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SUMMARY 
This paper presents a stochastic dynamic load balancing algorithm for Internet Computing, 

which is a new type of distributed computing involving heterogeneous workstations from 

different organizations on Internet. To realize the practical environment, we assume the 

system comprised of heterogeneous, untrusted and non-dedicated workstations connected by 

non-dedicated network. Our algorithm uses the product of the average processing time and the 

queue length of system jobs as the load index. Dynamic communication delay is included in the 

execution cost calculation. The transfer policy and the location policy are combined in a 

stochastic algorithm. State information exchange is done via information feedback and mutual 

updating. Simulations demonstrate that our algorithm outperforms conventional approaches 

over a wide range of system parameters. These results are reconfirmed by empirical 

experiments after we have implemented the algorithms on the DJM global virtual machine. 

 

KEY WORDS:  Internet computing; stochastic load balancing; distributed systems; Java computing 
 

 

1. INTRODUCTION 

As a result of the rapid advances in the high performance workstations and high-speed 

networking technologies, the idea of exploiting coarse-grained concurrency over network of 

workstations becomes increasingly competitive compared to the expensive parallel 

machines [1]. The promises of such type of distributed system include inexpensive parallel 

computing, scalable processing power, and more efficient use of existing resources. In 

recent years, due to the rapid growth of the Internet infrastructure and the invention of the 

platform independent language Java [2], larger scale of distributed computing that involves 

workstations from different organizations on the Internet is gaining popularity [3][4][5][6].  

We call such type of computing as Internet Computing, or i-Computing for short. 

i-Computing enables large-scale resources sharing among different organizations. Thanks to 

the huge number of workstations on the Internet, i-Computing provides opportunities of 

forming virtual computers with gigantic processing power. It also offers the potential of 

selling and buying of surplus computing power over the Internet [7]. For example, the 

Distributed Java Machine (DJM) [4][7] is a global virtual machine targeted for i-Computing. 

DJM allows heterogeneous workstations from anywhere on the Internet to dynamically form 

a distributed computing system simply by using a web browser to visit a web page.  

In a distributed computing system, it is very common that some nodes have heavier 

transient workload than the others [ 8 ][ 9 ]. A load balancing (LB) strategy would be 

extremely useful to improve the system efficiency. The goal of a LB algorithm is to improve 

the performance of a distributed system by appropriately transferring jobs from heavily-

loaded nodes to lightly-loaded nodes.  
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Many LB algorithms (e.g. [ 10][ 11][ 12][ 13][ 14 ]) are proposed for the traditional 

distributed systems in an enclosed laboratory environment. However, little work has been 

done to cater for the following unique characteristics in the practical i-Computing 

environment: heterogeneous servers, untrusted peers, non-dedicated servers, non-dedicated 

communication network, and considerable communication delay. The main reason may be 

due to their intractable nature. In this paper, we propose a novel distributed dynamic LB 

algorithm specially designed to handle the above characteristics of i-Computing [15]. Our 

algorithm uses a stochastic approach in selecting nodes for remote job execution. By 

comparing the experiment results of a number of well-known algorithms, it is observed that 

our algorithm reduces the average job response time over a wide range of system parameters.  

The rest of this paper is organized as follows. Section 2 presents the related work on 

load balancing and our motivation for a new approach. Section 3 introduces the system 

model. Section 4 describes the detailed design of the proposed algorithm. In Section 5, the 

performance of our algorithm is compared with other well-known approaches in a series of 

simulation and empirical experiments. The practical experience gained from designing and 

implementing the algorithm is shared in Section 6. Finally, this paper is concluded in 

Section 7. 

 

2. RELATED WORK AND OUR MOTIVATION 

In the past decade, a lot of research has been directed towards the task of effective LB 

algorithms in a distributed computing system. LB algorithms can be classified into static and 

dynamic approaches [16]. Static LB algorithms assume that a priori information about all 

the characteristics of the jobs, the server nodes and the communication network is provided. 

LB decisions are made deterministically (e.g. [17]) or probabilistically (e.g. [18]) at compile 

time and remain constant during runtime. Static LB problems have been treated in the 

following approaches: graph-theoretical approach [17][19], integer programming [20][ 21][ 22], 

queuing model [ 23], and heuristics methods [24][ 25][ 26]. Static approach is attractive 

because of its simplicity and the minimized runtime overhead. However, it has two major 

disadvantages. Firstly, the workload distribution of many applications cannot be predicted 

before program execution. Secondly, it assumes the characteristics of the computing 

resource and communication network are all known in advance and remain constant. Such 

assumption may not apply to a non-dedicated computing environment. Because static 

approach cannot response to the dynamic runtime environment, it may lead to load 

imbalance on some nodes and significantly increase the job response time. 

In contrast, dynamic LB algorithms attempt to use the runtime state information to make 

more informative decisions in balancing the system load. The optimal solution of dynamic 
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LB is NP-complete in the general case [27]. However, sub-optimal solutions can be obtained 

by heuristic approaches. Dynamic algorithms are applicable to much wider ranges of 

applications. Using simple queuing analysis and simulation, Livny & Melman [12] have 

shown that dynamic algorithms perform better than their static counterparts. Eager et al. [11] 

have compared dynamic LB algorithms of different complexities. They have shown that 

simple algorithms using a very small amount of system information could improve the 

performance comparable to that of the more complex algorithms. 

Dynamic LB algorithms can be further classified into centralized approach and 

distributed approach. In the centralized approach (e.g. [28][29][30][31]), only one node in the 

distributed system acts as the central controller. It has a global view of the load information 

of all the nodes in the system, and decides how to allocate the jobs to all the nodes in the 

system. The rest of the nodes act as slaves. They only execute the jobs assigned by the 

controller. The centralized approach is more beneficial when the communication cost is less 

significant, e.g. in the shared-memory multiprocessor environment. It has the weakness that 

the central controller may become (1) bottleneck of the system when the number of nodes 

increases, and (2) the single point of failure. 

In the distributed approach (e.g. [10][11][12][32]) all nodes in the distributed system are 

involved in making the LB decision. It is commonly agreed that distributed algorithms are 

more scaleable and better fault tolerant. Since the LB decisions are distributed, it is costly to 

let each node obtain the dynamic state information of the whole system. Most LB 

algorithms only use partial information stored in the local node to make a sub-optimal 

solution. 

LB algorithms have been extensively reported in the literature, but most of the previous 

studies (e.g. [11][26][33][34]) only consider the traditional trusted environment with some 

over-simplified assumptions that are not applicable for the practical i-Computing 

environment. For example, most of them assume that all the nodes are homogeneous, the 

inter-node communication delay is negligible, and there is no external load on the 

computing nodes and the communication network. Some studies (e.g. [35]) also assume the 

existence of an efficient broadcasting service on the communication network.  

The main motivation of our study is to propose a distributed dynamic LB algorithm that 

can cater for the following unique characteristics in the practical i-Computing environment: 

 (a) Heterogeneous servers 

There may be difference in the hardware architecture, computing power and 

resource capacity among the nodes. Moreover, the nodes may be running different 

operating systems. For example, it is common to find Sun Sparc workstations 

running Solaris and Intel Pentium machines running Windows 98/NT on the 

Internet. 
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(b) Untrusted peers 

Since i-Computing involves computers from different management domains, 

security is a critical issue. Certain information on the host machine should be 

prohibited from being accessed by the network programs running on it. For example, 

the security model of Java applets prevents programs loaded over the network to 

retrieve many system parameters of the client workstation.  

(c) Non-dedicated servers 

The workstations are not dedicated. There may be transient background jobs on the 

workstations. 

(d) Non-dedicated communication network 

The inter-node communication network is non-dedicated too. There is always 

external traffic on the Internet that not generated by the distributed system. 

(e) Considerable communication delay 

The inter-node communication delay is always one of the most costly and the least 

reliable factor in i-Computing. We should not ignore the considerable dynamic 

communication delay on the Internet.  

Our target is to devise a general and practical algorithm to cater for the above 

characteristics. We hope the target algorithm can be used in practical i-Computing systems 

like the DJM global virtual machine. 

 

 

3. SYSTEM MODEL 

It is assumed that the system consists of a set P of nodes connected by a communication 

network. P contains n nodes, labeled as P1 ... Pn.. The nodes may be of different hardware 

architectures and running different operating systems. P is fully interconnected, meaning 

that there exists at least one communication path between any two nodes. There is no 

shared-memory among the nodes. The only way of inter-node communication is by message 

passing. No global clock exists in the distributed system.  

For any node Pi ∈ P, there are system jobs arriving at Pi. All jobs are assumed to be 

mutually independent and can be executed in any node. As soon as a job arrives, it must be 

assigned to exactly one node for processing. When a job is completed, the executing node 

will return the result to the originating node of the job. We use O to denote the set of all 

system jobs generated at P.  O = {O1 ... Om}.  (Note: for simplicity, the term “job” implies 

“system job” unless explicitly specified). 

A non-dedicated system is assumed. Some nodes may have background jobs that are not 

generated by the system. Due to the security constraints of i-Computing environment, the 
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LB algorithm cannot have access to the information about the background jobs. Without 

loss of generality, we assume ∃b ∈ {1..n} s.t. ∀j ∈ {1..b}, there are background jobs at node 

Pj in addition to the system jobs. We use PB to denote the set of nodes having background 

jobs. PB = {P1 ... Pb}.  PB ⊆ P. 

There is a non-trivial communication delay on the communication network between the 

nodes. The communication delay is different between different pairs of nodes and is affected 

by external communication traffics. The underlying network protocol guarantees that 

messages sent across the network are received in the order sent. There is no efficient 

broadcasting or multicasting service available. 

Definition 1 

∀ Ox ∈ O, we define the following functions (T denotes the time domain):  

(1) ori(Ox) : O → P . It denotes the originating node of the job Ox.  

(2) exe(Ox) : O → P . It denotes the executing node of the job.   

(3) arr(Ox) : O → T . It denotes the arrival time of job Ox, which is the time when the 

job is generated at ori(Ox).   

(4) fin(Ox) : O → T . It denotes the finish time of Ox, which is the time when node 

ori(Ox) receives Ox’s result from node exe(Ox).   

(5) res(Ox) : O → T.  It denotes the response time of Ox. res(Ox) ≡ fin(Ox) - arr(Ox). 

 

The objective of a distributed dynamic load balancing algorithm is to minimize the 

average response time of all the system jobs. 

Definition 2 (Objective) 

The objective of the load balancing algorithm is defined by:  

∀ Ox ∈ O, determine exe(Ox) at time arr(Ox) using only the information available 

on node ori(Ox)  s.t. ( ∑y=1..m res(Oy) / m ) is minimized. 
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4.  THE PROPOSED ALGORITHM 

In the following paragraphs, we discuss the details of the distributed dynamic LB algorithm 

proposed by us.  

 

4.1 Job migration 

Some researchers have considered migration of partly-executed jobs in their LB algorithms 

[10][36]. However, migrating a partly-executed job is far from trivial in practice. It involves 

collecting all system states (e.g. virtual memory image, process control blocks, unread I/O 

buffer, data pointers, timers...) of the job, which is large and complex. Many studies 

[35][37][38][39][40][41] shown that (1) migrating partly-executed jobs is often difficult in 

practice, (2) the operation is generally expensive in most systems, and (3) there are no 

significant benefits of such mechanism over those offered by non-migratory counterparts. 

Furthermore, owing to the architectural differences between machines, job migration is 

undesirable in a heterogeneous computing environment. For example, it is very complicate 

to migrate the execution image of a job from a personal computer running Windows 98 to a 

Sun workstation running Solaris. Hence, we do not consider migration of partly-executed 

jobs in this paper. In order to prevent processor thrashing, we restrict that once a job is 

transferred to a particular node, it cannot be reassigned and must proceed to completion by 

that node.  

Dynamic LB algorithms can be classified into sender-initiative algorithms and receiver-

initiative algorithms according to their location policies [26][33]. Sender-initiative 

algorithms let the heavily-loaded nodes take the initiative to request the lightly-loaded nodes 

to receive the jobs, while receiver-initiative algorithms let the lightly-loaded nodes invite 

heavily-loaded nodes to send their jobs. In the practical computer systems that schedule 

local processes by time-sharing, the decision on supporting job migration has a direct impact 

on the feasibility of using receiver-initiative algorithms. Due to the reasons discussed in 

Section 6.2, without job migration, receiver-initiative algorithms always lead to inferior 

performance. Hence, we only consider sender-initiative algorithms in this study. 

 

4.2 State information  

Each node Pi maintains a local view of the state information of all the nodes by using a state 

vector Si. The state vector helps a server to estimate the loading of other servers at any time 

without message transfer. 
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Definition 3 (State Vector) 

∀ Pi, Pj ∈ P, the state vector S i is an n-dimensional vector maintained by Pi. Each vector 

component Si[j] is an ordered list (PT, QL, TS, CD):  

Si[j].PT records the moving average of the processing delay (waiting time plus 

serving time) of the last ϕ jobs in Pj. 

Si[j].QL records the number of system jobs in Pj. The number of background jobs is 

excluded because this information is usually inaccessible. 

Si[j].TS records the value of Pj’s local clock when the value of PT is reported.   

Si[j].CD records the round-trip communication delay of the last message exchanged 

between Pi and Pj. ∀i ∈ {1..n}, Si[i].CD = 0.   

 

4.3 Load index 

An important issue in designing a dynamic LB algorithm is to identify the load index that 

measures the current loading of a server. A good index must be easily measured with 

minimum overhead, and correlate well with the response time of the job.  

Most algorithms in the literature solely use the instantaneous CPU queue length  (i.e. the 

number of jobs being served or waiting for service at the sampling instant) as the load index 

of a node [35][42][43][44]. This approach is based on the “join the shortest queue” intuition. 

 The CPU queue length may be a good load index if we assume all the nodes of the 

system are homogeneous and the inter-node communication delay is neglig ible or constant. 

However, it is not a reliable load indicator in a heterogeneous environment. It ignores the 

variations in computing power and machine architecture. Utilization of other resources like 

memory is disregarded [45]. Most important, this approach assumes the LB scheduler can 

retrieve the number of background jobs on the server. Because of the security concern, such 

an assumption is not valid under the i-Computing environment that involving more than one 

management domain. For example, the Java applets are forbidden to retrieve any 

information of the background jobs on the executing node.  

Owing to the above reasons, we do not use the CPU queue length as the load indicator. 

Instead, a load index that is equal to the product of the queue length and the average 

processing time of the system jobs is utilized. The queue length of the system jobs equals to 

the CPU queue length only when no background job exists. 
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Definition 4 (Load Index) 

∀ Pi, ∈ P, the load index of Pi at time t is defined as:  

 Li(t) = QLi (t) * PTi (t) 

where QLi (t) is the number of system jobs currently waiting or serving on Pi at time t, 

PTi(t) is the moving average job processing delay (i.e. waiting time plus serving time) of 

the last ϕ jobs on Pi at time t. 

 

4.4 Execution cost 

Unlike conventional approaches that only consider the load index in calculating the cost of 

executing a job on a node, we include the dynamic communication delay in the cost 

calculation. It is because the dynamic and considerable communication delays may have 

great influence on the performance of a LB algorithm in the practical i-Computing 

environment. For example, it may be more efficient to send a job to a node with heavier 

load but small communication delay. Ignoring the communication delay, job transfer 

between two distant nodes can result in performance degradation during load balancing [46]. 

Definition 5 (Estimated Execution Cost) 

∀ Pi, Pj ∈ P, the execution cost of sending a job from Pi to Pj is estimated by Pi as:  

Ci,[j] = max { Si[j].QL * Si[j].PT + Si[j].CD, ξ }  

where ξ is a very small positive value utilized to prevent the “zero division” error 

when we calculate the value of  1/Ci,[j].  

In the above equation, Si[j].CD measure how long to transfer the request from to the 

destination node and get back the return value to the source node. The value (Si[j].PT * 

Si[j].QL) estimate the processing delay of the job on the destination node. 

 

4.5 Information policy 

A LB algorithm can be divided into three inter-related component policies. Firstly, the 

information policy determines how to maintain the state information among the nodes. It 

decides what type of information to be collected, when to collect it, and from where the 

information to be collected [ 47]. Secondly, the transfer policy determines whether an 

arriving job should be considered for remote processing. Finally, if the transfer policy 

concludes that a job is eligible for remote processing, then the location policy is used to 

determine, based on the information collected in the information policy, a suitable remote 

node to transfer the job [11]. The state information to be collected has been presented in 

Section 4.2, we will focus on the information exchange strategy of the information policy 

here. The transfer policy and location policy will be discussed in the next section. 
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The traditional strategy on information exchange can be classified into two approaches. 

In the first approach, the state information is collected by periodic or aperiodic state change 

broadcasting [ 48 ][ 49 ]. The second approach is based on demand-driven polling 

[11][12][33][34]. When a node wants to send a job for remote execution, it sends a short 

query message to a predefined number (this number is known as the probe limit, Lp) of 

nodes to search for a suitable destination. Examples of polling strategies include state 

probing [11], drafting [50], and bidding [51]. 

We cannot use the first approach owing to the unavailability of efficient broadcasting 

services. For the decentralized LB algorithms that assume zero communication delay and 

negligib le polling processing overheads, the demand-driven polling approach is widely used. 

It is because their assumptions imply that polling incurs no processing overheads and no 

time delays. It means that polling can retrieve perfectly accurate state information of the 

remote nodes without any cost. However, such assumptions are far from accurate in the 

practical environment, especially when talking about i-Computing. Polling approach has 

several problems in practice: 

1. Repeated polling wastes the processing time of the polling nodes and polled nodes. 

This problem becomes significant when the general system load is heavy. When 

most of the nodes are heavily loaded, they keep on polling each other for the sparse 

lightly loaded node. In the worst case, polling may cause system instability when all 

the nodes are heavily loaded. Each node will make Lp void attempts to poll each 

other for the non-existing lightly loaded node whenever a new job arrives. 

2. Repeated polling generates large amount of network traffic. This problem will 

become more significant if the network bandwidth is limited. 

3. As the job needs to wait for the polling result, polling will increase the response 

time of the waiting job. It is a problem if the communication delay is significant. 

4. It is difficult to set a good value for the probe limit Lp. In a medium to heavy loaded 

system, if the probe limit is small, lightly loaded nodes may not be discovered. If 

the probe limit is large, then (a) most of the heavily loaded nodes may find the same 

lightly-loaded nodes and dump their loads to them, (b) the above problems caused 

by repeated polling will multiply. 

 

We propose to use information feedback and mutual updating to reduce the processing 

and communication overheads. For any node Pi ∈ P, Pi maintains its states information in its 

state vector element Si[i]. The load index Si[i].PT is calculated as the moving average of the 

processing time for the last ϕ system jobs executed on Pi. Si[i].QL counts the number of 

system jobs waiting or serving on the Si. Other elements of the state vector are maintained 
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by message exchange with other nodes. Figure 1 outlines the procedure when Pi sends a job 

Ox to Pj for processing.  

As show in Figure 1, state information exchange is done by mutual updating. Pi appends 

the load indexes of itself and ô (a small integer) random nodes to the job transfer request 

sent to Pj (steps 1-2) by piggybacking. Pj then updates the corresponding load indexes in its 

state vector by comparing the timestamps (step 7). Similarly, Pj inserts the load indexes of 

itself and ô random nodes in the job completion reply (steps 12-13) for Pi to update (step 17). 

The round-trip communication delay between Pi and Pj is measured by the timestamps T1i, 

T2i, T1j and T2j (step 18).  

Please note that since there is no global clock in the system, we can only compare the 

time values relative to the same clock. For example, we can compare the values of the pair 

(T1i, T2i) because both are relative to the local clock of Pi. The similar case is for (T1j, T2j). 

Values Si[y].TS  and Sj[y].TS are compared in steps 7 and 17 because both are relative to the 

local clock of Py. 

In order to ensure the values of the state vectors are up to date, a periodic information 

exchange procedure is employed. In any node Pi ∈ P, if the state vector element Si[j], i ≠ j, 

has not been updated for a predefined period ψ, then the LB scheduler will send an 

information exchange message to Pj. The periodic information exchange procedure is the 

same as that shown in Figure 1 except that steps 4 and 8-11 are skipped. 
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Steps processed in Pi :  

1. Y  ← {Pi} ∪ { ô random nodes from (P   \ {Pi,Pj})  }    /* Pi select nodes for info exchange */  

2. ∀Py ∈Y  , Pi appends (Si[y].PT, S i[y].QL, S i[y].TS) to the job transfer request M  

3. Pi appends its local time T1 i to M  

4. Si[j].QL ← Si[j].QL + 1  

5. Pi sends message M to Pj 

 

Steps processed in Pj:  

6. Pj records local time T1 j when M is received.  

7. ∀Py ∈ Y, if S i[y].TS > S j[y].TS,   /* Pj updates the state vector using Pi’s info */ 

  then (Sj[y].PT ← Si[y].PT,   S j[y].QL ← Si[y].QL,   S j[y].TS ← Si[y].TS)  

8. Sj[j].QL ← Sj[j].QL + 1  

9. Pj put Ox into its local CPU queue for processing  

10. Ox is completed. Pj uses Ox’s processing time to update the value of S j[j].PT  

11. Sj[j].QL ← Sj[j].QL - 1  

12. Z  ← {Pj} ∪ { ô random nodes from (P   \ {Pi,Pj})  }  /* Pj select nodes for info exchange */  

13. ∀Pz ∈ Z , Pj appends (Sj[z].PT, S j[z].QL, S j[z].TS) to the job completion reply R  

14. Pj appends its local time T2 j to R  

15. Pj sends message R to Pi 

 

Steps processed in Pi:  

16. Pi records its local time T2 i when receives the reply R is received  

17. ∀Pz ∈ Z , if S j[z].TS >Si[z].TS,   /* Pi updates the state vector using Pj‘s info */ 

 then (Si[z].PT ← Sj[z].PT,   S i[z].QL ← Sj[z].QL,   S i[z].TS ← Sj[z].TS)  

18. Si[j].CD ← (T2i - T1i) - (T2 j - T1j).  /* Calculate the round-trip communication delay */ 

Figure 1. Job transfer procedure when node Pi transfers a job Ox to a remote node Pj for 
processing. It includes the procedure of state information exchange between Pi and Pj. 
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4.6 Transfer policy & location policy 

The transfer policy and the location policy are based on some predefined thresholds in most 

studies (e.g. [11][12][26][33][44]). Most of them assume a node becomes eligible to transfer 

the arriving jobs for remote processing when its load index exceeds a predefined threshold 

Thigh. A node is qualified to receive remote jobs when its load index is below this threshold. 

However, determining the optimal value of the threshold is far from trivial. It depends on 

the system-wide load information [43]. In general, low thresholds are appropriate for low 

system loads and low transfer costs, while high thresholds are superior for high system loads 

and high transfer costs [11]. Mirchandaney et al. [52] reported that when the job transfer 

delay increases, the optimal threshold various a lot (from 0 to 24). If the communication 

delay is non-negligible, inappropriate thresholds may lead to performance degradation. For 

example, Dasgupta et al. [42] reported that using static thresholds might lead to inferior 

performance under a shared communication network with limited bandwidth. 

Our algorithm uses a novel approach by combining the transfer policy and the location 

policy in a stochastic approach. Instead of using non-adaptive predefined thresholds, the job 

assignment is done in a probabilistic fashion. The probabilities assigned to the nodes are 

inversely proportional to their execution costs. Our approach is inspired by the 

“proportional betting” methodology mentioned by Cover & Thomas [53]. We assume that 

from the viewpoint of a node Pi ∈ P, ∀Pj ∈ P, the reciprocal of the estimated execution cost 

of Pj (i.e. 1/Ci[j]) reflects Pj’s probability of winning (Pj “wins” if it gives the minimum 

response time for a new job sent from Pi). 

When a job Ox arrives at a node Pi, its execution node will be selected randomly 

according to the following probability function: 

Definition 6 (Transfer Policy & Location Policy)  

∀Ox ∈ O, s.t. ori(Ox) = Pi ∈ P.  

if  (Ci[i] - Mink=1..n{Ci[k]}) ≤ ε  then exe(Ox) = Pi  ............................................. (Equation A) 

else ∀Pj ∈ P,  Probability(exe(Ox)=Pj)  =  (1/Ci[j]) / Σk=1..n {1/Ci[k]}  ... (Equation B) 

  where ε is a positive value close to zero. 

Please note that we do not divide Definition 6 by stating that Equation A is the transfer 

policy and Equation B is the location policy. It is because the originating node of the job, Pi, 

in also included in Equation B. The probability function in Equation 2 is the core of the 

algorithm. Equation A serves as an exception case to bias the local node because the local 

state information is always accurate, while the information of other nodes is only an 
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estimate. A job will be processed locally if the cost of local execution is close to the 

minimum cost among all nodes.  

We take a stochastic approach for distributed load balancing in the i-Computing 

environment because of the following reasons:  

(1) Owing to the rapidly changing environment, there is a great degree of randomness 

and unpredictability in the system state [49]. This is caused by (a) arrival and 

departure of system jobs, (b) arrival and departure of background jobs, and (c) 

variation in the external traffic on the non-dedicated communication network. 

Stochastic approach should be more adaptive to fluctuations in background 

workload and external network traffic. 

(2) There is a propagation delay for the load information across the network. The state 

vector can only serve as a local estimate for the “current” status of the remote nodes.  

(3) To balance a distributed system, we should assign jobs to each node in proportional 

to its dynamic capacity [54]. Hence a “proportional betting” approach should be 

better than a “join the shortest queue” approach if we cannot always retrieve the 

most updated values of all the queue lengths. 

(4) A stochastic approach can avoid system instability when all nodes transfer the jobs 

to the node estimated to have the minimum load.  

 

 

5. EXPERIMENTS 

As discussed in Section 4.1, we only consider sender-initiative algorithms. Our algorithm 

(labeled as Stoc) is compared with the following algorithms in the simulation and empirical 

experiments:  

(a) Local: All jobs are locally processed by their originating nodes.  

(b) Random: A job will be executed locally if the number of system jobs of the local node is 

less than a predefined threshold Thigh. Otherwise, a node is selected at random to process 

the arriving job. 

(c) Threshd: A job will be executed locally if the number of system jobs of the local node is 

less than a predefined threshold Thigh. Otherwise, nodes are polled one by one according 

to a random order. If no node with number of system jobs below Thigh, the job will be 

executed locally, otherwise the first node with the number of system jobs below Thigh 

will be selected.  

(d) Lowest: A job will be executed locally if the number of system jobs of the local node is 

less than a predefined threshold Thigh. Otherwise a set of Lp random nodes will be polled 

to compare the number of system jobs. If no node with number of system jobs below 
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Thigh, the job will be executed locally; else the target will be the node with the lowest 

number of jobs. 

 (e) NoCost. It assumes that the LB scheduler can retrieve the current value of the total 

number of system jobs and background jobs of all the nodes immediately without cost, 

but the transfer costs of the job are considered. The node with the minimum number of 

system jobs plus background jobs is selected. This algorithm is used as an estimate  for a 

LB algorithm with “prefect” information. 

 

Algorithms (b), (c), and (d) are proposed by Eager, Lazowaka & Zahorjan [33]. We 

select the above algorithms because they represent a reasonably large collection of 

approaches. 

In order to measure the performance of our algorithm, we define the improvement factor 

as follows: 

Definition 7. The improvement factor Λ of algorithm X over algorithm Y is given by:  

Λ(X over Y) ≡  (Φ (Y) - Φ (X) ) / Φ (Y),  

where Φ (X) denotes the average response time of all the system jobs using algorithm X.  

A positive value of Λ indicates an improvement, while a negative value implies 

degradation. 

 

5.1 Simulation Experiments 

In this section, we first study the performance of algorithms under different system 

parameters by simulation experiments. The simulation results will be verified by empirical 

experiments in Section 5.2. 

For simulation purpose, we assume the system jobs arriving at Pi according to a Possion 

process with a mean of λ jobs per time-unit. The service time for a job is exponentially 

distributed with a mean of X time-units. The arrival rate of the background jobs is 

exponentially distributed with a mean of λB jobs per time-unit, and the average service time 

is XB time-units. 

The LB policies were tested on a system of 40 nodes with same processing capacity. 

Each node processes the system jobs and background jobs according to a round-robin 

scheduling discipline with priority. The system jobs and background jobs have the same 

priority in using the CPU, while other control functions of the LB algorithm have higher 

priorities. As shown in Figure 2, the inter-node communication network is modeled as a star 

network. Each node has a private link connected to the central hub. The central hub assumed 

to have a much higher bandwidth than the private links. Hence, the communication delay is 

mainly caused by the private links. 
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To be more practical, we have considered the cost of collecting and processing the state 

information, and the dynamic delay caused by the congestion of communication network. 

Table 1 displays the values of the parameters used in the simulation experiments. Results of 

the experiments are average from five independent simulation runs using different random 

seeds. In each run, 2000 system jobs are generated in each of the nodes.  
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Figure 2. Network configuration in the simulation experiments. 
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Simulation Parameter Value 
Mean service time of system jobs, X 1.0 tu 
Mean inter-arrival time of system jobs, λ 2.1 tu 
Mean service time of background jobs, XB 1.0 tu 
Mean inter-arrival time of background jobs, λB 2.1 tu 
Round-robin CPU scheduling quantum 0.01 tu 
Mean network transmission delay in each private link, c 0.05 tu 
Mean network transmission delay in the central hub 0.001 tu 
Period for periodic info. exchange, ψ 10.0 tu 
CPU overhead in sending/receiving a message 0.003 tu 
CPU overhead in sending/receiving a polling/info-exchange message 0.001 tu 
Probe limit, Lp 3 
CPU Queue Threshold for local processing, Thigh 3 
No. of random nodes for mutual update, ô 2 
Size of the moving average in calculating the load index, ϕ 2 

Table 1. Simulation parameters. (tu=time-unit). 
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5.1.1 Experiment on different system size  

In experiment S1, we assume that there are background jobs on half of the nodes  

(i.e. b = n/2) and vary the total number of nodes n from 8 to 40. Results shown in Figure 3 

and Table 2 illustrate that besides the unrealistic NoCost algorithm, Stoc consistently gives 

the best performance across all the values of n. Stoc gives an average improvement of 15% 

and 18% over Threshd and Lowest respectively.  

 

5.1.2 Experiment on different number of nodes with background jobs 

In experiment S2, we set the total number of nodes n to 40 and vary the number of busy 

nodes b from 0 to 40. Results are shown in Figure 4 and Table 3.  

The results demonstrate that besides the unrealistic NoCost algorithm, Stoc gives the 

minimum average response time across all the values of b. Stoc has an average 

improvement factor of 17% over Threshd & Lowest. The improvement factor increases 

when the number of nodes with background job increases. The reason may be due to the fact 

Stoc is the only algorithm that takes the background workload into consideration. As 

discussed in Section 4.3, LB algorithms cannot retrieve the information of the background 

workload due to security reasons. However, we know that there is a direct relationship 

between the amount of background workload and the average processing delay of the 

system jobs. Since Stoc has considered the average processing delay of the system jobs in 

the cost estimation, it gives more accurate estimations for the loading of the nodes when 

there are background jobs. Hence, Stoc gives a better performance in load balancing. 
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Figure 3. Average response time of all the algorithms in experiment S1. 
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n = 8 12 16 20 24 28 32 36 40 Mean 
Local 58 57 57 57 56 55 56 56 57 57 
Random 24 26 26 25 25 24 30 29 30 27 
Threshd 11 12 11 15 14 16 17 18 17 15 
Lowest 17 16 16 19 17 18 19 20 19 18 
NoCost -18 -20 -22 -16 -24 -19 -22 -16 -16 -19 

Table 2. The improvement factor (in %) of Stoc over other algorithms in experiment S1. 
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Figure 4. Average response time of all the algorithms in experiment S2. 
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b= 0 4 8 12 16 20 24 28 32 36 40 Mean 
Local 38 39 48 48 51 57 53 47 43 41 41 46 
Random 15 24 29 30 29 36 38 34 33 26 30 30 
Threshd 8 10 12 14 14 21 27 22 22 16 17 17 
Lowest 6 8 12 12 13 19 27 27 25 20 22 17 
NoCost -3 -16 -17 -21 -21 -16 -20 -25 -23 -18 -13 -17 

 Table 3. The improvement factor (in %) of Stoc over other algorithms in experiment S2. 
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5.1.3 Experiment on different values of communication delay 

In experiment S3, we assume that there are 40 nodes and half of them have background jobs. 

We vary the mean network transmission delay in each link from 0 to 0.3 time-units. Results 

shown in Figure 5 and Table 4 illustrate the following points:  

Firstly, besides the unrealistic NoCost algorithm, algorithm Stoc consistently gives the 

best performance across all the values of n. Stoc gives an average improvement of 15% and 

18% over Threshd and Lowest respectively. The performance of Stoc is especially apparent 

when the communication delay of the link is high. We suggest this is because Stoc is the 

only algorithm taking the communication delay into consideration. 

Secondly, besides the Local algorithm that has no network traffic, the response time of 

all algorithms increase when the communication delay increases. But the increasing rate of 

Stoc is much smaller than that of Threshd and Lowest. We suggest this is because Stoc does 

not use the polling policy for information collection.   

Thirdly, algorithm Lowest is very sensitive to the communication delay of the link. It 

becomes worse than Threshd when the communication delay is over 0.05 time-unit, and 

even worse than Random when the delay increases to 0.14 time-unit. When the delay of 

each link increases to 0.25 time-units, Lowest give the worst performance. We suggest this 

is caused by the polling policy used by Lowest. In this algorithm, when a job arrives, if the 

number of system jobs in the local node is higher than the threshold Thigh, the job must wait 

until Lp polling processes are finished. This waiting time is significant when the 

communication delay is high. Also based on polling, Threshd is better than Lowest because 

the polling process of Threshd can terminate earlier (i.e. less than Lp pollings) if a node of 

load less than Thigh is found. 

 

5.1.4 Discussion on the simulation results 

In the above simulation experiments, all the nodes are assumed to have the same 

processing power. The communication network is modeled as a framework of first-in-first-

out queues with fixed delay. The variation in communication delay is only caused by the 

queuing effect. We have not modeled (1) the differences in processing power among the 

nodes, (2) the differences in communication bandwidths between nodes, and (3) the 

existence of external traffic on the communication network. We believe that the 

improvement of Stoc over the other algorithms can be higher if these three factors are also 

modeled. It is because Stoc is the only algorithm that has considered the heterogeneity of 

server capacity, the variations in communication bandwidths between different pairs of 

nodes and the existence of external traffic. 
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Figure 5. Average response time of all the algorithms in experiment S3. 
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 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 

Local 60 59 58 58 57 57 56 56 54 54 53 53 
Random 30 29 28 28 29 30 28 28 24 25 23 23 
Threshd 14 13 14 14 16 17 16 14 11 11 10 10 
Lowest 15 15 14 16 16 19 18 17 15 15 13 14 
NoCost -19 -19 -18 -20 -16 -16 -15 -15 -17 -15 -15 -14 

             
 0.12 0.13 0.14 0.15 0.17 0.19 0.21 0.24 0.26 0.28 0.3 Mean 

Local 53 52 53 52 51 50 49 47 46 45 41 53 
Random 22 20 22 22 22 21 24 27 30 34 33 26 
Threshd 10 10 13 12 14 15 20 26 31 36 38 17 
Lowest 18 21 23 25 25 27 33 43 52 73 75 26 
NoCost -13 -11 -8 -8 -6 -4 -3 -4 -3 -3 -5 -12 

Table 4. The improvement factor (in %) of Stoc over other algorithms in experiment S3. 
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5.2 Empirical experiments 

In order to reconfirm the simulation results and further validate the effectiveness of our LB 

algorithm in a real i-Computing environment, we have done some empirical experiments 

after implementing the LB algorithms in pure Java on the DJM [4][7] system. The codes are 

written in pure Java using the Java Developer’s Kit (JDK) version 1.1. 

In the experiments, each node will execute 200 jobs. The inter-arrival time of the jobs in 

each node are uniformly distributed in the range of 2 to 8 seconds. Each job contains L loops; 

each loop involves one double precision floating-point multiplication of two random 

numbers. The loop number L is uniformly distributed in the range of 100,000 to 500,000. 

 We have done four empirical experiments, labeled E1 to E4, on 16 heterogeneous 

machines. Table 5 lists the configuration of the machines. Table 6 shows the machines 

involved in each experiment.  

All results are averaged from five runs in a student environment under normal loading at 

office hours. There are background jobs on the machines created by other users. All the 

machines are connected by the same campus network. The inter-node network is non-

dedicated, there is external traffic generated by other users. 

Figure 6 displays the average response time of these four experiments. The 

improvement factor of the Stoc over other algorithms is presented in Table 7. These 

empirical results reconfirm that Stoc consistently gives the best performance across different 

number of nodes. Stoc gives an average improvement of 16% and 21% over Threshd and 

Lowest respectively. 
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Machine no Machine type Memory Size Operating System Network speed 

#1, #5 Sun Sparc-4 32M bytes Solaris 2.5 10 Mbps 

#2, #6 Intel Pentium 90 32M bytes Windows 95 10 Mbps 

#3, #7 Intel Pentium 133 64M bytes Windows 95 10 Mbps 

#4, #8-#16 Sun Ultra-5/10 64M bytes Solaris 2.6 10 Mbps 

Table 5. Configuration of the 16 machines in the empirical experiments. 
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Experiment No of nodes Machine involved 

E1 4 #1 to #4 

E2 8 #1 to #8 

E3 12 #1 to #12 

E4 16 #1 to #16 

Table 6. Machines involved in the four empirical experiments. 
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Figure 6. Average response time of the LB algorithms in empirical experiments E1 to E4. 
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 E1 (4 nodes) E2 (8 nodes) E3 (12 nodes) E4 (16 nodes) Average 

Local 60 60 59 61 60 
Random 40 41 41 46 42 
Threshd 15 17 18 16 16 
Lowest 22 19 22 19 21 

Table 7. The improvement factor (in %) of Stoc over other algorithms in  
empirical experiments E1 to E4. 

  



Page 32 
 

 

6. EXPERIENCE SHARING 

In this section, we will share some experience gained from designing and implementing the 

proposed load balancing algorithm on the DJM global virtual machine using pure Java. We 

hope the computing community can benefit from our experience. 

 

6.1 Choosing the load index 

Load index is a very important parameter of a LB algorithm. The following are the most 

common load indicators in conventional LB strategies: the CPU queue length (i.e. total 

number of system jobs and background jobs), the CPU idle time, the CPU utilization, the 

free memory size, the context-switching rate, the system call rate, and the interrupt rate. 

However, there is no system method to retrieve any of the above system parameters in the 

current version of Java API. Even if such system methods are available in future, we believe 

that they will still be inaccessible for i-Computing (i.e. in the Java applet mode) because of 

the security concern. Our algorithm utilizes the processing time and the queue length of the 

system jobs to indicate the system load because these values can be calculated by the 

algorithm itself. 

Initially we solely use the average processing time of the system jobs as the load index. 

This index will be updated only if there is a new job completion event. Very soon we 

discover that there might be problems in two extreme situations for any load index of 

similar nature. 

In the first case, if a node has a large load index due to previous jobs, it is possible that 

no job will be sent to this nodea. As there is no new job, there will be no job completion 

event. Hence the load index cannot be updated to reflect the idle situation. We call this the 

prolonged idle  problem. In the second case, it is possible that many jobs will be arriving at a 

lightly-load node Pi at the same timeb. Under a time-sharing operating system, the CPU is 

shared by all the jobs in a round-robin manner. The completion time of a job depends on the 

total number of jobs sharing the same CPU. It will take longer to complete a job and to 

update the load index of Pi when the job number increases. This may lead to a recursive 

problem because if the load index cannot be updated, other nodes do not know the busy 

situation of Pi, they will continue to send jobs to it. We call this the prolonged congestion 

problem. 

In order to avoid the above problems, we have modified the load index formula. Our 

new load index is equal to the product of the queue length and the average processing time 

                                                 
a This is not the necessary consequence because we use a stochastic approach. 
b Again, this is not the necessary consequence because we use a stochastic approach. 
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of the system jobs (i.e. Li = QLi * PTi).  In the prolonged idle case, when Pi is idle, although 

there is no job completion event to update PTi, value of QLi will decrease to zero. The load 

index Li will reset to zero to reflect the idle situation, thus the prolonged idle problem will 

not occur. Similarly, in the prolonged congestion case, when Pi suddenly becomes very busy, 

value of Li will be rapidly raised by the increasing value of QLi to reflect the busy situation. 

Hence the prolonged congestion problem can also be avoided. 

 

6.2 FCFS and time-sharing scheduling 

Though most of the current operating systems use the time-sharing discipline for process 

scheduling, many conventional LB strategies (e.g. [11][31][42][55]) are based on the simple 

first-come-first-service (FCFS) discipline. It is usually claimed that theoretically there is no 

significant difference between these two disciplines because they share many similar 

characteristics according to the queuing theory [56]. One important similarity is that the 

average response time formula of a M/G/1 queuing system with processor-sharing 

scheduling (processor-sharing is a close approximation of the time-sharing discipline) is 

exactly the same as that of a M/M/1 queuing system with FCFS scheduling. However, we 

found that the FCFS and the time-sharing (or processor-sharing) scheduling disciplines do 

have a number of significant differences when implementing the LB algorithms in practice.  

Firstly, under the time-sharing discipline, we should not consider the receiver-initiative 

LB algorithms if the system does not support migration of partly-executed jobs. It is because 

under this discipline, the CPU is shared by all the runnable jobs in a round-robin manner. It 

means that a new job will start to execute near immediately after it is arrived. Hence it is 

unlikely that a receiver node would probe a sender node just after a new job arrived at the 

sender but before the job starts to execute. Therefore, without job migration, receiver-

initiative algorithms always perform worse than their source-initiative counterparts [35]. In 

contrast, under the FCFS discipline, newly arrived jobs will be served one by one. If the 

sender node has more than one job, the receiver node can always find jobs arrived but not 

executed. Hence the receiver-initiative algorithms are feasible on FCFS systems even if the 

migration of partly-executed jobs is not supported. 

Secondly, the prolonged congestion problem mentioned in Section 6.1 will only occur 

under the time-sharing discipline. Concerning the second case in Section 6.1, if the system 

uses a FCFS discipline, then even many jobs arrive at a lightly-load node Pi simultaneously, 

the load index of Pi can be updated promptly because the jobs are served one by one. Hence, 

there will be no prolonged congestion. 
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6.3 Broadcasting and multicasting 

As mentioned in Section 4.5, many LB policies in the literature are based on the 

broadcasting services where a node sends the same message to all nodes on the network. 

Frequent broadcasting creates performance problems on the whole network. Broadcasting is 

not feasible for the i-Computing environment because multiple networks under different 

management domains are involved. Multicasting is a limited version of broadcasting, where 

a node sends the same message to multiple number of destination nodes anywhere on the 

network. The set of destination nodes forms a multicast group. Multicasting is still not 

deployed on the Internet at large. It is achievable only for some controlled environment. For 

example, when all nodes are within the same organization. In general, random machines on 

the Internet cannot communicate by multicasting.  

Implement multicasting on Java has further difficulties. Although Java has the 

MulticastSocket class, it is not easy to run a multicast code on the applet mode. It is because 

the Java security model forbids an applet to receive/send messages from/to an arbitrary 

member of a multicast group. An applet can only sends unicast (i.e. point-to-point) 

datagram packets to and receives multicast/unicast datagram packets from its originating 

host (i.e. the host from where the applet is downloaded). 

 

6.4 Multi-threaded programming on Java 

Comparing to other traditional programming languages, writing multi-threaded program on 

Java seems to be easier because of the system-supported Thread object. However, if the 

codes will be run on different operating systems (like our case), programmer must be very 

careful owing to the difference in Java Virtual Machines (JVM) implementations. Threads 

of equal priority may get very different treatment on different platforms. 

All JVM supports the scheduling policies that (1) if the currently running thread blocks 

(e.g. wait for I/O completion) or exits, a new runnable thread with the highest priority will 

be selected to run; (2) when a thread with higher priority becomes runnable, the currently 

running thread will be preempted. The problem is that the scheduling policy for equal 

priority threads is unspecified. For JVM on Windows 95/98 and NT implementations, 

threads of equal priority are scheduled in a round-robin manner using a time-slicing scheme. 

However, for JVM on Macintosh and most UNIX implementations, thread scheduling is 

non-timesliced. For threads with the same priority, one thread will run to completion (or 

until blocked) before another one can run. Therefore, on these platforms, equal priority 

threads must be “cooperative” among themselves. Other threads may encounter starvation if 

any one of them is “inconsiderate” in using the CPU. 
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The difference in scheduling of equal priority threads has great impact on the results of 

our load balancing algorithm. Extensive programming effort on thread scheduling is needed 

to ensure the threads are cooperative in using the processor. Usually such type of 

programming is done by calling the Thread.sleep() and Thread.yield() methods wisely. How 

to use the above sleep() and yield() methods effectively is not trivial. Usually we need to 

search for the best solution by some trials on different platforms.  

For example, consider a Java program that has several threads of the same priority 

running the following loop: 

 while (! finish) { 

  doSomeUsefulWork(); 

  yield();   //use yield() or sleep(someTime) here? 

 } 

The above code runs smoothly on the UNIX and the Macintosh platforms, but it will 

cause performance problem on the Windows 95/98 and the Windows NT platforms. It is 

because frequent calling of the yield() method will waste most of the CPU time allocated to 

the JVM on the latter platforms. Therefore we need to switch to the sleep() method as a 

better cross-platform solution. However, this solution will waste some time for sleeping 

when there is only one runnable thread, thus one may need to search for the optimal 

“sleeping time” by further trials on different platforms. 

 

6.5 Difficulties in modeling 

Although distributed computing is always a hot research topic, and the popularity of Internet 

technology has increased dramatically in the pass few years, we are surprised that the 

mentioned five unique characteristics of i-Computing have not been dealt with to any large 

degree in the literature. We guess this may due to the fact that the intractable nature of these 

characteristics making them very difficult to model and analyze. 

 Queuing theory [56][ 57 ] is the most common theoretical model to analyze load 

balancing strategies. However, queuing theory is based on the assumptions of (1) 

homogeneous servers, (2) dedicated servers, (3) dedicated communication network, and (4) 

negligible inter-node communication delay. As we have discussed, all of these assumptions 

are not valid under the practical i-Computing environment. 

Among the unique characteristics of i-Computing mentioned, we believe modeling and 

analysis of the effects caused by the dynamic communication delay on the Internet in the 

presence of external traffic is most difficult. The communication delays have two impacts 

on a load balancing strategy: (1) it increases the overhead of remote job processing, and (2) 

it adversely affects the quality of state information [52]. Despite the active discussion on 

analyzing and modeling the communication delay of distributed systems on a dedicated 
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local area network, little work has been done on that of the communication delay on the real 

Internet environment. Most LB algorithms ignore the communication delay by assuming it 

is negligible or constant. Up to now, we found no LB algorithm has considered the dynamic 

communication delay that is non-negligible and affected by external traffic. The external 

Internet traffic has not been modeled in our simulations because we do not find any 

discussion on this topic in the literature. 

 

7. CONCLUSIONS  

Internet computing is a new type of distributed computing that involves heterogeneous 

workstations from different organizations on the Internet. Due to the concerns of server 

heterogeneity, non-dedicated resources, communication overheads and security restrictions, 

the Internet Computing environment has many characteristics that made it unique from the 

traditional distributed systems. These characteristics have significant impact on the 

performance of load balancing. In this paper, we proposed a stochastic distributed dynamic 

load balancing algorithm to cater for these characteristic s.  

Owing to the heterogeneity and the security concerns, we do not use the CPU queue 

length, which includes both the system jobs and background jobs, as the load index. Instead, 

our algorithm defines the load index as the product of the average processing time and the 

queue length of system jobs. The non-negligible dynamic communication delay is 

considered in calculating the execution cost of a node. Inspired by the theory of 

“proportional betting”, we take a novel approach by combining the transfer policy and the 

location policy using a stochastic function. The probability of a node being selected is 

inversely proportional to its execution cost. Rather than using the conventional state change 

broadcasting or demand-driven polling approaches, state information exchange in our 

algorithm is done via information feedback and mutual updating to reduce the processing 

and communication overheads.  

Through simulation experiments, it is found that our algorithm can give shorter average 

response time than other well-known approaches over a wide range of system parameters. 

These results are reconfirmed by the empirical experiments after we have implemented the 

algorithms on the DJM global virtual machine. The practical experience gained from 

designing and implementing the proposed load balancing algorithm is shared in this paper. 

Owing to the stochastic and dynamic nature of the practical Internet Computing 

environment, designing an “ideal” load balancing algorithm on it still remains a challenge. 

We hope our algorithm can serve as an example for continuing work on searching a general 

and practical solution.  
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