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Abstract – The parallelization of complex planning and control problems arising in diverse application areas in 

the industrial, services, and commercial environments not only allows the determination of control variables in 

the required times but also improves the performance of the control procedure as more processors are involved in 

the execution of the parallel program. In this paper we describe a scheduling application in a water supply 

network to demonstrate the benefits of parallel processing. The procedure we propose combines dynamic 

programming with genetic algorithms and time series prediction in order to solve problems in which decisions are 

made in stages, and the states and control belong to a continuous space. Taking into account the computational 

complexity of these applications and the time constraints that are usually imposed, the procedure has been 

implemented by a parallel program in a cluster of computers, an inexpensive and widely extended platform that 

can make parallelism a practical means of tackling complex problems in many different environments.  

Index Terms – Neuro-dynamic programming, evolutionary computation, parallel genetic algorithms, neural 

networks, clusters of computers, scheduling of water supply networks. 

1 Introduction 

Clusters of computers are relatively economical platforms that allow the execution of parallel 

applications. The advantages of such systems, based on standard hardware elements (general purpose 

microprocessors, personal computers or workstations, local area networks, etc.), in the configuration of 

parallel architectures, become even clearer as the rate of performance improvement for these hardware 

components speeds up. Moreover, as the larger manufacturing volumes of standard components allow 

manufacturers to amortize development costs over the higher number of units sold, it is possible to 

configure clusters with lower cost/performance ratios [1]. Thus, these systems are the object of growing 

interest in the field of parallel processing because they confirm it as a real possibility to improve the 

performance of applications not only in the fields of science and engineering but also in wider industrial 

and commercial environments, where inexpensive platforms, as well as parallel applications, software 

and tools, are required [2]. 
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Nevertheless, the use of clusters of personal computers or workstations as parallel platforms poses 

problems related to communication latencies and the bandwidth for small packets [3] which may limit 

their use to coarse grain parallel applications, and which need to be addressed in order to approach the 

performance of clusters to that provided by multicomputers or other specific supercomputing platforms. 

Moreover, it is also necessary to demonstrate the efficiency of clusters of computers, not only with 

respect to their performance in new and real applications, but also considering the time required to 

develop and debug parallel applications, by the provision of parallel software and tools similar to those 

available in non-parallel environments. 

In this paper we describe how a cluster of computers has been applied to improve performance in 

a realistic application dealing with the dynamic scheduling of a set of tanks in a water supply network. 

This problem arises in the global optimization of water supply systems, which presents different aspects 

[4], such as problems concerning the optimization of generation stations, the optimization of transport 

and distribution networks and the optimization of consumption. Of these problems, the application 

considered in the present paper is most closely related to minimizing the exploitation cost (cost of 

electrical power to move the valves, the increase in the mean life span of the system, etc.), while 

meeting physical constraints and guaranteeing the required water supply. Specifically, the problem 

consists of distributing the flow that the drinkable water treatment station (ETAP in Spanish) provides to 

the different tanks of the distribution network system, such that demand is satisfied and that the tanks 

neither overflow nor fall below the established minimum water volume, while valve movements are 

minimized and the flow from the ETAP is kept constant. Figure 1 shows a system outline in the case of 

the water distribution network of the city of Granada (Spain). 

Section 2 describes the hybrid procedure we propose to solve the kind of optimal control problems 

where the scheduling problem considered here can be included. Section 3 provides the details of the 

application of this procedure to our specific problem. Section 4 describes the issues related to the 

parallel implementation of the procedure, while Section 5 gives the experimental results. Finally, the 

conclusions of the paper are provided in Section 6. 

2 A hybrid procedure for dynamic scheduling. 

In this section we present a technique that can be applied to problems of sequential decision making (in 

our application, the volume of water that has to be sent to each tank at each time interval) with 

uncertainty (in our application, the levels of water consumption in future time periods). The outcome of 
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each decision is not fully predictable (the level in a tank at the end of each period depends on the 

volume of water that finally goes to the tank and on the water consumption in that period) but can be 

estimated before making the next decision. Each decision has an immediate cost associated but it also 

affects the state in which future decisions are to be made, and thus influences the cost of future periods 

of time (cost-to-go). Therefore, the effect of a low cost solution at the present time must be balanced 

against the undesirability of high costs in the future. This situation is similar to that of dynamic 

scheduling problems, where the scheduler has to be able to react to external events in order to find 

solutions to the problems resulting from the changes produced by those events. 

The procedure proposed here can be applied when the possible states and control actions in each 

stage are to be selected from a continuous space. Moreover, the input to the system is also continuous 

and unknown, although it can be predicted to some extent. Figure 2 shows the situation of the module 

implementing the procedure with respect to the system and the corresponding variables. In this figure, 

the control vector in the time i*t is noted as Y(i); the vector of inputs to the system in time i*t is W(i); 

and the system state vector corresponding to the previous time interval (i-1)*t is X(i-1).   

Dynamic programming [5,6] is a technique that can be applied to the kind of problems considered 

here, such as scheduling, inventory management, packaging and many other problems arising in fields 

such as operation research, control, communications, biology, etc. It provides the required formalization 

of the tradeoff between immediate and future costs, and considers a discrete-time dynamic system in 

which the states change according to transition probabilities that depend on the control signal applied 

(decision made). In some applications, however, the computational requirements arising from the use of 

dynamic programming are overwhelming because the number of states and possible controls is very 

large. Moreover, knowledge of the transition probabilities between states for each control applied is also 

required in order to be able to compute the corresponding expected value at each state. This stochastic 

character of the problem derives from the uncertainty in the state transitions appearing, since the 

external input values and perturbations are not previously known and are uncontrollable. 

In recent years, the term neuro-dynamic programming (NDP) [7] has been used to refer to a new 

methodology based on neural networks, dynamic programming, the theory of function approximation 

and the theory of iterative optimization. This methodology, also called reinforcement learning in the 

Artificial Intelligence literature, has been shown to be effective in coping with the two curses of 

dynamic programming and stochastic optimal control: 
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• The curse of dimensionality, which means the exponential computational complexity with the 
problem dimension.  

• The curse of modeling, or the difficulty in determining an explicit model of the system to be 
managed, the state-transition probabilities and the observed immediate costs.  

 

Neuro-dynamic programming uses sub-optimal optimization methods based on the evaluation and 

approximation of the optimal cost-to-go function noted as J*. The transition probabilities are not 

explicitly estimated, but instead the cost-to-go function of a given policy is progressively calculated by 

generating several sample system trajectories and the associated costs. Thus, Monte Carlo simulation of 

the system is the alternative used [7,8]. This allows the processing of systems for which no explicit 

models are available, because if no such model exists it is not possible to estimate the state transition 

probabilities, and thus traditional dynamic programming cannot be applied. 

In this paper we propose a different hybrid procedure: Figure 3 illustrates the modules for this 

procedure. As can be seen, there is a Prediction module that provides the parameters of a model that 

allows the estimation of the system input in the next stage. It is also possible to use a Function 

Approximation module to provide an approximate description of the system and enable easier 

simulation of the system. The models provided by the Prediction module and by the Function 

Approximation module are used by our Neuro-Dynamic Programming module to determine a set of 

feasible functioning points, and to select the best one to be applied at the next stage. 

Thus, at stage i, the controller has to determine the control vector Y(i+1) for the next stage. To do 

this, we use a vector W'(i+1), which estimates the vector W(i+1) of inputs in the next stage, and is 

obtained by using the model determined by the Prediction module. The output X(i) is used to define the 

cost function Cost(i) whose minima correspond to the feasible control vector Y(i+1) for the next stage. 

These feasible values for the vector Y(i+1) also allow the determination of the next stage, X(i+1), 

satisfying all the established restrictions. Once a set of feasible control vectors is obtained for a given 

stage (i+1), {Y(i+1)j , j=1,...,Mi+1}, it is necessary to select the best one to be used in the next control 

stage. The rank of Y(i+1)j (j=1,...,Mi+1) is determined by taking into account the immediate cost 

associated with its application and the future evolution of the system.  

The implementation of this part of the procedure can be done by simulation, using the predictions 

of the input vectors for the following stages, W'(i+2),...,W'(N-1),W'(N), from the prediction model 

available at stage i. By means of these predicted input vectors it is possible to estimate sets of feasible 

control values (by simulation and using the predicted values W’) for the following stages {Y’(i+2)j , 
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j=1,...,Mi+2},..., {Y’(N)j , j=1,...,MN}, and to generate sample trajectories (as in Figure 4) in order to 

approximate the cost-to-go function at stage i+1. 

The function J'(X(i+1)j), that estimates the cost-to-go function, can be obtained as 

J'(X(i+1)j) = (1/K)(d(X(i+1)j ,1)+d(X(i+1)j ,2) +...+ d(X(i+1)j ,K) )    (1) 

where K is the number of simulated trajectories,  

d(X(i+1)j1 ,m) = g(X(i+1)j1 ,Y’(i+2)j2 ,X’(i+2)j2) + g(X’(i+2)j2 ,Y’(i+3)j3X’(i+3)j3) +...+                                  
g(X’(N-1)j(N-i-1) ,Y’(N)j(N-i),X’(N)j(N-i)) 

is, for the m-th trajectory, the cumulative cost incurred on reaching the final state at the last stage of this 

trajectory, and g(a,u,b) is the immediate cost of a transition from state a to state b when control u is 

applied. It is assumed that different simulated trajectories are statistically independent. It is possible to 

determine J'(X(i+1)j) iteratively starting with J'(X(i+1)j)=0, and by using [6]: 

J'(X(i+1)j) = J'(X(i+1)j) + Gm* (d(X(i+1)j,m) - J'(X(i+1)j))     (2) 

with Gm=1/m, m=1,2,.., K. Once the values for J'(X(i+1)j) are computed for j=1,2,.., Mi+1, they are 

ranked, and the X(i+1)j (j=1,.., Mi+1) with the lowest value for the approximate cost-to-go function is 

selected for the next stage. The tasks implied in the estimation of the cost-to-go function and the way 

they interact are shown in Figure 5. 

Most neuro-dynamic programming methods [23,26-28] start from an initial sequence of control 

actions that is used to compute an initial value for the cost-to-go function. From this initial situation, an 

improvement is tried by applying transformations in this initial sequence that are accepted if the cost-to-

go function thus obtained is an improvement on the previous one. Some proposals [26-28] determine the 

cost-to-go function by functional approximation. These procedures usually require a lot of (‘off-line’) 

training time and the training set normally includes a high number of possible trajectories. The amount 

of computing time needed by these latter procedures makes it difficult for them to be applied to 

problems with real-time constraints. Other procedures [23] simulate possible control trajectories and 

estimate the values corresponding to the cost-to-go function. The procedure presented here also uses this 

strategy of simulating control trajectories, but includes the possibility of decreasing the space of 

alternative trajectories by using a prediction procedure that anticipates the future values for the inputs to 

the system (the levels of water consumption). Moreover, an optimization procedure is applied to 

determine feasible control points to define the possible trajectories.   
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3 Application to Water Supply Networks 

In this section we illustrate the use of the previously described procedure in a scheduling problem that 

appears in a water supply system [29,30]. The cost function that allows the determination of the feasible 

points for the time interval i, Cost[i], is obtained by summing four terms:  

Cost(i) = Cost1(i) + Cost2(i) + Cost3(i) + Cost4(i)             (3) 

where the form and meaning of these are as follows: 

Cost1: The sum of the water quantities entering each tank should be similar to the total water supply 

provided by the ETAP. 
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Cost2: The water volume within each tank should be less than its maximum capacity (thus avoiding 

overflowing). 
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Cost3: The water volume within each tank should be greater than zero (thus it never empties 

completely). 
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Cost4: The solution search is guided such that within the tanks the water level remains close to preset 

levels to allow the system to react appropriately in cases of very high or very low demand. 
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where:  

x[i][j] Water volume in tank j (1...n) in time interval i (1...N, where N is the horizon equal to 24 hours).  
w[i][j] Water volume expected to be consumed during time interval i from tank j.   
y[i][j] Water volume supplied to tank j during time interval i.  
C Water volume supplied by the ETAP during each time interval.  
V[j] Maximum volume within tank j.  
L[j] Required volume within tank j at the end of the horizon.  
H(a) It is a function that H(a)=a if a>0 otherwise H(a)=0. 
 
 

The continuity condition that exists between serial time intervals (i-1) and i is:  
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x[i][j] = x[i-1][j] + y[i][j] - w[i][j]     (4) 

To determine the feasible control values (the vectors Y(i) that minimize the cost function Cost[i]), 

a procedure that combines a genetic algorithm and a local optimization method is used here. The 

procedure is based on that described in [10] where genetic algorithms and hill-descending methods have 

been combined in order to take advantage of their positive characteristics while avoiding their 

drawbacks. In each generation of the genetic algorithm, the crossover and mutation operators, and some 

iterations of the hill-descending procedure, are applied to the individuals of the population as a 

mechanism to speed up the convergence thanks to its exploitative properties (to speed up convergence, 

as a result of their exploitative properties). As the genetic algorithm works on the solutions found by the 

local optimization search, the hybrid algorithm is considered to have 'Lamarckian' characteristics [10]. 

Genetic algorithms can be considered as meta-heuristics or general purpose optimization 

algorithms that require very little knowledge concerning the problem at hand. In [31] the relation was 

explored between the effectiveness of a general purpose algorithm and the optimization problem to 

which it is applied, and some NFL (No Free Lunch) theorems are proved indicating that for any 

algorithm, an improved performance over one class of problems is offset by performance deterioration 

with respect to another class. Nevertheless, it is possible to improve the behaviour of a general purpose 

procedure in a problem where limitations are presented by modifications of the algorithm that include 

some problem-specific operators to accelerate the search with respect to a pure genetic algorithm. In the 

case of the water supply application presented here, the genetic algorithms perform relatively well. 

Nevertheless, as said above, we have used a real genetic algorithm based on that described in [10], 

which includes iterations of a gradient-descendent optimization algorithm to accelerate the convergence. 

Each individual of the population corresponds to a control vector, Y(i)=(y1(i),...,yn(i)), and each of 

its genes represents one of its components, yk(i), coded as a real number. The mutation and crossover 

characteristics, and further details about their implementation, can be found in [10,19, 20].  

After applying a genetic procedure to the function Cost(1), we obtain a way of distributing the 

water between the tanks that, together with the consumption registered during that period, determines 

the level of water in the tanks for the following interval. By applying the genetic algorithm to the 

Cost(2) function, a water distribution scheme for the second time interval can be determined. By these 

means, finding a solution for subsequent cost functions, Cost(3),..., Cost(24), a feasible control 

trajectory is achieved, since within each interval a feasible water distribution pattern among the tanks is 



 8

defined, whilst physical restrictions and demand levels are met and the water levels required at the end 

of the horizon period are provided. However, this is only one of several possible trajectories and not 

necessarily the optimal one. 

At the end of each time interval, the value of real demand, W(i+1), with Y(i+1) and X(i), 

determine the water level in the tanks to be considered for the subsequent time interval i+1. Thus the 

valves are positioned such that the flows obtained are those required to enter each tank. However, the 

possible imprecision in valve gauging and the interactions that take place between the different flows, 

due to the network operation regime, etc., mean that there exist flows into each tank that differ from 

those calculated. Therefore, the real water volumes that are finally introduced into each tank are the ones 

taken to determine water tank levels during the following time interval.   

The application of the general procedure described in Section 2 begins by determining the Cost(1) 

function. A set of optimal values (feasible control values) of the Cost(1) function is obtained (M1=R 

optimal values as maximum) and from each of these solutions control trajectories are constructed to 

estimate the cost-to-go functions corresponding to each feasible value. To do this, the Prediction box in 

Figure 5 uses the model received from the Prediction module (Figure 3) and provides the predicted 

water consumption for the next stages, W'(2),..., W'(24). This prediction model is obtained by using a 

hybrid technique based on RBF networks [11] and classical orthogonal transformations such as SVD 

and QR [12,13] that allows not only the computation of the RBF parameters, as do most neural 

procedures, but also the automatic determination of the number of inputs and RBFs that define the 

structure of the network. A detailed description of this prediction procedure is beyond the scope of the 

present paper, but can be found in [14] and [15]. 

Thus, by using the predicted values W'(2),..., W'(24), it is possible to determine the R cost 

functions Cost(2) corresponding to each of the R feasible points obtained by optimizing Cost(1), and r 

new feasible points are obtained by applying the genetic algorithm to each of the R functions Cost(2). 

From each of the R*r (M2=R*r) feasible points, R*r different cost functions Cost(3) can be determined, 

and by again applying the genetic algorithm a given number of feasible points is obtained, and so on, 

until the last stage (N=24) is reached. In our case, only one feasible point is obtained from the R*r cost 

functions Cost(3), Cost(4),..,Cost(24). Thus, during the first stage K=R*r trajectories can be obtained 

from the R solutions of Cost(1) and the cost-to-go function for each of the R feasible control vectors is 

approximated, as indicated in Section 2, by using a cost function, g, that evaluates the amount of change 

in the position of the valves. The values of g(X(i)j0,Y(i+1)j1,X(i+1)j1) decrease with the distance between 
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Y(i) (that determines X(i)) and Y(i+1), because this implies smaller changes in the valve positions, thus 

reducing electrical consumption and increasing the mean life of the valves. 

The solution of Cost(1) with the minimum value for the approximate cost-to-go function is applied 

to the system, and this determines the state for the following stage. Starting from this operation point, 

and from the real state of the tanks after the first period, the Cost(2) function is obtained and thus new 

R*r trajectories that allow us to select a control strategy for the second interval. The process is repeated 

in each interval until the end of the horizon is reached. This procedure is briefly described in Figure 6.    

The maximum number of trajectories used, determined by R and r, is limited by the maximum 

computing time available, which depends on the time required to apply the control action and for water 

levels to attain their corresponding values. Evidently, as more trajectories are processed, the 

performance of the control procedure improves. This approach is similar to that described in [8], where 

Monte Carlo sampling is also applied to estimate the cost-to-go functions that are to be optimized.  

In the application considered here, the system model used to determine, by simulation, the feasible 

scheduling trajectories in the estimation of the cost-to-go function is easy, as corresponds to equation 

(4). Thus, the Simulation box illustrated in Figure 5 is very simple. In more complex cases it is possible 

to use techniques such as neural networks to derive a model of the system from its observed input/output 

behaviour. 

After this description of the main elements of the procedure, the next section presents the issues 

related to its parallel implementation and Section 5 provides experimental results to illustrate the 

performance of the method and demonstrate its correct operation.   

4 Parallel implementation of the procedure 

For efficient parallel implementation of a given application it is necessary to take into account the type 

(or types) of parallelism that this application presents and to compare it with the specific characteristics 

of the platform where the parallel procedure is to be executed. Together with the well-known data 

parallelism and functional parallelism [21], object parallelism and metaproblem parallelism are also 

defined. Object parallelism appears in problems solved with the aid of discrete event simulators and is 

similar to data parallelism except that the objects are the units of parallelism, being larger than the 

fundamental units of parallelism in a data parallelism problem. 

With respect to metaproblem parallelism, this can be considered a special type of functional 

parallelism in which there are several interrelated units, each corresponding to a complete problem in 
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itself. The number of concurrent components in a metaproblem is relatively small and they can be 

efficiently implemented in distributed systems as the requirements of communication latency and 

bandwidth between modules are less demanding. 

The procedure we propose to solve the water supply scheduling problem is outlined in Figures 3 

and 5. This presents different modules that interact by exchanging data and implements different types 

of techniques, i.e., neural networks for functional approximation and time series prediction, genetic 

algorithms to determine the feasible functioning points, simulations to generate control trajectories in 

order to evaluate the cost-to-go function, etc. More specifically, Figure 3 shows three modules, one to 

determine the parameters of the prediction model (a RBF network), one to approximate the functional 

behaviour of the system (also a neural network), and one that constructs and simulates the control 

trajectories, evaluates their cost-to-go function, and determines the optimal control variables. This latter 

module can be considered the central element of the proposed neuro-dynamic programming procedure 

and is thus termed the neuro-dynamic programming module. 

Therefore, the proposed technique can be depicted as a metaproblem, where the procedures 

corresponding to each module are required to exchange data. For example, the prediction module has to 

send the parameters of the model used to make predictions whenever a change in its parameters occurs. 

Nevertheless, the communication bandwidth required between the procedures of the different modules is 

not very high and, if necessary, each module can be executed in different machines, which do not need 

to be connected by fast networks. Of course, the procedures corresponding to different modules can be 

executed in the same multiprocessor or cluster where different processors are allocated to each 

procedure, although each procedure presents a different type of parallelism. 

As noted above, the different modules of the procedure can be implemented as parallel programs 

to allow the time constraints to be fulfilled (future consumption values should be predicted and feasible 

solutions obtained by the genetic algorithm within a given time limit) and/or the performance of the 

procedures to be improved (more feasible solutions and a more accurate cost-to-go function). Although 

the present parallel implementation of the procedure uses a parallel program for the prediction module, 

in this paper we only describe the way the neuro-dynamic programming module has been parallelized, 

as this can be considered the kernel of the scheduling procedure.  

Parallel processing can be used with relative efficiency to speed up neuro-dynamic programming 

procedures and to improve their performance. Almost all neuro-dynamic programming procedures must 

determine several control trajectories, usually by simulation of the system. Thus, this part of the 
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procedure can be parallelized by allocating a different subset of the trajectories to be generated to a 

different processor. In the present case, the processors must intercommunicate in order to ensure that 

each one generates a set of trajectories that are different from those generated by the other processors, 

and to detect trajectories having a low probability of being selected as optimal. Thus, if the number of 

trajectories generated by a processor is liable to change or if the computational cost associated with 

trajectory analysis depends on the characteristics of the trajectory and cannot be estimated when the 

distribution of work is done, then we require a dynamic load balancing procedure: this also demands 

communication between the processors. Some examples of parallel procedures for neuro-dynamic 

programming are presented in [22,23]. 

Figure 7 illustrates the possibilities considered to parallelize the procedure described in Figure 6 

corresponding to the Neuro-Dynamic Programming module shown in Figure 5. The lines in Figure 7 in 

bold characters are those where parallel processing can be applied. Thus, line (4) corresponds to the 

execution of the genetic algorithm that searches Mi=R vectors that minimize the previously determined 

cost function Cost(i) and represent feasible functioning points for the system. The parallelization of this 

line (4) can be achieved by using one of the following main alternatives (represented in Figure 8): 

1) Multiple independent runs sequential genetic algorithms for unimodal optimization (USGA 

in Figure 8.a): By starting R executions of the genetic algorithm (assuming that similar 

solutions are very unlikely to be found by different executions of the algorithm). 

2) Multiple independent runs parallel genetic algorithms for unimodal optimization (UPGA in 

Figure 8.b): By R repetitions of a parallel genetic algorithm that searches for one of the 

feasible points in each execution.  

3) One run of a parallel genetic algorithm for multimodal optimization (MPGA in Figure 8.c): 

By implementing a parallel genetic algorithm that is capable of finding the R feasible points 

in just one parallel execution [24,25]. In this option, the parallel genetic procedure should 

keep, in each processor, different subpopulations that explore different zones of the solution 

space, thus maintaining the diversity of the whole population and ensuring convergence to 

different solutions.  

From the point of view of parallel processing, the main interest of alternative (3) is related to the 

definition of the different search spaces assigned to each subpopulation, and the way these zones are 

dynamically modified in order to achieve a balanced workload distribution. Moreover, the speedup that 

can be obtained in this case is not limited to a linear dependence on the number of processors because 
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parallelization not only reduces the number of iterations required to obtain a solution but also the 

computational cost of each iteration, as the subpopulations have fewer individuals than the whole 

subpopulation. Thus superlinear speedups can be observed [37]. 

The search for Mi+1=r feasible points in line (11) of Figure 7 can be parallelized in a similar way 

to that of the genetic algorithm, by using any of the three options previously described. Otherwise, 

parallelization of the computation of a feasible point as indicated in line (16) can only be done by means 

of alternative (2), but taking into account that r=1 (Mi+2=1, Mi+3=1,..).  

As can be seen, the three possible alternatives to parallelize the search for R feasible points can 

also be combined, depending on the value of R and the number of processors available in the parallel 

computer. For example, in a computer with P processors and P < R, it would be possible to repeat R/P 

times the execution of a parallel genetic algorithm (alternative (2)) that is capable of finding P different 

feasible points, one per processor (alternative (3)). 

The other opportunity for parallelism in the procedure shown in Figure 7 corresponds to the 

processing of each simulated control trajectory in order to evaluate the cost-to-go function. Thus, the 

iterations indicated in line (5), each corresponding to one of the R trajectories that starts from the 

corresponding feasible point obtained in line (4), can be processed in parallel allocating each iteration 

(i.e. the execution of the procedure Trajectory_generation()) to a different processor. The same option 

can be used for the iterations indicated in line (12), corresponding to each of the r trajectories simulated 

from each of the R initial feasible points. Figure 9 provides a scheme corresponding to the parallel 

execution of the procedure by a set of P=6 processors that process K=6 trajectories. The boxes in each 

layer of the figure correspond to the genetic algorithm used to determine the feasible control points that 

allow us to construct the trajectories. In the first layer, a parallel genetic algorithm that is capable of 

determining R=3 feasible control points is used. Then, for each of these points a parallel genetic 

algorithm that allows the obtention of the other r=2 feasible points is used in the second layer. Finally, 

the rest of the K=R*r=6 trajectories are processed by just one processor that applies a sequential parallel 

algorithm to determine the feasible point corresponding to each of the following layers. 

It is apparent that there are several options to parallelize the procedure, taking into account the 

alternative ways of parallelizing the genetic algorithm that searches for the required feasible points, and 

the ways of distributing the generation and evaluation of the different trajectories. Moreover, the 

numbers R and r that determine the amount of trajectories simulated can be set according to the number 
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of available processors and real time requirements. The more trajectories are processed, the better is the 

approximation obtained for the cost-to-go function, and the better the performance of the method. 

Communication is established between processors in the case of alternatives (2) and (3) for a 

parallel genetic algorithm, and in the parallel processing of the trajectories, in order to prevent different 

processors from generating the same trajectory and doing the same work. Thus, one of the two 

processors proceeds with the simulation of the trajectory while the other can start processing one of the 

pending trajectories. After this outline of the various parallelization procedures, the following section 

provides some representative experimental results. 

5 Experimental results 

To predict the water demand from each tank, an RBF network learning procedure based on the LMS 

rule along with the QR-cp and SVD procedures was used, following [14,15]. The network was trained 

using a window size of D=8; thus samples from the tank demand observed during the previous eight 

hours were used to predict the next hour’s demand. The relative error, taken as the absolute value, is at 

the 5% level and the NRMSE [14] is approximately equal to 0.40. In Figure 10 the predicted demand 

values for one of the three tanks during a complete day are compared to their real counterparts. As can 

be seen, the prediction procedure has a high degree of accuracy. Moreover, as the prediction module 

determines the parameters of the prediction model concurrently and asynchronously with the processing 

of the trajectories by the neuro-dynamic module, an on-line improvement of the prediction accuracy is 

possible. 

The parameters for the operators of the hybrid genetic algorithm [10] that determines feasible 

control values were set to b=5.0, p1=0.2, p2=0.2, and T=100 (with the notation used in [10]). The 

components of the control vector are bounded between ymax=3000.0 and ymin=0.0.  

Figure 11 shows the curves corresponding to the evolution of water levels in a given tank when 

the proposed controller was used (controller) and when different manual controls (Man1, Man2, Man3) 

were used. The solution obtained by the controller is feasible and presents a lower degree of variation 

(no extreme maximum or minimum levels) than the curves corresponding to the manual control of the 

system. 

The parallel procedure corresponding to the Neuro-Dynamic Programming module was 

implemented in a cluster of PCs (Pentium II, 333 MHz). Figures 12.a and 12.b compare the changes in 

the volumes of the three tanks considered, X(t), and the amount of water entering each tank in one hour, 
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Y(t), using just one of the processors (Figure 12.a) and eight processors (Figure 12.b) to search for the 

feasible solutions in a given time (each processor processes one trajectory). The solution obtained by 

using several processors presents the smallest change in the volume of water entering the tanks. 

 The parallelization of the procedure implemented by the Neuro-Dynamic Programming module is 

based on two of the alternatives to take advantage of the parallel processing in genetic algorithms that 

are shown in Figure 8 (alternatives 1 and 2). More specifically, a parallel genetic algorithm is run on the 

P processors several times, in order to obtain a set of K feasible points where the trajectories start 

(alternative 2 in Figure 8). Once the beginning of K trajectories (the maximum number of trajectories to 

be processed) are obtained, the rest of each trajectory is determined by only one of the processors 

(alternative 1 in Figure 8). The distribution of the trajectories among the processors is done dynamically 

by allocating a trajectory to each processor when it finishes a previously allocated one.  

To give an idea of the computing times and the speedups obtained by the parallel implementation 

of the procedure, Table 1 and Figure 13 shows the results for different number of trajectories and 

processors. We have obtained efficiencies between 0.7 and 0.9. These results correspond to the mean 

values obtained from five executions of each case. As Figure 13 shows, as the number of trajectories 

grows, the speedup obtained for the higher number of used processors is improved. This is a 

consequence of the way the parallel algorithm works: once the beginning of the simulated trajectories 

are determined by the parallel genetic algorithm UPGA (alternative 2 in Figure 8), the rest of each 

trajectory is determined by several sequential genetic algorithms that are executed practically without 

communication (USGA). Thus, as the number of trajectories grows, the rate of communication time 

(required basically in the UPGA) decreases with respect to the computing time required to build the 

whole trajectory.  

Taking into account that control values are required each hour, the times obtained are adequate if 

four or more processors are used. If the procedure is executed by only one processor, the times obtained 

are satisfactory up to eight simulated trajectories. The evolution of water volume within the tanks 

satisfied the constraints imposed and, as shown in Figure 12, the response of the system improved as 

more trajectories were processed. The times presented in Table 1 can also be improved by implementing 

a new genetic algorithm able to converge to several optima in only one run, by including niching 

methods to maintain the diversity of population across the processors and in each processor (alternative 

3 in Figure 8). 
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Table 1. Time for different number of generated trajectories and processors 

TRAJECTORIES PROCESSORS 
8 16  32 

1 42.0 min. 74.7 min. 145.3 min. 
4 13.9 min. 25.6 min. 48.5 min. 
8 7.8 min. 11.1 min. 20.1 min. 

 

Finally, we consider that, as the number of tanks increases in the case of cities bigger than the one 

considered in these experiments, the number of bits that codify each individual in the population grows 

linearly with the number of tanks. Thus, the search space grows, and the time required by the genetic 

algorithm to find the solutions corresponding to the feasible points increases. This increase in the 

computing time comes from the increment in the time required to process each individual in the 

population, the possible increase in the population size, and in the number of generations required to 

find a solution. With respect to the population size, there exists some theoretical analysis of the optimal 

size [32,33], and algorithms that adjust this size according to the probability of selection error [34]. 

Moreover, some studies have attempted to find the adequate population size empirically and have 

recommended the use of populations with size ranges between some proposed values [35,36]. Thus, in 

order to get an insight into the effect of increasing the complexity of the water supply network, we fixed 

a population size across the different number of tanks (we selected a population that enabled us to find 

feasible solutions for different numbers of tanks with an error rate below 0.5%), and we performed some 

experiments that indicate the effect of the increase in the complexity of each individual of the population 

and the possible increase in the number of generations to obtain a feasible solution. Figure 14 represents 

the increase in the time required to execute a fixed number of iterations when the number of tanks grows 

(line iter=175). As can be seen in the Figure the time grows less than with a power of two, and slightly 

more than as a power of 1.9. Figure 14 shows the number of iterations executed to obtain a feasible 

solution with a 0.5% of error (line err<0.5%). In this case, the increase in the time required by the 

algorithm grows slowly. Thus, a reasonable increase in the number of tanks to be scheduled does not 

have an important effect on the practical applicability of our scheduling procedure.  

6 Conclusions 

The benefits provided by parallelism in complex planning, scheduling and control applications has been 

demonstrated through an application of tank scheduling in a water supply system. A procedure based on 

Monte Carlo simulation, RBF networks and parallel genetic algorithms has been presented in relation to 
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this application. The procedure can be used when the sets of possible states, inputs and control variables 

are continuous, and applies a genetic algorithm to determine the feasible operation points at each stage, 

by using a predicted input value. The cost-to-go functions for each feasible state are approximated by 

Monte Carlo simulation, thus taking into account the influence of future cost in the selection of the 

control for the next stage. The values considered in each stage are the real values of the system after the 

previous stage. 

The procedure was implemented in parallel in a cluster of computers. As shown in the 

experimental results, parallel processing is beneficial because it allows us to calculate a greater number 

of trajectories at any given time, thus improving the effectiveness of the control procedure. Moreover, it 

reduces the time required to process a given number of trajectories.   

The proposed procedure has a high amount of parallelism that can be used to reduce the time 

required to reach a control decision. The experimental results presented in Section 5 confirm this 

circumstance. It is possible to carry out multiple generation and simulation of  trajectories in parallel and 

occasionally to communicate some results. Moreover, the genetic algorithm that determines the feasible 

operation points can also be parallelized efficiently. In the present implementation of our genetic 

algorithm, several runs of the algorithm have to be made in order to determine sufficient feasible 

operation points. Although the number of minima in the cost function, Cost(), is usually high, and it is 

difficult to obtain repeated values in different runs, the genetic algorithm can be improved by including 

the capability of multimodal optimization with niching methods, such as crowding and fitness sharing 

[24,25]. These methods maintain population diversity and allow the genetic algorithm to converge to a 

set of possible minima at the same time. Thus, the parallel implementation of a genetic algorithm 

including niching methods will improve our procedure. 
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Figures 

Fig.1. Scheme of the Water Distribution System of Granada (Spain) 

Fig.2. Outline of the system controller 

Fig.3. Modules of the proposed hybrid procedure 

Fig.4. Generation of sample trajectories  

Fig.5. Outline of procedure implemented by the Neuro-Dynamic Programming Module 

Fig.6. Pseudocode for the procedure of the Neuro-Dynamic Programming Module 

Fig.7. Simplified description of the parallel implementation of the Neuro-Dynamic Programming Module 

Fig.8. Alternative for parallelizin the genetic algorithm: (a) alternative 1, USGA; (b) alternative 2, UPGA; and 
(c) alternative 3, MPGA 

Fig.9. Parallel processing of the procedure with 6 trajectories and 6 processors 

Fig.10. Comparison of the real and the used predicted demands 

Fig.11. Comparison between different manual control (Man1,Man2,Man3) and the controller obtained with the 
procedure described 

Fig.12. a. Results for 1 trajectory; Fig.12.b. Results for 8 trajectories 

Fig.13. Speedups for different number of generated trajectories and processors 

Fig. 14. Convergence time vs. number of tanks  
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Fig.2. Outline of the system controller 



 22

Neuro-Dynamic 
Programming 

Module
SYSTEM

Prediction 
Module

Function 
Approximation 

Module

D Y(i)

W(i)

X(i-1) X(i)

 
 

 
Fig.3. Modules of the proposed hybrid procedure 
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Fig.4. Generation of sample trajectories 
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Fig.5. Outline of procedure implemented by the Neuro-Dynamic Programming Module 
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(  1)   For each i (i = 1,2,..,N)  { 
(  2) Obtain W'[i][j] (j=1,2,.., n);    /* Using the Model (in box Prediction)                                         */  

/* computed by the Prediction  Module                                         */ 
(  3) Determine Cost[i];     /* Using W'[i][j] and X[i-1][j]  according to (7)                          */ 
(  4) Compute R minima of Cost[i];   /* R feasible points obtained by a Genetic Algorithm                   */ 
(  5) For each k (k=1,..,R){   /* For each feasible point a set of trajectories are evaluated       */ 
(  6)    Trajectory_generation(i,k,r);   /* Build r control trajectories for feasible point k and evaluate   */  

/* the cost-to-go function                                                               */ 
} 

(  7) Select S such that J'(S) = min {J'(1),...,J'(R)} /* The vector Y corresponding to the point S is the solution         */ 
/* for stage i, Y[i][j] (j=1,..,n)                                        */  

          } 
 
(  8)   Trajectory_generation(i,k,r) { 
(  9)  Obtain W'[i+1][j] (j=1,2,...,n) 
(10)  Generate Cost[i+1];  /* Using W'[q][j] and X[q-1][j] corresponding to point k            */ 
(11)  Determine r minima of Cost[i+1]; 
(12)  For each p (p=1,..,r) { 
(13)   For each s (s=i+2,..,N) { 
(14)    Obtain W'[s][j] (j=1,2,..,n) 
(15)    Generate Cost[s]; 
(16)    Determine a minima of Cost[s]; 
   } 
  } 
(17)  Evaluate J'(k);   /* Using the r trajectories simulated and expressions (5) and (6) */  
          } 
  
 
 

Fig.6. Pseudocode for the procedure of the Neuro-Dynamic Programming Module 
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(  1)   For each i (i = 1,2,..,N)  { 
(  2) Obtain W'[i][j] (j=1,2,.., n);    /* Using the Model (in box Prediction)                                         */  

/* computed by the Prediction  Module                                         */ 
(  3) Determine Cost[i];     /* Using W'[i][j] and X[i-1][j]  according to (7)                          */ 
(  4) Compute R minima of Cost[i];   /* R feasible points obtained by a Genetic Algorithm                   */ 
(  5) Par For each k (k=1,..,R){   /* Evaluation of each of the R trajectories  done in parallel        */ 
(  6)    Trajectory_generation(i,k,r);   /* Build r control trajectories for feasible point k and evaluate   */  

/* the cost-to-go function                                                               */ 
} 

(  7) Select S such that J'(S) = min {J'(1),...,J'(R)} /* The vector Y corresponding to the point S is the solution        */ 
/* for stage i, Y[i][j] (j=1,..,n)                                    */  

          } 
 
(  8)    Trajectory_generation(i,k,r) { 
(  9)  Obtain W'[i+1][j] (j=1,2,...,n) 
(10)  Generate Cost[i+1];  /* Using W'[i+1][j] and X[i][j] corresponding to point k             */ 
(11)  Determine r minima of Cost[i+1]; 
(12)  Par For each p (p=1,..,r) { 
(13)   For each s (s=i+2,..,N) { 
(14)    Obtain W'[s][j] (j=1,2,..,n) 
(15)    Generate Cost[s]; 
(16)    Compute a minima of Cost[s]; 
   } 
  } 
(17)  Evaluate J'(k);   /* Using the r trajectories simulated and expressions (5) and (6) */  
          } 
  
 
 

Fig.7. Simplified description of the parallel implementation of the  
Neuro-Dynamic Programming Module 
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Fig.8. Alternatives for parallelizin the genetic algorithm: 
(a) alternative 1, USGA; (b) alternative 2, UPGA; and (c) alternative 3, MPGA 
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Fig.9. Parallel processing of the procedure with 6 trajectories and 6 processors
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Fig.10. Comparison of the real and the used predicted demands 



 30

6 0 0 0

7 5 0 0

9 0 0 0

1 0 5 0 0

1 2 0 0 0

1 3 5 0 0

1 5 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4

C on tro lle r M an 1 M an 2 M an 3

 
 

 
Fig.11. Comparison between different manual control (Man1,Man2,Man3) and  

the controller obtained with the procedure described 
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Fig.12.a. Results for 1 trajectory           Fig.12.b. Results for 8 trajectories 
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Fig.13. Speedups for different number of generated trajectories and processors 
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Fig.14. Convergence time vs. number of tanks 

 
 

 

 


