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Abstract

We carry out a numerical simulation of thermally driven convection in a rotat-
ing spherical shell modeled on the Earth’s outer core using Thermal-Hydraulic
subsystem of GeoFEM, which gives a parallel FEM platform. This simulation
is for understanding of the origin of the geomagnetic field and dynamics of a
fluid in the Earth’s outer core. We solve a three-dimensional and time depen-
dent process of a Boussinesq fluid in a rotating spherical shell under effects
of self gravity and the Coriolis force.In this simulation, tri-linear hexahedron
element is applied for spatial distribution, and 2nd-order Adams-Bashforth
scheme are applied for time integration of the temperature and velocity. To
satisfy the mass conservation, a parallel iterative solver of GeoFEM is applied
for solving pressure and correction of the velocity fields. To verify our simu-
lation code, results of the simulation are compared with the same analysis by
the spectral method. In these results, outline of convection is almost same
in these cases; that is, three pairs of convection columns are formed, and
these columns propagate to the westward in quasi-steady state. However,
magnitude of kinetic energy averaged over the shell is about 93% of that in
the case by the spectral method, and drift frequency of the columns in the
GeoFEM case is larger than that in the case by the spectral method.

1. Introduction

It has been widely accepted that the geomagnetic field is generated by motion of an electrically
conductive fluid in the Earth’s outer core. This cause is referred as ”dynamo process.” The
motion of the fluid in the outer core is strongly influenced by the Lorentz force and the
Coriolis force which, in the co-rotating frame, is given by, −2ρΩ × v, where ρ, Ω, and v
are density of the fluid, angular velocity of the Earth’s rotation, and velocity of the fluid,
respectively. Furthermore, the dynamo process is not only complicated nonlinear system,
but also requires three-dimensional and time dependent treatment for direct simulations. In
the last five years, the investigation of the generation processes of the Earth and planetary
magnetic fields has entered into a new stage; several MHD simulations in a rotating spherical
shell have represented some of the basic characteristics of the Earth’s magnetic field after
Glatzmaier and Roberts (1995a[7], 19995b[8]) and Kageyama et.al. (1995[11]). After these
studies, many studies of the geodynamo simulation represent strong and dipole like magnetic
fields by which geomagnetic field is characterized (Kuang and Bloxham, 1997[12], 1999[13];
Christensen, 1999[4], Sakuraba (1999)[15] ). Most of these simulations, however, have been
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applied the spherical harmonics expansion in the azimuthal and elevation directions, because
high spectral accuracy is obtained in this method, singularity of physical values is kept at
poles, and magnetic fields are easily connected to potential field on the boundaries. Only
in the cases by Kageyama et. al. (1995)[11] the finite difference method is applied, while
they have considered a compressible gas for a model of the fluid and applied a different
magnetic boundary condition at outer boundary of the shell from the condition estimated at
the Earth’s Core-Mantle boundary. The spectral harmonics expansion which is the general
scheme for the geodynamo simulation is, however, not suitable for the massively parallel
computation because a lot of global calculation is required to solve nonlinear terms. On the
other hand, Finite Element Method (FEM) is suitable for massively parallel computation
because of their local operation. If we set an extremely large scale FEM mesh, we can carry
out large scale simulation for the motion in a rotating spherical shell in massively parallel
computers. We are developing a simulation code for MHD simulation in a rotating spherical
shell for understanding the geodynamo process and dynamics of a fluid in the shell using
GeoFEM [6], which gives a parallel FEM platform for solid Earth simulation. Now, we have
developed a simulation code for thermal convection in a rotating flame without magnetic field
and carry out numerical simulations of the thermal convection in the rotating spherical shell.
This results are compared with the simulation results by the spectral harmonics expansion.
In this study, we compare the simulation results with that by a simulation using the spherical
harmonics expansion to investigate whether same results are obtained by these simulations
or not. The results shows that 3 pairs of convection column which parallel with respect to
the rotation axis are generated and these columns propagate to the westward in both cases
in quasi-steady state. In detail, some differences are seen in these results; that is, magnitude
of kinetic energy is about 93% to that in the case by the spectral method, and drift frequency
of the convection pattern is faster than that in the case by the spectral method. This paper
consists of the following sections: In section 2, we describe a model for this simulation and
method of the simulation for the two cases. Results of the simulations are given in Section 3.
In Section 4, we make a discussion about these results. In Section 5, conclusion is described.

2. Simulation Model and Methods

Model for this simulation

We consider a rotating spherical shell modeled on the Earth’s outer core as given in Fig.1.
Ratio of the inner boundary to outer boundary of the spherical shell is set to be 0.4 while
the ratio of the Earth’s outer core is to be 0.35. The shell is filled a Boussinesq fluid and
rotate with a uniform angular velocity Ω. The fluid has constant thermal diffusivity κ, kinetic
viscosity ν, and thermal expansion coefficient α. We assume that the inner core co-rotate with
the mantle to simplify the model. Motion of the fluid in a rotating flame is described by the
mass conservation, the momentum equation (Navier-Stokes equation) with the Boussinesq
approximation and with the Coriolis term, and the thermal diffusion equations; that is,

div v = 0, (1)

∂v

∂t
+ (v · ∇) v = −∇P + Pr∇2v − Pr

√
Ta (Ω × v) + PrRaΘr, (2)

∂Θ

∂t
+ (v · ∇) (Θ + T0) = ∇2Θ, (3)

T = Θ+ T0, and (4)
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Figure 1: Rotating spherical shell modeled on the Earth’s outer core. Sketch of the Earth’s
interior are given in the left panel, and the rotating spherical shell model is given in the right
panel.

T0 =
riro − rir

r (ro − ri)
, (5)

where, v, P , Ω, r, Θ, T0, ro, and ri are velocity, modified pressure, vector of the Earth’s
rotation, position vector, perturbation of temperature, reference temperature, radius of the
outer boundary of the shell, and radius of the inner boundary of the shell, respectively. To
obtain above normalized equations, we choose width of the shell L = ro−ri, thermal diffusion
time L2/κ, as the length scale and time scale, respectively. There are three dimensionless
numbers in above equations; that is, the Prandtl number Pr, the Rayleigh number Ra , and
the Taylor number Ta; These numbers are given by,

Pr =
ν

κ
, (6)

Ra =
gα∆TL3

κν
, and (7)

Ta =

(
2ΩL2

ν

)2

, (8)

where ν, κ, α, ∆T , and g are the kinetic viscosity, the thermal diffusivity, the thermal
expansion ratio, and difference of temperature between the inner and outer boundaries f the
shell. In the Earth’s outer core, The Taylor number and the Rayleigh number are estimated
to be Ta = 1030 and Ra = 6 × 1030 with the molecular viscosities (Gubbins, 1987[9]). Even
if we consider turbulent viscosities, these dimensionless number stays more than 1010. We
cannot set these dimensionless numbers to be these estimated values directly because of
limitation of computational power. Then, we set the Prandtl number to be 1, with Taylor
number to be 2.5× 105, and the Rayleigh number to be 1.5× 104 = 1.8Rac, where Rac is the
critical Rayleigh number.

Boundary conditions have strongly effects to the motion of the fluid. In this study, we
choose the rigid boundary condition for the velocity and fixed temperature for the tempera-
ture boundary conditions at the both boundary conditions; that is,

v = 0 at r = ro, ri , (9)
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T = 1 at r = ri, and (10)

T = 0 at r = ro. (11)

Methods of the simulation in the case by GeoFEM

Our simulation code is based on GeoFEM Thermal-Hydraulic subsystem, which is for numer-
ical simulations of thermally driven convection by parallel Finite Element method (FEM). In
this subsystem, the basic equations eqs. (1) - (3) for the fluid are solved three dimensionally
and time independently. The spherical shell is divided into tri-linear hexahedron elements,
and the temperature, velocity, and pressure are defined at each node and interpolated by
tri-linear function in each hexahedron element. For the time integration, we apply the frac-
tional step scheme and Adams-Bashforth scheme to obtain high accuracy for the Coriolis
term. Process of the simulation is given in the following equations; that is,

M̄αβΘ
n+1
β = M̄αβΘ

n
β +∆t

(
3

2
F n

T − 1

2
F n−1

T

)
, (12)

M̄αβ ṽiβ = M̄αβv
n
iβ +∆t

(
3

2
F n

vi −
1

2
F n−1

vi

)
, (13)

1

∆t
(−Lαβ + Sαβ) Φβ = H i

αβ ṽiβ, (14)

P n+1
α =

1

∆t
Φα, and (15)

M̄αβv
n+1
iβ = M̄αβ ṽiβ +H i

αβΦβ , (16)

where the diffusion, inertia, and forces terms are given by,

F n
T =

{
(−Lαβ + Sαβ)Θ

n
β −Hj

αβv
n
ej

(
Θn

β + T0β

)}
, and (17)

F n
vi =

{
Pr (−Lαβ + Sαβ) v

n
iβ −Hj

αβv
n
ejv

n
iβ

−PrT
1/2
a eijkMαβΩjαvkβ − PrRaMαβΘ

n+1
β gi

}
, (18)

In above equations, eijk is the permutation symbol, and vei is velocity averaged over each
element; that is,

vei =
8∑

α=1

viα
1

Ve

∫
Ωe

NαdV. (19)

Each component of matrix Mαβ, M̄αβ, L
i
αβ, H

i
αβ, S

i
αβ in eqs.(12)-(17) are described following

integrations, that is,

Mαβ =
∫
Ωe

ÑαNβdV, (20)

M̄αβ =


∑

β

Mαβ


 δαβ, (21)

Lαβ =
∫
Ωe

∂Nα

∂xi

∂Nβ

∂xi
dV, (22)

H i
αβ =

∫
Ωe

Ñα
∂Nβ

∂xi
dV, and (23)

Sαβ =
∮
Ωe

Ñα
∂Nβ

∂xi

nidS, (24)
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where, Nα is tri-linear shape function, and up-winded shape function Ñα is defined as,

Ñα = Nα +
∆t

2
vej

∂Nα

∂xj
. (25)

First, temperature at the next step is solved by eq.(12) with eq.(18). Then, to obtain
predictor of the velocity ṽi eq.(13) with eq.(17) are solved. To satisfy the mass conservation
low, divergence of the predictor is calculated and Poisson equation eq. (14) are solved by the
parallel CG solver of GeoFEM. Then pressure pn+1 and velocity vn+1

i are solved by eqs.(15)
and (16).

The spherical shell is divided into tri-linear finite elements. The finite element mesh
is generated by the following process: We consider an icosahedron and this icosahedron is
refined three times. Next, to obtain a hexahedral element, each triangle is devide into three
quadrilaterals. Finally, this mesh is stacked in the radial direction. In this study, the spherical
shell is divided into 33 layers including both boundaries in the radial direction and 3842 nodes
are set on each sphere surface. Distance of nodes are about 70 km in the radial direction and
about 3 degree in the longitudinal direction at the equator. For parallel computation, domain
decomposition method has been applied in GeoFEM. The finite element mesh is divided into
32 domains in this study. This partitioning is carried out a partitioner of GeoFEM to parallel
with respect to x, y, and z planes and to balance the number of nodes in each domain. In
Fig.2, the grid pattern of the spherical shell is given.

x

y

z

x

y

z

Figure 2: Grid pattern for the rotating spherical shell. Grid pattern for whole spherical shell
is given in the left panel, and distributed grid pattern for parallel computation are given in
the right panel.

Simulation method in the case by the spectral method

To verify results of the simulation by GeoFEM, we carry out the same simulation by the spec-
tral method. In this case, the simulation scheme is based after Frazer (1974[5]), Honkura and
Matsushima (1992[10]), and Matsui (1999[14]). It is well established that arbitrary solenoidal
vector fields can be separated into poloidal and toroidal components (Bullard, 1954[1]; Chan-
drasekhar, 1961[3]). The velocity field is solenoidal because we apply the Boussinesq approxi-
mation in the present study. Scalar functions of the poloidal velocity VS and toroidal velocity
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VT and temperature perturbation are expanded into the spherical harmonics; that is,

v = rot rot (VT r) + rot (VT r) (26)

VS(r, t) =
L∑

l=1

l∑
m=−l

V m
Sl (r, t)Y

m
l (θ, φ) (27)

VT (r, t) =
L∑

l=1

l∑
m=−l

V m
Tl (r, t)Y

m
l (θ, φ) (28)

Θ(r, t) =
L∑

l=0

l∑
m=−l

Θ m
l (r, t)Y m

l (θ, φ) (29)

where, Y m
l (θ, φ) and L are the spherical harmonics and its truncation level, respectively. We

solve the coefficients of the harmonics V m
Sl , V

m
Tl , and Θ

m
l . To find solution in the radial

direction, we apply the 2nd order finite difference method. In this case, we solve the heat
conduction equation and the vorticity equation for the poloidal and toroidal component of
the vorticity. The poloidal velocity is obtained by the toroidal vorticity using the Poisson
equation. To solve the time evolution, we adopt the Crank-Nicolson scheme for the diffusion
terms and 2nd-order Adams-Bashforth scheme for solving the other terms. It is noted that the
inertia terms and the Coriolis term are solved by the coefficients of the spherical harmonics.
Because amount of computation increases O(L5) order in this scheme, it is difficult to apply
large truncation level. In this study, truncation level of the spherical harmonics is set to be
18 degree with equally divided 64 grid points in the radial direction.

These simulations are carried out the following computers; the simulation by GeoFEM is
carried out 4 nodes of Hitachi SR8000 in Information Science Center of National Institute
of Polar Research. The case has been carried out by NEC SX-4/128H in Computer Center,
Tohoku University in the case by the spectral method.

3. Results of the Simulation

We compare with three points of the results of the simulation by GeoFEM with that by the
spectral method; that is, i) time variation of the convection pattern, ii) kinetic energy and
z-component of angular momentum averaged over the spherical shell, and iii) time variation
of the convection pattern.

Convection pattern

After Busse (1970[2]), many analytical studies and numerical simulations have been shown
that columnar convection which parallel with respect to the rotation axis are formed outside
of the tangential cylinder, which is a imagimally cylinder attached to the inner boundary
of the shell at equator, in the case of thermally driven convection in a rotating spherical
shell. To show characteristics of the convection pattern in a quasi-steady state, isosurface of
P = 1000 and P = −1000 and contour map of z-component of vorticity ωz = rot ωẑ in a cross
section at z = 0.35 are shown in Fig.3. In this simulation, three pairs of convection columns
which parallel with respect to the rotation axis are formed. As shown in Fig.3, convection
columns with low pressure have positive z-component of vorticity and vice varsa. In upper
panels of Fig.4, intensities of the z-component of the vorticity and of the velocity at the cross
section of z = 0.35 are given. In the convection columns, z-component of the velocity and
vorticity have opposite direction; i.e., the clockwise vortices have the poleward flow, while the
counterclockwise vortices have the equatorward flow. These structures of the convection are
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Figure 3: Convection pattern at t = 12.96 for the simulation by GeoFEM. Pressure is shown
as isosurfaces of P = −1000 (dark surface) and P = 1000 (blight surface). Intensity of z-
component of the vorticity at a cross section of z = 0.35 is given by a contour map. Regions
which have negative vorticity are filled gray in the contour map.

characterized as helical flows. To verify that this simulation works correctly, we compare this
convection pattern with convection pattern for the case by the spherical harmonics expansion.
Z-compoenet of vorticity and velocity at the same cross section as the case by GeoFEM are
shown in the lower panels of Fig.4. As seen in these figures, the convection patterns are
almost same except for posision of the each convection column. Intensity of the velocity in
the case of GeoFEM is, however, smaller than that by the spectral method. This difference
is also seen in the magnitude of the kinetic energy averaged over the spherical shell.

Averaged kinetic energy and angular momentum

Time evolution of kinetic energy averaged over the spherical shell, which is defined by
1
V

∫ 1
2
v2dV is given in Fig.5. Comparing between these two cases, time evolutions are different

between two cases in t < 7. After t = 11, however, the behaviors of the kinetic energy become
quite similar to each other. This difference in the beginning of the simulations is caused by
difference of initial temperature between two cases; that is, in the case of GeoFEM, we set
initial temperature to be T = 1 on the inner boundary and to be T = 0 the other region,
while small temperature perturbation is given in the all mode of the spherical harmonics as
initial temperature for the case by the spectral method. After t = 11, the kinetic energy
in both cases shows similar changes because effects of the initial temperature vanish. The
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method

φ=0 φ=0

Figure 4: Intensity of the z-component of vorticity (left panels) and velocity (right panels) at
a cross section of z = 0.34 at a quasi-steady state. The results for the simulation by GeoFEM
at t = 12.96 are given in left panels, and the results at t = 12.0 for the simulation by the
spectral method are given in the right panels. Range of the vorticity is from -180.0 to 120.0
for both cases, and that of the velocity is from -6.7 to 7.9 for the case by the Spectral method
and from -7.0 to 9.0 for the case by the GeoFEM.

magnitude of the kinetic energy is, however, different between the two cases. The averaged
kinetic energy and z-component of the angular momentum 1

V

∫
(r × v) dV at quasi-steady

state are given in Table . In t > 11, magnitude of the kinetic energy for the case by GeoFEM
is about 93% of that in the case by the spectral method. On the other hand, z-component of
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Figure 5: Time evolution of kinetic energy averaged over the spherical shell. The energy for
the case by GeoFEM is given by the solid line, and that by the spectral method are given by
the dotted line.

GeoFEM Spectral method
Kinetic energy 31.6 33.5

Angular momentum -0.919 -0.849
drift frequency -1.88 -1.62

Table 1: Kinetic energy and angular momentum averaged over the spherical shell and drift
frequency of the convection pattern at t = 18.0. Positive value of the drift velocity is defined
as eastward propagation.

angular momentum averaged over the shell is larger than that by the spectral method. This
results suggest that details of convection patterns are also different between these cases.

Time variation of convection patterns

As many simulation results are shown, convection patterns are propagate in the longitudinal
directions as described by

(v,Θ) = f (r, θ, φ− ωt) , (30)

where ω is drift frequency. To investigate variations of the convection patterns and to es-
timation the drift frequency of the convection, we plot radial velocity at mid-depth of the
shell and the equatorial plane as given in Fig 6. As shown in Fig.6, convection patterns
propagate to the westward throughout these simulations, and the number of the convection
columns changes from 4 pairs to 3 pairs in 7.0 < t < 10.0. The drift frequency becomes
almost constant in t > 11, but the drift frequency is different between these simulations.
To estimate the drift frequency, we choose a component of the radial velocity described as
vr(t) cos (3φ− ωt). The drift frequency in the quasi-steady state is estimated by phase of a
wave of this component of the velocity, and the drift frequency is plotted as a function of
time in Fig.7. As given in Fig.7, magnitude of the drift frequency is larger than that in the
case by the spectral method; i.e., the convection pattern for the case by GeoFEM propagates
rapidly in the case by GeoFEM. As given in Table the magnitude of the drift frequency in
quasi-steady state is 1.13 times to that for the case by the Spectral method.
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Figure 6: Radial velocity vr along a circle made at equatorial plane and mid-depth of the
shell as functions of the longitude (horizontal axis) and time (vertical axis). This figure is for
displaying propagation of the convection pattern in the zonal direction. The result for the
case by GeoFEM is given in the left panel, and that for the case by the spectral method are
given in the right panel. Positive value means outward flows, and positive values are shown
by white and negative values are shown by black. Range of grayscale is from -17.5 to 18.5.

4. Discussion

Our simulation results by GeoFEM and that by the spectral harmonics expansion show the
similar convection pattern and time variations of in qualitatively. As seen in Table , however,
about 10% of differences are seen several values are seen in the results. These two simulations
have many differences; that is, spatial resolution, radial resolution, and initial temperatures.
In these differences, The resolution of the radial direction may cause serious problems in our
results. In both cases, the radial resolution affects the convection patterns around the both
boundaries because radial resolution is too low to describe boundary layers. This error in
the case by GeoFEM may be larger than that by the spherical harmonics expansion, because
the radial resolution in the case by GeoFEM is lower than that by the spectral method.
However, when we set the larger number of nodes in radial direction, length of times step
has to set to be much shorter. In fact, we carry out this simulation with a grid which has
64 nodes in the radial direction and has the same mesh pattern in a sphere as the simulation
described in Section 3. In this case, we set the time step to be 0.1 times to the previous
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Figure 7: Angular drift frequency of the radial component of the velocity with three wave
numbers in the longitudinal direction along a circle made at equatorial plane and mid-depth
of the shell as a function of thermal diffusion time. This drift frequency is shown the drift
frequency of the convection patterns after t = 11 because three pairs of convection columns
are formed after t = 11. The result for the case by GeoFEM is plotted by ”+”, and that for
the case by the spectral method is given by ”×.” Positive drift velocity means that convection
pattern drift to the eastward.

case. Because CPU time for this case is 20 times longer than that for the simulation given
in Section 3. We carry out this simulation only to t = 4.5. This simulation seems to be
reaches the quasi-steady state rapidly than the last case (see Fig.8 and Fig.9). Magnitude of
averaged kinetic energy and angular momentum in this case reaches to be 32.7 and -0.866,
respectively. There is only 3% of difference between the result by GeoFEM and that by the
spectral method.

40

30

20

10

0

Ki
ne
ti
c 
en
er
gy

20151050

Thermal diffusion time

: 33 points in the radial direction
: 64 points in the radial direction

Figure 8: Time evolution of kinetic energy averaged over the spherical shell for the cases by
GeoFEM. Results by the mesh with 33 layers are given by the solid line (same as Fig.5), and
that by the mesh with 64 layers are given by dotted line.

Because of this reason, we have to carry out this simulation with much higher resolution
especially at around both of boundaries. This requires much shorter time steps for this
simulation. It is a large problem how fast this simulation can carry out. Elapse time for time
evolution in the simulations shown in Section 3 is estimated as shown in table .

It is not important to compare these elapse time by GeoFEM with that by the spectral
method directly because these simulations have different spatial resolutions, methods and
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33 layers in the radial direction 64 layers in the radial direction

Figure 9: Convection pattern at t = 12.96 for the case with 33 layers in the radial direction
(left panel) and that at t = 4.45 for the case with 64 layers in the radial direction (right
panel). Format of Figures are same as Fig.3, and the figure in the left panel is the same as
Fig.3.

Method Machine elapse time for 100 steps
GeoFEM SR8000( 8PEs) 1202
GeoFEM SR8000(16PEs) 830.5
GeoFEM SR8000(32PEs) 434.8

Spectral method SX-4(16PE) 33.3

Table 2: Elapse times for 100 time steps of the simulation.

machines where we have carried out these simulations. However, it is noted that we have to
carry out a MHD simulation about 10 times longer time steps than that of this simulations
when we set the same parameters for the fluid for the MHD dynamo simulation in this shell.
In this study, we carry out 2 × 105 time steps in these simulations, then it takes about 250
hours to obtain the simulation results at t = 20.0 while it takes only for 22 hours in the
case by the Spectral method. If we carry out MHD simulation with same FEM mesh, same
time steps, and same machines, it will take about 5000 hours to obtain results of the MHD
dynamo simulation. However, because our simulation code provides about only 5% of the
peak performance of SR8000, there are a lot of modification points to obtain efficiency of the
simulation.

5. Conclusion

For understanding of the dynamics of a fluid in the Earth’s outer core, we have been develop-
ing a simulation code for the fluid motion in a rotating spherical shell modeled on the Earth’s
outer core. This code is based on Thermal-Hydraulic subsystem of GeoFEM, which gives a
parallel FEM platform. As a developing processes, we carry out a simulation of thermally
driven convection in the rotating spherical shell without magnetic field. In this simulation,
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tri-linear hexahedron elements are applied for spatial distribution, and the spherical shell
is divided into 33 layers including both boundaries and 3842 nodes are set with a refined
icosahedral pattern on each spherical surface. This Finite Element mesh is divided into 32
domains for the parallel computation by a partitioner provided by GeoFEM. For time evolu-
tion of the temperature and velocity by the inertia, buoyancy, and Coriolis force, 2nd-order
Adams-Bashforth scheme are applied. Pressure is solved by parallel CG solver of GeoFEM.
In the simulation by the spectral method, poloidal and toroidal component of velocity and
temperature are expanded into the spectral harmonics expansion in the azimuthal and eleva-
tion direction, and the finite difference method is applied in the radial direction. For the time
integration, we apply the Crank-Nicolson scheme for diffusion terms and Adams-Bashforth
scheme for the other terms. Because dimensionless numbers for the Earth’s core such as
the Rayleigh number and the Taylor number is too large to be applied to the simulation,
we choose these parameters in the range which we can carry out the simulation; that is,
the Prandtl number is set to be 1.0, and the Taylor number is set to be 2.5 × 105 with the
Rayleigh number of 1.5 × 104 = 1.8Rac, where Rac is the critical Rayleigh number. The
rigid boundary is set on the inner and outer boundaries as a boundary condition for velocity,
and temperature is set to be 1 on the inner boundary and set to be 0 on outer boundary as
a temperature boundary condition. We carry out these simulations to 20 times of thermal
diffusion time.

The results of the convection pattern show that three pairs of convection columns which
parallel with respect to the rotation axis are dominantly formed and that these columns prop-
agate to the westward in the quasi-steady state of the simulation. Although different initial
values of the temperature are set in these two cases, same characteristics of the convection
are obtained in the two cases. On the other hand, the kinetic energy in the shell is about 93%
of that in the case using the spectral method, and the magnitude of drift frequency of the
convection pattern is 1.13 times larger than that for the simulation by the Spectral method.
We consider that this discrepancy is mainly caused by difference of the spatial resolution in
the radial direction.

To investigate the Earth’s core dynamics and the geodynamo process, We have to simulate
the motion of the fluid magnetohydrodynamically. Thus, development of a MHD code based
on this subsystem is deferred for the further studies. At the same time, some modification is
required to obtain an efficiency of computation.
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