
Data Movement and Control Substrate for Parallel

Adaptive Applications�

Je�rey Dobbelaere, Kevin Barker, Nikos Chrisochoides, and D�emian Nave

Computer Science Department

College of William & Mary

Williamsburg, VA 23185

Keshav Pingali

Computer Science Department

Cornell University

Ithaca, NY 14853-3801

Abstract

In this paper, we present the Data Movement and Control Substrate (DMCS), that

implements one-sided low-latency communication primitives for parallel adaptive and

irregular computations. DMCS is built on top of low-level, vendor-speci�c communica-

tion subsystems such as LAPI for IBM SP machines and widely available libraries like

MPI for clusters of workstations and PCs. DMCS adds a small overhead to the com-

munication operations provided by the lower communication system. In return DMCS

provides a exible and easy to understand application program interface for one-sided

communication operations including put-ops and remote procedure calls. Furthermore,

DMCS is designed so that it can be easily ported and maintained by non-experts.

1 Introduction

In this paper, we describe an application-driven design and implementation of a low-latency

communication library for use in adaptive applications such as 3D unstructured mesh gen-

eration for crack propagation simulations on parallel computers [1]. We had two main goals

in designing and implementing this library.

� High-performance: In particular, we wanted to provide low-latency communication

operations.

�This work was supported by the NSF Career Award CCR-9876179, and by NSF grants CISE Challenge #

EIA-9726388, Research Infrastructure # EIA-9972853, # ITR-0085969, # ACI-9612959, and IBM's Shared

University Research Program.

� Flexibility and ease of use: We wanted to ensure that the library was useful for parallel

adaptive and irregular numerical applications.

Existing communication paradigms and communication systems tend to fall into one of

two broad camps regarding these two issues: those that are geared towards high performance

at the expense of usability (e.g. Low-level Application Programming Interface (LAPI) [2]),

and those that sacri�ce performance in favor of easing the burden placed on the application

programmer (eg., MPI [20], and software Distributed Shared Memory (DSM) systems like

Treadmarks [3]). Both approaches present serious diÆculties to the application developer

who demands maximal performance and a high degree of maintainability but who does not

possess the time or the desire to master the intricacies of complex communication systems.

MPI addresses portability and ease-of-use issues successfully by providing an attractive

interface for the parallel programmer. However, it is not intended to be a target for run-

time support systems software needed by compilers and problem solving environments since

these systems require a very eÆcient (and perhaps inevitably, less friendly) communication

substrate like LAPI. MPI also does not address issues like dynamic resource management,

and concurrency at the uniprocessor level (threads).

These issues were addressed by a consortium known as POrtable Run-time Systems

(PORTS) [4], and more recently, by the GRID community. PORTS consisted of research

universities, national laboratories, and computer vendors interested in advancing research for

software communication substrates that provide support for compilers and advanced tools

like parallel debuggers for current and next generation supercomputers. Some of the goals

of the PORTS group were the de�nition of standard applications programming interfaces

(API's) for (i) one-sided communication�, (ii) integration of multi-threading with communi-

cation, (iii) dynamic resource management, and (iv) performance measurement.

In particular, the PORTS group experimented with four di�erent approaches and API's

for the integration of communication with threads [5]: (i)a thread-to-thread communication

approach supported by CHANT [6], (ii) a Remote Service Request communication paradigm

like Active Messages, supported by NEXUS [7], (iii) hybrid communication, supported by

TULIP [8], and (iv) DMCS, which was initially presented in [9].

CHANT implements thread-to-thread communication on top of portable message passing

software layers such as p4 [10], PVM [11], and MPI [20]. The eÆciency of this mechanism

depends critically on the implementation of message polling. There are three common ap-

proaches to polling for messages: (i) individual threads poll until all outstanding receives

have been completed, (ii) the thread scheduler polls before every context switch on behalf

of all threads, and (iii) a dedicated thread, called the message thread, polls for all registered

receives. For portability, CHANT supports the �rst approach.

NEXUS decouples the speci�cation of the destination of communication from the spec-

i�cation of the thread of control that responds to it. NEXUS supports the Remote Service

Request (RSR) communication paradigm based on a remote procedure call mechanism, like

Active Messages [12]. Messages are handled by message handlers; each message handler is a

thread registered by the user or by the multi-threaded system, and invoked upon receipt of

�MPI-2 standard was not yet de�ned.

2

the message. The handler possesses a pointer to a user-level bu�er into which the user wishes

the message contents to be placed. Handler threads are scheduled in the same manner as

computation threads.

TULIP's hybrid approach is essentially a combination of thread-to-thread and RSR-driven

communication paradigm [8]. In the runtime substrate, TULIP provides basic communica-

tion via global pointers and remote service requests. Threads are introduced in the pC++

language level.

The development of DMCS was driven by the need for a runtime library for adaptive ap-

plications such as parallel adaptive mesh generation. DMCS attempts to combine eÆciency,

ease of use, and portability by using the following strategy:

1. Performance: DMCS is designed to provide unilateral communication primitives. These

primitives exploit the low-latency constructs of the underlying communication sub-

system and are optimized to handle the special requirements of adaptive applications.

To achieve low-latency, we decided to support a single-threaded communication paradigm.

In [9] we presented an implementation that supported multi-threading, but for perfor-

mance reasons DMCS has to perform context-switching which is a hardware dependent

operation and thus impairs the portability and maintainability of the system. The al-

ternative was to extend DMCS's API to support any thread package. This approach

increases the latency of the DMCS primitives as we show in Section 5.3.

After four years of continuous use and experimentation with DMCS, and the devel-

opment of four di�erent adaptive and irregular applications, we decided to uncouple

multi-threading from data movement. There are several advantages to this approach.

The user is free to choose his own package, the latency of DMCS calls is minimized,

and portability and maintainability issues are simpli�ed. Furthermore, the integration

of data movement with multi-threading can be easily accomplished outside DMCS.

The disadvantage is that for SMP nodes, the user is forced to use a single communi-

cation thread. Our approach is to force communication through the main application

thread; details are given in Section 5. This approach simpli�es programming because

the users do not need to worry about thread safety issues such as locking common data

structures. To support object/data migration, we built on top of DMCS a software

system called the Mobile Object Layer [16] which implements a global name space in

the context of object/data migration. In this way the application su�ers the additional

10% to 14% latency only if it is necessary.

2. Maintainability and Portability: DMCS is written entirely in ANSI C, and is designed

in a modular fashion on top of a lower communication substrate. This reduces the

amount of code that needs to be ported to new systems since only the lowest layers

must be ported. Existing implementations on both LAPI and MPI provide examples

of porting DMCS to di�erent platforms.

3. Flexibility and Ease-of-Use: A simple and intuitive API that interoperates with widely

used systems like MPI makes DMCS easy and useful tool to developers of parallel

adaptive applications.

3

Finally, we decided to address fault-tolerance only at the application level and ignored

authentication because we target MPPs and tightly coupled cluster of workstations where

the network security is handled by other systems like Cluster CoNTroler.

The rest of this paper is organized as follows. Sections 2 describes in broad terms

the applications that have driven the development of DMCS. First, we look at a parallel

guaranteed-quality mesh generator [14], and then at multi-layer parallel runtime systems [15].

In Section 3.1, we examine the parallel execution model of DMCS, and compare it with the

execution models of other parallel runtime systems. In Sections 3 and 5, we look at the

architecture and the implementation of DMCS. In Section 4, we describe the application

programmer interface (API) for DMCS. In Section 6, we analyze the overhead that DMCS

imposes over the underlying low-level communication subsystem. Finally, in Section 8 we

summarize our conclusions and we briey describe our plans for the next version of the

DMCS system.

2 Application Descriptions

The development of DMCS can be best understood by examining some of the applications

in which it is used. In this section, we look at two such applications: 3D Adaptive Mesh

Generation, and the Multi-layer Runtime System which is designed to tolerate large latency

events and facilitate large scale, out-of-core, adaptive applications. We will describe why

existing communication software and paradigms are often insuÆcient for such applications,

and what operations and properties are necessary.

2.1 Adaptive Mesh Generation

Mesh generation is a basic building block for the discretization of partial di�erential equa-

tions (PDEs) and the generation of discrete linear systems of algebraic equations. A very

successful approach for guaranteed-quality adaptive unstructured mesh generation is Delau-

nay triangulation. This algorithm generates unstructured meshes by adding new points on

demand, thereby modifying the existing triangulation by means of purely local operations.

The basic kernel for Delaunay algorithms is a four-step procedure [17] that is often called the

Bowyer-Watson (BW) kernel [18, 19]. The �rst step, point creation, creates a new point by

using an appropriate spatial distribution technique. The second step, point location, iden-

ti�es an element containing this new point. The third step, cavity computation, removes

existing elements that violate the Delaunay property. Finally, the fourth step, element cre-

ation, builds new triangles or tetrahedra by connecting the new point with old points such

that the resulting triangulation satis�es certain geometric properties.

The parallel implementation of the BW algorithm for 3D domains starts with an initial

Delaunay tetrahedralization of a set of points which is over-decomposed into N � P subdo-

mains (or regions), where P is the number of processors. Regions are assigned to processors

in a way that maximizes data locality; each processor is responsible for managing multiple

regions. The third step in the BW kernel is the source of unpredictable computation and

communication because the number of elements and regions that participate in any given

4

cavity varies. The number of elements in a cavity depends on the location of the newly

inserted point, the elements themselves, and the partitioning of the existing elements. Syn-

chronous communication deteriorates performance because it forces the computation to be

executed almost sequentially, in phases. Moreover, it is diÆcult to use any binary commu-

nication protocol (in which explicit receives are required) because messages are sent with

uncertain frequencies from uncertain sources.

By eliminating the problem of placing receives for unexpected data movement, asyn-

chronous remote procedure calls and one-sided communication primitives improve perfor-

mance and simplify the logic of the code. The third step of mesh generation requires the

following computation: given a point p and an element e, search among all elements adjacent

to e and identify those that violate the Delaunay property. This search is usually done in a

breadth-�rst order. Approximately 20% to 30% of the breadth-�rst searches touch non-local

data elements. In this case, a remote procedure call with two to three arguments simpli�es

the complexity of the code substantially. Similarly, one-sided communication primitives like

put or put op are helpful to perform a remote write (or remote write plus a simple operation

like gather or scatter) on remote memory without the participation of the application on the

target side. For example, once all elements (if any) from the breadth-�rst search are found

on a remote node, they must be stored in the proper memory location of the process or

thread that made the request without having the application wait or look for them.

In addition, work-load imbalance is a source of problems whose solution requires exible,

one-sided, non-blocking, and asynchronous data movement primitives. Imbalance can occur

due to re�nement, remeshing, and setbacks. Mesh re�nement takes place because of large

variability in the error of the solution. For applications such as crack propagation, remeshing

is required to handle changes in the topology and geometry of the mesh. Setbacks in the

progress of the algorithm (in certain regions) occur because of concurrency. Concurrency is

very useful, not only to exploit parallelism, but also to tolerate communication and synchro-

nization latencies. However, concurrency can create many problems. Newly inserted points

and newly created elements sometimes may have to be released (not used, even though they

have been computed) because they violate certain rules required for the correctness and the

quality of the mesh. The computation for creating and selecting these points and elements

must be performed again in the future. This type of setback introduces additional sources

of load imbalance which is exacerbated by the variable and unpredictable computation and

communication patterns in each region of the mesh.

In summary, the communication requirements for adaptive applications require one-sided,

non-blocking, and asynchronous data movement primitives like get/put and get op/put op

and remote procedure calls. In addition, the latency of small size (half kilobyte) data move-

ment primitives is very critical for the performance of adaptive applications. Figure 1(a)

shows that the communication traÆc due to small size messages for 3D unstructured mesh

generation is more than 90% of the overall communication, and Figure 1(b) indicates that

the the total time spent in message passing is about 15% of the total execution time. The

time spent in other computation activities is also shown in Figure 1(b) for comparison; more

detailed data is presented in Section 6.3.

5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Message Size (Kb)

0

6000

12000

18000

24000

30000

36000

42000

48000

of

 M
es

sa
ge

s

Avg. Number of Msgs. vs. Size, with Min/Max
box_hole 500k,1000k, 2000k AM−LAPI SMGP3 16 procs

2000k
1000k
500k

500 1000 2000
Mesh Size

0

10

20

30

40

50

60

70

80

90

T
im

e
(s

)

Sequential Meshing
Data Movement
Data Movement/SMGP
Structure Updates
Structure Updates/SMGP
Message Passing
Logic (Handlers, etc.)
Logic/SMGP

Execution Time v. Mesh Size
Geom: box_hole smgp3−sep06−bal−1000−infcav

Figure 1: (a) Distribution of messages with respect to message size. (b) Breakdown of

the total execution time of an adaptive application, parallel guarantee quality Delaunay

triangulation.

2.2 Multi-layer Runtime System

Modern runtime systems for parallel computers provide another example of the need for eÆ-

cient one-sided, non-blocking, and asynchronous communication. A major concern in these

systems is that performance is becoming bound by large latency events such as disk reads

and communication between processors because advances in network and disk technology

have not kept pace with advances in processor performance. As a result, processors are

wasting more and more cycles waiting for communication and I/O. This problem is only

exacerbated by the types of applications that typically make use of parallel architectures.

In particular, out-of-core applications must manipulate much more data than can �t in the

combined memories of all of the processors in the parallel system or cluster. For these ap-

plications, masking the latency associated with reads from the disks is critical. Similarly,

as we have seen in Section 2.1, applications that make use of dynamic and unstructured

communication patterns depend on eÆcient communication libraries for good performance.

To accommodate these application types, we developed the Multi-layer Runtime System [15]

on top of DMCS.

The MRTS divides the hardware into two (or more) layers, with the lower layer acting

as a data server for the upper layer which acts as as a computing engine. It is possible with

such an approach to reserve faster processors for the upper layer, keeping slower processors

or processors with larger amounts of memory for the lower layer (such a con�guration may

arise naturally when organizations choose to upgrade clusters or parallel machines with

newer hardware, but still wish to make use of the older machines). The MRTS allows

applications to create percolation objects which are nothing more than application-de�ned

pieces of data with user-de�ned handlers. For example, a 3D mesh generator may de�ne

tetrahedra or mesh subregions to be percolation objects which have a user-de�ned handler

6

for mesh re�nement. As work becomes available for a percolation object (for example,

from re�ning a mesh subregion), the percolation object migrates from the lower layer into

the upper layer where the work is actually performed. Once this work is completed, the

percolation object will migrate back into the lower layers, and will possibly be retired to

disk. In this way, running the application results in a continuous migration of objects from

the lower layer to the upper layer and back again.

Communication substrates that rely on binary communication semantics (such as MPI)

are ill-suited for implementing such a system. Because of the unstructured nature of the

application, percolation objects have no way to know where the communication is going to

take place. Re�nement in a particular mesh subregion may trigger changes in a neighboring

subregion at any time, as described in Section 2.1. Building such an adaptive system on top

of a communication substrate like MPI would place much of the communication burden on

the application programmer, and would greatly increase the complexity of the code.

For these reasons, the MRTS makes use of the Mobile Object Layer [16] which provides

single-sided communication with data migration. Application-de�ned data, called Mobile

Objects, migrate from processor to processor in the parallel system in any application-

de�ned manner. The Mobile Object Layer makes use of a distributed directory protocol

in which messages are sent to processors where Mobile Objects are believed to reside, and

then forwarded if this location turns out to be incorrect [16]. This directory protocol is

heavily dependent upon remote procedure invocation, or sending a message to a remote

processor which speci�es a handler to be invoked upon message receipt. Typically, these

messages are very small (refer to Section 6.3), and so low latency for small messages is

crucial. Additionally, the Mobile Object Layer must be able to manipulate remote memory

with get/put or get-op/put-op semantics that DMCS supports.

3 DMCS Architecture

DMCS is designed to meet two requirements in addition to the performance and applica-

tion speci�c requirements described earlier: those of maintainability and portability. DMCS

should not only deliver the lowest latency communication operations to the user possible,

but should do so without resorting to constructs that would be diÆcult to implement on

any given platform. In this section, we describe the architecture of DMCS, highlighting the

features that simplify maintaining and porting DMCS to a wide variety of hardware and

software platforms. We currently have versions of DMCS built using Active Messages [12]

and LAPI [2] communication subsystems on the IBM SP family of parallel machines, as well

as using MPI [20] on clusters of workstations.

3.1 Parallel Execution Model

First, we discuss the parallel execution model provided by LAPI, which runs on the IBM SP

family of parallel machines, and MPI, which is a common message passing software package

which can run on both dedicated parallel machines and clusters of workstations. Then, we

contrast these with the DMCS execution model.

7

Time

Process 0 Process 1

Interrupt
Mode

Polling
Mode

lapi_init() lapi_init()

LAPI function

lapi_poll()
User
Handler

Time

Process 0 Process 1
dmcs_init() dmcs_init()

dmcs_rsr()

dmcs_poll()
User Handler
Execution

LAPI Execution Model DMCS Execution Model

Figure 2: LAPI and DMCS Parallel Execution Models

The LAPI execution model involves two threads: (i) a user application thread, and (ii) a

LAPI completion handler thread or completion thread that constantly polls the network for

incoming messages and executes any user-de�ned handlers referenced by those messages. In

contrast, the DMCS execution model, forces all user-de�ned handlers to execute in the main

application thread. Also, by default, LAPI executes in interrupt mode. This means that as

messages arrive, the main application thread is interrupted so that incoming messages may

be handled. This contrasts with DMCS, which operates in polling mode in which messages

are handled only during a poll operation.

In contrast to LAPI, the MPI execution model is inherently single-threaded. In this

sense, it is closer to the execution model provided by DMCS. However, there are signi�cant

di�erences between the two. Most notably, MPI-1 provides only a binary communication

protocol, which means that send operations originating at one node must be paired with

explicit receive operation on the target node. MPI does provide several variations on this

basic execution model, including non-blocking immediate send operations, and synchronous

send operations, but these variations do not signi�cantly alter the basic communication

model of MPI. For many types of applications, particularly those that involve bulk data

transfers, this is an acceptable communication model. For other application types, such

as those that make use of dynamic runtime load balancing or unstructured communication

patterns, a binary communication protocol is inappropriate. For these applications, the

single-sided communication operations provided by DMCS are much more eÆcient.

DMCS provides a single-threaded execution modely and a one-sided communication

paradigm. DMCS is itself single threaded and therefore only a single application thread may

make use of DMCS during program execution. This single-threaded nature distinguishes

DMCS from low-level communication software like LAPI and eases the burden placed on

yThis means a single communication thread and many computation threads.

8

the application developer. Because user handlers execute in the main application thread,

applications using DMCS do not need to worry about thread safety issues for application

data structures.

The single-threaded execution model can also provide signi�cant bene�ts in application

performance. Because user handlers can only execute when a poll operation is executed by the

application thread, they cannot interrupt computation. This is desirable because frequent

context switching from taking interrupts can have a detrimental impact on performance, and

may also thrash memory, causing an unnecessarily large number of page faults. By allowing

user handlers to execute only when poll operations are executed, we can avoid such behavior.

DMCS also provides a single-sided communication paradigm, meaning that sending a

message to a remote node does not require an explicit operation to receive the message

on the target node. Applications making use of dynamic or unstructured communication

patterns bene�t greatly from this feature, as described before.

3.2 The Layered Approach to DMCS Architecture

We achieve portability and maintainability by splitting DMCS into the Messaging Layer (the

ML) and the Application Program Interface (the API) layers. This layered approach reduces

both the e�ort required to port DMCS to new platforms and the complexity presented to

the application developer. The API layer is invariant across platforms and implementa-

tions, while the ML layer contains code that will need to be modi�ed to port DMCS to

platforms that support di�erent communication paradigms and/or low-level communication

subsystems. For example, as we will see in Section 5, the challenges in porting the DMCS

communication primitives to a low-level system like LAPI, which supports the Active Mes-

sages communication paradigm, are completely di�erent from the challenges found in porting

DMCS to MPI, which implements a binary communication protocol.

The ML contains all hardware or software communication speci�c code, and its purpose is

to isolate code that needs to be modi�ed for portability reasons. The functionality provided

by the ML closely parallels that which is provided by DMCS. This allows any optimizations

that can be provided by the low-level communication subsystem to be propagated to the API

layer, and ultimately to the application. For example, Active Messages provides message

passing calls which take up to �ve machine word sized arguments. An implementation of the

ML built on top of Active Messages would be able to eÆciently make use of this functionality,

while a ML that required argument marshaling would not. Because of the close parallels

between DMCS and the ML, the ML is the largest layer in DMCS in terms of the number

of lines of code.

The API provides the function set that applications use to interact with DMCS and

subsequently with communication hardware. It also contains all of the source code that

remains invariant across all platforms. In other words, code is included in the API layer if and

only if it is completely independent from both the hardware and the low-level communication

software. Most API functions have close parallels in the ML layer. Two exceptions to this

rule are the dmcs malloc() and the dmcs free() functions. They can be built entirely from

functions provided by the ML, and therefore have no direct counterparts in the ML code.

Because of this design, the API layer is very thin, with many functions containing only a

9

single line or are de�ned as macros, further lowering latency.

3.3 Threads in the DMCS Architecture

Threads are absent from the DMCS architecture. Adding threads to the DMCS architecture

can be done in one of two ways: (i) threads themselves can be implemented in DMCS, or (ii)

the API of DMCS can be extended to include the API of some third party thread package.

The �rst alternative would greatly impair, if not destroy, the portability of DMCS. Im-

plementations of preemptive threads are heavily dependent upon the hardware architecture

of the underlying processor. This is because of the need to save the state of a running thread

when switching to a new thread, and the fact that the states of running threads are denoted

by the register values of the processor. These register values contain such things as the

stack pointer and the program counter, and vary widely from one processor architecture to

another.

The second option, merely extending the API of DMCS, would allow any thread package

to be used with DMCS. However, for now, we have opted against extending DMCS in this

way for mainly philosophical reasons. DMCS is designed to implement eÆcient message

passing; extending DMCS to provide threaded functionality does not aid it in its message

passing role. Incorporating threads into DMCS would also have rami�cations in the message

passing performance. For example, allowing message passing from a threaded handler would

necessitate that DMCS become thread-safe, which would add to the latency of message

passing operations. This is in direct contrast with our previously stated goals. An alternative

would be to enforce a policy stating that no message passing operations may be initiated

from within a threaded handler.

Furthermore, because the development of DMCS is driven by the needs of target applica-

tions, we have to ask if applications would necessarily bene�t from having threads incorpo-

rated into DMCS. At this point, it seems that applications would not bene�t substantially.

However, if this were to change, it may be possible to create a DMCS utility package that

would incorporate an implementation of threads.

4 DMCS Application Program Interface

The functionality provided by DMCS can be broken into three broad categories. The �rst

group is made up of Environment functions, and these are used to initialize and shutdown

DMCS in an orderly fashion, as well as to query the DMCS environment for certain infor-

mation, such as the number of processors in the parallel machine, or the rank of the calling

processorz. The second group of functions are Remote Memory Manipulation functions. In-

cluded in this group are dmcs malloc() and dmcs free(), which allow a process to allocate

and later free memory on a remote node. Also included in this group are remote read and

write operations, which allow processes to manipulate remote memory using read and write

semantics. The third group is the Remote Service Request group. A Remote Service Request

zDMCS ranks start at 0 and continue with consecutive integers up to the number of processes in the

parallel system minus one.

10

is similar to a remote procedure invocation, but with an added restriction that a Remote

Service Request cannot return any value. There are several RSR calls, each of which takes a

di�erent number of arguments. This allows DMCS to optimize the communication, possibly

avoiding argument marshaling if the underlying communication layer makes it possible to

do so. For example, DMCS built on top of Active Messages can take advantage of Active

Messages functionality and avoid argument marshaling for up to four machine word size pa-

rameters. Again, removing unnecessary functionality (such as argument marshaling) allows

DMCS to provide the lowest latency communication operations possible.

Environment manipulation functions like dmcs init() and dmcs shutdown() are responsi-

ble for the orderly startup and shutdown of the DMCS environment. Routines like

dmcs num procs() and dmcs my proc() are used to query the environment for particular in-

formation such as the number of processes and process rank in the parallel system. The

handler registration function dmcs register handlers() also falls into the category of envi-

ronmental functions. Details of these and other DMCS API functions can be found in the

DMCS web page [23]. A complete list of all functions with brief description can be found in

Table 1.

Data movement functions provide remote read and write operations on a parallel sys-

tem. DMCS provides two basic function types: Get and Put functions (dmcs get() and

dmcs put()) which correspond to reads and writes, respectively. DMCS extends these basic

function types with the concept of Get-and-op and Put-and-op functions, dmcs get op() and

dmcs put op(), which allow users to specify operations to take place on the target nodes after

a particular read or write has completed. Furthermore, DMCS provides both synchronous

and asynchronous data movement functions, the default being asynchronous communication.

The synchronous alternatives use the same names with the addition of sync. For example,

the default dmcs put op() function becomes dmcs sync put op() in its synchronous form.

Control functions, or Remote Service Requests, can be viewed as remote function invo-

cations with the added restriction that remote functions are unable to return any value. As

with remote memory manipulation functions, RSRs come in synchronous and asynchronous

forms. The synchronous version will return only after the message has been received at

the target node, but possibly before the user handler executes on the target. The asyn-

chronous operation will return immediately, possibly before the message has been sent. For

optimization purposes we have implemented RSRs with between zero and four (dmcs rsr0()

to dmcs rsr4()) arguments for the user-de�ned handler. A version for arbitrary size data,

dmcs rsrN(), is available, but requires marshaling of the data (the arguments) into a con-

tiguous memory bu�er. Because of this, there is a higher amount of latency associated with

this function.

5 DMCS Implementation

We will look at two implementations of DMCS, one built on top of LAPI for the IBM

SP family of parallel machines, and another built for clusters of workstations using MPI

for communication. Because both implementations must support the same API, several

interesting construction details needed to be resolved. In the following subsections, we will

11

DMCS Environmental Functions

dmcs init initialize DMCS

dmcs shutdown shutdown DMCS

dmcs my proc the relative process ID of the calling process

dmcs num procs the number of running processes

dmcs register rsrX handlers registers rsrX type handlers where X 2 f0; 1; 2; 3; 4; Ng

DMCS Remote Service Request Functions

dmcs async rsrX RSR with an X argument handler where X 2 f0; 1; 2; 3; 4g

dmcs async rsrN RSR with a handler taking a variable size bu�er

DMCS Remote Memory Manipulation Functions

dmcs malloc allocate memory on a remote processor

dmcs free frees memory on a remote processor

dmcs async put copy a data bu�er to a remote processor

dmcs async put op copy a data bu�er to a remote processor;

the remote processor then returns with a dmcs async rsr1

dmcs async get retrieve a data bu�er from a remote processor

dmcs async get op requests a dmcs async put op be executed on a remote

processor

Table 1: A brief description of the DMCS API

look at these and other issues.

5.1 DMCS Implementation Using LAPI

The execution model of DMCS di�ers signi�cantly from that of LAPI, so there are a number

of challenges in implementing DMCS on top of this substrate. For example, the LAPI

execution model mandates that user-de�ned handlers execute inside a LAPI completion

handler thread, while DMCS handlers must execute in the main application thread. Another

crucial di�erence concerns the time when user handlers must execute. LAPI executes in

interrupt mode by default, meaning that user handlers execute as soon as messages arrive

at the target node (a LAPI thread executes in the background, interrupting the application

thread when a message arrives). On the other hand, DMCS handlers must only execute when

the application performs a polling operation. Resolving these di�erences in the execution

models is the primary challenge in implementing DMCS on top of LAPI.

5.1.1 Single-Threaded Execution Model With LAPI

In mapping DMCS to LAPI, the two challenges of (i) implementing the single-threaded

model mandated by DMCS, and (ii) forcing all user-de�ned handlers to execute only during

a polling operation are both addressed through the use of delay tables containing handlers.

When a Remote Service Request message arrives at a node, a LAPI header handler and

12

wait()

Dispatcher

User Handler

LAPI Initialize

LAPI Send

Dispatcher

DMCS Initialize

DMCS Send

Message
Outgoing

DMCS Poll

wait()

Dispatcher

DMCS Handler User Handler

Incoming
Message

Incoming
Message

LAPI Completion
 Thread

LAPI Completion
 Thread

Application Thread

Pending Handler
Table

Application Thread

Figure 3: A closer look at the LAPI and DMCS parallel execution models

/* --

* Function: dml_rsrX_complhndlr()

* Returns: void

* Description:

* LAPI completion handler. Because dmcs is single threaded, we

* simply enqueue messages in a delay table so they can be dequeued

* and handled during a poll() from the main thread.

* --

*/

void

dml_rsrX_complhndlr(lapi_handle_t *pHndl, void *pParam)

{

dml_message_t *pMsg = (dml_message_t*)pParam;

dml_delay_table_insert(pMsg->nSrc, pMsg->nSeq_num, (void*)pMsg);

}

Figure 4: DMCS RSR LAPI Completion Handler

13

/* * Construct a new message object */ pMessage->nType = RSRX_TYPE;

pMessage->nSrc = dml_my_proc(); pMessage->nTgt = tgt;

pMessage->nSeq_num = dml_get_sequence_number(tgt);

pMessage->nAsync_flag = DML_SYNC; pMessage->nRemote_handler_idx =

dml_lookup_handler(handler); pMessage->pCompletion_handler =

dml_rsrX_complhndlr; pMessage->nArgs[0] = nArg1;

Figure 5: Construction of a New Message Object

completion handler execute. The completion handler, running in the LAPI completion han-

dler thread, simply inserts a data structure describing the user handler and any parameters

into a delay table, instead of calling the user handler directly. This method has a couple of

advantages. First, this insertion operation is very quick, thus freeing the LAPI completion

thread to service other requests and preventing the network from backing up during times

of peak traÆc. Second, it allows DMCS to provide the necessary single-threaded execution

model. The polling operation, which executes in the main thread, simply empties the delay

table, executing any handlers that may be pending. With this design, only the delay table

itself needs to be thread safe, and user applications do not need to worry about thread safety

issues such as locking common data structures.

Figure 4 illustrates a completion handler for a Remote Service Request. The completion

handler is passed a pointer to a message object from the header handler. This message object

is inserted into the delay table using the source node identi�er and the message sequence

number as a key. The delay table is a hash table in order to make lookups as speedy as

possible. When the application executes a poll operation, the delay table is ushed and any

pending handlers are executed in the order speci�ed by DMCS's message ordering strategy.

The same solution is used to handle put-op and get-op messages.

5.1.2 Message Ordering Strategy

LAPI, like many other low-level messaging systems, does not guarantee message ordering by

default. Unfortunately, message ordering is crucial for the correctness of many applications,

and therefore must be provided by DMCSx.

Message ordering is provided via sequence numbers, which are appended to a message

at transmission time and then checked upon receipt. Each processor maintains a list of

sequence numbers, one for each other processor in the system. When a message is sent, the

current sequence number corresponding to the target processor is included in the message,

and that number is then incremented. Figure 5 shows the construction of a message for a

DMCS Remote Service Request with a single argument, showing how sequence numbers are

associated with messages.

xMessage ordering is an example of functionality that is necessary, but is also platform speci�c. In other

words, some low-level communication software may provide message ordering, and in such cases it should

not be provided by DMCS. Such redundant functionality only adds to the overhead incurred by the runtime

system. Therefore, message ordering functionality belongs in the platform-speci�c DML layer of DMCS.

14

Maintaining message ordering upon arrival is handled by the delay table mechanism. As

messages arrive, they are inserted into the delay tables using their source node and sequence

number as a key. The insertion algorithm is designed so that gaps will be left in the table if

messages arrive out of order. In other words, if message n arrives before message n�1, there

will be a gap left in the table where message n� 1 should reside. When a polling operation

is executed, the messages in the delay table are processed, beginning with the message with

the next expected sequence number for each processor in turn. Messages are processed until

a message with the next expected sequence number is not present in the delay table. This

happens when either all messages that have arrived have been processed or when messages

arrive out of order; in either case, processing stops till the next message in logical sequence

is received.

5.2 DMCS Implementation Using MPI

Currently, MPI is the most widely distributed message passing system due to its portability

and accessibility. These attributes were in fact the ideas behind the design and creation

of MPI. However it is not always possible for generic MPI implementations to provide the

performance of vendor tuned communication systems. On a system such as the IBM SP,

MPI is built on top of the LAPI low-level communications system, and can therefore take

advantage of the SP's high speed communication switch. MPI is also implemented for

clusters of workstations, using TCP/IP to communicate between nodes. On such systems,

performance may be subservient to portability; MPI implementations must be designed to

run on signi�cantly di�erent platforms. In order to port applications to a wide variety of

platforms, many of which were not speci�cally targeted by the application designers, we need

an implementation of DMCS that is able to run on many systems, and yet adheres to the

standards already imposed on DMCS. For this task, MPI was used for underlying message

passing. By keeping the DMCS layer thin, it is possible to o�er performance nearly equal

to that of MPI, while providing a superior API and substrate with which the application

developer may create adaptive and unstructured applications.

5.3 Single-Threaded Execution Model With MPI

MPI inherently provides a single-threaded execution model and therefore maps well to the

single-threaded model provided by DMCS. There is no need for the enqueueing of messages to

guarantee ordering and single-threaded execution like there is in the LAPI implementation of

DMCS. The ordering of messages is left to the MPI layer of the system; with MPI, messages

are guaranteed to be received in the order that they are sent so long as certain criteria are

met. However, because MPI implements a binary communication protocol, an explicit receive

must be posted to match the send request of a remote node. Because of the binary nature of

MPI, the receives must contain certain information about the incoming message in order for

that message to be received. This information includes the source of the message, the size of

the message, and the MPI tag associated with the message. With DMCS, we do not know

in advance the information of messages that must be posted, making it diÆcult to receive

messages in order of arrival. Fortunately, MPI o�ers two probing functions (MPI Probe()

15

and MPI Iprobe()) that check the network for any incoming messages ready to be received

by the polling node. If there are multiple messages available, the probe will return the

information of the message that arrived earliest. DMCS is then able to receive that message

and handle it appropriately. In accordance with the standards imposed on DMCS, the

reception of messages takes place in the dmcs poll() function call. The only exception to

this rule occurs when endeavoring to avoid deadlock, and this is explained in greater detail

in the next section.

5.3.1 Message Reception and Deadlock Avoidance

EÆcient message reception is critical to maintaining high performance in the runtime sys-

tem. For example, dynamically allocating memory to hold incoming messages can lead to

unacceptable performance and wasted memory resources. DMCS, in order to make message

reception as eÆcient as possible, makes use of a preallocated message pool. As a message

arrives, a preallocated message object will store its contents, and will be used by DMCS to

invoke the user-speci�ed handler. This method requires all messages to be received in the

same way, and therefore the encoding and decoding of messages must be very speci�c to

ensure messages are handled in the proper manner. With the help of C macros, the type

of message is encoded in the message. Upon reception of a message, this ag is extracted

and examined in order to determine which DMCS level handler should be called to properly

execute the message intent.

This is the encoding strategy employed by DMCS for all message types except for Remote

Service Requests. Since MPI was created to run on many systems, memory mapping across

distributed memory machines is not guaranteed. In order to execute a user-level handler

on a remote node, that handler must be registered as a DMCS handler. This is described

further in Section 5.3.2.

Because DMCS o�ers synchronous versions of all of its operations, the possibility of

deadlock needed to be taken into account during implementation. Since DMCS is a single-

threaded system, and the only time a DMCS message of any kind can be received is during

a dmcs poll(), deadlock can occur when two nodes send each other synchronous methods

simultaneously. In this case, each node will be waiting for the signal that the message is

received on the remote node, but, unfortunately, if both sides are waiting, then neither side

is able to send the signal. To avoid this possibility of deadlock, a second polling function

(one that is invisible to the programmer) had to be created. This polling function operates

almost identically to dmcs poll(), except that it receives only a single message at a time

instead of ridding the network of all possible messages. In synchronous operations, there

is a loop that waits for noti�cation that the sent message has been received on the remote

node. If this loop executes for a predetermined number of cycles without receiving this

noti�cation, the new polling function is called to determine if a message is on the network

that may be causing the deadlock. If there is such a message, it is received and handled in

the intended manner. Control is then returned to the synchronous operation to determine

if the deadlock has been eliminated. This process cycles until the deadlock is resolved and

execution continues as normal.

16

5.3.2 Handler Registration

Because DMCS is designed to run on a large variety of hardware and software platforms, it

must make as few assumptions as possible about the underlying operating environment. One

assumption that does not always hold true is the congruent mapping of parallel processes

to memory on nodes in a parallel machine. On some platforms, a single process is assigned

to each node in the parallel system, and it can be assumed that each process occupies the

same memory addresses. Furthermore, corresponding data structures and corresponding

functions also occupy the same addresses on each node. In other cases, processes and data

are allocated to whatever memory may be available on a processor.

Such behavior has direct bearing on any parallel runtime system. For example, in the

�rst case, function pointers can be passed between nodes with no modi�cation. In the second

case, however, function pointers passed between nodes are invalid and useless. In such an

environment, special care must be taken when referencing functions and data on remote

nodes.

The obvious solution to this problem is to use a level of indirection. User handlers must

be registered at the time of DMCS initialization. The collective dmcs register handlers()

operation creates an internal handler table which associates user handlers with small integer

indices. In all DMCS operations that specify a user handler (such as a Remote Service

Request), a translation takes place before the message is actually sent. The function pointer

speci�ed in the function call is converted to the handler index, which is then converted back

to a function pointer on the remote node.

5.4 Optimizing with Preallocated Message Pools

Providing low latency communication operations and a suitably high level of performance

often means minimizing the amount of dynamic memory allocation in the critical path of

sending a message. To reduce the amount of dynamic memory allocation, DMCS makes

use of preallocated message pools to send and receive messages. These message pools are

allocated at system startup time, and provide message bu�ers to processes that wish to send

or receive messages.

When a process wishes to send a message, it simply dequeues the head of the outgo-

ing message pool. The outgoing message pool contains unused message bu�ers, which are

contiguous regions of memory ready to be �lled in with valid outgoing message �eld values.

Once the message has been sent and the memory on the sending node is free to be modi-

�ed, the message bu�er is returned to the outgoing message queue, ready to be used for a

subsequent message.

A similar strategy handles incoming messages. When a message arrives from the network,

a preallocated message bu�er is taken from an incoming message pool to store the message.

Once the message is handled, the preallocated message bu�er is returned to the message

pool, to be used again by some future message.

Because the entries in the message pool are of a �xed size, they cannot store variable

sized data, such as the data for a Put operation or for an RSR operation with more than

four arguments. Storage to store this data needs to be allocated during the runtime of

17

the program, but the responsibility for allocating the memory falls on a di�erent party in

each case. For a Put operation, the responsibility for making sure there is storage available

falls on the application, while in the case of the RSR message, it is the responsibility of

the runtime system to allocate the memory. If, during the course of execution, it can be

determined that the dynamic memory allocation required to handle the variable sized bu�er

for the RSR message is hampering performance, the application can replace dmcs rsrN()

calls with dmcs put op() calls. This will allow the application to preallocate storage for the

Put operation, which will copy the arguments to a known location, and then run a handler.

Another solution is for DMCS to provide preallocated message pools of user-speci�ed

sizes to store the incoming RSR argument bu�ers. This is an optimization that should be

incorporated into DMCS, and it is discussed briey in Section 8 of this paper.

6 Performance Analysis

In Section 3 we de�ned an execution model that simpli�es message passing for parallel adap-

tive applications |i.e., satis�es the communication requirements we identi�ed in Section 2;

and at the same time permits a slim and clean design and implementation of the mid-level

communication library, DMCS. In Sections 4 and 5 we presented an easy to understand

software design and implementation which is easy to be maintained by non-experts. The

only aspect of the communication system that remains to be examined is the overhead of

the individual DMCS communication operations. The performance of DMCS operations can

be gauged by examining the overhead of individual primitives within microbenchmarks and

complete adaptive applications.

We evaluate the performance of DMCS primitives by looking into two microbenchmarks,

for the evaluation of the most frequently used primitives: Remote Service Request and

Put Op. In the adaptive mesh generation, approximately 67% of messages are remote service

requests and about 33% of messages are Put Op. Also, we evaluate the success of the DMCS

system from applications perspective. We use three communication adaptive applications

which are communication intensive: a 3-dimensional Guarantee Quality adaptive Delaunay

Tetrahedralization, dynamic Network Sort (netsort) kernel, and a Multi-Layer Runtime Sys-

tem [15]. We perform the evaluation of DMCS primitives on two di�erent implementations:

(i) DMCS implementation using LAPI, a low-latency communication substrate for SP ma-

chines and (ii) DMCS implementation using MPI which is a high-latency communication

library for cluster of workstations and PCs. The evaluation of the three complete adaptive

applications is performed only on the MPI implementation because of limited number of

nodes{ on the SP machine.

6.1 Experimental Set-up

The DMCS/MPI performance �gures were collected using two systems. The Linux numbers

were collected from a network running 1GHz Pentium III machines with 128 megabytes and

connected by 100 Mbit fast-Ethernet. The Solaris numbers were collected on a network

{Our SP machine has only two 2-way PowerPC 604e 200 MHz nodes.

18

DMCS Overhead MPI Overhead Total Time

dmcs async rsr0 1.000e-6 7.000e-6 1.000e-5

dmcs async rsr1 1.000e-6 1.000e-5 1.300e-5

dmcs async rsr2 1.000e-6 1.100e-5 1.400e-5

dmcs async rsr3 1.000e-6 9.000e-6 1.200e-5

dmcs async rsr4 1.000e-6 1.000e-5 1.200e-5

Table 2: Send times (in seconds) for DMCS RSRs. These include the DMCS overhead, the

MPI (LAM) overhead, and the total time to execute the call. Tests were run on Intel PIII

1GHz machines running Linux connected by 100 Mb Fast Ethernet.

of Sun Ultra 5 machines with 333MHz processors connected by a 100 Mbit fast-ethernet

network and with 256 megabytes of memory.

The DMCS/LAPI performance �gures were collected using an IBM SP parallel machine

with 200 MHz RS/6000 processors. Each node has 256 megabytes of memory and is con-

nected with a SP-switch.

6.2 Microbenchmarks

This subsection describes the performance of two DMCS implementations for two of the

most frequently used DMCS operations: remote service request, and put op. We look at

both the MPI implementation and the LAPI implementation, and we are able to show that

DMCS does not add signi�cant overhead in either case.

To demonstrate just how thin the DMCS layer is, we have run experiments on a few

members of the API on two separate platforms. It is apparent from the Tables 2 to 5 that

DMCS o�ers very little overhead with respect to the total execution time as well as the

MPI overhead. This can also be observed in the graphs of Figure 6 and Figure 7. What is

even more interesting is that the DMCS overhead time is completely independent of message

size. The DMCS overhead from Table 3 are consistently 1e� 6 seconds, despite sending an

8K message. This implies and accurately reects that DMCS uses no unnecessary memory

allocation, deallocation, or copying. Similar numbers can be seen on the experiments run on

Solaris, and both imply that as the message size increases, the percentage of total execution

time spent in the DMCS layer decreases. For a one byte message on the Linux cluster, the

DMCS overhead for total execution time is approximately 2%. Similarly, for an 8k message,

the percentage drops to approximately 0.5% of the total execution time. It is apparent from

these tables and graphs, that DMCS o�ers the smallest overhead possible while providing

the strength of a one-sided asynchronous paradigm.

Table 6 depicts the send times for DMCS RSR operations with a �xed number of machine-

word sized parameters and Put-op times for di�erent sized message payloads. The total

time is broken into several categories: the DMCS overhead, which contains the time spent

in DMCS code; the LAPI overhead, which contains the time spent executing LAPI polls,

handlers, and other operations; and the total time spent in the DMCS operation as perceived

19

Size (bytes) DMCS Overhead MPI Overhead Total Time

dmcs async put op 1 1.000e-6 3.700e-5 3.900e-5

dmcs async put op 64 1.000e-6 3.700e-5 4.000e-5

dmcs async put op 512 1.000e-6 5.600e-5 6.000e-5

dmcs async put op 4096 1.000e-6 2.320e-4 2.360e-4

dmcs async put op 8192 2.000e-6 3.890e-4 3.950e-4

Table 3: Send times (in seconds) for DMCS Put-Ops. These include the DMCS overhead,

the MPI (LAM) overhead, and the total time to execute the call. Tests were run on Intel

PIII 1Ghz machines running Linux connected by 100 Mb Fast Ethernet.

DMCS Overhead MPI Overhead Total Time

dmcs async rsr0 2.000e-6 6.700e-5 7.300e-5

dmcs async rsr1 2.000e-6 6.400e-5 6.900e-5

dmcs async rsr2 2.000e-6 7.000e-5 7.500e-5

dmcs async rsr3 2.000e-6 6.900e-5 7.400e-4

dmcs async rsr4 2.000e-6 6.300e-5 6.800e-5

Table 4: Send times (in seconds) for DMCS RSRs. These include the DMCS overhead, the

MPI (LAM) overhead, and the total time to execute the call. Tests were run on Sun Ultra

5 333Mhz machines running Solaris connected by 100 Mb Fast Ethernet.

Size (bytes) DMCS Overhead MPI Overhead Total Time

dmcs async put op 1 3.000e-6 1.180e-4 1.260e-4

dmcs async put op 64 3.000e-6 1.170e-4 1.250e-4

dmcs async put op 512 5.000e-6 4.770e-4 4.870e-4

dmcs async put op 4096 3.000e-6 6.430e-4 6.490e-4

dmcs async put op 8192 3.000e-6 9.160e-4 9.240e-4

Table 5: Send times (in seconds) for DMCS Put-Ops. These include the DMCS overhead,

the MPI (LAM) overhead, and the total time to execute the call. Tests were run on Sun

Ultra 5 333Mhz machines running Solaris connected by 100 Mb Fast Ethernet.

20

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

e
(s

ec
s)

Size (bytes)

Total time
DMCS time
MPI time

Figure 6: A plot of the Put-Op times. The graph contains plots of DMCS overhead, MPI

overhead, and total execution time. Tests were run on Intel PIII 1Ghz machines running

Linux connected by 100 Mb Fast Ethernet.

by user code. However, there are several things that must be noted when examining these

numbers. First is the diÆculty in measuring LAPI time. Speci�cally, the time spent moving

the user data from the Network Interface (NIC) into the kernel, and �nally into user space

cannot be measured without access to the LAPI implementation code. Because we do not

have such access, we measured LAPI calls by simply wrapping timers around them. While

this serves as only an approximation, it still allows us to view trends in the timings. Secondly,

the DMCS overhead plus the LAPI overhead does not equal the total user time. This is due

to several factors which we are not able to measure, including thread context switch time,

kernel-level polling time, and the time to run the LAPI dispatcher. Every LAPI call attempts

to make progress on any pending messages by running the dispatcher function, either in the

user's main thread on the LAPI completion handler thread. This function does not execute

instantaneously, and therefore adds time to the perceived user time.

In Table 7, we can see that the DMCS overhead time remains fairly constant for each

operation. This is due to the fact that no copies of parameters must be made. Also, we see

that the LAPI overhead and the total execution time are constant, due to the fact that each

operation simply �lls in a system structure, which is the same size no matter the number of

parameters sent. Importantly, we can see that the DMCS overhead is in the range of 10%

of the LAPI overhead we could measure; using the total LAPI overhead, including context

switching that takes place in the LAPI layer, the actual DMCS should be substantially

smaller, for each operation.

21

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

e
(s

ec
s)

Size (bytes)

Total time
DMCS time
MPI time

Figure 7: A plot of the Put-Op times. The graph contains plots of DMCS overhead, MPI

overhead, and total execution time. Tests were run on Sun Ultra 5 333Mhz machines running

Solaris connected by 100 Mb Fast Ethernet.

Table 7 depicts the performance of DMCS Put-op operations with message payloads

of various sizes. Again, the DMCS overhead remains fairly constant as the message size

increases. This once again demonstrates the fact that there are no message copies within

DMCS, allowing it to propagate the performance of the underlying communication substrate

to the user. As the message size increases, we can see that the LAPI overhead grow, along

with the total user-level time. As before, the DMCS overhead added to the LAPI overhead

does not equal the total user-level time, due to unmeasurable operations within LAPI, and

thread context switch time between the user thread and the LAPI completion handler thread.

Overall, DMCS overhead adds between roughly 1% and 10% of the LAPI overhead we could

measure; using the total LAPI overhead, including context switching that takes place in the

LAPI layer, the actual DMCS should be adding a substantially smaller percentage to the

LAPI overhead.

6.3 Adaptive Applications

In this subsection we evaluate the DMCS overhead in the context of two complete applica-

tions and a netsort kernel we described in Section 2. The �rst application is a 3-dimensional

Parallel Guaranteed Quality Delaunay Triangulation [14] and the second application is a

Multi-layer Runtime System [15] that is intended to build parallel, out-of-core adaptive

mesh generation codes. The third application is a netsort kernel which consist of two par-

22

DMCS Overhead LAPI Overhead Total Time

dmcs async rsr0 2.103e-6 34.024e-6 67.963e-6

dmcs async rsr1 2.465e-6 35.590e-6 74.554e-6

dmcs async rsr2 4.126e-6 38.565e-6 60.837e-6

dmcs async rsr3 2.480e-6 24.968e-6 67.191e-6

dmcs async rsr4 2.483e-6 22.706e-6 70.022e-6

Table 6: Send times (in seconds) for DMCS RSRs. These include the DMCS overhead, the

LAPI overhead, and the total time to execute the call. Tests were run on an IBM SP parallel

machine with 200MHz RS/6000 processors.

Size (bytes) DMCS Overhead LAPI Overhead Total Time (secs)

dmcs async put op 1 4.321e-6 45.018e-6 102.321e-6

dmcs async put op 64 3.264e-6 36.350e-6 126.644e-6

dmcs async put op 512 3.535e-6 25.721e-6 123.515e-6

dmcs async put op 4096 4.607e-6 128.725e-6 232.500e-6

dmcs async put op 8192 5.050e-6 329.448e-6 372.904e-6

Table 7: Send times (in seconds) for DMCS Put-Ops. These include DMCS overhead, LAPI

overhead, and the total time to execute the call. Tests were run on an IBM SP parallel

machine with 200MHz RS/6000 processors.

23

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

e
(s

ec
s)

Size (bytes)

Total time
LAPI time
DMCS time

Figure 8: A plot of the Put-Op times. The graph contains plots of DMCS overhead, LAPI

overhead, and total execution time. Tests were run on an IBM SP parallel machine with

200MHz RS/6000 processors.

allel network sort routines using two di�erent scenarios: static netsort and mobile netsort

where parts of the data to be sorted move around randomly. Data might have to move in

di�erent processors in order to minimize load imbalance of the processors.

Guaranteed Quality Delaunay Triangulation (GQDT): The performance of the

3-dimensional Parallel GQDT depends heavily upon eÆcient communication for the com-

putation of Delaunay cavities which contain tetrahedra owned by more than one processor.

Distributed cavities are constructed by a distributed breadth-�rst search algorithm over the

mesh to locate violated tetrahedra, which contain a newly inserted point, p, in their cir-

cumspheres. The communication is one-to-many, in that the processor containing the newly

inserted point p may, in order to compute the cavity around this point, sends many messages

to other processors containing subdomains which own tetrahedra violated by the newly in-

serted point. In section 2.1 we have seen that the communication required for computing the

distributed cavities is variable and unpredictable so the standard message passing techniques

do not apply.

Table 8 shows the minimum, average, and maximum percent of distributed cavities, over

16 processors for for a half, one, and two million elements. The last column depicts the

average number of distributed cavities per processor. This table shows that even if each

distributed cavity required only few messages to its neighbor processors, the overhead of an

ineÆcient message passing system would be signi�cant. On average, each distributed cavity

sends fourteen messages.

24

Size Min. (%) Avg. (%) Max. (%) Avg. #

0.5M Elements 12 19 26 1720

1M Elements 12 19 31 3705

2M Elements 15 18 22 7415

Table 8: Percent of distributed cavities and the average number of distributed cavities, per

processor.

DMCS Overhead MPI Overhead

P # Tets Time MIN AVE MAX MIN AVE MAX

2 1M 162 .1023 .1028 .1034 20.53 20.63 20.73

4 1M 95 .0848 .0960 .1127 22.13 22.60 23.40

4 2M 185 .1428 .1542 .1769 37.45 38.50 40.18

8 1M 61 .6790 .0874 .1150 19.70 21.66 24.39

8 2M 111 .1024 .1351 .1850 32.00 35.82 40.90

8 4M 208 .1430 .2055 .2886 49.71 57.38 67.16

16 1M 40 .3785 .6863 .8575 19.32 27.04 29.89

16 2M 71 .0665 .1060 .1312 28.44 30.75 34.02

16 4M 128 .0974 .1642 .2066 44.45 49.23 57.23

16 8M 240 .1670 .2662 .3768 76.02 82.78 91.59

Table 9: Performance data from parallel adaptive mesh generation on two to sixteen pro-

cessors, generating one to eight million tets. Total execution time with the DMCS and MPI

overheads are shown. All tests run on Sun Ultra 5 296Mhz nodes running Solaris connected

by 100 Mb Fast Ethernet.

25

Object Size Total DMCS Overh

32 Bytes 0.6 3.1e-02

512 Bytes 1.1 6.2e-02

8192 Bytes 1.3 7.2e-02

32768 Bytes 1.8 8.9e-02

65536 Bytes 2.0 9.6e-02

Table 10: Percolation time and overhead for a single object. Tests run on Sun Ultra 5

333Mhz machines running Solaris connected by 100 Mb Fast Ethernet.

Table 9 depicts di�erent mesh runs for 2, 4, 8 and 16 nodes (Sun Ultra 5 296Mhz machines

running Solaris) connected by 100 Mb Fast Ethernet. The size of the meshes varies from

one million tetrahedra (Tets) to eight million Tets. The total execution time is measured in

seconds. The DMCS overhead as well as the MPI overhead are measured in seconds and the

minimum (MIN), average (AVE), and maximum (MAX) overhead per run are listed. The

DMCS latency over the MPI overhead on average varies from 0.5% (one million elements

generated in two nodes) to 2.5% (one million elements generated in 16 nodes). The maximum

DMCS overhead over the total execution time is between less than 0.1% and 1.7%. Also, it

is apparent from these data that the communication overhead is a clear source of imbalance.

This issue has been studied in [22].

Multi-Layer Runtime System: We evaluate the impact of the DMCS overhead upon

the MRTS. In this test, we migrate a single object (it can be a subregion or a block of a

large matrix) through the entire percolation cycle, with the runtime system executing on

two processors contained within two di�erent machines. The percolation cycle begins with

reading the data object from disk, and injecting it into the cycle. The Initiator Module

writes the data parcel into the local "Hot" data bu�er, and inserts a token referring to

the parcel into the parallel heap. Next, the Assembler Module, which also executes on the

Data Server processor, moves the data into the Computing Engine layer of the runtime

system. This involves moving the object from the "Hot" data bu�er into a local bu�er on

the Computing Engine, and moving the token which refers to it from the parallel heap into

an appropriate upward moving parallel queue. The third stage, the Scheduler, is responsible

for executing the computation pending for the percolating data. This is the only stage of

the cycle which executes on the Computing Engine processors. Finally, the Terminator is

responsible for retiring the data which has just �nished percolating and writing it back to

disk. This �nishes a single cycle through the MRTS system. We examine the time required

to complete the cycle for objects of three di�erent sizes. The handlers executed for each

data parcel does nothing, and therefore does not contribute to the overall runtime. Table 10

shows that the DMCS overhead is about 0.2% of the total time it takes to percolate a single

object.

Network Sort: We have implemented two versions of a parallel network sorting algo-

rithm, one which migrates objects after each stage of the sorting algorithm (mobile netsort)

and one which does not (static netsort). Both the static and mobile netsort routines are are

26

Linux Cluster Solaris Cluster

Processors Total MPI Time DMCS Overh. Total MPI Time DMCS Overh.

2 Procs 4.010 3.225 0.141e-1 9.451 7.228 0.287e-1

4 Procs 5.716 3.312 0.191e-1 25.920 13.222 0.432e-1

8 Procs 65.756 41.744 0.384 62.871 43.717 0.411e-1

Table 11: Static netsort times in secs for a Linux and Solaris cluster of workstations using

MPI (LAM). Tests run on Intel PIII 1Ghz machines running Linux and Sun Ultra 5 296

Mhz machines running Solaris. Both cluster use 100 Mb Fast Ethernet.

Linux Cluster Solaris Cluster

Processors Total MPI Time DMCS Overh Total MPI Time DMCS Overh

2 Procs 21.209 4.377 0.222e-1 176.405 23.167 0.592e-1

4 Procs 19.161 4.361 0.263e-1 160.671 20.302 0.459e-1

8 Procs 22.989 7.158 0.220e-1 159.220 24.562 0.549e-1

Table 12: Mobile netsort times in secs for a Linux and Solaris cluster of workstations using

MPI (LAM). Tests run on Intel PIII 1Ghz machines running Linux and Sun Ultra 5 296Mhz

machines running Solaris. Both clusters use 100 Mb Fast Ethernet.

communication intensive kernels and very good test to stretch the DMCS implementation

to its limits. The static netsort implementation begins by creating a number of integers that

we wish to sort, and randomly assigning them to processors in the parallel system. We then

move through a series of steps, where each integer is compared with its "neighbor" and ex-

changed if necessary, moving the integers with lower values toward one end of the array and

integers with higher values toward the other. The aspect that makes this application parallel

lies in the fact that the array exists across all processors, and an integers neighbor may lie

on another processor. By the end of this process, the integers in the array are in sorted

order. The second implementation uses this same algorithm, but migrates the integers to

new, random processors after each comparison, thereby continually redistributing the array.

Tables 11 and 12 depict the MPI and DMCS overheads which is varies from 0.04% to 0.9%.

The DMCS and MPI overheads are higher on the Solaris cluster because the nodes are much

slower.

7 Application-driven Evolution of DMCS

The API for DMCS reached its current form by being used and critiqued routinely for

the past four years in the context of two adaptive applications and one parallel runtime

system: Structured Adaptive Mesh Re�nement, Unstructured Adaptive Mesh Generation

and Re�nement [14], and a parallel runtime system for multi-layer parallel architectures [16].

The DMCS API has also been inuenced by the PORTS consortium meetings in the mid

27

1990s, the Generic Active Messages API [12], Tulip [8] and Nexus [7] the last of which are

resulted from the e�orts of the PORTS consortium meetings.

In contrast with the current API, DMCS originally provided an API based on the concept

of the global pointer. A global pointer was de�ned by a local pointer and a DMCS context

pair. The DMCS context was a unique integer identi�er that was assigned at initialization

time to each DMCS processor or context. Remote data were then accessed through a global

pointer. This approach is elegant and familiar to the application programmer, but has cer-

tain disadvantages for adaptive applications. First, the access of remote data depended on

the ability to determine unique context numbers. In cases where dynamic resource manage-

ment is required, this approach needed major revisions. Second, for adaptive applications,

the global pointers need to be maintained by the application. This is due to data migration

and dynamic load balancing. This left us with two choices: either let the application main-

tain global pointers, which would add complexity to the application, or augment DMCS to

maintain global pointers, which would increase DMCS's complexity and thus complicate its

maintenance. For this reason, we separated data movement and control from global pointer

functionality and developed a new layer on top of DMCS called the Mobile Object Layer

(MOL) which supports global pointers in the context of data migration [16]. Application

developers can choose to use DMCS without having to use the MOL.

Asynchronous and non-blocking message passing can be much more eÆcient than syn-

chronous communication. However, asynchronous communication can lead to subtle race

conditions. Early versions of DMCS used acknowledgement variables to enable applications

to �nd out about the status of completion for data transfers. Acknowledgement variables

could have three states: cleared, set, and uninitialized. To use an acknowledgement variable,

the application had to �rst request one using the routine dmcs newack(), which would re-

turn an unused acknowledgement variable. This could then be used as a handle to perform

various operations. For example, dmcs testack() checks if the acknowledgement variable has

been set or not, and return immediately. On the other hand, dmcs waitack() would wait

until the variable in question has been set before returning. It was also possible to clear an

acknowledgement variable using dmcs clearack(). Finally, it was possible to anticipate the

use of an acknowledgement variable in future data transfers using the dmcs anticipateack()

function. This last routine had an important role in one-sided data transfer operations.

Data movement routines like get and put were asynchronous and used acknowledgement

variables to determine the state of data transfers. For example, a get operation transferring

data from a source speci�ed by a global pointer to a destination speci�ed by a local pointer

would set an acknowledgement variable when the transfer operation was complete. In a

similar manner, a put operation used to transfer data from a location referenced by a local

pointer to one referenced by a global pointer would have three acknowledgement variables as-

sociated with it. A local ack is set when the local data bu�er can be reused by the application

program. A remote ack is set on the processor that initiated the put operation to indicate

that the put operation on the remote processor is complete. Finally, a remote remote ack

is set on the remote processor to signal that the put operation has completed. For this re-

mote processor communication to work correctly, the remote node must �rst anticipate the

put operation by calling dmcs anticipateack() on the acknowledgement variable speci�ed as

28

remote remote ack.

Although the use of acknowledgement variables provided a very exible method for sig-

nalling the completion of data transfer operations, it ultimately proved to be somewhat

confusing to application developers. The lessons we learned from this implementation of

DMCS allowed us to develop the current API, which de�nes simple and clear semantics.

Currently, instead of requiring the user to request and test acknowledgement variables, we

explicitly provide synchronous and asynchronous versions of the API functions. Such a

method has proven to be easier to understand and use correctly by application developers,

while not reducing the functionality provided by DMCS. Also, with the addition of Put-and-

op and Get-and-op, the semantics of the earlier versions can be retained, but in a much more

concise and easily understood manner.

8 Conclusions

We have described the design and implementation of a Data Movement and Control Sub-

strate for network-based, homogeneous communication within a single multiprocessor or

tightly couple workstations and PCs. DMCS implements a one-sided communication API

for message passing. The DMCS system serves three objectives: (i) it isolates large-scale

and expensive parallel applications from vendor-speci�c communication subsystems at the

cost of small overhead, less than 3% when MPI is used as an underline communication layer

and less than 10% when LAPI is used, (ii) it is exible for adaptive applications that require

many low-latency small messages, and (iii) �nally, DMCS is easy to understand and port

by non-experts. Subsequently can be integrated in large-scale environments and be part of

codes that expected to have along life-time.

Our recent experience from porting a parallel mesh generator that was developed on a

Unix cluster to a Windows 2000 cluster suggests that even if MPI is used as an underline com-

munication layer portability is not automatic. Di�erent MPI implementations incorporate

di�erent optimizations k that impact that correctness and performance of the applications

substantially. In this case DMCS is used as a \bu�er" to these subtle di�erences in various

MPI implementations and it guarantees �rst correctness and second seamless portability of

very large parallel codes.

The current DMCS version supports a single-threaded communication model, it is not a

fault-tolerant and does not allow dynamic resource allocation. The next version will support

multi-threaded communication model in order to allow integration of adaptive simulations

with visualization and other I/O devices. It will be ported on top of VIA for PCs and

Windows 2000 in a way that dynamic processor allocation will be allowed and it will be

fault-tolerant communication system.

kWe have found that commercial implementations of MPI make assumptions that improve MPI perfor-

mance but might lead to programming that increases application complexity. Our experience suggests that

DMCS is the best layer to absorb all complexity that relates to communication and execution model.

29

9 Acknowledgements

Many colleagues and experts during the last �ve years contributed in this work and we

are thankful to all. Induprakas Kodukula for his valuable contributions during the �rst

implementation of the PORTS API. Pete Beckman, Ian Foster, Dennis Gannon, Matthew

Haines, L. V. Kale, Carl Kesselman, Piyush Mehrotra, and Steve Tuecke for very productive

and alive discussions in the mid 90's on the PORTS API and implementation issues. Chi-

Chao Chang, Grzegorz Czajkowski, Chris Hawblitzel, and Thorsten von Eicken for very

helpful insight for the implementation of Active Messages on the SP-2 machine. Finally,

IBM's Research Program and Marc Snir for helping Prof. Chrisochoides in his e�ort to

acquire a small but extremely useful for this project SP machine.

References

[1] Bruce Carter, Chuin-Shan Chen, L. Paul Chew, Nikos Chrisochoides, Guang R. Gao,

Gerd Heber, Antony R. Ingra�ea, Roland Krause, Chris Myers, D�emian Nave, Keshav

Pingali, Paul Stodghill, Stephen Vavasis, Paul A. Wawrzynek. Parallel FEM Simulation

of Crack Propagation { Challenges, Status, Lecture Notes in Computer Science 1800,

pp. 443-449, Springer-Verlag 2000.

[2] DiNicola P, Gildea K, Govindaraju R, Mirza J, Shah G; LAPI Architecture De�nition:

Low Level API Draft, IBM Con�dential Report, December 1996.

[3] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W.

Zwaenepoel TreadMarks: Shared Memory Computing on Networks of Workstations

IEEE Computer, Vol. 29, No. 2, pp. 18-28, February 1996

[4] Portable Runtime System (PORTS) consortium,

http://www.cs.uoregon.edu/research/paracomp/ports/

[5] A Proposal for PORTS Level 1 Communication Routines,

http://www.cs.uoregon.edu/research/paracomp/ports

[6] Matthew Haines, David Cronk, and Piyush Mehrotra, On the design of Chant : A talking

threads package, NASA CR-194903 ICASE Report No. 94-25, Institute for Computer

Applications in Science and Engineering Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001, April 1994.

[7] Ian Foster, Carl Kesselman and Steven Tuecke, The NEXUS approach to integrating

multithreading and communication, Argonne National Laboratory, MCS-P494-0195.

[8] Pete Beckman and Dennis Gannon, Tulip: Parallel Run-time Support System for pC++,

http://www.extreme.indiana.edu.

[9] Nikos Chrisochoides, Induprakas Kodukula, and Keshav Pingali Data Movement and

Control Substrate for parallel scienti�c computing, Workshop on Communication and

Architectural Support for Network-based Parallel Computing, February 1997.

30

[10] Ralph M. Butler, and Ewing L. Lusk, User's Guide to p4 Parallel Programming System

Oct 1992, Mathematics and Computer Science division, Argonne National Laboratory.

[11] A. Belguelin, J. Dongarra, A. Geist, R. Manchek, S. Otto, and J. Walpore, PVM:

Experiences, current status and future direction. Supercomputing'93 Proceedings, pp

765{6.

[12] Thorsten von Eicken, Davin E. Culler, Seth Cooper Goldstein, and Klaus Erik Schauser,

Active Messages: a mechanism for integrated communication and computation Proceed-

ings of the 19th International Symposium on Computer Architecture, ACM Press, May

1992.

[13] Chichao Chang, Grzegorz Czajkowski, Chris Hawblitzell and Thorsten von Eicken, Low-

latency communication on the IBM risc system/6000 SP. Supercomputing '96 Proceedings.

[14] Nikos Chrisochoides and D�emian Nave, Parallel guaranteed-quality h-re�nement and

mesh generation p and hp Finite Element Methods: International Journal for Numerical

Methods in Engineering, To be submitted spring 2001

[15] Kevin Barker and Nikos Chrisochoides Multi-Layer Runtime System, To be submitted

to Concurrency Practice and Experience, Spring 2001.

[16] Nikos Chrisochoides, Kevin Barker, D�emian Nave, and Chris Hawblitzel Mobile Object

Layer: A Runtime Substrate for Parallel Adaptive and Irregular Computations. Advances

in Engineering Software, Vol 31 (8-9), pp. 621-637, August, 2000.

[17] F. P. Preparata, I. M. Shamos. Computational Geometry, An Introdu ction, 1985.

[18] A. Bowyer. Computing Dirichlet Tessellations. The Computer Journal, Vol. 24, No. 2,

pp 162{166, 1981.

[19] Watson, D., Computing the n-dimensional Delaunay tessellation with applications to

Voronoi polytopes, The Computer Journal, Vol. 24, No. 2, pp 167{172, 1981.

[20] MPI Forum (1997), Message-Passing Interface Standard 1.0 and 2.0,

http://www.mcs.anl.gov/mpi/index.html

[21] Paul Chew, Nikos Chrisochoides, Guang Gao, Tony Ingrafea, Keshav Pingali, and Steve

Vavasis, Crack Propagation on Teraop Computers, unpublished manuscript, Cornell

University 1997. NSF Proposal.

[22] Nikos Chrisochoides, Nashat Mansour, and Geo�rey Fox, Comparison of optimization

heuristics for the data distribution problem. Concurrency Practice and Experience, Vol

9(5), May, 1997.

[23] DMCS Homepage: http://www.cs.wm.edu/�jdobbela/dmcs/

31

