

 1

Parallel Multilevel Iterative Linear Solvers with
Unstructured Adaptive Grids for Simulations

in Earth Science
Kengo Nakajima

Department of Computational Earth Sciences, Research Organization for Information Science
and Technology (RIST), Tokyo, Japan (e-mail: nakajima@tokyo.rist.or.jp, phone: +81-3-3712-
5321, fax: +81-3-3712-5552).

Abstract
A new multigrid-preconditioned conjugate gradient (MGCG) iterative method for
parallel computers is presented. Iterative solvers with preconditioning, such as
the incomplete Cholesky or incomplete LU factorization methods, represent
some of the most powerful tools for large-scale scientific computation. However,
the number of iterations required for convergence by these methods increases
with the size of the problem. In multigrid solvers, the rate of convergence is in-
dependent of problem size, and the number of iterations remains fairly constant.
Multigrid is also a good preconditioning algorithm for Krylov iterative solvers. In
this study, the MGCG method is applied to Poisson equations in the region be-
tween 2 spherical surfaces on semi-unstructured, adaptively generated pris-
matic grids, and to grids with local refinement. Computations using this method
on a Hitachi SR2201 with up to 128 processors demonstrated good scalability.

1. Introduction

In many large-scale scientific simulation codes, the majority of computation is devoted to linear
solvers. Preconditioned Krylov iterative solver such as conjugate gradient method with incom-
plete Cholesky factorization preconditioning (ICCG) [1] provides robust convergence for a wide
range of scientific applications. Incomplete Cholesky (IC) and incomplete LU (ILU) factoriza-
tions involve globally dependent operations, yet can be localized for parallel computation[2] and
provide smooth convergence. However, ICCG-based solvers are not scalable because the num-
ber of iterations required for convergence increases with the size of the problem. This becomes
critical when solving problems with >109 degrees of freedom (DOF) on >104 processors.

Multigrid[3] is a well-known scalable method for which the rate of convergence is inde-
pendent of problem size, and the number of iterations remains fairly constant. Multigrid is also a
good preconditioning algorithm for Krylov iterative solvers. Multigrid solvers and precondition-
ers have been widely used in finite-difference methods with structured grids since the mid 1980s,
however multigrid is not popular for finite-element methods involving unstructured grids. Re-
cently, various multigrid methods for unstructured grids have been developed[4][5][6][7][8], for both
parallel and serial computers.

In this study, a multigrid-preconditioned conjugate gradient iterative method (MGCG) on
parallel computers was developed and applied to Poisson equations in the region between 2
spherical surfaces on adaptively generated semi-unstructured prismatic grids based on the
method in [8]. This procedure has also been applied to grids with local refinement.

 2

2. Multigrid Method : Overview

Multigrid is a scalable method for solving linear equations. Relaxation methods such as Gauss-
Seidel efficiently damp high-frequency error but do not eliminate low-frequency error. The mul-
tigrid approach was developed in recognition that this low-frequency error can be accurately and
efficiently solved on a coarser grid. This concept is explained here in the following simple 2-
level preconditioning method, as described in [4]. If we have obtained the following linear sys-
tem on a fine grid :

 AF uF = f

and AC as the discrete form of the operator on the coarse grid, a simple coarse grid correction can
be given by :

 uF

(i+1) = uF
(i) + RT AC

-1 R (f - AF uF
(i))

where RT is the matrix representation of linear interpolation from the coarse grid to the fine grid
(prolongation operator) and R is called the restriction operator. Thus, it is possible to calculate
the residual on the fine grid, solve the coarse grid problem, and interpolate the coarse grid solu-
tion on the fine grid. This process can be described as follows :

1. Relax the equations on the fine grid and obtain the result uF

(i) = SF (AF, f). This operator SF
(e.g., Gauss-Seidel) is called the smoothing operator.

2. Calculate the residual term on the fine grid by rF = f - AF uF
(i).

3. Restrict the residual term on to the coarse grid by rC = R rF.
4. Solve the equation AC uC = rC on the coarse grid ; the accuracy of the solution on the coarse

grid affects the convergence of the entire multigrid system[3][4][5].
5. Interpolate (or prolong) the coarse grid correction on the fine grid by ∆uC

(i) = RT uC.
6. Update the solution on the fine grid by uF

(i+1) = uF
(i) + ∆uC

(i).

Recursive application of this algorithm for 2-level preconditioning for consecutive systems
of coarse-grid equations gives a multigrid V-cycle[3] (Fig. 1). If the components of the V-cycle
are defined appropriately, the result is a method that uniformly damps all frequencies of error
with a computational cost that depends only linearly on the problem size. In other words,
multigrid algorithms are scalable.

In the V-cycle, starting with the finest grid, all subsequent coarser grids are visited only
once. In the down-cycle, smoothers damp oscillatory error components at different grid scales. In
the up-cycle, the smooth error components remaining on each grid level are corrected using the
error approximations on the coarser grids.[4] Alternatively, in a W-cycle[3] (Fig. 1), the coarser
grids are solved more rigorously in order to reduce residuals as much as possible before going
back to the more expensive finer grids.

Multigrid algorithms tend to be problem-specific solutions and less robust than precondi-
tioned Krylov iterative methods such as the IC/ILU methods. Fortunately, it is easy to combine
the best features of multigrid and Krylov iterative methods into one algorithm ; multigrid-
preconditioned Krylov iterative methods. The resulting algorithm is robust, efficient and scalable.

One of the most important issues in multigrid is the construction of the coarse grids. There
are 2 basic multigrid approaches ; geometric[7][8] and algebraic[6]. In geometric multigrid, the ge-
ometry of the problem is used to define the various multigrid components. In contrast, algebraic
multigrid methods use only the information available in the linear system of equations, such as
matrix connectivity.

 3

fine

coarse

(a) V-Cycle (b) W-Cycle

fine

coarse

(a) V-Cycle (b) W-Cycle

The convergence rate of standard multigrid methods degenerates on problems involving
anisotropic discrete operators, such as those that appear in very thin meshes near the wall in Na-
vier-Stokes computations. In these cases, the error becomes smooth in the thin direction where
the connection is strong, but it is not smooth in the direction where the connection is weak. One
popular approach adopted to deal with anisotropic operators is the use of semi-coarsening, where
multigrid coarsening is applied adaptively in each coordinate direction. By coarsening the grid in
a certain direction, anisotropy on the coarser grid can be reduced.

Fig. 1 V- and W-cycle for multigrid operation

3. Parallel Multigrid Preconditioned Iterative Solvers

3.1 Applications
In this study, the target application is 3D incompressible thermal convection in the region be-
tween 2 spherical surfaces. This geometry appears often in simulations in earth science for both
fluid earth (atmosphere and ocean) and solid earth (mantle and outer core). Here, a semi-implicit
pressure-correction scheme[9] is applied, in which momentum and energy equations are solved
explicitly, and the pressure-correction Poisson equation :

 'u⋅∇=∆φ

is solved for an incompressibility constraint. The Poisson equation solver is the most expensive
process in this computation, and the convergence acceleration of this process is critical for in-
creasing the overall speed of this method. In this study, the Poisson equation solver is the main
consideration.

Semi-unstructured prismatic grids generated from triangles on a spherical surface are used
(Fig. 2). Meshes are initiated from an icosahedron and are globally refined recursively as in Fig.
3. The grid hierarchy defined by recursive refinement can be utilized as coarse grid formation
(Fig. 4). In the current application, velocity components and temperature are defined at cell cor-
ners, and pressure and potential for pressure correction are defined at cell centers. Therefore, the
dependent variables are defined at the cell center in this study.

The surface of the model is covered with triangles, which provide geometric flexibility,
while the structure of the mesh in the direction normal to the surface provides thin prismatic
elements suitable for the viscous region.

 4

F2

F3

F4
F5

F6

n1 n2

n3

j-th layer

n4 n5

n6

(j+1)-th layer

F1

b1 b2

b3
F2

F3

F4
F5

F6

n1 n2

n3

j-th layer

n4 n5

n6

(j+1)-th layer

F1

b1 b2

b3

Level 4
2,562 nodes

5,120 tri’s

Level 3
642 nodes
1,280 tri’s

Level 0
12 nodes

20 tri’s

Level 1
42 nodes

80 tri’s

Level 2
162 nodes

320 tri’s

Level 4
2,562 nodes

5,120 tri’s

Level 3
642 nodes
1,280 tri’s

Level 0
12 nodes

20 tri’s

Level 1
42 nodes

80 tri’s

Level 2
162 nodes

320 tri’s

Fig. 2 Prisms generated from triangular facets

Fig. 3 Surface triangle meshes generated from icosahedron
4 children generated from 1 parent triangle

 5

Generate
Fine Grids

Coarse
Grid
Info

Generate
Fine Grids
Generate
Fine Grids

Coarse
Grid
Info

Coarse
Grid
Info

 Fig. 4 Grid hierarchy from successive refinement

3.2 Parallel MGCG solvers for Poisson Equations
The parallel MGCG solver was implemented in Fortran 90 using MPI[10]. The features of the
procedure are summarized as follows :

(1) V-cycle MGCG solver.
(2) Gauss-Seidel or ILU(0) smoothing.
(3) Semi-coarsening in lateral and normal-to-surface direction.
(4) Partition of entire region in radial (normal-to-surface) direction.
(5) Definition of multilevel communication tables at partition interfaces
(6) Includes consideration for the effect of local grid refinement

The Gauss-Seidel iterative method was adopted as the smoother, but ILU(0) factorization[1] was
also tested as a smoother for the preconditioning component of the CG iterative method. The
computational procedure for the preconditioned CG method for solving Ax = b is as follows[1] :

Compute r(0)=b – A x(0) for some initial guess for x(0)

for i= 1, 2, ...
solve M z(i-1) = r(i-1) where M is the preconditioner
ρ(i-1)= r(i-1)T z(i-1)

if i= 1
p(1)= z(0)

else
β(i-1)= ρ(i-1)/ ρ(i-2)

p(i) = z(i-1) + β(i-1) p(i-1)

endif
q(i)= A p(i)

α(i)= ρ(i-1)/(p(i) q(i))
x(i)= x(i-1) + α(i) p(i)

r(i)= r(i-1) - α(i) q(i)

check convergence; continue if necessary.
end

The multigrid procedure is applied to solve the preconditioning matrix Mz=r where M is set
identical to A in this study.

 6

The V-cycle method described in Fig. 1 has been adopted. In each cycle, the Gauss-Seidel
procedure is repeated 5 times for both restriction (fine-to-coarse) and prolongation (coarse-to-
fine), or until convergence has stagnated, as is shown in Fig. 5. The ILU(0) smoother has been
implemented with the additive Schwartz domain decomposition method[4] at each level. At each
multigrid level, 2 iterations (i.e., 1 smoothing + 1 domain decomposition + 1 smoothing) are ap-
plied.

Semi-coarsening is applied in the lateral and normal-to-surface directions. In order to pre-
serve the semi-unstructured grid features in the normal-to-surface direction, the entire region is
partitioned in the radial direction.

The parallel multigrid cycle for coarsening is executed until :

• Lateral direction : Initial icosahedron (20 triangles)
• Normal-to-surface direction : 1 layer

on each processing element (PE). The multigrid procedure is then continued on a single PE until
the number of layer is equal to 2. The equation on the coarsest grid (20×2=40 cells) is solved ac-
curately by the Gauss-Seidel method. These single-PE computations are very small and do not
affect the parallel efficiency. As mentioned in the previous section, the accuracy of the solution
at the coarsest level strongly affects the convergence of the entire multigrid system. If we choose
deeper levels for the multigrid, the size of the problem at the coarsest level is reduced and a con-
vergent solution can be obtained rapidly by Gauss-Seidel iterations. A very deep multigrid level
is chosen for this reason.

In parallel computation with unstructured or semi-unstructured grids using the message
passing library, the communication tables for partitions should be defined explicitly by the user[2].
In this study, multilevel communication tables were defined at each level according to the multi-
grid procedure (Fig. 6). As variables are defined at cell centers, the entire region is partitioned in
a cell-based manner. Cells are classified into the following 3 categories from the viewpoint of
message passing :

• Internal cells (originally assigned cells)
• External cells (cells that form the matrix connectivity in the partition but are located out-

side of the partition)
• Boundary cells (external cells of other partitions)

Values in boundary cells in the partitions are sent to the neighboring partitions and are received
as external cells at the destination partition. This type of communication table is defined at each
grid level.

Fig. 5 Smoothing strategy at each restriction/prolongation stage

Iterations

R
es

id
ua

l

if Ri > α Ri-1 switch to the next stage of
multigrid (α~0.80).

R1

R2

R3

R4
R5

Fine

Coarse

 7

LEVEL= i

PE#0 PE#1

LEVEL= i+1

PE#0 PE#1

LEVEL= i

PE#0 PE#1

LEVEL= i+1

PE#0 PE#1

Fig. 6 Multilevel communication table

3.3 Grid Adaptation
Adaptive methods in applications involving unstructured meshes have evolved as efficient tools
for obtaining numerical solutions without prior knowledge of the details of the underlying phys-
ics[8].

Here, a dynamic adaptation algorithm developed by the author for 3D unstructured
meshes[8] is applied. The algorithm is capable of simultaneous refinement and coarsening of the
appropriate regions in the flow domain.

The adaptation algorithm is guided by a feature detector that senses regions with signifi-
cant changes in flow properties, such as shock waves, separations and wakes. Velocity differ-
ences and gradients are used for feature detection, and threshold parameters are set in order to
identify the regions to be refined or coarsened. The details of the method used for feature detec-
tion in this study are described in [8]. In the present implementation, the feature detector marks
edges.

The prisms are then refined directionally in order to preserve the structure of the mesh in
the normal-to-surface direction. The prismatic mesh refinement proceeds by dividing only the
lateral edges and faces, which are then refined by either quadtree or binary division. The result-
ing surface triangulation is replicated in each successive layer of the prismatic mesh as illustrated
in Fig. 7. As is seen from this figure, the prismatic mesh refinement preserves the structure of the
initial mesh in the direction normal to the surface.

In order to avoid excessive mesh skewness, repeated binary divisions of prisms are not al-
lowed. Furthermore, in order to avoid sudden changes in mesh size, the mesh refinement algo-
rithm also limits the maximum difference in embedding level between neighboring elements to
less than 2.

Recently, various multigrid methods for locally refined grids have been developed for
block-structured grids solved by finite-difference methods. The typical procedure described in
[3] is to utilize the grid hierarchy for an adapted grid and to apply a nested multigrid procedure
for each adaptation level. This approach (level-by-level method) usually requires additional
memory and computations for fine cells without adaptation (white triangles in Fig. 8). In this
study, we applied the direct jump method, where the solution starts from fine grid with full

 8

(deepest) adaptation level and then jumps back directly to the 2nd globally finest grid level in the
multigrid procedure as is described in Fig. 8.

Fig. 7 Directional refinement of prisms based on quadtree and binary divisions of
triangular faces

 Fig. 8 Multigrid strategy for locally refined grids
Level-by-level and direct jump method

4. Results

The developed methods were tested on Poisson equations in the region between 2 spherical sur-
faces using a Hitachi SR2201 parallel computer at the University of Tokyo[11] with up to 128
processors. Here, 2 problems were considered. In both problems the following homogeneous
Poisson equation was solved :

 1=∆φ

Initial Grid Edge Cut
Embedded grid

obtained after quadtree
and binary divisions of

the triangular faces

Initial Fine
Grid

(LEVEL=n)

2-level
Adapted

1-level
Adapted

Coarse Grid
(LEVEL=n-1)

Direct Jump Method

Level-by-Level Method

 9

In the 1st application, the problem size for 1 processor was fixed at 320 triangles (level=2 in Fig.
3) × 900 layers = 288,000 cells, and computations were performed using 2 to 128 PEs, corre-
sponding to 576,000 to 36,864,000 cells.

The inner radius of the sphere is 0.50 units and the thickness of each layer was fixed at
0.01. Two different boundary conditions were defined, as follows :

• Uniform : Dirichlet boundary condition (φ=0) for all triangles on the outermost surface
of the prisms.

• Single-patch : Dirichlet boundary condition (φ=0) for 1 triangle of the initial icosahe-
dron on the outermost surface of the prisms. The Dirichlet boundary condition was ap-
plied to all children and grandchildren generated from this 1 triangle of the 20 ones that
make up the initial icosahedron. This configuration produces very ill-conditioned coeffi-
cient matrices compared to the uniform cases.

Figures 9 (a) and (b) show the results (elapsed computation time including communication) for
MGCG/GS (Gauss-Seidel) and ICCG computations in application-I. The computation time for
MGCG/GS remains almost constant when a limited number of PEs are employed, but tends to
increase with the number of PEs at higher degrees of parallelization. This tendency is attributed
to the localization of Gauss-Seidel smoothing[2], approaching Jacobi smoothing as the number of
PEs increases. However, even in the 128 PE cases, MGCG/GS is much faster than ICCG.

Figures 10 (a) and (b) show the results for MGCG/GS, MGCG/ILU(0) and ICCG for ap-
plication-I with up to 32 PEs. MGCG/ILU(0) exhibits more robust convergence than MGCG/GS,
particularly for the cases with the single-patch boundary condition. Figures 11 (a) and (b) show
the iterations until convergence for these 3 methods. The number of iterations for MGCG/ILU(0)
remains relatively constant compared to MGCG/GS, even when the number of PEs increases.

In the 2nd application, the effect of local grid refinement and the multgrid strategy (direct
jump and level-by-level) were evaluated. The inner radius of the sphere is 0.50 units and the
thickness of the each layer was fixed at 0.01. The 2 boundary conditions used in the 1st applica-
tion were also applied to this problem. The initial grid was the level-2 grid (Fig. 3) with 320 tri-
angles. As shown in Fig. 12, a 3-level grid adaptation was applied. At each adaptation level, the
number of triangular facets varies as follows :

• 1st level: 532 triangles
• 2nd level: 1508 triangles
• 3rd level: 4448 triangles

In the 2nd application, the number of layers on each PE was fixed at 50, and the Poisson equa-
tion examined in the 1st application was solved by MGCG/GS using between 2 and 32 PEs. Fig-
ure 12 shows the computation time normalized by the number of cells (i.e., degrees of freedom)
on each processor according to problem size (i.e., PE number) using the direct jump method. If
the procedure is scalable, the curves should be horizontal. Under the uniform boundary condition,
MGCG/GS with the direct jump method provides very good scalability except for the 32 PE case
with 3-level adapted grids. Under the single-patch boundary condition, the efficiency decreases
as the number of PEs increases. This is similar to the results of the 1st application (Figs. 9-11).

Figure 13 shows a comparison between the direct jump and level-by-level multigrid strate-
gies for an adapted grid under the uniform boundary conditions. If the adaptation level is shallow,
the 2 methods are competitive, however at deeper levels of adaptation, the direct jump method
provides much higher efficiency.

In both applications, the communication overhead is very low (less than 1%) even in the
128 PE cases, except for the cases with initial grids of 320 triangles in the 2nd applications (50
layers per PE) where the computational load is rather low.

 10

(a) Uniform boundary condition

(b) Single-patch boundary condition

Fig. 9 Results of application-I. Computation time (including communication for parallel
computing) for fixed problem size on each processor (320×900=288,000 cells/PE) for 2
to 128 PEs (up to 36,864,000 cells). Black squares: ICCG, black circles: MGCG/GS.

0.00E+00

2.50E+03

5.00E+03

7.50E+03

1.00E+04

1.25E+04

1.50E+04

0 16 32 48 64 80 96 112 128 144
PE #

se
c.

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

0 16 32 48 64 80 96 112 128 144
PE #

se
c.

 11

(a) Uniform boundary condition

(b) Single-patch boundary condition

Fig. 10 Results of application-I. Computation time (including communication for paral-
lel computing) for fixed problem size on each processor (320×900=288,000 cells/PE) for
2 to 32 PEs (up to 9,216,000 cells). Black squares: ICCG, black circles: MGCG/GS,
white Circles: MGCG/ILU(0).

0.00E+00

2.00E+02

4.00E+02

6.00E+02

8.00E+02

1.00E+03

1.20E+03

0 4 8 12 16 20 24 28 32
PE #

se
c.

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

0 4 8 12 16 20 24 28 32
PE #

se
c.

 12

(a) Uniform boundary condition

(b) Single-patch boundary condition

Fig. 11 Results of application-I. Number of iterations until convergence for fixed prob-
lem size on each processor (320×900=288,000 cells/PE) for 2 to 32 PEs (up to
9,216,000 cells). Black squares: ICCG, black circles: MGCG/GS, white circles:
MGCG/ILU(0).

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1 10 100 1000
PE #

Ite
ra

tio
ns

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1 10 100 1000
PE #

Ite
ra

tio
ns

 13

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

0 4 8 12 16 20 24 28 32 36
PE #

se
c
./

(D
O

F
/
P

E
)

(a) Uniform boundary condition

(b) Single-patch boundary condition

Fig. 12 Results of application-II. Computation time (including communication normal-
ized by cell number/PE for parallel computing) for locally refined grids using MGCG/GS,
50 layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Solid line: initial grid (320 trian-
gles), circles: 1-level adapted, squares: 2-level adapted, triangles: 3-level adapted.

1-Level
Adapted
267 nodes

532 tri’s

2-Level
Adapted
750 nodes
1,508 tri’s

3-Level
Adapted
2,226 nodes

4,448 tri’s

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

0 4 8 12 16 20 24 28 32 36
PE #

se
c
./

(D
O

F
/
P

E
)

 14

Fig. 13 Results of application-II. Computation time (including communication normal-
ized by cell number/PE for parallel computing) for locally refined grids using MGCG/GS,
50 layers/PE, for 4 to 32 PEs (up to 7,116,800 cells) under the uniform boundary condi-
tion. Circles: 1-level adapted, squares: 2-level adapted, triangles: 3-level adapted, black
symbols: direct jump method, white symbols: level-by-level Method.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

0 4 8 12 16 20 24 28 32 36
PE #

se
c
./

(D
O

F
/
P

E
)

 15

5. Concluding Remarks

A multigrid-preconditioned conjugate gradient iterative method for parallel computers has been
developed, in which a V-cycle and semi-coarsening approach is adopted for the multigrid proce-
dure. Both Gauss-Seidel and ILU(0) with additive Schwartz domain decomposition smoothers
have been tested. The proposed procedure was applied to Poisson equations in the region be-
tween 2 spherical surfaces on adaptively generated semi-unstructured prismatic grids under vari-
ous boundary conditions. Computational results on a Hitachi SR2201 parallel computer using up
to 128 processors demonstrate the good scalability of the method compared with ICCG solvers.
Communication overhead is less than 1 % for sufficiently large problems. The efficiency of the
Gauss-Seidel smoother becomes worse as the number of PEs increases due to localization, and
the ILU(0) smoother is relatively robust for computations across many PEs.

The proposed procedure was also applied to grids with local refinement, and 2 multigrid
strategies (direct jump and level-by-level) were compared. Direct jump was found to be much
more efficient for deeper-level adaptation despite its simplicity.

Additional robust smoothers will be developed in the future as the next step in this research
for application to computations with higher degrees of parallelization (> 1,000 PEs).

Acknowledgments

This study is a part of the Solid Earth Platform for Large Scale Computation project funded by
the Ministry of Education, Culture, Sports, Science and Technology, Japan through Special
Promoting Funds of Science & Technology. The author would like to thank Professor Yasumasa
Kanada (Computing Center, The University of Tokyo) for helpful discussions on high perform-
ance computing.

References

[1] Barrett, R., Bery, M., Chan, T.F., Donato, J., Dongarra, J.J., Eijkhout, V., Pozo, R.,
Romine, C. and van der Vorst, H. : Templates for the Solution of Linear Systems : Build-
ing Blocks for Iterative Methods, SIAM, 1994.

[2] GeoFEM Web Site : http://geofem.tokyo.rist.or.jp/
[3] Briggs, W.L., Henson, V.E. and McCormick, S.F. : A Multigrid Tutorial Second Edition,

SIAM, 2000.
[4] Smith, B., Bjφrstad, P. and Gropp, W. : Domain Decomposition, Parallel Multilevel Meth-

ods for Elliptic Partial Differential Equations, Cambridge Press, 1996.
[5] CASC (Center for Applied Scientific Computing, Lawrence Livermore National Labora-

tory) Web Site : http://www.llnl.gov/CASC/linear_solvers/
[6] Stüben, K. : Algebaic Multigrid (AMG) : An Introduction with Applications, GMD Report

53, GMD-Forschungstentrum Informationstechnik GmbH, 1999.
[7] Adams, M.F. and Demmel, J,W. : "Parallel Multigrid Solver for 3D Unstructured Finite

Element Problems ", SC99 Proceedings, Portland, Oregon, USA, 1999.
[8] Parthasarathy, V., Kallinderis, Y. and Nakajima, K. : "A Navier-Stokes Method with

Adaptive Hybrid Prismatic/Tetrahedral Grids", AIAA Paper 95-0670, 1995.
[9] Kallinderis, Y. and Nakajima, K. : " Finite Element Method for Incompressible Viscous

Flows with Adaptive Hybrid Grids", AIAA Journal, Vol.32, No.8, pp.1617-1625, 1994.
[10] Gropp, W., Lusk, E. and Skjellum, A., : Using MPI, MIT Press, 1994.
[11] The University of Tokyo, Computer Center, Web Site : http://www.cc.u-tokyo.ac.jp/

	1. Introduction
	2. Multigrid Method : Overview
	3. Parallel Multigrid Preconditioned Iterative Solvers
	3.1 Applications
	3.2 Parallel MGCG solvers for Poisson Equations
	3.3 Grid Adaptation

	4. Results
	5. Concluding Remarks
	Acknowledgments
	References

