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SUMMARY

The NetSolve Grid Computing System was �rst developed in the mid 1990s to provide
users with seamless access to remote computational hardware and software resources.
Since then, the system has bene�tted from many enhancements like security services,
data management faculties and distributed storage infrastructures. This article is meant
to provide the reader with details regarding the present state of the project, describing
the current architecture of the system, its latest innovations and other systems that
make use of the NetSolve infrastructure.
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INTRODUCTION

Since the early to mid 1990s, the distributed computing domain has been a hot-bed of research
as scientists explored techniques to expand the boundaries of scienti�c computing. In this era,
the term Grid Computing [1] was coined to describe a fabric, analogous to the electrical power
grid, that would uniformly and seamlessly channel computational services to clients who \plug
in" to the Grid. The NetSolve system, from the University of Tennessee's Innovative Computing
Laboratory, was one of the earlier Grid systems developed. NetSolve's �rst motivation was to
address the ease-of-use, portability and availability of optimized software libraries for high-
performance computing. Incidentally, this mode of use, providing client-users with remote
access to software services, has become NetSolve's niche and separates it from other Grid
systems that require users to have software \in hand." The NetSolve system enables users to
solve complex scienti�c problems remotely, by managing networked computational resources
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2 D. ARNOLD, H. CASANOVA AND J. DONGARRA

and using intelligent scheduling heuristics to allocate resources that will eÆciently satisfy
requests for service. Virtually any software package can be transformed into a service available
to NetSolve client-users.
This article discusses major developments made since NetSolve's initial deployment. We

describe NetSolve's architecture and implementation, the Grid services NetSolve provides,
specialized features of the system and examples of NetSolve usage. We conclude with a
discussion of future research directions. The scope of this article does not include details
regarding how to use NetSolve { such information can be found in [2].

THE NETSOLVE SYSTEM

The Architecture

An instance of a NetSolve Grid is set of (possibly heterogeneous) computer hosts accessible
via some networking infrastructure, like an ethernet or even a modem. The system uses a
client/agent/server model and is available for all popular variants of the UNIX operating
system, and parts of the system are available for the Microsoft Windows platforms. The major
components of the NetSolve system are the NetSolve agent, an information service and resource
scheduler, the NetSolve server, a networked resource that serves up computational hardware
and software resources, and the NetSolve client libraries, that allow users to instrument their
application code with calls for remote computational services. We term a program enhanced
with calls to the NetSolve system as NetSolve-enabled. Figure 1 shows the infrastructure of
the NetSolve system and its relation to the applications that use it. NetSolve and systems
like it are often referred to as Grid middleware. The shaded parts of the �gure represent the
NetSolve components, and it can be seen that NetSolve acts as a glue layer that brings the
application or user together with the hardware and/or software services needed.

Implementation

The NetSolve system is implemented using the C programming language, with the exception
of the thin upper layers of the client application programming interfaces (API) that serve as
an environment speci�c interface to the NetSolve system. (This layer primarily manipulates
input objects and converts them into a NetSolve speci�c format.) The system's components use
TCP/IPv4 sockets and a NetSolve-speci�c application layer protocol to communicate with each
other. Heterogeneity is supported by implementing a \handshake" transaction that initiates
each communication session during which computer hosts determine whether they understand
the same data format (endianness, data sizes, etc.) When an incompatibility is detected, Sun's
XDR [3] protocol is used to encode local data to a globally-understood format, allowing
each host to decode from this external data representation to its local format. The system
is primarily meant to be \open" in the sense that root privileges are not required to install
system components, and, once installed, one can easily donate services to the community at
large. However, for those that require a more controlled system, NetSolve incorporates Kerberos
V5 [4] protocols to allow for client-server authentication and access control.
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Figure 1. An architectural overview of the NetSolve system.

Managemental Issues

A NetSolve pool will most naturally consist of independent workstations or clusters of
workstations. We do support the use of supercomputer class machines (MPPs and SMMPs)
as servers, but we do not interface to batch queues like LoadLeveler [5] or PBS [6]. Instead, on
these classes of machines parallel jobs are launched in an interactive manner. Each NetSolve
component is a self-supported entity that can therefore be managed independently. A server
remains running even after an agent to which it was registered goes down. As the agent is the
entry-point into the NetSolve system, such a scenario renders a server useless. Nevertheless, it
persists until another instance of the agent re-enters the system and assumes the duty of its
predecessor.

A number of command line and web-based tools exist to allow NetSolve system
administrators (maintainers of running NetSolve servers and agents) to detect and modify
the system con�guration. These tools allow for querying the con�guration and modifying it
by terminating agents or servers, or re-con�guring servers with new or di�erent services, etc.
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4 D. ARNOLD, H. CASANOVA AND J. DONGARRA

THE NETSOLVE CLIENT

NetSolve provides a functional programming model (based on RPC) in which the client API
is used to pass NetSolve objects to and from services as inputs and outputs { though not
an object-oriented system, NetSolve maintains all its components in object data-structures.
Accordingly, the NetSolve object types are MATRIX, a two-dimensional array, SPARSEMATRIX, a
two-dimensional array stored in a compressed row storage format, VECTOR, a one dimensional
array, SCALAR, STRING, an array of characters, STRINGLIST, an array of strings, FILE, and
UPF, a user-provided function. The data elements of these objects may be single or double
precision integers, real numbers or complex numbers, or characters. The NetSolve client
interface supports both synchronous and asynchronous calls. The synchronous or blocking
call transfers control to the NetSolve system which invokes a request on behalf of the client
and blocks until the results are available. At this point, it returns control to the user application
layer with the appropriate output results. The asynchronous or non-blocking version of the
call makes the request to the NetSolve system and returns immediately. The client program is
given a handle to the request that is used to probe for the status of the request (RUNNING,
COMPLETE, FAILED) and gather the output if/when they are available.

Client Interfaces

NetSolve supports client program development in a variety of programming environments.
The two major classi�cations of these environments are the interactive environments that
dynamically interpret programming commands or instructions and compiled programming
interfaces that statically compile instructions into a binary executable. We describe interfaces
to our system from both environments.

Interactive environments

Interactive environments are usually easier, especially for the non-programmer, often relieving
the user from details like variable declaration, memory allocation, and other mundane tasks.
NetSolve currently supports APIs for both the Matlab [7] and Mathematica [8] environments.
NetSolve enhances these environments by expanding the numerical functions available to the
environment and allowing for increased performance by executing code remotely on more
eÆcient machines. Furthermore, if the remote server is a workstation cluster or parallel
machine, the application is able to leverage multiple processors as compared to the single local
processor available to the Matlab or Mathematica environment. The asynchronous interfaces
also allow for a simpler level of parallelism by allowing for simultaneous requests to the NetSolve
system. The discussion below focuses on the Matlab interface, but for each Matlab feature or
function we demonstrate, there is an analogous functionality in Mathematica.

The left side of �gure 2 shows an example of using MATLAB to solve a linear system of
equations using the blocking call. This script �rst creates a random 100� 100 matrix, A, and
a vector b of length 100. The call to the netsolve() function returns with the solution. The
(hidden) semantics of a NetSolve request are:
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NETSOLVE INNOVATIONS 5

>> A = rand(100); b = rand(100,1);

>> x = netsolve('Ax=b',A,b);

>> A = rand(100); b = rand(100,1);

>> request = netsolve nb('send','Ax=b',A,b);

>> x = netsolve nb('probe',request);

.... Not Ready Yet

>> x = netsolve nb('wait',request);

Figure 2. Examples of calling NetSolve from within the Matlab environment in blocking (left) and
non-blocking (right) fashions.

1. Client contacts the agent for a list of capable servers.
2. Client contacts \best" server and sends input parameters.
3. Server runs speci�ed service on input parameters.
4. Server returns output parameters or error status to client.

The right hand-side of the same �gure 2 shows the same computation performed in a non-
blocking fashion. In this case, the �rst call to netsolve nb() sends a request to the NetSolve
agent and returns immediately with a request identi�er. One can then either probe for the
request or wait for it. Probing always returns immediately, either signaling that the result is
not available yet or, if available, stores the result in the user data space. Waiting blocks until
the result is available and then stores it in the user data space.
Other functions are provided, for example, to query the status and con�guration of a

NetSolve pool, the set of problems available, and the function signatures (de�nitions of the
number and types of input/output parameters) of the software services available.

Programming interfaces

The programming interfaces for which NetSolve APIs have been developed are FORTRAN and
C. Unlike the interactive interfaces, programming interfaces require some programming e�ort
from the user. The user is responsible for de�ning and allocating arrays for input and output
variables. In �gure 3, the above Matlab example is demonstrated using the C programming
language and the NetSolve blocking call.

Specialized Client Features

Now that we have covered the basics of the NetSolve client libraries, we move to discuss key
modi�cations developed to enhance the usability, eÆciency and exibility of the interfaces to
the NetSolve system.

Client Proxies

The architecture of NetSolve has been modi�ed to include client proxies. A proxy is a separate
process that resides on the client host whose purpose is to negotiate with the underlying meta-
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6 D. ARNOLD, H. CASANOVA AND J. DONGARRA

double A[100*100]; /* Matrix A */

double b[100]; /* Right Hand Side b */

double x[100]; /* Solution Vector */

int status; /* NetSolve request status */

status = netsl("Ax=b",

A,100,100, /* CoeÆcient and dimensions */

b, /* RHS */

x); /* Solution Vector, x */

Figure 3. Example `C' code program shows details of NetSolve's blocking interface.

computing infrastructure for services on the client program's behalf. The primary reasons for
the addition of a proxy to the NetSolve framework are:

� Lightening the client libraries
By separating the interactions with meta-computing resources from the NetSolve client
interface, the client library becomes much more lightweight. One advantage of this
scenario is that it increases the uniformity with which the supported client interfaces
can be developed. In other words, this modularity means that whenever a feature is
added or an enhancement made at the proxy level or below, it only need be implemented
once and immediately becomes available to all interfaces.

� More exibility on the client side
Since the proxy is a separate process with its own thread of control, it is able to
interact with meta-computing resources, independently of client interaction. This makes
it possible to perform tasks like queries of various Grid information services, even before
the client makes a request, and cache results locally so they are immediately available
when needed.

� Integration with other systems
One of the philosophies of the NetSolve project is to leverage existing services whenever
feasible. Having a proxy negotiate for meta-computing resources on behalf of the client
means that di�erent proxies can negotiate for di�erent types of services. So far, we have
implemented proxies to negotiate for Globus [9] services and, of course, the standard
NetSolve services. Other systems like Condor [10] or Legion [11] can be integrated in a
similar fashion.

� Supporting more client languages
With a standard interface between the client and proxy, it is possible, especially for third
party developers, to easily add new language support to the NetSolve system. They would
simply write libraries that interface the NetSolve proxies from their language of choice,
allowing programs of that language to become NetSolve-enabled.
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Figure 4 shows the interaction between the client process, proxy and underlying Grid system.
The client libraries interact with the proxy via a standard API, and the proxy interacts with the
meta-computing system using system-speci�c mechanisms. The NetSolve proxy, for instance,
uses the agent to discover services, contacts the appropriate server and establishes a session
with that server. The server receives input data from the client, performs the requested service
and returns output data to the client process. Each client process instantiates a new proxy and
when security services are enabled, there is no delegation of credentials from client to proxy.
Instead, the connection between the client and server, established for the transmission of data,
is authenticated. This would be the point at which unauthorized access would be detected and
refused.

Data Persistence

The left side of �gure 5 illustrates the typical transactions that take place during a series of
NetSolve requests made by the sequence of calls:

...

netsl(``command1'', A, B, C);

netsl(``command2'', A, C, D);

netsl(``command3'', D, E, F);

...

What is relevant in this example is that parameter A is shared as an input for the �rst and
second requests. Also, output parameters C and D serve as inputs for subsequent requests. This
is exactly the type of scenario that the work described in this section tries to exploit.
We have explored a technique we call request sequencing in an attempt to maximize request

throughput by minimizing data transmission between NetSolve components. This interface
allows the user to group two or more regular NetSolve requests into a sequence. The system
then analyzes the input and output parameters of the sequence to determine when parameters
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Figure 5. Client-server interactions during a typical request scenario (left) and during a \request
sequence" (right).

recur and keeps those parameters persistent at or near the server(s) that are servicing the
requests. More speci�cally, we construct a directed acyclic graph (whose nodes represent
computational modules and arcs represent the data dependencies of those modules) and
schedule this DAG for execution. Our hypothesis is that this reduction in data traÆc will
yield enough performance improvements to outweigh the overhead of the DAG construction
and make sequencing worthwhile. The right side of �gure 5 shows the reduced data ow
between client and server components that occurs when the sequencing mode is employed.
[12] discusses this interface and gives some experimental results that were achieved using

this data persistence technique. The results support our theories that this is a very good way
to optimize the use of Grid resources, especially when bandwidth is of the essence, data sets
are very large, or both.

Distributed Storage Infrastructures

A Distributed Storage Infrastructure or DSI [13] is a technology that allows a program to
manage data stored remotely. The Internet Backplane Protocol [14] (IBP) is an example DSI
that has been incorporated into NetSolve in an e�ort to logistically store data in storage depots
convenient to NetSolve servers that will run computations on them. This integration allows
users to allocate, destroy, read and write data objects to remote storage devices, via IBP, and
then point NetSolve servers to these devices to �nd data to use in computations. The user can
thus run computations on remote data and retrieve only pertinent portions of the output.
The NetSolve API has been extended with a set of functions to create, destroy, open, close,

read and write DSI storage. We modeled the API after the `C' STDIO library. However, we
did tune the read and write calls to take advantage of NetSolve system-speci�c characteristics.
The read and write calls are designed to deposit and extract these objects from DSI storage.
Figure shows a sample programming code that makes calls to a version of the interface
(simpli�ed for this document.) The `C' struct NS DSI FILE encapsulates information about the
remote storage server and remote �le object being allocated, while NS DSI OBJECT contains
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NETSOLVE INNOVATIONS 9

int client program()f

NS DSI FILE * r�le;

NS DSI OBJECT * robject;

int *data1, size data1, status;

...

r�le = ns dsi open(\machine.domain.edu", \write");

robject = ns dsi write matrix(r�le, data1, size data1);

status = netsolve(\solve matrix", robject, rhs);

...

g

Figure 6. Sample `C' code program shows details of NetSolve's DSI interface.

information about speci�c objects present within these remote �les. In essence, a call to
ns dsi open() allocates a remote �le returning a handle or NS DSI FILE *. A call to any of
the ns dsi write *() variants will transfer data to the remote storage speci�ed by the given
handle. These handles can then be used directly in NetSolve requests or by corresponding calls
to ns dsi read *() variants. When used in NetSolve requests, the NetSolve system resolves
the handles to appropriate datasets and uses them either to locate input on which to perform
computational analysis or to store the results of computation.

The primary technique used in this �rst iteration of development is an instance of supply-
side caching where the application at the client layer of the system is the supplier of data to
the server which acts as the data consumer. The system is manually con�gured to strategically
place storage servers near pools of computational servers as in the experiments of the next
section. We also export to the user-layer a low-level interface that the user must use to dictate
where data should be stored and where computations should be performed.

The major modi�cations made to the NetSolve system involve the expansion of NetSolve's
object model to include representations for remote data objects and �les. The API functions
described above, apart from the obvious, also put and later extract information into and from
these structures. NetSolve maintains a File Allocation Table (FAT) that records the status of
allocated remote �les and objects much like that used by operating systems to keep track of
STDIO �les. The reference values of the NS DSI OBJECTs and NS DSI FILEs are used as the
keys by which these objects are cataloged in the FAT. When NetSolve requests are made,
input and output references in the calling sequence are checked against the keys of the FAT to
see if they represent a remote object. (If not found, they are assumed to be referring to local
data, in-core or on disk). The NetSolve system protocols accommodate remote data by sending
data handles to servers which the servers use to obtain data from their stored locations. This
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10 D. ARNOLD, H. CASANOVA AND J. DONGARRA

implementation allows the NetSolve system to leverage DSI storage without modifying the
standard NetSolve functions for computational requests.

Task Farming
This interface addresses applications that have simple task-parallel structures but require large
number of computational resources. Monte-Carlo simulations and parameter-space searches
are some popular examples of these applications which are called task farming applications.
Within the NetSolve system, we designed and built an easily accessible computational
framework for task farming applications. As the middleware, NetSolve becomes responsible for
the details of managing the Grid services { resource selection and allocation, data movement,
I/O, and fault-tolerance.

The task farming interface allows the user to make a single call to NetSolve, requesting
multiple instances of the same problem. Rather than single parameters, the user passes arrays
of parameters as input/output and designates how NetSolve should iterate across the arrays for
the task farm. The main challenge in this e�ort is scheduling. Indeed, for long running farming
applications it is to be expected that the availability and workload of resources within the
server pool will change dynamically. [15] discusses the design and validation of the NetSolve
task farming interface. It also presents an adaptive scheduling algorithm used by the task
farming interface to assign tasks to the server resources.

Transparent Algorithm Selection
Through NetSolve, users are given access to complex algorithms that solve a variety of types
of problems, one instance being linear systems solvers. All solvers, however, are not built alike;
depending on the characteristics of the matrix being solved some perform poorly and others
not at all. NetSolve has incorporated a large number of solver algorithms from a variety of
packages like PETSc [16] and Aztec [17]. We have further created an interface that allows the
user to generically call a \LinearSolve" routine which transparently analyzes the input matrix
and determines which algorithm to use based on input characteristics. The system recognizes
matrix features like size, shape, sparsity, symmetry, and bandwidth dimensions and decides
which of the available solver packages is most appropriate to correctly and eÆciently solve the
system.[18] further discusses this interface and the heuristics and decisions that are involved
in the algorithm selection process. This interface allows the non-expert user to properly and
eÆciently use solver algorithms without climbing the steep learning curve that would otherwise
be involved to learn the intricacies of a speci�c software package (or its auxiliaries, such as
MPI or BLAS). This feature exempli�es the ease-of-computing that is only one of the bene�ts
of using a system like NetSolve.
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NETSOLVE INNOVATIONS 11

SERVER AND SERVICE SPECIFICATIONS

Server Speci�cation

A computer host becomes a NetSolve server when it is con�gured to run the NetSolve server
daemon. After an initialization process, the server daemon listens to a TCP/IP socket (bound
on a port published to the NetSolve agent during initialization) for incoming requests for
service. We now discuss the di�erent modes of con�guration and other components of the
server.

The con�guration of a server

When a server is initiated, it �rst obtains a raw performance rating using the LINPACK
benchmark. This rating is measured in terms of Kop/s and is reported to the agent for
use in the scheduling heuristics discussed in the Section Resource Allocation in NetSolve.
During the initialization process, the server also reads a server config �le. This �le allows a
NetSolve administrator to specify several details: the agent host that the server will register
to, its workload threshold (explained below), scratch space for temporary �les, number of
simultaneous service requests permitted, and the number of processors located on the server
node. Most importantly, this �le allows one to specify which software services a server will be
able to provide. We soon discuss what comprises a software service and how such a service is
executed by the server.

The workload manager

An important part of the server is the workload manager. This component monitors the
workload of the server host via the UNIX uptime utility and reports this value to the agent.

Figure 7 shows the scheme used to manage the workload broadcasts. Let us consider
a computational server, M , and an instance of the agent, C. M broadcasts its workload
periodically. In Figure 7, we call time slice the delay between workload evaluations of M . This
�gure shows the workload function of M versus the time. The simplest solution would be to
broadcast the workload at the beginning of each time slice. However, experience proves that
the workload of a machine can stay the same for a very long time. Therefore, most of the
time, the same value would be rebroadcasted. To avoid this useless communication, we chose
to broadcast the workload only when it has signi�cantly changed. In the �gure, we see some
shaded areas called the con�dence interval. Basically, each time the value of the workload
is measured, the workload manager decides that the next value to be broadcast should be
di�erent enough from the last value reported { in other words, outside this con�dence interval.
In Figure 7, the workload is broadcast three times during the �rst �ve time slices. (As an
added heuristic, after a certain speci�ed interval, the workload manager is forced to broadcast
its workload, regardless of the value.)

Two parameters are involved in this workload management: the width of a time slice
and the width of the con�dence interval. These parameters must be chosen carefully. A
time slice or con�dence interval that is too narrow causes the workload to be assessed too
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Figure 7. Workload Policy in NetSolve

often or a lot of useless workload broadcasting. If these same parameters are too wide, the
workload manager will be slow to recognize major changes in the workload or these signi�cant
changes will not be broadcasted. Choosing an e�ective time slice and con�dence interval
helps to make the workload information maintained by the agent as accurate as possible,
so that the resource scheduling heuristics (covered in the discussion of the NetSolve agent) are
reasonable. Regardless of the intervals chosen, whenever a workload is reported to the agent,
a measurement of the network bandwidth and latency is also evaluated and reported to the
agent. The connection measured is that between the agent and server. A NetSolve pool is best
con�gured with an agent on every local network from which a potential client will reside so
that this measure is also a fair evaluation of the network between the client and server hosts
once a client request is instantiated.

Service Speci�cation

To keep NetSolve as general as possible, we need to �nd a formal way of describing a problem.
Such a description must be carefully chosen, since it will a�ect the ability to interface NetSolve
with arbitrary software.

From a client's perspective, a problem is a 3-tuple: < name; inputs; outputs >, where

� name is a character string containing the name of the problem
� inputs is a list of input objects
� outputs is a list of output objects
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NETSOLVE INNOVATIONS 13

The possible types and elements of an object have been de�ned in Section NETSOLVE

CLIENT. These items are speci�ed in a problem description �le (PDF) that also speci�es
libraries containing the implementations of any underlying functions or services being
interfaced by NetSolve and a code that uses some specialized, pre-de�ned macros to extract
data elements from the NetSolve input objects, pass them to the underlying service functions,
and place output results in NetSolve output objects. The PDF also allows a user to specify
the computational complexity of the algorithm, with respect to the size of the data inputs. A
tool called the code generator parses this PDF to create actual C code that is then linked
with NetSolve auxiliary libraries (that transfer data to/from client programs and handle other
generic service tasks) and those libraries speci�ed by the PDF to create a service executable.

Integrated scienti�c services

Using the PDF facility, NetSolve has integrated a variety of scienti�c packages. These PDFs are
distributed with the current implementation of NetSolve: BLAS [19] [20] [21], LAPACK [22],
ScaLAPACK [23], ItPack [24], PETSc [16], AZTEC [17], MA28 [25], SuperLU [26], and
ARPACK [27]. When eÆcient, we include the actual numerical library with NetSolve, in
the other cases, these packages are available for a large number of platforms and are freely
distributed.

The Server/Service Binding

Upon server initialization, the server discovers which problems (PDFs) it will be con�gured to
service via the aforementioned server config �le. It reads in a description for every problem
(name, number and types of inputs and outputs, etc.) and maintains this information in its core
memory. It also locates the appropriate service executables and registers its problem list and
each problem's description with the agent speci�ed in the server config �le. Whenever there
is an incoming request from a client, after the server determines its willingness to service that
request, it \execs" the appropriate service program. This program generally opens a network
connection to receive input data from the client, calls the underlying service function to run
the computation, and then returns output data to the client.

Access Control Mechanism

Interaction in a Grid or any distributed environment ultimately demands that there are
reassuring mechanisms in place to restrict and control access to computational resources and
sensitive information. In the latest version of NetSolve, we have introduced the ability to
generate access control lists which are used to grant and deny access to the NetSolve servers.We
use Kerberos V5 [4] services to add this functionality to NetSolve, as it is one of the most trusted
and popular infrastructures for authentication services. Using Kerberos, the \administrator"
of the server identi�es authorized clients using their Kerberos principal, or id. He places his
list of clients in a �le that is readable only by the user-id that will be used to run the NetSolve
server. The only other interaction needed to \kerberize" the server is to create a principal that
is used to identify the NetSolve service within the Kerberos realm. Every other involvement
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14 D. ARNOLD, H. CASANOVA AND J. DONGARRA

needed is just as it would be in non-Kerberos mode. This feature has been implemented such
that kerberized and non-kerberized client and server components can gracefully interact with
each other. Kerberized servers simply deny service to non-authenticated clients, while clients
con�gured to send authentication credentials will only do so upon demand by a kerberized
server.

Network Weather Service CPU Sensors
NetSolve servers must be able to attain and report information regarding their workload so
that the agent can determine which servers represent the best choice to service a request. The
workload manager performs this task, however, the Network Weather Service [28] is a Grid
service utility with a component, the CPU sensor, that does this as well. The section below
on AGENT INTERACTIONS discusses our integration of NWS forecasters and motivates
our use of the NWS CPU sensors as well. There are several features that make this NWS
component attractive to the NetSolve project. The NetSolve workload manager was a simple
way for the system to implement a feature that at the time was not available any other way;
NWS is a project whose purpose is to make this type of service available, and thus much time
and expertise has been invested to make sure the reports are as accurate as possible. Secondly,
NWS sensors interact with a separate process, called a memory to store the data being collected.
This process need not be run on the host being monitored, therefore, we can conveniently place
the NWS memory on the host running the NetSolve agent (and NWS forecaster) making the
information readily available when a forecast is needed. Finally, it o�ers the uniformity of using
the NWS components together. Otherwise, we would have to modify the NetSolve system so
it is somehow able to feed the relevant information to the NWS forecaster that helps the agent
allocate resources.

AGENT INTERACTIONS
Though the NetSolve system is merely based upon the concept of remote procedure call
(RPC), its uncomplicated user interaction allows one to easily overlook the other features
it entails and consider it just an RPC system. NetSolve is a robust environment that is
able to discover, maintain and control a heterogeneous environment of vastly distributed
computational resources. The purpose of the agent is to be that point in the system from
which to manage and access the resources. As an information service, the agent maintains a
comprehensive view of the status of all NetSolve server components and the interactions they
may be having with clients. It keeps track of the software capabilities of the servers and is able
to direct client requests to appropriate servers.
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Resource Allocation in NetSolve

The performance model

We have developed a simple theoretical model enabling us to estimate the performance, given
the raw performance and the workload. This model gives the estimated performance, p, as a
function of the workload, w; the raw performance, P ; and the number of processors on the
machine, n:

p =
P � n
w

100
+ 1

Calculating the \best" machine

The hypothetical best machine is the one yielding the smallest execution time T for a given
problem P . Therefore, we have to estimate this time on every machine M in the NetSolve
system. We split the time T into Tn, the time to transmit data to/from M , and Tc, the time
to perform the computation on M . The time Tn can be computed by knowing the following:

1. network latency and bandwidth between the local host and M , and
2. size of the data to be transmitted.

The computation of Tc involves knowledge of the

1. size of the problem,
2. complexity of the algorithm to be used, and,
3. performance of M as de�ned by our performance model

The client-dependent parameters, speci�ed service and sizes of data to be transmitted, are
included in the problem request sent to the agent. The static server-dependent parameters,
service algorithm complexity and raw performance, are reported to the agent during the server
initialization process. Finally, dynamic server-dependent parameters, load of the server host
and network measures, are accounted for by reports to the agent from the workload manager
discussed above.

Load Balancing

The NetSolve system does not explicitly attempt to balance the load on its computational
servers. As mentioned above, it incorporates scheduling heuristics that attempt to optimize
service turn-around time. A server has the capability to service simultaneously as many
requests as the operating system will allow it to fork processes, but the administrator can
specify the maximum number of requests it is willing to service at one time; requests for
services received once this limit is met will be rejected. Similarly, a server can specify its
workload threshold and, once again, requests received after this threshold is attained will be
refused. Carefully using these threshold heuristics, a NetSolve administrator can maintain a
balanced system.
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Fault Tolerance

Fault tolerance is an important issue in any loosely connected distributed system like NetSolve.
The failure of one or more components of the system should not cause any catastrophic failure.
Moreover, the number of side e�ects generated by such a failure should be as low as possible
and minimize the drop in performance. Fault tolerance in NetSolve takes place at di�erent
levels. Here we will justify some of our implementation choices.

Failure detection

NetSolve detects and classi�es two major classi�cations of failures: HOST ERROR and
SERVER ERROR. A HOST ERROR is a \hard" failure that denotes permanent inability
to contact a host or a server on a host. A SERVER ERROR is a \soft" failure that denotes a
running server has experienced some failure that will not necessarily prevent it from being of
future use.
HOST ERRORs are detected when a component fails to establish a network connection

with a server. Failures may occur at di�erent levels of the NetSolve protocols. Generally
they are due to a network malfunction, to a server disappearance, or to a server failure. The
connection might have failed or have reached a time-out before completion. SERVER ERRORs
are experienced either when there is a failure in the communication protocol, or when the server
explicitly denotes that it experienced a failure while trying to service a request.
As a heuristic, the workload manager is forced to broadcast a report within a certain time

period. The agent detects a possibly terminated server when it fails to broadcast its workload
within this period.

Taking failures into account

Ultimately, all failures are reported to the agent who determines what actions to take. Since
HOST ERRORs are permanent failures, the agent removes suspect servers and their problems
from the database. When the agent takes a SERVER ERROR into account, it marks the failed
server in its data structures and does not remove it. SERVER ERRORs are almost always due
to malformed input or output parameters that cause errors in the transmission of data or
\service failures" like segmentation violations, etc. Therefore, a policy decision was made to
presume that service implementations have been properly tested and that a SERVER ERROR

is always based on an improperly programmed client.
Another aspect of fault tolerance is that it should minimize the side e�ects of failures. To

this end, we designed the client-server protocol as following. When the NetSolve agent receives
a request for a problem to be solved, it sends back a list of computational servers sorted from
the most to the least suitable one. The client tries all the servers in sequence until one accepts
the problem. This strategy allows the client to avoid sending multiple requests to the agent
for the same problem if it encounters a HOST ERROR. If at the end of the list no server has
been able to answer, the client returns with an error status denoting \no available server."
Since a SERVER ERROR is seen by the system as caused by the format of the client call, on
such an error, no retries are invoked, and an error of \server/service error" is reported.
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NetSolve 
  Agent

Interfaces to IPARS Simulator 

Web

IPARS-Enabled Servers

CFORTRAN
MATLAB

Mathematica

Single Processor

MPPs and SMPs

Clusters

Figure 8. Integrating a uid ow simulator with NetSolve.

Network Weather Service Forecasters

When allocating resources, the agent's main goals is to choose the best-suited computational
server for each incoming request We have employed the use of the Network Weather Service
(NWS) [28] to help us gather the information necessary to make these decisions. The NetSolve
agent calls upon the services of NWS forecasters to predict future availability of server
hosts based upon previously collected availability data (see Section NWS CPU Sensors). The
forecasters are actually an interface to a variety of prediction modules which take as input a
time series of measurements and returns a prediction of the next value. High levels of accuracy
are achieved since a prediction error of each module is calculated, and the prediction with the
lowest error is used. Previously, NetSolve would look at the last recorded value of a servers
status and use that to represent the resources that a server would have available to service a
request. NWS allows NetSolve to do a much better job of \guessing" what a server's availability
will be, especially when servers experience high variations in workload.

NETSOLVE USAGE

Sub-surface Modeling

The implicit parallel accurate reservoir simulator, IPARS, developed at the University of Texas'
Institute for Computational and Applied Mathematics, is a framework for developing parallel
models of sub-surface ow and uid transport through porous media. It simulates single phase
(water only), two phase (water and oil) or three phase (water, oil and gas) ow through a
multi-block 3D porous medium. IPARS can be applied to model water table decline due to
overproduction near urban areas, or enhanced oil and gas recovery in industrial applications.
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A NetSolve interface to the IPARS system (Fig. 8) allows users to access IPARS (including
post-processing of the output to create animated images that exhibit the variations of
concentration, pressure, etc. of relevant uids) [29]. The interface is primarily used from handy
machines like laptop computers to run real-time simulations on clusters of workstations that
allow for much quicker execution. IPARS runs primarily on LINUX; NetSolve makes it readily
accessible from any platform. In addition, we have created a problem solving environment
(PSE) interfaced by a web browser which one can use to enter input parameters and submit
a request for execution of the IPARS simulator to a NetSolve system. The output images are
then brought back and displayed by the web browser. This interaction shows how the NetSolve
system can be used to create a robust grid computing environment in which powerful modeling
software, like IPARS, becomes both easier to use and administrate.

Cellular Microphysiology

MCell is a general Monte Carlo simulator of cellular microphysiology which uses Monte
Carlo di�usion and chemical reaction algorithms in 3D to simulate the complex biochemical
interactions of molecules inside and outside of living cells. MCell is a collaborative e�ort
between the Terry Sejnowski lab at the Salk Institute, and the Miriam Salpeter lab at Cornell
University.

NetSolve's farming interface is very well suited to MCell's needs. One of the central pieces
of that framework is a scheduler that takes advantage of MCell input data requirements to
minimize execution turn-around time. This scheduler is part of an AppLeS project[30] at
the University of California, San Diego. The use of NetSolve isolates the scheduler from the
resource-management details and allows researchers to focus on the scheduler design.

Nuclear Engineering

The goal of this project is to develop a prototype environment for the Collaborative
Environment for Nuclear Technology Software (CENTS). CENTS aims to lay the foundation
for a Web-based distance computing facility for executing nuclear engineering codes. Through
its Web-based interfaces, CENTS will allow users to focus on the problem to be solved
instead of the speci�cs of a particular nuclear code. Via the Web, users will submit input
data with computing options for execution, monitor the status of their submissions, retrieve
computational results, and use CENTS tools for viewing and analyzing result data.

For computational services, CENTS employs a collection of heterogeneous computer systems
logically clustered and managed for optimal resource utilization. The prototype environment
was accomplished by integrating the NetSolve system and using Monte Carlo Neutral Particle
(MCNP) codes via NetSolve's framework. The user is required only to supply the input problem
for the MCNP code. After the user supplies the input, NetSolve sends the problem to the most
suitable workstation in the environment; the problem is solved, and the output (4 �les) is sent
back to the user via the web interface.
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CONCLUSION AND FUTURE WORK

We continue to evaluate the NetSolve model to determine how we can architect the system to
meet the needs of our users. Our vision is that NetSolve will be used mostly by computational
scientists who are not particularly interested in the mathematical algorithms used in the
computational solvers, but use them only as means to do research and simulations in their
respective domains, whether it is nuclear engineering or computational chemistry. NetSolve
will be especially helpful when lots of computational power is needed to do \embarrassingly
parallel" tasks. Yet, there lies much room for improvement. We envision future work in features
like dynamically extensible servers whose con�guration can be modi�ed on-the-y. The new
strategy will be to implement a just-in-time binding of the hardware and software service
components, potentially allowing servers to dynamically download software components from
service repositories. Parallel libraries could be better supported by data distribution/collection
schemes that will marshal input data directly from the client to all computational nodes
involved, and collect results in a similar fashion. E�orts also need to be made so that clients
can solve jobs with large data sets on parallel machines; the current implementation requires
this data to be in-core since the calling sequence expects a reference to the data and not a �le
pointer, and this may not be possible.
As researchers continue to investigate feasible ways to harness computational resources, the

NetSolve system will continue to emerge as a leader in Grid technology. Its light weight and ease
of use make it an ideal candidate for middleware, and as we discover the needs of computational
scientists, the NetSolve system will be molded to become even more accommodating.
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