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Abstract 
 

Earthquakes have been recognized as resulting from a stick-slip frictional 
instability along the faults between deformable rocks. An arbitrarily shaped 
contact element strategy, named as node-to-point contact element strategy, is 
proposed and applied with the static-explicit characters to handle the friction 
contact between deformable bodies with stick and finite frictional slip and 
extended here to simulate the active faults in the crust with a more general 
nonlinear friction law. Also introduced is an efficient contact search algorithm 
for contact problems among multiple small and finite deformation bodies. 
Moreover, the efficiency of the parallel sparse solver for the nonlinear friction 
contact problem is investigated. Finally, a model for the plate movement in the 
Northeast zone of Japan under gravitation is taken as an example to be 
analyzed with different friction behaviors. 
 

Key words: Multibody contact, finite element method, nonlinear frictional contact, 
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1. INTRODUCTION 
 
Japan is located in one of the world’s most earthquake-prone zones and has suffered the loss of 
many valuable human lives in the earthquake history. To further investigate the occurrence of 
earthquake and to predict it in the future, as a part of the Earth Simulator Project of Japan, a finite 
element software system for large-scale computation of the earthquake process is being developed 
in RIKEN, including tectonic CAD/Database and mesh generation, static analysis and dynamic 
analysis. Only the static analysis is introduced here, which aims to calculate the accumulation of 
stress around active faults induced by a subduction of plates in a long time span. 
    The earthquakes can be regarded as a contact between deformable rocks with a special friction 
law along the active faults (e.g. Brace, 1966), it includes three kinds of main nonlinearities: the 
material, the geometrical and the contact along the faults. Contact problems are characterized by 



contact constraints, which are imposed on contacting boundaries. In the current FEM analysis, both 
the dynamic-explicit FEM and the static- implicit FEM are available corresponding to the different 
problems. However, convergence is still a problem in implicit analysis, especially when three-
dimensional large deformation contact problems with sliding friction are encountered. This is 
partly due to the iteration solution method and its corresponding serious requirement, such as no 
drastic change of the contact state and the deformation state, more smooth contact surface 
definition (e.g. Nagtegaal, 1991; Ling, 1997). Although many efforts have been made as above, 
there still exist problems to be overcome (e.g. Parisch, 1997; Zhong, 1993). Thus dynamic-explicit 
FEM seems to be used increasely, even for problems, which are characterized as static or quasi-
static ones, but it is also well known that it is quite time consuming and also difficult for dynamic-
explicit FEM to predict the stress distribution of a quasi-static problem with a high accuracy (e.g. 
Bathe, 1996). Thus, an arbitrarily shaped isoparametric contact element strategy with the static-
explicit integration algorithm, named as the node-to-point contact element strategy, was proposed 
by the authors to handle the static or quasi-static friction contact between deformable bodies with 
stick and finite frictional slip (Xing, 1998a, 1998b, 2000).  Moreover, the friction behaviour in the 
practical engineering and the active faults is quite complicated, it depends on the slip velocity, the 
state, the contact pressure, the material property and so on. This paper will focus on how to extend 
our algorithm to simulate it. In addition, to meet the practical requirement of a stable and large-
scale calculation, the parallel sparse solver is also investigated for the nonlinear friction contact 
problem and applied to simulate the active faults. Finally, a model for the plate movement in the 
Northeast zone of Japan under gravitation is taken as an example to be analyzed with different 
friction behaviors. 
 
2. GENERAL CONSIDERATION AND NOTATION 
 
Consider two bodies B1  and B2 with surfaces S1and S 2 , respectively, to contact on an interface 
Sc , given by Sc = S 1 ∩ S2 . The size of Sc  can vary during the interaction between the two bodies. 
The part of S α  that belonged to Sc  is designated Sc

α , that is Sc
α = Sc ∩ Sα , and assume S Sc c

α = , 
where superscript α = 1,2 refers to body Bα (as shown in Fig. 1). Let the union of the two bodies 
be denoted by B: B = B1 ∪ B2 , n be the unit normal vector of the contact surface, s be the unit 
tangential vector along the relative sliding direction on the contact surface, and t = n× s . Thus s 
and t form a tangential plane to the contact surface.  
     The so-called slave-master concept is widely used for the implementation of contact analysis. 
Assume that one of the bodies, B1 , is the slave and the material points on its contact surface are 
called slave nodes; and the other body B2  is the master and the material points on its contact 
surface are called master nodes. Contact (master) segments that span master nodes cover the 
contact surface of the master body. Therefore, the above problem can be regarded as a contact 
between a slave node and a point on a master segment (Here, this point may locate at a node, an 
edge or an interior surface of a master segment, but no special attention is necessary when the local 
contact searching algorithm in section 5 is applied). And a slave node makes contact with only one 
point on the master segments, but one master segment can make contact with one or more slave 
nodes at the same time. This is the basic assumption of the node-to-point contact element strategy  
(Xing, 1998a, 1998b, 2000). 
     Based on the above assumption, the normal vector and the tangential vector are defined on the 
contact surface Sc

α  of each body as follows 
 

n = n2 = − n1 and s = s2 = − s 1.                                        (1) 
 

Let f α  be the traction vector acting on the contact surface Sc
α , then normal component fn

α  and 
the tangential component fs

α  are given by 



 
fn

α = f α ⋅nα , fn
α = fn

α nα    and  fs
α = f α − fn

α nα .                           (2) 
 

When contact occurs, the following conditions should be satisfied on the contact interface Sc  for 
the unilateral contact: 
1). The momentum has to be balanced,   
 

f 1+ f 2 = 0 .                                                               (3) 
 
And let f = f 1 = − f 2  in this paper. 
 
2). No tensile traction can occur on the contact interface, 
 

f α ⋅ nα ≤ 0  .                                                        (4) 
 
3). The contact points move with the same displacement and velocity in the direction normal to the 
contact surface during contact, that is 
 

u n u n1 1 2 2⋅ = ⋅  and    &u n &u n1 1 2 2⋅ = ⋅ .                                      (5) 
  
This is usually called as the impenetrability condition. 
 
3. CONSTITUTIVE EQUATION FOR FRICTION CONTACT  
 
3.1 Normal Contact Stress 
 
We choose the penalty method to treat the normal constraints when contact occurs. When gn < 0 , 
the contact occurs. For a slave node s,  
 

f E g only for gn n n n= ⋅ = ≠ <f n ( )0 0                                             (6) 
 

here En  is the penalty parameter to penalize the penetration (gap) in the normal direction, and 
gn = n ⋅ (xs − xc ) , here xs  and xc  are the position coordinates of a slave node s and its 
corresponding contact point c (as shown in Fig. 2), respectively.  
 
3.2 Friction Stress 
 
Friction is by nature a path-dependent dissipative phenomenon that requires the integration of the 
constitutive relation. In this study, a standard Coulomb friction model, with an additional limit on 
the allowable shear stress, is applied in an analogous way to the flow plasticity rule. This situation 
is analogical to the change of state from elastic to plastic in the theory of plasticity. The analogy to 
plasticity can be founded in Michalowski & Mroz’s work (Michalowski, 1978). The basic 
formulations are summarized below (Note: A variable with ~ on top stands for a relative 
component between slave and master bodies, and l, m=1,2; i,j, k=1,3 in this paper if without the 
special notation.). 
    Based on experimental observations, an increment decomposition is assumed 
 

∆ ˜ u m = ∆ ˜ u m
e + ∆ ˜ u m

p ,                                                  (7) 
 



where ∆ ˜ u m
e  and ∆ ˜ u m

p  represent the sticking (reversible) and the sliding (irreversible) part of ∆ ˜ u m , 
respectively. In addition, the slip is governed by the yield condition 
 

F = fm fm − F ,                                                    (8) 
 
where F , the critical frictional stress, has three choices: F = µfn , F = Flimit  and 
F = min(µfn , Flimit ) ; fm  (m=1,2) is the frictional stress component along the tangential direction 
m; Flimit  is an allowable value of shear stress; µ  is the friction coefficient, it may depend on the 

normal contact pressure fn , the equivalent slip velocity ~&ueq
sl  and the state variable ϕ , i.e. 

µ µ ϕ= ( ,~& , )f un eq
sl .  

    If F<0, contact is in the sticking state and treated as a linear elasticity, i.e. 
 

fm = Et ˜ u m
e = Et ∆ ˜ u m

e∑ ,                                           (9) 
 
where Et  is a constant in the tangential direction. 
    When F=0, the friction changes its character from sticking to sliding. If slip occurs, according to 
the analogy to plasticity as mentioned above, ∆~um

p can be described from the ‘flow rule’ as 
 

 ∆ ∆~u u
F
fm

p p

m
=

∂
∂

  ,                                                     (10) 

 
where ∆u p is the ‘equivalent relative slip increment’, and ∆u p > 0 . 

Combining with Eq. (8), the above equation can be rewritten as 
 

∆ ˜ u m
p = ∆ u p fm F .                                                  (11) 

 
    From Eqs. (7) and (9), 
 

 fm = Et ( ˜ u m − ˜ u m
p ) = fm

e − Et∆˜ u m
p ,                                        (12) 

 
where fm

e = Et ( ˜ u m − ˜ u m
p

0
) , and ˜ u m

p
0

 is the value of ˜ u m
p  at the beginning of this step.  

    From the last two equations, 
  

fm = ηm F   and   ηm = fm
e f l

e fl
e  .                                          (13) 

 
The linearized form of the Eq. (13) can be rewritten as 
  

df
FE

f f
du df

f
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u
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t
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e e lm l m m=

+
−
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1
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2
2

δ η ηb g                                                          (ifF = Flimit ) .   (14) 

 
    In summary, from Eqs. (6), (9) and (14), the contact stress acting on a slave node can be 
described as (denote & &f fn3 = ) 



 
& ~& &f G u fi ij j i= + ϕ  ,                                                             (15) 

 
where G  is the frictional contact matrix; &f iϕ  is from the contribution of the terms related with ϕ , 

when it is not a function of ~&u ; If dϕ  only is the function of the unknown variable d ˜ u , &f iϕ = 0, i.e. 
all its contribution can be included in G at current state. 
 
4. FINITE ELEMENT FORMULATION  
 
4.1 Variational Principle 
 
The updated Lagrangian rate formulation is employed to describe the nonlinear problem. The rate 
type equilibrium equation and the boundary at the current configuration are equivalently expressed 
by a principle of virtual velocity of the form (Xing, 1998a, 1998b) 
 

  ( ) & & &σ σ δ σ δ δ δ δij
J

ik kj ij jk ik ijV i iS iSc i iSc
D D L L dV F v dS f v dS f v dS− +z = z + z + z2 1

1
1 2

2 2
2n s Γ

,         (16) 

 
where V and S denote respectively the domain occupied by the total body B and its boundary at 
time  t; SΓ  is a part of the boundary of S on which the rate of traction iF&  is prescribed; δ v  is the 
virtual velocity field which satisfies the boundary δ v = 0  on the velocity boundary; L  is the 
velocity gradient tensor, L = ∂ v/ ∂ x ; D  and W  are the symmetric and antisymmetric parts of L, 
respectively. 
    The small strain linear elasticity and large strain rate- independent work-hardening plasticity are 
assumed, from which the elasto-plastic tangent constitutive tensor Cijkl

ep  is derived 
 

σ ij
J = Cijkl

ep Dkl = Cijkl
ep Lkl .                                              (17) 

 
Substitution of Eq.(17) into Eq.(16) reads to the final form of the virtual velocity principle 
 

 ∑ =z z + zijkl kl ijV i iS i iSc
L L dV F v dS f u dSδ δ δ& & ~&

Γ
,                             (18) 

 
where ∑ijkl = Cijkl

ep + (σ jlδik − σikδ jl − σ ilδ jk − σ jkδil ) 2.                                       
 
4.2 Contact Stress on A Slave Node  
 
Assume that contact segment surfaces are described by x = x(ξm ) , a slave node s has made contact 
with a master segment on point c (as shown in Fig. 2), and the contact stress acting on it in Eq.(18) 
can be described in the local contact coordinate system as follows 
 

&f $& $e $ $&e= +f fi i i i .                                                       (19) 
 
Here $ei , the base vector on the contact segment,  is specified by  
 

$e $e ( ) $e ( )i i i m= =ξ η ξ,   and  $&e
$e & $e &

i
i

m
m ijm j mE= =

∂
∂ξ

ξ ξ ,                              (20) 

in which    Eijm i m j= ⋅$e $e, . 
From Eqs. (19) and (20),  



 
&f $& $e $ $e &= +f fi i i ijm j mE ξ .                                                (21) 

 
    Assuming that the tangential surface is spanned by the tangents to the parameter lines (as shown 
in Fig.2), 
 

$e
x

m
m

=
∂
∂ξ

,                                                        (22) 

 
and the associated unit normal is 

 
$e n $e $e $e $e3 1 2 1 2= = × ×  ,                                           (23) 

 
here ξ m  is the surface parameters; $ei  is the base vector of the local natural coordinate system on 
the master segment. 
    Considering the normal projection of the slave node onto the tangential plane, the coordinates of 
the contact point xc  should satisfy 
 

$e (x x )m s c⋅ − = 0.                                                        (24) 
 
    Linearize the above equation with the unknowns, and note that xc = xc(uc , ξm ) , we have 
 

$&e (x x ) $e ( &x &x )m s c m s c⋅ − + ⋅ − = 0 ,                                            (25) 
 
where &x &us s= ,  &x &u $e &

c c m m= + ξ , $&e $e & &u, ,m m l l c m= +ξ . 

    Solving the above system yields the relationship between &ξ m  and ~&u  as 
 

& &u &u ~x $e $e ~&u, ,ξ m ll c m ml c l ll m ml lC C C C= − ⋅ + − ⋅ ℘d i c h{ }        (l m≠ , no sum on m and l) ,          (26) 

 
where C C gml ml n m l= − ⋅n $e , , Cml m l= ⋅$e $e , ℘= −C C C C11 22 12 21, ~x x x= −s c , ~&u &u &u= −s c , while &us  
and &uc  are the velocity vectors at the slave node and the  corresponding material position c of the 
master segment, respectively. 
    Thus, Eq. (21) can be rewritten as 
 

&f $& $e $e &u &u ~x $e $e ~&u, ,= + − ⋅ + − ⋅f H C C C Ci i jm j ll c m ml c l ll m ml ld i c h{ }   (l m≠  and no sum on l ) ,   (27) 

 
where 
 

H f Ejm i ijm= ℘$ .                                                                 (28) 
 
4.3 Evaluation of Contact Element Matrices 
 
Now, we are concerned evaluation of matrices related with the node-to-point contact elements in 
the local Cartesian coordinate system as depicted in Fig.1. For an arbitrary case, the local Cartesian 
coordinate system on the contact interface (as shown in Fig. 1) is not the same as the above local 
natural coordinate system, it is defined as follows (see Fig. 2): 



 
e n $e , e $e e e e3 3 1 1 2 1 3= = = = ×and .                                           (29) 

 
Assume a slave node s has contacted with point c on a surface element (master segment) ′E , and 

the surface element ′E  consists of γ  nodes, then ( p = 1, γ  in this paper) 
 

&u &u , x xc p p c p pN N= = ,                                                 (30) 
 
here &up and x p are the nodal velocity and position, respectively; Np is the shape function value of 
the point c on the surface element ′E . Thus the relative velocity and the relative position can be 
written as (α γ= +1 1,( ) and β γ= +1 1, ( ) in this section) 
 

~& & & &u Ri sci= − =u u usi ci β β ,        ~x Ri sci= − =x x xsi ci β β                                    (31) 
 
in which  
 

&u

& & & . .. &
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R ...= − − −1 1 2N N N
T

γ .                                                          (32) 
 
Thus 
 

&u &u &u, , ,c m p m p sc mN R= = α α       ( p = 1, γ ).                                            (33)  
 

Combining with Eqs. (15) and (31)-(33), Eq. (27) can be rewritten as 
 

&f e $e e ~x $e $e e & & e, ,= + − ⋅ + − ⋅ +G uhk R H C R C R R C C fh jm j ll m ml l k ll m ml l k sck h hα α α α α ϕd i c he je j{ }    (34) 

(h = 1 3, , l m≠  and no sum on l ). 
 
Thus the term related with contact in Eq. (18) can be described as 
 

& & & & & &f ( u u ) = u ui si ciδ δ δ β βα α β ϕ− +FH IKsci f ik sck iK R f  ,                                               (35) 

 
where 
 

K R R H C R C R R C Cf ik i h jm j ll m ml l k ll m ml l kβα β α α α α= ⋅ + − ⋅ + − ⋅e e $e e ~x $e $e e, ,Ghk d i c he je j{ }  .   (36) 

 (h = 1 3, , l m≠  and no sum on l ) 
 



 
4.4 Time Integration Algorithm 
 
The time integration method is one of key issues to formulate a nonlinear finite element method. It 
is well known that the fully implicit method is often subjected to bad convergence problems, 
mostly due to changes of contact and friction states. In order to avoid this, we employ an explicit 
time integration procedure as follows. It is assumed that under a sufficiently small time increment 
all rates in Eq. (18) can be considered constant within the increment from t to t + ∆t  as long as no 
drastic change of states (for example, elastic to plastic at an integration point, contact to discontact 
or discontact to contact on the contact interface, stick to slip or slip to stick in friction on the 
contact interface) takes place. The R-minimum method (Yamada, 1968) is extended and used here 
to limit the step size in order to avoid such drastic changes in state within an incremental step. 
    Thus all the rate quantities used to derive Eq. (18) are simply replaced by incremental quantities 
as 

∆ u = v ∆t ,  ∆σ = σ J∆t   and    ∆ L = L ∆t .                              (37) 
 
Finally, in combination with Eqs. (35)-(37), Eq.(18) can be rewritten as 
 

(K + K f )∆u = ∆ F+ ∆ Ff  .                                           (38) 
 
Here K is the standard stiffness matrix corresponding to body B; ∆ u  is the nodal displacement 
increment; ∆ F  is the external force increment subjected to body B on SΓ ;  K f  and ∆ Ff  are the 
stiffness matrices and the force increments of all the node-to-point contact elements. From Eqs. 
(18), (35) and (36), for one node-to-point contact element E, they can be described as 
 

K K dSf ik
E

f ikSc
E

βα βα
= −z ,                                                   (39) 

 
∆F R f dSf i

E
iSc

E
β β ϕ= z & .                                                            (40) 

 
Note K f  is unsymmetrical due to the nonlinear friction and the geometry curvature, thus the total 
stiffness matrix (K + K f )  is also unsymmetrical. 
 
5. CONTACT SEARCHING 
 
In cases that two or more bodies come in contact with each other, the search algorithms are 
normally split into a global and a local search. For the global search, several methods have been 
proposed, such as the regular cell algorithm (e.g. Santos, 1993), the Hierarchy-Territory (HITA) 
algorithm (Zhong, 1993), the position code algorithm (Oldenburg, 1994), the bucket sorting 
algorithm (Benson, 1990 and Belyschko, 1987), the spherical sorting algorithm (Papadopoulos, 
1993), etc. The last three methods are mainly subjected to the finite-element-type mesh description 
of the contact surface, and the HITA and the position code algorithms are recommended in terms 
of the computational efficiency. In this study, the position code algorithm is employed for the 
global contact search between deformable bodies. For the local search, several algorithms have 
also been proposed, such as the pinball algorithm (Belyschko, 1991), the node-to-segment 
algorithm (Benson, 1990) etc. Here, according to basic characters of the node-to-point contact 
element, we take the normal vector n s  (in Fig. 3) of the slave node s for contact searching to avoid 
the ‘deadzone’ problem, while use the normal vector of the contact point c on the master segment 
to define the precise contact position of a slave node on the segment, which can be obtained from 
the normal vectors at the contact segment nodes. Note the normal vector at a node used in our code 



is determined as a weighted average of the normal vectors of the surfaces surrounding this node, 
where the weighting factors are proportional to the area of the corresponding surface segment 
(Xing, 1999). If the 8-node hexahedron solid element is used to discretize the body, for a local 
search, let (in Fig. 3) 
 

V ( , )
, ,

i ik is= × =
= + = =

i
k i if i otherwise k

1 4
1 1 3 1

 .                                     (41) 

 
If all the Vi  (in Fig.3) keep the same or the reverse direction as n s , point c will locate on this 
segment. Then the distance between the slave node s and point c is calculated and compared with a 
prescribed accuracy sector. If within the prescribed zone, the slave node s is in contact with this 
master segment on point c, and the exact location of point c and the penetration of the slave node s 
will be obtained and saved for further computation. 
    The following measures are also taken for contact search: 
    1). Contact candidates. The candidates of contact segments and slave nodes are marked during 
the pre-processing, then only these marked elements are considered during the contact searching 
and the calculation to save the computation cost.  
   2). Automatic extensions of master surfaces. To meet the requirement of the contact territory, the 
master surfaces can be extended automatically along the surface perimeter after one or some 
increment steps. 
 
6. PARALLEL SOLVER  
 
The ‘Earth Simulator’ (Earth simulator, 1999), a high performance massively parallel processing 
computer being developed in Japan, will have the following architecture: MIMD-type distributed 
memory parallel system consisting of computing nodes with shared memory vector type multi-
processors. And it will have the following performance: 
 

The peak performance: 40 TFLOPS 
Total number of processor nodes: 640 
Number of PE’s for each node: 8 
Peak performance of each PE: 8 GFLOPS 
Peak performance of each node: 64 GFLOPS 
The total main memory: 10 TB 
Shared memory/node: 16 GB 

 
In the analysis of the practical engineering and the active faults in the crust, a large-scale complex 

geometry has to be taken into account, thus parallel computing is necessary on the ‘Earth Simulator’. 
Several related researches are being carried out. Based on the domain decomposition method, the 
parallelization of the nonlinear finite element system has been conducted in RIKEN for several 
years (e.g. Nikishikov, 1996). With choosing candidate contact surfaces as subdomain boundaries, a 
preliminary parallel version for a contact problem using the direct solvers was developed on IBM 
SP2 multiple processor computer for some special cases (Xing, 1998). Because the node-to-point 
contact element strategy with an explicit integration algorithm was proposed and applied as above, 
there exists no convergence problem, but it is not so efficient for a very large-scale computing. Thus, 
for a huge scale computing, a parallel version using iterative solvers is being developed (Miyamura, 
2001). Meanwhile, GeoFEM group (GeoFEM, 2001) employed the so-called augmented 
Lagrangian multiplier (ALM) method to treat the contact problems and iterative solvers with 
localized preconditioning method for a large-scale computing, in which three kinds of iterations are 
necessary to obtain a suitable penalty parameter using ALM method and get to acceptable 
convergence points for both the Newton-Raphson solution and the iterative solvers. This may cause 



a convergence problem due to the existing iterations (e.g. Zavarise, 1998; Weiss, 1999), especially 
for the nonlinear friction contact problem. Thus the parallel sparse solver is investigated here. 

Recently, the parallel sparse solver is widely used in the complex engineering analysis due to its 
stability and easy implementation into an existing serial code. For one node of the Earth Simulator, 
it has 16 GB memory, 8 processors and 64 GFLOPS peak performance as mentioned above and can 
work independently as a shared memory supercomputer (such as SGI Onyx2). It may have the 
ability to solve some typical practical engineering problems, the active faults in the localized region 
and some virtual friction experiments et al. If this parallel sparse solver used together with the node-
to-point contact element strategy described as above, there will be no any iterations in the code, thus 
no convergence problem exists here at all. As for the efficiency of the parallel sparse solver for 
nonlinear frictional contact analysis, no result was reported, thus it will be investigated here using 
the parallel unsymmetrical sparse solver PSLDU on the SGI Onyx2 computer, which has 6 
processors. In which multiple processors may be used to solve the linear equations, but only one of 
them is used also for other work, such as contact search and stiffness matrix assembling. And the 
average time cost of this processor per step is used here to investigate the efficiency of the solver if 
without any special notation. 

Firstly, the parallel speedup for models with different degrees of freedom (DOF) are measured 
and compared (as shown in Fig.4), in which the contact node numbers are 140, 795, 285 and 399 
respectively corresponding to the models from the smaller to the larger as shown in Fig. 4. And the 
speedup is calculated as  
 

Speedup =
Real clock time (1 processor)

Real clock time (multiple processors)
.                                               (42) 

 
Fig.4 shows that all parallel speedups are increased with the increase of processor numbers, but it 
depends on the model size very much. For the above models, the larger the model size is, the better 
the speedup is. This is due to the relatively more time cost required to solve the linear equations for 
the larger model.  
    Secondly, the influence of contact node numbers on the computing cost is also investigated here. 
The assembling process of 37 tubes to a tubesheet using hydraulic expansion is taken as an 
example (as shown in Fig. 5). A tube and tubesheet assembling is one of the most important 
processes for a heat exchanger. All the tubes are fixed to the tubesheet with welding at the bottom; 
this is modeled with  ‘tied’  (or stick) algorithm in our code  (as shown in Fig. 5).  Due to symmetry, 
only one-twelfth of the structure has been considered, being discretized into 30024 nodes (90072 
DOF) and 21247 elements. The tubesheet is only supported along the central line direction of the 
tubes at the outside nodes of the bottom edge (see Fig.5). The case that all the tubes are 
hydraulically bulged at the same time and to be gradually contacted with the tubesheet is calculated. 
Fig. 6 shows the relationship between the average computing time per step and the numbers of 
contact nodes when 4 processors are used to calculate the assembling process. From this, the 
parallel sparse solver is powerful for such a scale calculation, but it is very sensitive to contact node 
numbers, and the time cost rises with the increase of contact node numbers. This may need further 
related research in the future. 
    From the above, the parallel sparse solver is a good choice for at least a medium scale 
calculation, because its stability, efficiency and easier implementation (nearly no additional 
modification is needed to implement it into an existing sequential code). Thus, the Earth Simulator 
may be used to calculate at least 640 medium-scale problems using the parallel sparse solver at the 
same time.  
 
7. APPLICATION TO ACTIVE FAULTS  
 
Japan locates on the boundaries of Eurasia, North America and Philippine Sea Planes. Pacific Plate 
subducts beneath Eurasia Plate from southeast at a speed of 9 cm per year, and Philippine Sea Plate 



subducts from south at a speed of 5 cm or less per year. Many large earthquakes occurred 
repeatedly on the plate boundaries. For modeling such earthquakes, several researches were 
published using the analytic and the finite element method (e. g. Stuart, 1988; Kato, 1997; Hirohara, 
1999). They all assumed that the plate is a dip with a cons tant angle and applied in a two 
dimensional model. However, from the measured data, the practical plate is a little more 
complicated, as shown in Fig.7 for the Pacific plate around Japan (Kanai, 2000). Here, a part of 
Northeast fault model with the real-shaped subducting Pacific plate around Japan (Kanai, 2000) (as 
shown in 8) is taken as an application example. Fig. 9 shows the 3-dimensional meshes (with a 
scale of 1:100,000, unit: mm) of the local region and the boundary conditions. The displacement 
constraints used are also shown in Fig. 9 except that the plate is fixed along the y direction at the 
positions C and D (see Fig. 8). Here, all the materials are taken the same parameters as: density 
ρ = 2 60 3. g cm , Young modulus E=44.8 GPa, and Poisson ratio γ = 0 12. .  As for the loading 
conditions, the combined action of the self-gravity and the hydraulic pressure of water is 
investigated. And the widely accepted rate- and state-dependent friction law proposed by Dieterich 
(1978,1979) and Ruina (1983) is applied here to describe the complex phenomena along the 
interface between the active faults. That is 
 

µ τ µ ϕ= = + +f a V Vn ref0 lnd i ,    d dt V L b V Vrefϕ ϕ= − +a f d ie jln ,                    (43) 

 
and for a steady state, 
 

µ τ µss ss
nf a b= = + −0 a f d iln V Vref ,                                           (44) 

 
where  
 

a = V ∂τ ∂V( )ϕ fn = ∂τ ∂lnV( )ϕ fn  and   a b d dlnV fss
n− = τd i ,                   (45) 

 
here, a and b are empirically determined parameters; a represents the instantaneous rate sensitivity, 
while a-b characterizes the long-term rate sensitivity. Depending on whether a-b is positive or 
negative, the frictional response is either velocity strengthening or velocity weakening, respectively. 
L is the critical slip distance; Vref  and V are an arbitrary reference velocity and a sliding velocity, 
respectively; ϕ  is the state variable; fn  is the effective normal contact stress; µ0  is the steady 
friction coefficient at reference velocity Vref . The above special friction form is substituted into Eq. 

(11) in three dimension by replacing V with the relative velocity ~& ( ~& ~& )u u ueq
sl

m m=  and implemented 
into our code. The calculated results with different friction coefficients are compared and shown in 
Fig. 10, which demonstrates that the friction coefficient along the active fault interface has obvious 
influence on their relative movement. The bigger the friction coefficient is, the less the relative 
movement along the interface is. Also this is affected by the distribution of different friction 
coefficients due to the relative slip velocity along the interface. As for the detail analysis of the 
plate movement, it will be published in the journal on the geophysics. 
 
8. CONCLUSIONS 
 
A static-explicit FEM code has been developed to simulate the static or the quasi-static 3-
dimension friction contact between multi-elasto-plastic bodies and extended to simulate the active 
faults in the crust with a more general nonlinear friction law. An arbitrarily shaped contact element 
strategy, named as node-to-point contact element strategy, is proposed and applied according to the 
static-explicit characters, which overcomes the main convergence problems existing in the implicit 
treatment of contact. Meanwhile, for the multi-deformation-body contact problems, an efficient 



contact-searching algorithm suitable for the node-to-point contact element strategy has been 
proposed and implemented in our code. Moreover, combining with the above contact strategy, the 
parallel sparse solver is very stable (no convergence problem) and powerful for the nonlinear 
friction contact problems, but its efficiency also depends much on the contact node numbers, this 
may need further research. Finally, a model for the plate movement in the northeast zone of Japan 
under gravitation is taken as an example to be calculated with different friction behaviors. The 
preliminary results demonstrate the stability, efficiency and usefulness of this algorithm for the 
nonlinear friction multibody contact problems on a shared memory supercomputer (such as SGI 
Onyx2) or a node of Earth Simulator. 
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Fig. 10 Displacement distribution at different friction conditions (a). µ = 0 5. ; (b).µ = 0 3. ; 

 (c). µ = ≤ ≥0 3 1500 2780. ( )U or Uz z , otherwise µ = −0 5 0 025 0 01. . ~& . )ln( ueq
sl   

 
 

 


