (topic-based, content-based, type-based) without blurring their respective advantages.

We then outline the interfaces related to topic-based publish/subscribe, and we show an overview of

the corresponding classes.

3.1 Distributed Asynchronous Collections

Like the group abstraction which has been widely used as a basic model for replication [Bir93], a topic

enables the regrouping of several entities, which can thus be addressed atomically. For a publisher,5

the set of subscribers appears as a single opaque entity, where subscribers remain anonymous to the

application. Thanks to its decoupled nature, the publish/subscribe interaction model is the ideal way

to express such one-to-many semantics at large scale.

DACs as Object Containers Just like any collection, a DAC is an abstraction of a container

object that represents a group of objects. It can be seen as a means to store, retrieve and manipulate

objects that form a natural group. Unlike conventional collections or distributed collections described

in [Obj99] however, a DAC is not centralized on a single host,6 in order to guarantee its availability

despite certain failures.

The Asynchronous Flavor of DACs. Our notion of Distributed Asynchronous Collection repre-

sents more than just a distributed collection. In fact, a synchronous invocation of a distributed object

can involve considerable latency, hardly comparable with that of a local interaction. Therefore we

enforce an asynchronous interaction with our DAC s. By calling an operation of a DAC, one expresses

an interest in future notifications. According to the terminology adopted in the observer design pattern

[GHJV95], the DAC is the subject and its client is the observer. When querying a DAC for objects of

a certain kind, the party interacting with the DAC expresses its interest in such objects. Therefore,

when such an object is eventually “pushed” into the DAC, the interested party is asynchronously

notified.

Topic-Based Publish/Subscribe with DACs. Expressing ones interest in receiving information

of a certain kind can be viewed as subscribing to information of that kind. By viewing event notifi-
5In the case of group-based systems one could refer to an invoker.
6The distributed collections presented in [Obj99] are centralized collections that can be remotely accessed through

RMI.

7



cations as objects, a DAC can be seen as an entity representing related event notifications. Clearly,

if a collection is a set of somehow related objects, a DAC can be seen as a set of related “events”.

When considering the classical topic-based approach to publish/subscribe, a DAC can be pictured as

an extension of a conventional collection but also as a representation for a topic.

Such a topic is denoted by a name, like “EPFL”. Topics can have specializations, or subtopics,

and connecting to a topic requires the name in a URL-type format. Typically, “/EPFL/DSC” is a

reference to the topic called “DSC” which is a subtopic of “EPFL”. Subscribing to a topic can trigger

subscriptions for the subtopics as well, as illustrated in Figure 2. Subscriber S1 subscribes to topic

“EPFL” and claims its interest in all subtopics. Hence S1 does not only receive message m2 but also

message m1 published for topic “/EPFL/DSC”. In contrast, S2 only subscribes to “/EPFL/DSC” and

thus does not receive message m2, which belongs to the supertopic.

Unlike other existing publish/subscribe systems (e.g., [HBS98]), our approach frees the application

programmer from the burden of marshalling and unmarshalling data into and from dedicated messages.

In our context, a message can be basically any kind of object. In Java, this is expressed by allowing

any object of class java.lang.Object to be passed as a message.7

EPFL

m1 m2 m2

m1

Subscribe

Deliver

Publish
P S2S1

Publisher

Subscriber

P

Si
DSC

m1

Figure 2: Topic-Based Publish/Subscribe with DACs

3.2 DAC Interfaces

Figure 3 summarizes the main methods of the base DAC interface. More sophisticated interfaces like

the DASet all derive from this interface, but are omitted for the sake of brevity. We roughly distinguish

synchronous and asynchronous methods.

Synchronous Methods. Since a DAC is in the first place a collection, the DAC interface inherits

from the standard Java java.util.Collection interface. The inherited methods are adapted, and

we denote them as synchronous. [EGS00] gives more examples than shown here.

• get(). Similarly to a centralized collection, calling this method enables the retrieval of objects.

This implements the pull model. Which element will be returned depends on the nature of the
7In order to be conveyable, a Java object should furthermore implement the java.io.Serializable interface [Jav99],

which contains no methods.

8



collection, as explained in [EGS00].

• contains(). A DAC is first of all a representation of a collection of elements. This method

enables the query of a collection for the presence of an object. Note that in the context of

topic-based publish/subscribe, an object that is contained in a DAC belongs to (was published

for) the topic represented by that DAC.

• add(). This method enables the addition of an object to the collection. The corresponding

meaning for a DAC is straightforward: it allows to publish a message for the topic represented

by that collection.

public interface DAC

extends java.util.Collection

{

public Object get();

public boolean contains(Object message);

public boolean add(Object message);

...

public boolean contains(Subscriber S);

...

public boolean containsAll(Subscriber S);

...

public boolean remove(Subscriber S);

...

}

Figure 3: Interface DAC (Excerpt)

Asynchronous Methods. We have added several asynchronous methods to express the decoupled

nature of publish/subscribe interaction specific to DAC s. In these methods, asynchrony is expressed

by an additional argument, denoting a callback object which implements the Subscriber interface

given in Figure 4.

• contains(Subscriber S). The effect, for instance, of invoking this method is not to check if

the collection already contains an object revealing certain characteristics, but is to manifest

an interest in any such object, that is eventually pushed into the collection. The interested

party advertises its interest by providing a reference to an object implementing the Subscriber

interface, through which it will be notified of events. There are different signatures for this

9



method, among which certain enable for instance the specification of a filter for content-based

subscribing.

• containsAll(Subscriber S). This method offers the same signature(s) as the previous method.

The difference is that a subscription is generated for all subtopics of the topic represented by

this DAC. This conveys the situation of Figure 2.

• remove(Subscriber S). By calling this method, a subscriber does not trigger the removal of an

object already contained in the collection, but expresses its interest in being notified whenever

an object matching its criteria is inserted in the collection, after which the object will be removed

immediately. This expresses that a message is delivered to one single subscriber only . This is

frequently called one-for-all or one-of-n [TIB99] in contrast to one-for-each implemented by the

two previous methods. Again there are several signatures for this method.

public interface Subscriber

{

public void contains(Object msg, String topicName);

}

Figure 4: Interface Subscriber

3.3 DAC Classes

Our DACE framework consists of a variety of DAC s spanning different semantics and guarantees, since

different applications have different requirements. These semantics can be seen as different Qualities

of Service (QoS). While some properties reflect in the interfaces, others concern the implementing

classes (see Figure 5). Among those parameters is the delivery semantics of message objects “pushed”

into the DAC. A related aspect is the possible occurence of duplicates. Other parameters are more

related to collections, like the order of storage, insertion or extraction of objects. We relate latter one

to pull style interaction, and therefore omit the details in this paper.

Delivery Semantics. When a producer publishes a message, it does not directly interact with

subscribers. The details of the underlying multicast protocols are concealed, and might lead to different

classes implementing the same interface. The DASet (Distributed Asynchronous Set) interface for

instance is implemented by multiple classes. The first one does not offer more than plain unreliable

delivery (DAWeakSet), whereas others guarantee reliability (e.g., DAStrongSet).

10



Duplicates. Just like it is possible to have duplicate elements in centralized collections, it is possible

in DAC s that the same message is delivered more than once. The simple DAWeakBag class for instance

does not prevent a notification from being delivered more than once, whereas the DAWeakSet class

gives stronger guarantees by eliminating duplicate elements. This property is orthogonal to other

characteristics of our DAC s.

Reliable?

Duplicates?

Criteria?

DAWeakSetDAWeakBag

Duplicates?

Ordering?

DAStrongSetDAStrongBag

Duplicates? Duplicates?

DASortedSetDASortedBagDAListDAArray

Best-effort At-most-once

At-least-once Exactly-once

At-least-once
FIFO

Exactly-once
FIFO

At-least-once
Total Order

Exactly-once
Total Order

Yes Yes

Yes

YesYes

No

No

No

No No

NoYes

ImplicitExplicit

DACollection

Figure 5: DACE Framework Classes

Storage vs. Delivery Order. Collections are often characterized by the way they store their el-

ements. Sets or bags do not rely on a deterministic order for their elements. Conversely, sequences

can store their elements in an order given explicitly or implicitly based on properties of the elements.

In DAC s however, the notion of space is somehow replaced by the notion of time. If some centralized

collections reveal a deterministic storage order, a distributed asynchronous sequence may offer a de-

terministic ordering in terms of order of delivery to the subscribers. In the Java collection framework

for instance, a sorted set is a sequence which is characterized by an ordering of the elements based on

their properties. This can be seen as an implicit order. With our DAC s, an implicit order is a global

delivery order on which the DAC itself decides. The DASortedSet class for instance presents a total

order delivery. Inversely, a FIFO delivery order can be seen as an explicit order: it is given by the

order in which events are notified to the DAC by a publisher.

Insertion Order. In different centralized collections, the insertion order may have an impact on

the storage order. A position can be given as an additional argument to an insertion into a list

for instance. In an asynchronous collection however, the order of insertion corresponds to the order

of publishing. It seems obvious that inserting an element at a specific position cannot translate to

11



delivering a message at a certain moment in time relative to other messages: when inserting a message

m at the beginning of a list, m would have to be sent before messages that have possibly already been

delivered to subscribers. Therefore there is never any explicit argument for the order when “inserting”

a new element into a DAC.

4 DACE System Model

In order to describe the protocols used for the implementation of DAC classes and to prove their

correctness, we first introduce the underlying system and failure model. We adopt a notation and

a terminology similar the one introduced in [CT96]. We consider asynchronous message-passing dis-

tributed systems in which there is no bound on message delay, relative speed of processes, or the time

necessary to execute a step.

The system is always considered with respect to a topic, since every topic is managed separately.

The system consists of a finite set of processes or topic participants. A participant can act as publisher,

subscriber, or as both for a given topic. It is then said to be a participant for that topic. A process can

incorporate participants for several topics (it can participate in several topics). Our communication

layer based on UDP implements (virtual) channels connecting pairs of participants, and furthermore

offers the primitives send() and receive() (see Figure 1) for sending and receiving messages over

them.8 We use a discrete global clock whose range ticks T is the set of natural numbers. This notation

is used to simplify presentation and not to introduce time synchrony since participants cannot access

the global clock.

4.1 Participants

A topic involves a finite ordered set of n topic participants τ = {p1, p2,..., pn}. A participant p has a

unique identifier denoted p-id(p), and identifiers are ordered. We do not consider byzantine failures,

i.e., participants do not behave maliciously. Participants can fail by crashing and may recover later.

Formally: a failure pattern F (t) of a topic is a function from T to 2τ , where F (t) denotes the set of

participants for that topic that do not run at time t. We say that participant p is up at time t (in F)

if p �∈ F (t), and p is down at time t (in F) if p ∈ F (t). We state that p crashes at time t if p is up at

time t-1 and p is down at time t. We can induce that p recovers at time t ≥ 1 if p is down at time t-1

and p is up at time t. We define Correct(t) as the set of participants that are up at time t.
8To make the model more comprehensible, two participants p and q each participating in topics x and y communicate

through two distinct channels with each other; one for each topic. The implementation saves resources by using a single

channel.

12



4.2 History

At each clock tick, each participant p performs an event chosen from a set S. Set S includes at least

the null event (denoted as ε) and the sendp and receivep events, corresponding to the primitives send()

and receive() depicted above. The global history of a run of a distributed algorithm is a function σ

from τ × T to S. If a participant p executes an event e ∈ S at time t, then σ(p, t) = e. If p executes

no specific event at t, then σ(p, t) = ε.

m m Deliver

Publish
P3P2

Participant iPi

Topic x

P1
Subscribe

Figure 6: Partitions

4.3 Channels

A participant p sends a messagem to a participant q with the event sendp(m,q), and receives a message

m from q through the event receivep(m,q).

A communication channel between participant p and q is bidirectional but not FIFO (i.e., messages

can be lost, duplicated, or unordered). If communication is possible from p to q at time t, then p→t q.

A channel between p and q is said to be open at time t if the connection between p and q is open

on p and on q at time t, and communication is possible in both directions. We denote this property

p↔t q. Intuitively, p↔t q ⇔ p→t q ∧ q →t p. In any other case, a channel is closed at time t (p �↔t

q). We assume that communication channels satisfy the following properties:

• Eventual Symmetry. If communication is possible from p to q, unless p or q crashes or they are

partitioned, communication is eventually possible from q to p. Formally,

∃t0,∀t ≥ t0 : p→t q ⇒ ∃t1,∀t′ ≥ t1 : q →t′ p

• Fairness. If p ↔t q, only one sendp(m,q) from p is required for q to eventually receive m. This

property can be guaranteed since our channels transparently resend messages as long as these

have not been acknowledged by the recipient. Formally,

∀t : p→t q and σ(p, t) = sendp(m,q) ⇒ ∃t0 ≥ t : σ(q, t0) = receiveq(m,p).

Channels and Partitionings. Closed network links create communication failures which may par-

tition the network. We assume that network partitions are only temporary and will be repaired

eventually. We introduce the notion of topic partitioning as the effect of a network partitioning of the

13



(sub)system composed of the participants of a topic. Figure 6 shows a simple scenario of a partitioned

topic. Participants p1 and p2 can very well communicate, while p3 is isolated from them. The sets

{p1, p2} and {p3} represent partitions, since they have no means of communicating with each other.
Communication links fail and recover more often than participants, and transitivity is not assured.

As an example, we might have for a given t p1 →t p2 and p2 →t p3, but p1 �→t p3.

Definitions. We define Openp(t) as the set of all open channels of p at time t, and Closedp(t) which

denotes all closed channels of p at time t. Consequently, Openp(t) ∩ Closedp(t) = ∅. Furthermore, we
define:

Can Communicate With. Holds true at time t for p and q if there is a sequence of participants

p = p0,...,pl+1 = q such that ∀i ∈ [0, l], pi ↔t pi+1
9. We denote this relation by p ❀t q. This relation

indicates whether participant q can be reached by participant p at time t or not. If p cannot reach q,

we will denote it as p �❀t q.

Causal Message Chain. A causal message chain from p to q between t0 and t1 , noted ✵p,q(t0, t1), is a

causal sequence of messages m0,...,ml and a sequence of participants p = p0,...,pl+1 = q such that: ∀i ∈
[1, l] ∃ti0 < ti1 : σ(pi, ti0) = receivepi(mi−1, pi−1), σ(pi, ti1) = sendpi(mi, pi+1) and ∃tp, tq ∈ [t0, t1]:

σ(p, tp) = sendp(m0, p1) and σ(q, tq) = receiveq(ml, pl).

4.4 Topic Stability and Partition

As described previously, communication channels can crash and recover. Topic Stability describes a

stable state of the communication channels, while Topic Partition represents the partitioning of the

system composed of the participants for a topic.

Topic Stability and Minimal Topic Stability. The state of the communication channels of a

topic is stable from time t on, if the states of all communication channels between all participants of

the topic do not change. In other words, all communication channels that are open at t0 stay open

and all communication channels that are closed at t0 stay closed. Formally,

∀t ≥ t0, ∀p ∈ τ , Openp(t) = Openp(t0) and Closedp(t) = Closedp(t0).

However, it is very unrealistic that a system remains stable forever. We derive from topic stability,

a less restrictive property called minimal topic stability that assures stability for a certain period

sufficient for a causal message chain to be established between every pair of participants in the

system10. Formally,

∃t0, t1,∀t ∈ [t0, t1],∀p ∈ τ , Openp(t) = Openp(t0) and Closedp(t) = Closedp(t0) and

∀(p, q) ∃ ✵p,q(t0, t1).
9In fact, →t is sufficient to guarantee this property.

10To simplify, we could also require a message to be exchanged between every pair of participants. However, the total

number of messages sent would be greater or equal than with the causal message chain approach.

14



Topic Partition. For a stable state of the communication channels, the relation ❀ defines an

equivalence relation on the set of correct participants. The equivalence classes are called partitions.

The partition of a participant p (the partition in which p is) at time t is denoted partition(p,t).11 We

can now define a partition pattern function P from τ × T to 2τ , where P(p,t) indicates at time t the

set of participants that are not in the same partition as p. Formally, P (p, t) = {q | p �❀t q}. If Figure
6 represents the situation for topic x at time t0, then P (P3, t0) = {P1, P2}.

5 Topic Membership

We have designed the protocols underlying our implementation of DACE to manage partitioning

as well as crashes. The marriage of large scale, high throughput and fault tolerance has led us to

consider weak consistency protocols. This section presents Topic Membership, which can be viewed as

a lightweight membership protocol for the participants of a topic. First, we introduce our notions of

topic view and stable topic view. We then describe our Channel Failure Detector and its properties.

Finally, we formally define our notion of Topic Membership.

5.1 Views

Topic Membership is a weakly consistent membership notion which is different from the traditional

notion of group membership [Pow96]. Approaches like virtual synchrony [BJ87] offer strongly consistent

views, but do not scale well. Our notion of view is less restrictive, i.e., there is no explicit agreement

on views. We distinguish between two kinds of views: the topic view and the stable topic view. In

fact, the system can be viewed as a sequence of alternations of stable and unstable (stabilization)

phases. Latter ones begin with the occurence of failures, and may result in differences in local views.

Eventually, the views of the participants inside a partition converge to a stable topic view.

Topic View. The topic view corresponds to the local participant view for a topic and reflects

the participant’s perception of reachable and present participants. These views resemble the views

defined by [BDMS97] by being concurrent. A topic view is bound to a single topic, and a process

which participates in different topics maintains separate views for each topic.12

Stable Topic View. Once the system is in a stable phase and views of the participants inside the

partition have converged, the participants are said to have reached a stable topic view. To achieve a

stable topic view, the system must undergo minimal topic stability.

A stable topic view stv represents a set of participants. stview(p, t) represents the last stable topic

view that was reached by p before time t. If stvj succeeds stvi at p, then stvi ≺p stvj. Formally,
11If p ∈ F(t) then partition(p,t) = ∅.
12Subtopics are handled like independent topics, which implies that a topic view is required for each (sub)topic.

15



∃t0 ≤ t1 ≤ t2,∀t ∈ [t0, t2] : Openp(t) = Openp(t0) and Closedp(t) = Closedp(t0) and

∀(p, q) ∃ ✵p,q(t0, t1) ⇔ ∃ stv,∀t′ ∈ [t1, t2] : stview(p, t′) = stv.

5.2 Topic Channel Failure Detector

Each participant p has access to a local failure detector module which outputs hints about the closed

channels of p with other participants. The topic channel failure detector history CH is a function

from τ × T to 2τ that outputs the closed channels of the participant. Formally,

q ∈ CH(p, t)⇔ p �→t q; q �∈ CH(p, t)⇔ p→t q.

We assume that the topic channel failure detector is perfect with respect to our (virtual) channels.

A channel loss due to a failure in the network is always detected eventually. If the failure affected the

existing connection, but the network still offers a correct physical path between the participants, the

channel will be re-established. The same action takes place in the case of false suspicion. During such

glitches, the system is considered being in an unstable phase.

5.3 Topic Membership Specification

As explained previously, a topic view represents a participant’s view of all participants of a topic at

any moment. We have shown that when the system is stable long enough to satisfy minimal stability,

the views of all participants of a topic inside a partition (or the entire system) are identical. The

view becomes stable, and is hence called stable topic view. In contrast to [BDMS97], which specifies

a membership based on properties of local views, we specify our Topic Membership by properties of

stable topic views, and do not consider inconsistent views, since these correspond to unstable phases.

(TM1) Stable Topic View Agreement. If participant p reaches stable topic view stv1 and its

immediate successor stv2, both containing q, then p reaches stv2 after q reached stv1. Formally,

∀p, q, stv1, stv2 : stv1 ≺p stv2 and p, q ∈ stv1 ∩ stv2 and ∀t ∈ [t0, t1], sview(p,t) = svt1 and

∀t′ ∈ [t2, t3], sview(q,t’) = svt1 ⇒ t2 < t1.

(TM2) Stable Topic View Accuracy. If p ❀ q holds forever, then eventually when the system

reaches stable topic view stv, p and q eventually have the same view. Formally,

∃t0,∀t ≥ t0 : p ❀t q ⇒ ∃t1,∀t′ ≥ t1 : sview(p,t’) = sview(q,t’).

(TM3) Stable Topic View Completeness. If all processes q in some partition Ω hold p �❀ q forever,

then eventually when the system reaches stable topic view, p will not have any processes q ∈ Ω in its
stable topic view. Formally,

∃t0,∀q ∈ Ω,∀p �∈ Ω,∀t ≥ t0 : p �❀t q ⇒ ∃t1,∀t′ ≥ t1 : sview(p, t′) ∩ Ω = ∅.
(TM4) Stable Topic View Integrity. Every participant p that reaches a stable topic view is included

in that stable topic view. Formally,

∀p, t : p ∈ sview(p, t).

16



6 Topic Reliable Broadcast

This section sketches the properties of our Topic Reliable Broadcast protocol, which is used to efficiently

and reliably multicast messages despite partitionings. Topic Reliable Broadcast, hereafter called TR

Broadcast, is based on Topic Membership, and enables the broadcasting of messages to all subscribers

of a topic. The realization of the DAStrongBag class, shown in Figure 5, is based on this protocol.

The simplified algorithm is given in Appendix A.

6.1 Specification of TR Broadcast

We recall the properties of reliable broadcast (in the sense of [CT96]). It guarantees that (a) all

correct processes deliver the same set of messages, (b) all messages broadcast by correct processes

are delivered and (c) no spurious messages are ever delivered. These properties can be transposed to

partitioning and topics. Formally, our notion of TR Broadcast (Topic Reliable Broadcast) is based on

the two primitives TR-broadcast and TR-deliver, which satisfy the following properties:

(a) Validity. If a correct publisher p TR-broadcasts a message m, then unless p crashes, a correct

subscriber eventually TR-delivers m.

(b) Agreement. If a correct subscriber s TR-delivers a message m, then all correct subscribers

eventually TR-deliver m.

(c) Uniform Integrity. For any message m and any subscriber s that TR-delivers m, s TR-delivers

m at most once and only if m was previously TR-broadcast by publisher(m).

6.2 General Concepts

The overall goal of TR Broadcast is to ensure that a message broadcast by a publisher reaches all

subscribers of the topic. For that purpose, we require the knowledge of identifiers of the received

messages of each participant. We introduce here the general concepts of our algorithm.

Messages. Each application message m has a unique identifier, denoted m-id(m). Messages are

composed of two fields. The data field carries application messages. The control field carries updates

of the states of the communications channels (see Section 7 for more details) as well as identifiers of

received messages for every participant. These acknowledgements are used especially for garbage

collection. By piggybacking them with other messages we reduce the overall network traffic.

First Participant. When a participant p receives a message m, it tries to determine for every

neighbour participant q with which it has a channel if it is the participant with the lowest identifier

that has received m and has a channel with q. If these conditions are fulfilled, p will forward m to q.

This reduces the amount of redundant message transfers, without violating the Agreement property.

For a participant q and a message m, there is only one first participant p in the whole system which

17



will send m to q.13

Check & Forward. In the case of remerging partitions, participants who were in different partitions

must exchange the messages they have delivered in the meantime. Therefore, upon changes in the

state of communication channels, participant p checks for every participant q which messages p has

received and q has not acknowledged to p. p then forwards every such m to q if p is first participant

of q with respect to m. This way, we ensure that all messages are received eventually despite unstable

phases.

Subscriptions and Unsubscriptions When a process wants to subscribe to a topic, it must know

at least one participant p, which will reliably broadcast a subscription request vicariously for the new

participant q. Participant q will receive all messages that p receives after q’s subscription request.

When unsubscribing, a participant reliably broadcasts an unsubscription request, which guarantees

that every participant will receive it. Note, that neither the subscription nor the unsubscription of a

participant requires any agreement protocol.

7 Implementation

This section depicts some implementation issues of DACE and illustrates the performance of TR

Broadcast. This gives an idea of the overall efficiency of our protocols.

7.1 Topic Network Knowledge

We call topic network knowledge the information that a participant p has about the states of all

channels between participants of the topic. To learn about the states of all channels connecting

participants of the topic, participants must exchange their information.

Topic Channel State. The information p has about all the channels between participants of the

topic are stored in a n × nmatrix called channelStatep. The value of channelStatep[q, r] represents the

state of the channel between q and r (q → r) as assumed by p. The matrix channelStatep is divided in

n channelState vectors, each corresponding to a line of the channelStatep matrix. channelStatep(q) is

the q-th channelState vector of participant p. It represents p’s view of the channels q has all with other

participants. A logical timestamp tsp(q) is associated with each channelStatep(q). Figure 7 shows a

typical channelState matrix in a stable system where all participants share the same channelState; ×
means that the link is closed or does not exist and © that the link is open.

Propagation of Knowledge. When participant p sends a message m to q, p checks if channelStatep

has changed since the last message sent to q. This happens whether p actually published the message

itself or only forwards it. Message m piggybacks the updated channelStatep (with the associated
13In fact, there is exactly one in stable phases. In unstable phases, there might be more than one.

18



P4P3

P2P1

(a) link status

p1

p1 p2 p3 p4

p2

p3

p4

(b) channelState

Figure 7: channelState derived from the link status

updated timestamps). When q receives m from p, q compares all received timestamps and replaces

all channelState vectors that are older. In the absence of application messages, each participant p

periodically sends its own channelStatep matrix to a randomly picked neighbour (gossip). The receiver

q updates its own channelStateq matrix, and sends its more up-to-date values to p. This keeps the

channelStates from diverging when no messages are published for a certain time. When participant p

receives a message from a new participant, p increases the size of channelStatep.

7.2 Performance

We give here performance measurements of our prototype which were made on two LANs intercon-

nected by Fast Ethernet (100MB/s) on normal working days. The first LAN consisted of 60 SPARC-

station 20 (model 502: 2 SuperSPARC CPU, 64Mb RAM, 1Gb Harddisk) machines, and the second

one of 60 UltraSUN 10 (256Mb RAM, 9 Gb Harddisk) machines. All stations were running Solaris 2.6,

and DACE was running on Solaris JVM (JDK 1.2.1., native threads, JIT). The message objects were

of a size of 1Kb in serialized form. Figure 8 summarizes the results of the throughput measurements

and compares TR Broadcast with an unreliable broadcast in a topic. The complete results can be

found in Appendix C.

As conveyed by the measurement results, the performance of TR Broadcast remains stable over

an increasing number of participants. After 100 participants, the performance varies very little. On

the other hand, the performance of the unreliable broadcast is less stable. It is limited by the overall

performance of the network, which can be seen by the quickly decreasing throughput. When the

number of participants exceeds 100, the two curves converge, since the TR Broadcast protocol reaches

the limits of the network earlier.

19



Figure 8: Unreliable vs. Reliable Broadcast

8 Related Work

In the past few years, the need for effective large scale multicast interaction schemes and protocols

have been widely recognized and much effort has therefore been invested in this domain. A multitude

of approaches have emerged from academic as well as industrial researches. We present here the

main characteristics of these approaches and we compare them with our Distributed Asynchronous

Computing Environment.

Publish/Subscribe Messaging Systems. In order to integrate the publish/subscribe communi-

cation style into existing middleware standards, specifications have been conceived by both the Object

Management Group [OMG98b] and Sun [HBS98, AOS+99, Col99]. The OMG’s CORBA service for

publish/subscribe-oriented communication, called the CORBA Event Service, is based on the notion

of event channels. These channels are denoted by names, and basically incorporate topics. In all

implementations we know about, channels are centralized components and therefore manifest a strong

sensitivity to any component failure, which makes them unsuitable for critical applications. The

Java Messaging Service [HBS98] is a specification from Sun. Its goal is to offer a unified Java API

around common publish/subscribe engines. Certain existing services implement the JMS, but to our

knowledge no publish/subscribe system has been implemented with the mere goal to support the JMS

API directly. Its generic nature, required in order to match a maximum number of existing systems,

appears to be rather cumbersome. Other specifications from Sun are more aimed at particular en-

vironments, like the Java Distributed Event Specification [AOS+99] in the context of Jini and the

InfoBus 1.2 Specification [Col99] describing an information bus for dynamic data exchange between

20



JavaBeans.

Established industrial strength solutions, like TIB/Rendezvous [TIB99] or Smartsockets [Cor99]

tolerate crash failures by appyling entity redundancy, and Smartsockets even take network failures

into account. Nevertheless, even though such solutions might offer fault tolerance, they provide a

rather complicated programming model.

Systems like Siena [CRW98], Elvin [SA97] or Gryphon [BCM+99] provide a flexible programming

model with content-based capabilities. These solutions however focus on the effective dissemination

of information, without sufficiently addressing fault tolerance.

JGL [Obj99] was designed to provide a more advanced series of collections, since the Java environ-

ment by default only offers limited support for data collections and algorithms. JGL extends the basic

Java collections with more refined types. The notion of distributed collection in JGL though describes

a centralized collection object, accessible through Java RMI. This is especially prone to failures, while

DAC s are especially designed for fault tolerance.

Clearly, none of these solutions provides a generic approach to publish/subscribe interaction.

DACE introduces an easy to use high-level programming abstraction which enables the grouping

of different styles without blurring their advantages. At the same time, our framework blends these

different publish/subscribe variants with a multitude of QoS among which certain offer strong reliabil-

ity guarantees without penalizing efficiency. This allows for instance to easily realize a JMS-compliant

service on top of DAC s.

Network Partition Models. Several partition models have emerged, advocated by different types

of applications. The requirement for strong consistency, for instance in database or file system appli-

cations [GMDS85], has driven an approach where services have to be suspended completely in all but

one partition that contains a majority of processes. This is known as following the primary-partition

model, adopted for instance by Isis [Bir93], Amoeba [KT91], [MPS91], or [RB91]. The overhead intro-

duced by strong consistency is not well adapted to large scale, and such systems might block as long

as the majority condition is not satisfied. Furthermore, members of minority partitions are forced to

quit applications.

Applications relying on mobile units or wireless links as well as application at large scale are forced

to consider more than one partition; they often follow the minority-partition model (or partitionable

model). Partitions occur when units are deliberately (or unintentionally) unplugged from the network.

Applications such as the Coda [KS92] or the Ficus file systems [PGPH90], and Rover [JdT+95] rely

on that model, and furthermore apply to large scale. In contrast to the previous model, this class of

applications must be able to make progress without blocking even under numerous partitions.

[BDMS97] introduces partition-aware applications. The system provides the necessary hooks such

that the application itself decides which of its services will be available in each partition and at what

21



QoS levels. Total order delivery is possible in concurrent partitions, and the states of the objects

in different partitions are merged when the partitions remerge [Mon00]. This however forces the

applications to offer such merging facilities, which constitutes a non-trivial issue.

Recently, many attempts have been made to formalize a specification of a partitionable group

membership in asynchronous systems. [BDMS97] presents a formal specification for partitionable

group membership and its algorithms. Another known attempt is [DMS96]. Systems such as Horus

[vRBM96], Transis [DM96], or Totem [MMSA+96] manage minority-partitions. They handle con-

current views in different partitions. The membership incorporated by those approaches however

introduces important overheads in order to guarantee a consistency which is too strong for our case.

The model underlying our environment differs from the above proposals in many aspects. First,

our model is based on an unreliable datagram transport. Second, the Topic Membership model is less

restrictive in the sense that no consensus is required and it does not enforce view changes. Third,

most of these system models (primary-partition and minority-partitions) are applied to local area

networks and do not scale well to wide area networks. The partition-aware model is aimed at large

scale, but requires considerable support from the application for the state merging of participants who

were partitioned. It is aimed at more specific applications, like replication, while DACE is a generic

messaging system, in which we do not consider “states” of participants.

9 Summary and Conclusions

Current research in the context of distributed computing encompasses two major and often separated

trends: distributed algorithms and distributed programming models. The first trend is strongly guided

by the development of sophisticated protocols for a multitude of semantics or QoS based on a variety

of different systems and failure models. As an example, the need for multicast primitives tailored to

large scale environments, like the Internet, has been recognized and has led to a variety of protocols

with diverse semantics. Such protocols are often developed without considering the look-and-feel in

which they will be enclosed, i.e., the actual programming model. Applications that want to benefit

from such facilities are hence bound to rather primitive and unwieldy services which are close to the

metal.

On the other hand, the practice of distributed computing models is largely driven by the desire

of handling distribution as an implementation issue, i.e., all aspects related to distribution are hid-

den behind traditional centralized constructs. This has led to a variety of so-called “object-oriented

middleware” solutions, which promote objects as “autonomous entities communicating via message

passing”. One fundamental idea behind this is the illusion to be able to reuse, in a distributed context,

a centralized program that was designed and implemented without distribution in mind.

As argued in [WWWK94, Lea97, Gue99], distribution transparency is a myth that is both mislead-

22



ing and dangerous. Distributed interactions are inherently unreliable and often introduce significant

latency that is hardly comparable to that of local interactions. The possibility of partial failures

can fundamentally change the semantics of an invocation. High availability and masking of partial

failures involves distributed protocols that are expensive and hard to implement in the presence of net-

work partitions. Conventional protocols might conform well to local area networks, but scale poorly.

Another important mismatch lies in the missing support for one-to-many invocations in middleware

based on client/server-like interactions.

We have been considering an approach that bridges the gap between the two trends: (1) dis-

tributed protocols and (2) distributed programming models. In our approach the programmer is

aware of distribution but the ugly and complicated aspects of distribution are encapsulated inside a

specific abstraction with a well-defined interface. The Distributed Asynchronous Collection [EGS00]

is such an abstraction. It is a simple extension of the well-known collection abstraction. DAC s add

an asynchronous and distributed flavor to traditional collections [BGL98], and enable the expression

of various forms of publish/subscribe interaction. The Distributed Asynchronous Computing Environ-

ment we present in this paper is a framework for large scale event dissemination based on DAC s, and

can be viewed as a middleware solution for publish/subscribe interaction.

We define an adequate underlying system and failure model for the implementation of our DAC s.

This allows us to seamlessly weave programming models and underlying protocols, instead of just

glueing them together. This paper exemplifies this by presenting the realization of a DAC class for

topic-based publish/subscribe from bottom to top, i.e., from the system model all the way up to the

resulting programming abstraction and its interface. The DAStrongSet class used as an illustration,

guarantees reliable event delivery to all subscribers of a topic, and demonstrates our underlying par-

titioning model made-to-measure for loosely coupled interaction at large scale. Our model is less

restrictive than majority-partition, minority-partition or partition-aware, but nevertheless guarantees

a useful reliability.

The Topic Membership protocol we present in this paper is a lightweight membership protocol

for topics. It was guided by our programming model, namely DAC s. It handles network partitions

in asynchronous distributed systems. It makes no assumption on the network used to transport

messages, except that it must guarantee the absence of byzantine failures, i.e., processes do not be-

have maliciously. The Topic Reliable Broadcast protocol provides a reliable broadcast for topic-based

publish/subscribe, under the assumption that partitions will eventually remerge. A subscriber will

eventually receive the message even if the publisher was partitioned away temporarily. The number

of messages sent is minimized in stable phases by using the first participant function. We have also

made broad use of an augmented version of that function for our multicast protocol [BD99].

23



References

[AOS+99] K. Arnold, B. O’Sullivan, R.W. Scheifler, J. Waldo, and J. Wollrath. The Jini Specification.

Addison-Wesley, June 1999.

[BCM+99] G. Banavar, T. Chandra, B. Muhkerjes, J. Nagarajarao, R.E. Strom, and D.C. Sturman. An

efficient multicast protocol for content-based publish-subscribe systems. In Proceedings of the

19th IEEE International Conference on Distributed Computing Systems (ICDCS ’99), 1999.

[BD99] R. Boichat and L. Duchien. Reliable Broadcast and Multicast in Context of Parti-

tioning. Technical Report 99-11, Laboratoire CEDRIC-CNAM, Paris, September 1999.

http://cedric.cnam.fr/personne/duchien/RR99-11.ps.gz.

[BDMS97] Ö. Babaoǧlu, R. Davoli, A. Montresor, and R. Segala. System support for partition-aware network

applications. Technical Report TR-UBLCS-97-08, Department of Computer Science, University

of Bologna, October 1997.

[BGL98] J.P. Briot, R. Guerraoui, and K.P. Löhr. Concurrency, distribution and parallelism in object-

oriented programming. ACM Computing Surveys, 30(3):291–329, September 1998.

[Bir93] K.P. Birman. The process group approach to reliable distributed computing. Communications of

the ACM, 36(12):36–53, December 1993.

[BJ87] K.P. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. In Proceedings

of the 11th ACM Symposium on Operating Systems Principles, pages 123–138, December 1987.

[Col99] M. Colan. InfoBus 1.2 specification. Technical report, Sun Microsystems Inc., February 1999.

[Cor99] Talarian Corporation. Everything You need to know about Middleware: Mission-Critical Interpro-

cess Communication (White Paper). http://www.talarian.com/, 1999.

[CRW98] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design of a scalable event notification service:

Interface and architecture. Technical report, Department of Computer Science, University of

Colorado, http://www.cs.colorado.edu/ carzanig/papers/, August 1998.

[CT96] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal

of the ACM, 43(2):225–267, 1996.

[Dij74] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the

ACM, 17:643–644, 1974.

[DM96] D. Dolev and D. Malki. The Transis approach to high-availability cluster communication. Com-

munications of the ACM, 39(4), April 1996.

[DMS96] D. Dolev, D. Malki, and R. Strong. A framework for partitionable membership service. page 343,

May 1996.

[EGS00] P. Eugster, R. Guerraoui, and J. Sventek. Distributed Asynchronous Collections: Abstractions for

publish/subscribe interaction. In Proceedings of the 14th European Conference on Object-Oriented

Programming (ECOOP’2000), June 2000.

24



[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995.

[GMDS85] H. Garcia-Molina, S.B. Davidson, and S. Skeen. Consistency in partitioned networks. ACM

Computing surveys, 17(3):341–370, September 1985.

[Gol92] R. Golding. A weak-consistency architecture for distributed information services. Computing

Systems, 4(5):179–405, 1992.

[GOS97] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn communication channels. Technical report,

Ecole Polytechnique Fédérale de Lausanne, 1997.

[Gue99] R. Guerraoui. What object-oriented distributed programming does not have to be, and what it

may be. Informatik, 2, April 1999.

[HBS98] M. Happner, R. Burridge, and R. Sharma. Java Message Service. Technical report, Sun Microsys-

tems Inc., October 1998.

[Jav99] The Java Platform 1.2 API Specification. http://java.sun.com/products/jdk/1.2/, 1999.

[JdT+95] A.D. Joseph, A.F. deLespinasse, J.A. Tauber, D.K. Gifford, and M.F Kaashoek. Rover: A toolkit

for mobile information access. In Proceedings of 15th ACM Symposium on Operating Systems

Principles, pages 156–171, December 1995.

[KS92] J. J. Kitsler and M. Satyanarayanan. Disconnected operation in the coda file system. ACM

Transactions on Computer Systems, 10(1):3–25, February 1992.

[KT91] M.F. Kaashoek and A. Tanenbaum. Group communication in the amoeba distributed operating

system. In Proceedings of 11th IEEE International Conference on Distributed Computing Systems,

pages 222–230, May 1991.

[LAJ98] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental study of internet stability and wide-area

backbone failures. CSE-TR 382-98, Department of Eletrical Engineering and Computer Science,

University of Michigan, 1998.

[Lea97] D. Lea. Design for open systems in Java. In 2nd International Conference on Coordination Models

and Languages, http://gee.cs.oswego.edu/dl/coord/, 1997.

[Mic99] Microsoft. DCOM technical overview (white paper). Technical report, Microsoft Co., 1999.

[MMSA+96] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, R.K. Budhia, and C.A. Lingley-Papadopoulos.

Totem: A fault-tolerant multicast group communication system. Communications of the ACM,

39(4), April 1996.

[Mon00] A. Montresor. Jgroup. PhD thesis, University of Bologna, 2000.

[MPS91] S. Mishra, L. Peterson, and R. Schlichting. A membership protocol based on partial order. In

Proceedings of the International Workshop on Parallele and distributed Algorithms, pages 137–145,

February 1991.

[Obj99] ObjectSpace. JGL - Generic Collection Library. http://www.objectspace.com/products/jgl/,

1999.

25



[OMG98a] OMG. The Common Object Request Broker: Architecture and Specification. OMG, February 1998.

[OMG98b] OMG. CORBAservices: Common Object Services Specification. OMG, December 1998.

[OPSS93] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus - an architecture for extensible

distributed systems. In Fourteenth ACM Symposium on Operating System Principles, pages 58–68,

December 1993.

[PGPH90] G. Popek, R. Guy, T. Page, and J. Heidemann. Replication in ficus distributed file systems. In

the Workshop on Management of Replicated Data, November 1990.

[Pow96] D. Powell. Group communications. Communications of the ACM, 39(4):50–97, April 1996.

[PST+97] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible update

propagation for weakly consistent replication. In Proceedings of the 16th ACM Symposium on

Operating Systems Principles (SOSP-16), pages 288–301, October 1997.

[RB91] A.M. Ricciardi and K.P. Birman. Using process groups to implement failure detection in asyn-

chronous environments. In Proc. annual ACM Symposium on Principles of Distributed Computing,

August 1991.

[RW97] D. Rosenblum and A. Wolf. A design framework for internet-scale event observation and notifi-

cation. In Sixth European Software Engineering Conference/ACM SIGSOFT Fifth Symposium on

the Foundations of Soft ware Engineering, September 1997.

[SA97] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service with

quenching. In Proceedings of the Australian UNIX and Open Systems User Group Conference

(AUUG’97), http://www.dtsc.edu.au/, September 1997.

[Sun99] Sun. Java Remote Method Invocation - Distributed computing for Java (white paper). Technical

report, Sun Microsystems Inc., 1999.

[TIB99] TIBCO. TIB/Rendezvous White Paper. http://www.rv.tibco.com/whitepaper.html, 1999.

[vRBM96] R. van Renesse, K.P. Birman, and S. Maffeis. Horus: A flexible group communication system.

Communications of the ACM, 39(4), April 1996.

[WWWK94] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed computing. Technical

report, Sun Microsystems Inc., November 1994.

26



Appendix A Topic Reliable Broadcast Protocol

This section presents the TR Broadcast algorithm without the parts related to gossiping of network

knowledge and acknowledgments (anti-entropy).

1: this-p: this participant

2: channelState(i,j): channel exists between i and j as seen by this-p (true or false)

3: channelState(i): i-th row of channelState; has a timestamp tsp(channelState(i)) associated

4: messagesReceived : set of messages received by this-p

5: idMessagesReceived(q): set of ids of messages received by participant q as seen by this-p

6: maxGarbagedId(q): highest id of messages received by all and published by q as seen by this-p

7: awaitedIdMessages(q): set of ids of messages that have not yet been acknowledged by all

8: function firstParticipant(m,q) {return true if this-p is the firstParticipant to send m to q}
9: neighbours = {r | channelState(r,q) is true} {ordered with increasing p-id()’s}

10: for all p-id(r) | r ∈ neighbours up to p-id(this-p) - 1 do

11: if m-id(m) ∈ idMessagesReceived(r) then

12: return false

13: return true

14: procedure updateIdMessages(idMessagesReceivedq , maxGarbageIdq , awaitedIdMessagesq , q) {update ids}
15: for all participant r �= this-p do

16: idMessagesReceived(r) ←− idMessagesReceived(r) ∪ idMessagesReceivedq(r)

17: for all id ∈ maxGarbageIdq \ awaitedIdMessagesq do

18: idMessagesReceived(q) ←− idMessagesReceived(q) ∪ id

19: procedure check&forward() {upon a change in channelState}
20: neighbours = {r | channelState(r, q) is true}
21: for all r ∈ neighbours do

22: for all m ∈ messagesReceived and m-id(m) �∈ idMessagesReceived(r) do

23: if firstParticipant(m,r) then

24: TM-cast(m, idMessagesReceived, r)

25: To execute TR-broadcast(m):

26: messagesReceived ←− messagesReceived ∪ m

27: idMessagesReceived(this-p) ←− idMessagesReceived(this-p) ∪ m-id(m)

28: neighbours = {r | channelState(r, q) is true}
29: for all r ∈ neighbours do

30: TM-cast(m, idMessagesReceived, maxGarbageId, awaitedIdMessages, r)

31: TR-deliver(m) {delivers m to itself}

27



32: TR-deliver(-) occurs as follows:

33: when TM-deliver(m, idMessagesReceivedq , maxGarbageIdq , awaitedMessagesq , q)

34: if m-id(m) > maxGarbagedId(q) and m-id(m) �∈ awaitedIdMessages(q) then

35: updateIdMessages(idMessagesReceivedq , maxGarbageIdq, awaitedIdMessagesq , q)

36: if m �∈ messagesReceived then

37: messagesReceived ←− messagesReceived ∪ m

38: idMessagesReceived(q) ←− idMessagesReceived(q) ∪ m-id(m)

39: TR-deliver(m) {delivers m}
40: check&forward()

41: To execute TM-cast(m, idMessagesReceived, maxGarbageId, awaitedMessages, q):

42: for all participant r do

43: if [channelState(r) changed since the last message sent to q] then

44: tsp(channelState(r)) = tsp(channelState(r))+1 {update tsp}
45: channelStateq ←− channelStateq ∪ channelState(r) {update channelState}
46: send(m, idMessagesReceived, maxGarbageId, awaitedMessages, channelStateq) to q

47: TM-deliver(-) occurs as follows:

48: when receive(m, idMessagesReceivedq , maxGarbageIdq, awaitedMessagesq , channelStateq) from q

49: for all [participant r | ∃ channelStateq(r)] do

50: if tsp(channelStateq(r)) < tsp(channelState(r)) then

51: channelState(r) = channelStateq(r)

52: tsp(channelState(r)) = tsp(channelStateq(r))

53: TM-deliver(idMessagesReceivedq , maxGarbageIdq, awaitedMessagesq , q)

54: when messagesReceived �= ∅
55: for all m ∈ messagesReceived do

56: if [∀ participant r | m-id(m) ∈ idMessagesReceived(r)] then

57: messagesReceived ←− messagesReceived \ m

58: for all participant r do

59: idMessagesReceived(r) ←− idMessagesReceived(r) \ m-id(m)

60: if maxGarbagedId(m) > m-id(m) then

61: awaitedIdMessages(m) ←− awaitedIdMessages(m) \ m-id(m)

62: else

63: maxGarbagedId(m) = m-id(m)

64: for all m-id(m) > j > maxGarbagedId(m) do

65: awaitedIdMessages(m) ←− awaitedIdMessages(m) ∪ j

28



Appendix B Topic Reliable Broadcast Properties

This appendix sketches the properties of our TR Broadcast algorithm given in Section 6. For this, we

suppose that the system has reached an agreement on channelState.

Validity is implicit since at line 31 p delivers it directly by appendingm to messagesReceived. That

way, when p TR-broadcasts m, p will automatically TR-deliver m. Even if p does not incorporate a

subscriber, the message will still be buffered.

Agreement is fulfilled if one participant p eventually TR-delivers m, then every participant q of the

topic delivers m. Partitions remerge eventually, and therefore there will be a time t at which p ❀t q.

A message m is only garbage collected when all neighbours have acknowledged it (line 56), and the

algorithm will forward missing messages to lagging processes in task check&forwardp. Therefore, every

participant (and thus every subscriber) will eventually TR-deliver m.

Uniform Integrity is ensured in procedureTR-deliver. In fact, a participant knows at every moment

if it has already delivered message m, by storing m-id(m). The algorithm keeps track of the identifiers

of garbage collected messages. Furthermore, since we are in an environment devoid of byzantines

failures, no spurious messages are delivered.

29



Appendix C Detailed Performance Measurements

We present here the detailed results of our performance measurements summarized in Figure 8. Fig-

ures 9 and 10 show the performance of both broadcast protocols, together with the variance of the

measurements.

Figure 9: Throughput of Unreliable Broadcast

Figure 10: Throughput of Reliable Broadcast

In the case of the unreliable broadcast, the variation decreases when the number of participants

increases, as conveyed by Figure 9. This is due to the fact that the performance is bound by the global

performance of the network. In the case of Figure 10 in return, the variance remains more stable since

the limits of the network are reached very quickly.

30


