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Abstract 

The growth of the Internet and the advent of the computational Grid have made it possible to develop and 

deploy advanced computational collaboratories. These systems build on high-end computational resources and 

communication technologies underlying the Grid, and provide seamless and collaborative access to resources, 

services or applications. Combining these focused collaboratories and allowing them to interoperate has many 

advantages and can lead to truly collaborative, multi-disciplinary and multi-institutional problem solving. However, 

integrating these collaboratories presents significant challenges, as each of these collaboratories has a unique 

architecture and implementation, and builds on different enabling technologies. This paper investigates the 

requirements and an architecture for interoperability among collaboratories on the Grid. It then presents the design 

of a middleware substrate that addresses interoperability, and a prototype implementation of this middleware 

substrate, to enable a peer-to-peer integration of and global collaborative access to multiple, geographically 

distributed instances of the DISCOVER computational collaboratory. An experimental evaluation of the middleware 

substrate is also presented. 

1 INTRODUCTION 
A Collaboratory is defined as a place where scientists and researchers work together to solve complex 

interdisciplinary problems, despite geographic and organizational boundaries [2]. Computational collaboratories 

provide uniform (collaborative) access to computational resources, services and/or applications. These systems 

expand the resources available to researchers, enable multidisciplinary collaborations and problem solving, increase 

the efficiency of research, and accelerate the dissemination of knowledge.  

The growth of the Internet and the advent of the computational “Grid” [3] have made it possible to develop and 

deploy advanced computational collaboratories[4][5]. Recent efforts include the Upper Atmospheric Research 

Collaboratory (UARC)[6][7], Diesel Combustion Collaboratory (DCC) [8][9], Access Grid[10], Netsolve [11], 

EMSL [12], the Astrophysics Simulation Collaboratory [13], which builds on Cactus [14], and DISCOVER 

[1][15][16]. Each of these systems provides a high-level problem-solving environment  (PSE) that builds on the 

underlying Grid technologies to provide seamless access to domain specific resources, services and applications. 

Together these systems have the potential for enabling truly global scientific investigation through the creation of 
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meta-laboratories spanning many research groups, universities and countries, and transforming computational 

applications and services into global modalities for research and instruction. 

Combining these “focused” collaboratories and allowing them to interoperate presents many advantages. The 

services provided by the different collaboratories can be reused reducing duplication of effort.  At a higher level, the 

domain specific services provided by the collaboratories can be combined and composed leading to truly 

collaborative, multi-disciplinary and multi-institutional problem solving. However, integrating these collaboratories 

presents significant challenges. These collaboratories have evolved in parallel with the Grid Computing effort and 

have been developed to meet unique requirements and support specific user communities. As a result, these systems 

have customized architectures and implementations, and build on specialized enabling technologies. A key 

challenge then, is the design and development of robust and scalable middleware that addresses interoperability, and 

provides support for service discovery, security and access control, and interaction and collaboration management 

for consistent access.  Such a middleware should define a minimal set of interfaces and protocols to enable 

collaboratories to share resources, services, data and applications on the Grid while being able to maintain their 

architectures and implementations of choice.  

In this paper we first discuss the requirements and mechanisms for achieving interoperability among 

collaboratories on the Grid, and how the Grid architecture proposed by Foster et al. in [17] can be naturally extended 

to define an architecture for interoperable collaboratories. We then present the design of a middleware substrate that 

addresses the interoperability issues discussed above, and a prototype implementation of this middleware substrate 

to enable a peer-to-peer integration of and global collaborative access to multiple, distributed instances of the 

DISCOVER computational collaboratory. In a related effort (CORBA CoG [18]) we are extending this substrate for 

interoperability among Grid services. DISCOVER provides collaborative access to high-performance parallel and 

distributed applications for interaction and steering using web-based portals [1][15][16]. The middleware substrate 

enables DISCOVER interaction and steering servers to dynamically discover and connect to one another to form a 

peer-to-peer network. This allows clients connected to their local servers to have global access to all applications 

and services across all the servers in the network based on their credentials, capabilities and privileges. The principal 

design challenge is enabling scalable, secure, consistent and controlled access to remote, highly dynamic distributed 

applications for real-time monitoring, interaction and steering by geographically distributed scientists and engineers 

in a collaborative environment. The implementation of the DISCOVER middleware substrate builds on existing web 

servers and leverages commodity technologies and protocols such as CORBA [19] and HTTP [20]. Its goal is to 

enable rapid deployment, ubiquitous and pervasive access, and easy integration with 3rd party services.  An 

experimental evaluation of the middleware substrate is also presented. 

The rest of this paper is organized as follows. Section 2 provides some background and discusses related work. 

Section 3 outlines the issues and requirements for achieving interoperability among collaboratories on the Grid. It 

also presents a hierarchical architecture for collaboratories on the Grid. Section 4 presents the design of a 

middleware substrate for interoperability on the Grid. Section 5 introduces the DISCOVER computational 

collaboratory for interaction and steering. This section also introduces the middleware substrate for peer-to-peer 

integration of a network of DISCOVER servers to provide global collaborative access to remote applications.  
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Section 6 presents the implementation and operation of the DISCOVER middleware substrate. Section 7 presents an 

experimental evaluation of the DISCOVER middleware substrate. Section 8 presents a retrospective evaluation of 

the design and implementation of DISCOVER and the technology used. This section also presents an evaluation of 

the commodity distributed technologies and protocols and their ability to support Grid applications. Section 9 

presents some conclusions and outlines current and future work. 

2 BACKGROUND AND RELATED WORK  

2.1 Current Status of  Problem Solving Environments and Computational Collaboratories  

The growth of the Internet and the advent of the computational “Grid” [3] have resulted in the development and 

deployment of advanced problem solving environments and computational collaboratories [4][5]. These include the 

Upper Atmospheric Research Collaboratory (UARC)[6][7], the Diesel Combustion Collaboratory (DCC) [8][9], 

Access Grid [10], Netsolve [11], EMSL [12], the Astrophysics Simulation Collaboratory  (ASC) [13][14], Punch 

[22][23], WebFlow [24], Gateway [25], HotPage/GridPort [26][27][28],  GPDK [29], Commodity CoG Kits 

[30][31][18], Nimrod-G [32], JiPang [33], and DISCOVER [1][15][16]. These systems provide specialized services 

to their user communities and address different issues in wide area resource sharing and the overall Grid computing 

problem [17][21]. For example, UARC and ASC implement applications specific PSEs, WebFlow provides support 

for composing, configuring and deploying scientific applications on the Grid, and systems such as GridPort provide 

support for acquiring and managing Grid resources.  

2.2 Motivations for Interoperable Collaboratories 

There are several compelling reasons for allowing multiple types of collaboratories to co-exist and interoperate 

on the Grid [34].  The systems mentioned above are customized to meet the unique requirements of a specific user 

community, and provide specialized services and user interfaces that best meet the needs of their users. For example, 

some systems might require ubiquitous web access through web browsers and therefore use HTTP for access. Other 

systems might require rich collaboration services among clients and build on a multicast protocol for access.  Any 

effort aimed at building collaboratories on the Grid should accommodate all such preferences.  

Furthermore, domain specific services provided by the collaboratories can be combined and composed leading 

to truly collaborative, multi-disciplinary and multi-institutional problem solving. For example, one could combine 

the physical models provided by ASC and UARC, visually compose and configure an application using WebFlow, 

allocate resources, deploy and run the application using PUNCH, collaboratively interact and steer the applications 

using DISCOVER, and if the application generates large amounts of real time data, one could broadcast it to 

participating clients using the Salamander data dissemination substrate [35][36][37] (used in the UARC and the 

IPMA project [38]). Building each system to provide all required capabilities would not only lead to duplication but 

is rapidly ceasing to be a viable option.  However, as most of these systems are standalone with customized 

architectures, combining them in the fashion outlined above can be a significant challenge. For example, these 

systems use different underlying protocols and enabling technologies - WebFlow and DISCOVER use CORBA and 

HTTP, PUNCH uses HTML and CGI, while Salamander uses a customized API  (application programming 

interface) written in C/Java/Perl.   
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The need for an intermediate interoperability layer on top of the Grid has been emphasized earlier [34]. Such a 

layer will provide basic concepts and mechanisms that can be shared by collaboratories on the Grid, avoiding 

duplication of effort and core development, and allowing individual systems to focus on domain specific issues and 

the needs of their user community.  Note that the access modes, client-server interaction protocols and user interface 

designs typically need to be customized for specific domains. Therefore, such a common interoperability layer 

should only be implemented at the middle tier of a typical 3-tier architecture.  

2.3 Related Work in Interoperabilty of Grid Collaboratories 

Although interoperability has been identified as a central issue for Grid based systems in previous work [3][17] 

[39][43], there has been limited progress towards achieving this goal. This is particularly true in the case of 

computational collaboratories. Although, there have been specific efforts aimed at bilateral sharing and 

interoperability such as those between Ninf [34][40][41] and NetSolve [11], these have been made possible because 

of joint development efforts by their respective development teams. These efforts only further highlight the benefits 

and significance of interoperability and the need for having a general solution for interoperability.  

The Collaboratory Interoperability Framework (CIF) Project [39] addresses the interoperability problem by 

proposing a common communication API that can be used by collaboratory developers to build tools for 

collaboration such as videoconferencing, text-based collaboration through chat, whiteboard and electronic 

notebooks. The idea is that, since these tools will use a common communication API that hides the details of the 

underlying protocol used, they should be able to interoperate with each other. While this approach can provide low-

level interoperability at the communication layer, collaboratories will continue to build customized services on top 

of this layer and cease to be interoperable. 

Another approach for enabling interoperability has been recently presented by Fox et al. in [42]. This approach 

characterizes portals as web based interfaces to applications. In particular it focuses on portals for computational 

science and web based education. This approach takes the view that interoperable portals should be based on 

interface standards, which are essentially hierarchical frameworks in the Java approach but are probably best defined 

in XML. These portal frameworks are based on a 3-tier architecture which uses two interface definitions based on 

XML. These are the resource markup language (resourceML) that describes the basic learning or computing objects 

and the portal markup language (portalML) that describes the user view of the portal.  

3 BUILDING INTEROPERABLE COLLABORATORIES ON THE GRID 

3.1 Approaches to Interoperability  

As motivated earlier, a middleware layer on top of the Grid is one means of achieving interoperability. Such a 

middleware can be defined as a set of interoperable high-level services providing functionality that is common to 

these collaboratories, and will enable collaboratory developers to compose these services to develop new and 

specialized user level services for their specific user community. We believe that without a standard set of high-level 

services, collaboratories will continue to implement this common functionality in customized ways, resulting in non-

reusability and lack of interoperability. Following this approach, we identify three distinct ways to implement 
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interoperable higher-level services – same implementation everywhere, same interface and/or API everywhere, and 

same protocol everywhere. 

Shared Implementation: In this approach, the services are built into a toolkit and all users use the same toolkit. An 

example of this approach is the use of different commercial instant messaging software available from Yahoo, 

Microsoft, etc. Users of these systems can only share messages with other users with the same software. The 

scalability, extensibility and the level of interoperability of such an approach leaves much to be desired.  

Shared Interfaces and APIs: In this approach, each system publishes a set of APIs and interfaces for its services. 

This approach is used by CORBA applications where the APIs are specified using its IDL (Interface Definition 

Language) and these IDLs are shared by all systems. The approach by Fox et al. described above also uses this 

approach. This solution is feasible for moderate numbers of systems and services, and is most widely used. 

However, it requires all implementations of a service to conform to a common interface and other systems to use 

this interface to access the service, and will not provide truly global sharing and interoperability on the Grid. 

Shared Protocols: The third approach is to have each system communicate using the same protocol. As identified 

by Foster et al. in [17][43], true interoperability in a networked environment can only be achieved by using common 

protocols. A protocol definition specifies how distributed elements interact with one another to achieve a specified 

behavior, and the structure of the information exchanged during this interaction. It defines the format of the data that 

is sent between two systems, including the syntax of messages, character sets, and sequencing of messages. The 

most scalable and interoperable system today is the Internet and the World Wide Web and the major forces behind 

their success are standard protocols like TCP/IP and HTTP.  

Note that true (protocol-based) interoperability can be achieved using CORBA by leveraging the fact that 

CORBA uses the IIOP (Internet Inter-ORB Protocol) protocol for all communication. The services to be shared can 

be built into the CORBA ORB as standard CORBA services, and can be accessed in a standard way using IIOP. 

This is analogous to the sockets API supported by various implementations of TCP/IP. 

3.2 An Architecture for Interoperable Collaboratories  

An overall architecture for the Grid has been defined using an hourglass model [17]. The services defined at the 

Application layer and the Collective layer at the top of the hourglass are used to construct a wide range of global 

services and application-specific behaviors. The neck of the hourglass consists of the Resource and the Connectivity 

layers, which define protocols for sharing of individual resources. Protocols at these layers are designed so that they 

can be implemented on different resources types, which are defined at the Fabric layer at the base of the hourglass.  

The hourglass model emphasizes that the number of protocols at the neck of the hourglass (the Resource and the 

Connectivity layers) should be small, so as to encourage widespread and easy deployment. 

The hourglass Grid architecture model can be naturally extended to build interoperable collaboratories on the 

Grid. The corresponding hierarchical architecture consists of user level services, infrastructure services and 

infrastructure protocols.  The requirements of the collaboratories can be formulated as customized user level specific 

to each collaboratory. The services can then be built as combinations of underlying infrastructure services, which in 

turn build on underlying infrastructure protocols. It is these infrastructure services that interoperate with each other 

on the Grid.  The user services and the infrastructure services can be thought of as specific instances of the 
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Application and Collective layer at the top of the hourglass. Table 1 and Table 2 illustrate this architecture for two 

specific collaboratories – a collaboratory for interaction and computational steering (e.g. DISCOVER) and a 

collaboratory for executing applications remotely (e.g. PUNCH). 
User Services 
(Application 
Layer) 

List available 

applications 

Access an active 

application 

Computational steering Data management Collaboration  

Infrastructure 
Services 
(Collective 
Layer) 

Inter-domain 

Auth.  + 

Resource 

Discovery 

Inter-domain Auth. + 

Resource Discovery 

+ 

Request Dispatcher + 

Status Monitoring 

Request Dispatcher + 

Real-Time Data Transfer + 

Status Monitoring 

Request Dispatcher + 

Database Access + 

File Transfer 

Request Dispatcher  + 

Real time Data Transfer 

+ 

Status Monitoring 

Layer 1 

GSI, GI, MDS, GRAM, SOAP, GridFTP, NWS, … 

Infrastructure 
Protocols 
(Resource & 
Connectivity 
Layers) 

Layer 2 

SSL, LDAP, HTTP, FTP, RTP, SNMP, … 

 
Table 1. Architecture of a collaboratory for interactive computational steering (e.g. DISCOVER) 

 
 
User Services 
(Application 
Layer) 

List available 

computing resources 

Access a computing 

resource for job 

submission 

Deploy and execute an 

application 

Data management 

(Optional) 

Collaboration  

(Optional) 

Infrastructure 
Services 
(Collective 
Layer) 

Inter-domain Auth.  

+ 

Resource Discovery 

+ 

Network Monitoring 

Inter-domain Auth. + 

Resource Discovery 

+ 

Request Dispatcher + 

Status Monitoring 

Request Dispatcher + 

File Transfer + 

Status Monitoring 

Request Dispatcher + 

Database Access + 

File Transfer 

Request Dispatcher + 

Real time Data Transfer 

+ 

Status Monitoring 

Layer 1 

GSI, GI, MDS, GRAM, SOAP, GridFTP, NWS, … 

Infrastructure 
Protocols 
(Resource & 
Connectivity 
Layers) 

Layer 2 

SSL, LDAP, HTTP, FTP, RTP, SNMP, … 

 
Table 2. Architecture of a collaboratory for remote application execution (e.g. PUNCH) 

4 DESIGN OF A MIDDLEWARE SUBSTRATE FOR  GRID-BASED COLLABORATORIES  

The overall goal of the middleware substrate presented in this paper (and the related CORBA CoG effort [18]) 

is to define interfaces and mechanisms for a peer-to-peer integration and interoperation of the services provided by 

the domain specific collaboratories.  The middleware design builds on existing web servers and leverages 

commodity technologies and protocols such as CORBA [19] and HTTP [20]. Its goal is to enable rapid deployment, 

ubiquitous and pervasive access, and easy integration with 3rd party services, while evaluating the viability of these 

technologies for advanced Grid applications. Interoperability in the current implementation of the middleware is 

achieved by sharing interfaces defined in the CORBA IDL. True interoperability can be obtained by integrating 

these IDLs into the ORB as standard CORBA services. The infrastructure services outlined in Section 3 are 

implemented as daemon processes (or threads) either as a part of the web server (as server side extensions, CGI 

scripts or Java servlets) or as a part of the pool of services.  
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The key feature of our design is a hybrid rather than a pure peer-to-peer or client-server approach. While the 

middleware substrate provides client-server architecture from the users’ point of view, the middle tier has a peer-to-

peer architecture. This approach provides several advantages. The middle-tier peer-to-peer network distributes 

services across peer-servers and reduces the requirements of a server.  As clients connect to the middle-tier using the 

client-server approach, the number of peers in the system is significantly smaller.  Security and manageability are 

still open issues in true peer-to-peer systems, while one of the reasons for the success of client server systems is the 

security and manageability associated with having centralized servers. The smaller number of peer servers allows 

our architecture to be more secure and better managed as compared to a true peer-to-peer system, and restricts the 

security and manageability concerns to the middle tier of servers. Furthermore, this approach makes no assumptions 

about the capabilities of the client or the bandwidth available to them, and allows for very thin clients.  Finally, 

servers in this model can be lightweight, portable and easily deployable and manageable, instead of being heavy 

weight (as in pure client-server systems). A server may be deployed anywhere where there is a growing community 

of users, much like a HTTP Proxy server. 

 
Figure 1. Middleware design for integrating computational collaboratories 

 

A schematic overview of the design of a Grid-based collaboratory is presented in Figure 1. It has a 3-tier 

architecture consisting of (collaborative) client portals at the front end, the computational resources, services or 

applications at the backend, and the peer servers in the middle. In order to enable ubiquitous web-based access, 

clients are kept as simple as possible. The responsibilities of the middle-tier include providing a “repository of 

services” view to the client, providing controlled access to these backend services, interacting with peer servers, and 

collectively managing and coordinating collaboration. A client always connects to its “closest” server and has access 

to all  (local and remote) backend services based on its privileges and capabilities. Backend services include 
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resource access and management toolkits, high-performance applications, and network-monitoring tools. These 

services may be specific to a server or may form a pool of services that can be accessed by any server. In the former 

case, direct access to the service is restricted to the local server, typically due to security, scalability or compatibility 

constraints. This is true for many scientific resources and applications. In this case, the local server advertises the 

service and its interface, and clients and peer servers can discover and access the service through the local server. 

The server may also wrap this service as a distributed object and bind it to a naming service, registry or a trader 

service. In either case, the servers and the backend services are accessed using standard distributed object 

technologies such as CORBA/IIOP, RMI, and DCOM. 

The middleware design defines two levels of interfaces for each server. The first level interfaces enable other 

peer servers to authenticate with a server and query it for active services and users.   The second level interfaces for 

authenticating with and accessing a specific service at the server. If a server provides a single instance of an 

application or a service only the second level interfaces are required. A pool of services model are implemented 

using the second level interfaces. 

The portalML and resourceML interfaces for interoperable web portals presented in [42], are similar to the two 

levels of interfaces described above. However, the first level interfaces, instead of providing a user view of a portal 

as in portalML, define a system view of a server, which can be used, by other servers to access its services. The 

second level interfaces describe a particular service at a server, which is similar to the resourceML.  In our current 

design, these interfaces are defined in the CORBA IDL instead of XML (which is used by portalML and 

resourceML). 

The DISCOVER middleware substrate presented in the following sections is a prototype implementation of this 

design to achieve interoperability between multiple, distributed instances of the DISCOVER computational 

collaboratory. 

5 DISCOVER: A COMPUTATIONAL COLLABORATORY FOR INTERACTION AND STEERING 

DISCOVER is a virtual, interactive computational collaboratory that enables geographically distributed 

scientists and engineers to collaboratively monitor, and control (new and existing) high performance 

parallel/distributed applications. Its primary goal is to bring large (remote) distributed simulations to the 

scientists’/engineers’ desktop by providing collaborative web-based portals for interrogation, interaction and 

steering.  DISCOVER architecture (see Figure 2) is composed of detachable client portals at the front-end, an 

interaction server in the middle, and a control network of sensors, actuators, and interaction agents superimposed on 

the application at the backend.  Clients can connect to a server at any time using a browser to receive information 

about active applications. Furthermore, they can form or join collaboration groups and can (collaboratively) interact 

with one or more applications based on their capabilities. The middle tier consists of an Interaction and 

Collaboration server, which extends a commodity web-server with interaction and collaboration capabilities. The 

backend consists of a control network composed of sensors, actuators and interaction agents. Session management 

and concurrency control is based on capabilities granted by the server. A locking protocol is used to ensure that the 

applications remain in a consistent state during collaborative interaction and steering. Security and authentication 
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services are provided using customizable access control lists built on the SSL-based secure server. DISCOVER is 

currently operational2 and is being used to provide interaction capabilities to a number of scientific and engineering 

applications, including oil reservoir simulations, computational fluid dynamics, seismic modeling, and numerical 

relativity. Details about the design and implementation of the DISCOVER collaboratory can be found in [16]. 

 

 
Figure 2. Architectural schematic of the DISCOVER computational collaboratory 

5.1 A Middleware Substrate for Peer-to-Peer Integration of DISCOVER Servers 

The primary objective of the DISCOVER middleware substrate is to enable integration of multiple instances of 

the DISCOVER computational collaboratory so that a client can access and interact with all the applications for 

which it has access privileges, regardless of whether they are local or remote. Having all applications connect to a 

single DISCOVER server or having a centralized repository of servers are not scalable options. Furthermore, 

security constraints often prevent applications from connecting to remote servers outside their domain. This is true 

for applications executing on most high-end resources. Finally, applications typically do not provide standard access 

interfaces for interaction and steering, and need to be coupled to their server using a proprietary protocol. The 

proposed peer-to-peer architecture with coupled server/application(s) sets is a more appropriate architecture for such 

integration. 

An overview of the DISCOVER network of peer-to-peer servers is presented in Figure 3. The DISCOVER 

peer-to-peer architecture consists of multiple independent collaboratory domains, each consisting of one or more 

DISCOVER servers, and applications connected to the server(s). The middleware can be extended to include other 

servers and services using the “pool of services” model described earlier.  For example, the middleware can provide 
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access to a monitoring service, an archival service or grid services using Java/CORBA CoG Kits. A domain will 

typically consist of different types of servers, and all the servers within a domain share the same database of users 

and applications. They may also share the same security mechanism. Note that the availability of these servers is not 

guaranteed and must be determined at runtime using a discovery mechanism. A client can connect to a server within 

its domain (using HTTP), and have secure and authorized access to all applications/services in the entire system.  

The middleware substrate builds on CORBA/IIOP, which provides peer-to-peer connectivity between 

DISCOVER servers within and across domains. Server/service discovery mechanisms are built using the CORBA 

Trader Service [47], which allows a server to locate remote servers and to access applications connected to those 

remote servers. Although CORBA does introduce some overheads, it enables scalability and high availability and 

provides the services required to implement the middleware substrate. It allows interoperability between servers, 

while they can still maintain their different individual architectures and implementations. Moreover, we believe that 

the servers will be typically connected through reasonable bandwidth links (~1 Mbps). As no assumptions can be 

made about client-server connections, having the client connect to the “nearest server”, and using CORBA/IIOP to 

connect that server and the desired application may actually reduce client latencies.  

 
Figure 3. A deployment of DISCOVER servers providing access to a repository of services 
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To enable integration of DISCOVER interaction and collaboration servers, the middleware substrate should 

support the following operations: 

•  Authentication/security across servers: Since clients will be accessing applications connected to remote 

servers, the middleware substrate should be able to authenticate a client with remote servers and/or remote 

applications. 

•  Collaboration and interaction across servers: In a network of servers, an application might be connected to 

one server, and clients from different servers might want to collaboratively interact with it. Clients 

interacting with the same application should be able to form a collaborative group, even if they are 

interacting with it through different servers. 

•  Data/State consistency across servers: DISCOVER servers use a simple locking mechanism to make sure 

that applications remain in a consistent state during collaborative sessions. The middleware substrate 

should be able to extend this locking mechanism, in order to handle multiple clients from multiple servers. 

•  Logging capabilities across servers: Since clients from any server can access an application, the application 

and the client logs must be maintained separately. 

The implementation and operation of these mechanisms is described in the following section. 

6 IMPLEMENTATION AND OPERATION OF THE DISCOVER MIDDLEWARE SUBSTRATE  

6.1 DISCOVER Interaction and Collaboration Server 

The DISCOVER interaction/collaboration server builds on a commodity web server, and extends its 

functionality using Java servlets [44][45], to provide specialized services for real-time application interaction and 

steering and collaboration between client groups. Clients communicate with the server over HTTP using a series of 

HTTP GET and POST requests. At the other end, application-to-server communication is achieved either using 

standard distributed object protocols such as CORBA [19] and Java RMI [46], or a more optimized, custom protocol 

using TCP sockets.   

The DISCOVER middleware creates 3 communication channels between a server and an application: (1) a 

MainChannel for application registration and periodic updates, (2) a CommandChannel for forwarding client 

interaction requests to the local or remote application, and  (3) a ResponseChannel for communicating application 

responses to the interaction requests. Clients differentiate between the different messages (i.e. Response, Error or 

Update) using Java’s reflection mechanism, by querying the received object for its class name. Messages are 

processed differently at the client based on their type. 

An ApplicationProxy object is created at the server for each active application, and is given a unique identifier. 

This object encapsulates the entire context for the application. 

The core service handlers provided by each server include the Master Handler, Collaboration Handler, 

Command Handler, Security/Authentication Handler and the Daemon Servlet that listens for application 

connections. In addition to these core handlers, there can be a number of handlers providing auxiliary services such 

as session archival, database handling, visualization, request redirection, and remote application proxy invocations 
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(using CORBA).  These services are optional and need not be provided by every server.  Details about the design 

and implementation of the DISCOVER Interaction and Collaboration servers can be found in [16]. 

6.2 Implementation  of the Middleware Substrate for peer-to-peer Integration of DISCOVER 
Servers 

The DISCOVER middleware substrate builds a peer-to-peer network of DISCOVER servers by implementing 

the 2 levels of interfaces described in Section 4. The DiscoverCorbaServer interface is the level one interface and 

represents a server in the system. This interface enables peer servers to discover, authenticate and interact with one 

another. The CorbaProxy interface is the level two interface and represents an application at a server. This interface 

defines the functionality provided by the application and allows remote servers to access this functionality. The 

middleware substrate builds on the DISCOVER interaction/collaboration server architecture outline above.  Sever to 

server communication in the DISCOVER middleware uses the same 3 communication channels set up for the 

application-server communication, i.e. Main Channel, Command Channel and Response Channel (see Section 6.1). 

In addition, server-server communication also uses a Control Channel for error messages and system events. The 

Control Channel implements a notification service similar to the one used in the Salamander substrate [35][36][37].  

The schematic of the middleware implementation is presented in Figure 4. The two interfaces are described below. 

6.2.1 The DiscoverCorbaServer Interface 
The DiscoverCorbaServer interface is implemented by each server and defines the methods for interacting with 

the server. This includes methods for authenticating with the server, querying the server for active services, and 

obtaining the list of users logged on to the server. A DiscoverCorbaServer object is maintained by each server’s 

Daemon Servlet and represents the server within the peer-to-peer system. The DiscoverCorbaServer object 

publishes its availability using the CORBA trader service. It also maintains a table of references to CorbaProxy 

objects (i.e. CorbaProxyInterface) for remote applications. These references are used to provide transparent access 

to the associated remote applications and to enable local clients to interact with these applications – i.e. all 

interactions with remote applications from locally connected clients go through the DiscoverCorbaServer, which 

then forwards them to the appropriate CorbaProxyInterface reference. 

6.2.2 The CorbaProxy Interface 
The CorbaProxy interface represents an active application at a server. This interface specifies all the methods 

required for accessing, interacting with and steering the application. This includes methods for querying application 

status, querying and changing application parameters, requesting steering controls (locks) and issuing commands. 

The CorbaProxy object also binds itself to the CORBA naming service using the application’s unique identifier as 

the name. This allows the application to be discovered and remotely accessed from any server. The 

DiscoverCorbaServer objects at all remote servers that have clients interacting with a remote application maintain a 

reference to the CorbaProxy object for that application. This reference thus serves as the gateway to the 

applications.  

The CorbaProxy object is contained within each DISCOVER ApplicationProxy created at the server. As 

mentioned earlier, the ApplicationProxy manages all interactions with the application. In the case of local 

applications, the ApplicationProxy directly communicates with the applications, while in the case of remote 
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applications this communication is through the local reference (i.e. CorbaProxyInterface) of the remote CorbaProxy 

object. 

 
Figure 4. Interaction Model between DISCOVER Servers 

6.3 Middleware Operation 

This section describes the operation of key mechanisms across multiple instances of the DISCOVER 

computational collaboratory, viz. sever and applications discovery, security/authentication across servers, 

collaboration across servers, distributed locking, and distributed information logging.  

6.3.1 Discovery of Servers and Applications  

Peer DISCOVER servers locate each other using the CORBA trader services. The CORBA trader service 

maintains all the server references as service-offer pairs. In our current system we have implemented a minimal 

trader service on top of the CORBA naming service.  All DISCOVER servers are identified by the service-id 

‘DISCOVER’. The service offer is a CORBA CosTrading module (CORBA Trader service specification), which 

encapsulates the CORBA object reference and a list of properties defined as name-value pairs. Thus the object can 

be identified based on the service it provides or its list of properties.  

Applications are located using their globally unique identifiers that are dynamically assigned by the 

DaemonServlet. The application identifier is a combination of the server’s IP address and a local count of the 

applications on each server. This ensures that even if the same application is connected to multiple servers or 

multiple instances of an application are connected to the same server, each instance will have a unique identifier. 

Furthermore, the server’s IP address can be extracted from this application identifier, making it very easy to 

determine if the application is a local application or a remote application. 
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6.3.2 Security/Authentication across Servers 

Each DISCOVER server supports a two-level client authentication; the first level authorizes access to the server 

and the second level permits access to a particular application. To control access, all applications are required to be 

registered with a server and to provide a list of users and their access privileges (e.g. read-only, read-write). This 

information is used to create access control lists (ACL) for each user-application pair. For access to remote 

applications, the security handler uses the DiscoverCorbaServer interface to authenticate the client with each server 

in the network, and in return receives the list of active applications connected to all the servers to which the user has 

access privileges. Once the client selects a remote application, the second level authentication is performed to get a 

customized interaction/steering interface for the application based on the client’s access privileges. As a result each 

client can access only those applications that it is authorized to, and only it can interact in ways defined by its 

privileges and capabilities. Note that a client has access only to those servers where it is a registered user – i.e. it is 

on the authorized user list for at least one of the applications registered with the server. 

6.3.3 Collaboration across Servers 

The DISCOVER collaboratory enables multiple clients to collaboratively interact with and steer (local and 

remote) applications. The collaboration handler servlet within each server handles the collaboration on the server 

side, while a dedicated polling thread is used on the client side. All clients connected to an application form a 

collaboration group by default. However, as clients can connect to an application through remote servers, 

collaboration groups can span multiple servers. In this case, the CorbaProxy objects at the servers poll each other for 

updates and responses. They use the main channel for retrieving global messages, the response channel for 

retrieving response messages generated in response to any of the clients’ requests, and the control channel for 

retrieving any error messages or steering control (locks) updates. 

The peer-to-peer architecture offers two significant advantages for collaboration. First, it reduces the network 

traffic generated, by reducing the large number of broadcast messages that would be typically sent by a server to all 

the participants of the collaboration session. This is because, instead of sending individual collaboration messages to 

all the clients connected through a remote server, only one message is sent to that remote server, which then updates 

its locally connected clients as shown in Figure 5. Since clients always interact through the server closest to them 

and the broadcast messages for collaborative updates are generated at this server, these messages don’t have to 

travel large distances across the network. This reduces overall network traffic as well as client latencies when the 

servers are geographically far away. It also leads to better scalability in terms of the number of clients that can be 

supported within a collaboration session without overloading a server as the collaboration load now spans across 

multiple servers.  
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Figure 5. Collaborative Group spanning multiple servers 

6.3.4 Distributed Locking for Interactive Steering and Collaboration 

Session management and concurrency control is based on capabilities granted by the server. A simple locking 

mechanism is used to ensure that the application remains in a consistent state during collaborative interactions. This 

ensures that only one client “drives” (issues commands) the application at any time. In a distributed server 

framework, locking information is only maintained at the application’s host server i.e. the server to which the 

application connects directly. Servers providing remote access to the application only relay lock requests to the host 

server and receive locking information from the host server. Thus using the application’s host server as the 

controller of the session guarantees consistency during interaction and collaboration. 

6.3.5 Distributed Logging 

The session archival handler maintains two types of logs. The first one logs all interactions between a client(s) 

and an application. This log enables clients to replay their interactions with the applications. It also enables 

latecomers to a collaboration group to get up to speed. For remote applications, the client logs are maintained at the 

server where the clients are connected. The peer-to-peer architecture assumes that there is an application running on 

a remote server, and the data generated by the application is sent to all the servers who have clients interested in that 

data set. Thus handling of the output files, resulting data sets, etc., are all handled by the home server or the server to 

which the clients are directly connected and the home server creates the output files or the records under the 

ownership of the client who requested that data. The p2p architecture doesn’t allow creation of files on a remote 

server by the clients. 

The second log maintains all requests, responses, and status messages for each application. This log allows 

clients to have direct access to the entire history of the application. For remote applications, all the data generated by 
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the application throughout its execution is logged at that application’s host server (the server to which the 

application is directly connected).     

7 AN EXPERIMENTAL EVLAUTION OF THE DISCOVER MIDDLEWARE SUBSTRATE 
The DISCOVER collaboratory is currently operational and the current server network includes server 

deployments Rutgers University and the Center for Subsurface Modeling (CSM), University of Texas at Austin. We 

are currently expanding the network to include a deployment at the Center for Advanced Computational Research 

(CARC), California Institute of Technology.  Figure 6 shows the setup used for the experimental evaluation 

presented in this section. The middleware implementation used Apache Web Server 1.3 [48] with Apache Jserv 

1.1.12 [49] as the servlet engine, and Visibroker for Java 4.5.1 [50] as the CORBA ORB. The evaluation consists of 

three experiments, viz. access latency over local area and wide area networks, effect of multiple clients on access 

latencies and server memory overheads due to local and remote applications. 

 
Figure 6. Setup for the experimental evaluation of the DISCOVER middleware 

7.1 Experiment 1 –Access Latency over Local Area Networks (LAN) and Wide Area Networks 
(WAN) 

This experiment consisted of 2 sets of measurements. The first set of latency measurements was for a 10Mbps 

local area network (LAN) and used DISCOVER servers at Rutgers University. The second set of latency 

measurements was for a wide area network (WAN) and used DISCOVER servers at Rutgers University and at CSM, 
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University of Texas at Austin. The clients were running on the local area network at Rutgers University for both sets 

of measurements. 

In this experiment an application was connected to one of the servers, and a minimal client (without any user 

interface) was used to access and interact with the application. In case of the LAN measurements the application was 

connected to one of the servers at Rutgers University while in case of the WAN measurements, the application was 

connected to the server at CSM, University of Texas at Austin. The client requested data of different sizes from the 

application, and response times were measured for both, a direct access to the server where the application was 

connected and an indirect (remote) access through the middleware substrate. Direct access times included the time 

taken for the client’s request to be sent to the server over HTTP, the server handling the request and forwarding the 

request to the application, the server getting and processing the response from the application, and the response 

being sent back to the client. The time taken by the application to compute the response was not included in the 

measured time. Indirect (remote) access time included the direct access time plus the time taken by the server to 

forward the request to the remote server and to receive the result back from the remote server over IIOP. A mean 

response time was calculated over 10 measurements for each response size. 

 
Figure 7. Comparison of latencies for direct and indirect application accesses on a Local Area 

Network (LAN)  
 

The resulting response latencies for direct and indirect accesses measured on the LAN are plotted in Figure 7.  It 

can be seen that as expected, the response times for direct accesses to an application at a local server increases with 

the increase in size of data. This increase in latency is primarily due the increased communication times as the server 

overhead for request-response handling is almost constant. The response times for indirect accesses to an application 

at a remote server also increase with increase in data size, again as expected.  Indirect access times are almost twice 
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the direct access times, which is not surprising as an indirect access includes the time for a direct access. However, it 

should be noted that the difference in indirect and direct access times approaches a constant as the data size 

increases. The obvious conclusion from these results is that it is more efficient to directly access an application on 

the same LAN. 

 
Figure 8. Comparison of latencies for direct and indirect application accesses on a Wide Area 

Network (WAN) 
 

The response latencies for direct and indirect responses measured on the WAN are plotted in Figure 8.   In 

contrast to the results for the LAN experiment, indirect access times measured on the WAN are of comparable order 

to direct access times. In fact, for small data sizes (1K, 10 K and 20K) indirect access times are either equal to or 

smaller than direct access times. While these results might appear to be contradictory to expectations, the underlying 

communication for the two accesses provides an explanation. In the indirect access measurement, the application 

was connected to the server at Austin, while both the client and locally accessed server were running on machines at 

Rutgers University. The indirect access consisted of the client at Rutgers accessing the local server at Rutgers over 

HTTP, which in turn accessed the server at Austin over IIOP.  In the direct access measurement, the client was 

running at Rutgers and accessing the server at Austin over HTTP. Thus in the direct access case, a large network 

path across the Internet was covered over HTTP, which meant that a new TCP connection was set up over the wide 

area network for every request. In the indirect access case however, the path covered over HTTP was short and 

within the same LAN, while the larger network path (across the Internet) was covered over IIOP, which uses the 

same TCP connection for multiple requests. Since the time taken to set up a new TCP connection for every request 



 

19 

over a wide area network is considerably larger than that over a local area network, the direct access times are 

significantly larger. As data sizes increase, the overhead of connection set up time becomes a relatively smaller 

portion of the overall communication time involved and hence, the overall access latency is dominated by the 

communication time, which is larger for remote accesses as they involve accesses to two servers. Also note that, in 

both cases, this latency was less than a second. A discussion on the use of IIOP as the protocol for the World Wide 

Web (WWW) is given in Appendix A. 

7.2 Experiment 2 –Access Latency with Multiple Simultaneous Clients 

This experiment measured the variation of direct and indirect access latencies in the presence of multiple 

simultaneous clients over a LAN. The setup used for this experiment was the same as that described above for 

experiment 1 for the LAN. In this experiment, an application was connected to one of the servers and multiple 

clients simultaneously accessed and interacted with the application. Each client requested data of size 20 Kbytes. 

Response times for direct access to the server with the application and indirect access through the middleware 

substrate were measured. These results are plotted in Figure 9. The results show that the response times more or less 

hover around the average response times for a single client for 20 Kbytes of data (see Figure 7), both for direct and 

indirect accesses. The 3 points towards the right end of the graph (for 16, 17 and 19 clients) are probably due to the 

communication and network irregularities – we are unable to explain these values and are in the process of repeating 

these experiments.   

 
Figure 9. Variation in access latencies with multiple, simultaneous clients over a LAN 
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7.3 Experiment 3 – An Evaluation of Server Memory Requirements 

This set of experiments was conducted to evaluate the server memory requirements for different configurations 

when multiple applications were connected to it. The motivation for this experiment was our design goal to make the 

DISCOVER servers lightweight and easily deployable. Memory usage was computed as the difference between the 

total memory available to the Java Virtual Machine (JVM) for current and future objects and free memory available 

for future objects. The method calls freeMemory() and totalMemory() defined in the java.lang.Runtime class were 

used for this purpose. These methods return an approximation of the total bytes of memory currently available for 

future allocated objects and the total bytes of memory currently available for current and future objects respectively.  

Since these methods return only an approximate value and this value is for the entire JVM rather than a single 

process within the JVM, the calculated values for memory use are approximate and actual values will be slightly 

lower than those plotted here. However, it was made sure that only the server process was in operation in the JVM 

during the experiment, so that the changes in memory used reflected the memory allocated for new applications that 

connected to the server. 

Three different server configurations were used in this experiment. In the single standalone server configuration 

the server had no ORB or Naming Service running, and made no CORBA invocations. In this case there were no 

updates generated for remote servers. A single client running on a different machine connected to the active 

applications and generated requests for 1K of data, and memory usage was measured as the number of applications 

connected to the server was increased. The next 2 configurations consisted of a network of two servers with a local 

server (the server to which the application was directly connected) and a remote server (the server accessing an 

application remotely). The goal of the experiment in this case was to measure the memory use at a local server when 

it publishes its local applications for remote accesses.  The applications connected to one of the servers and this 

server created the required CORBA objects for the applications (i.e. CorbaProxy objects), which then registered 

themselves with the CORBA Naming Service. CORBA updates for remote servers were generated in this case.  A 

single client running on a different machine accessed one of the applications directly through the local server. 

Memory usage was measured at the local server (the server where the application was connected).  In the final 

experiment, multiple clients were used to access multiple applications remotely through CORBA. As for the 

previous configuration, the memory utilization at the local server was measured – however in this case there were 

multiple clients accessing multiple applications remotely instead of a single client accessing one of the many 

applications directly. In this experiment, the memory utilization at the remote server was also measured. Remote 

server memory utilization includes the memory required for storing remote CORBA references to applications and 

invoking IDL methods on them. The measured memory utilizations for these experiments are plotted in Figure 10.   

As expected, the memory usage increases for each configuration as the number of applications is increased. 

However, it should be noted that the overall memory required at the server was not significant, i.e. less than 10 MB. 

It is interesting to see that the memory requirements are smaller when a server accesses remote applications as 

compared to the case when applications connect directly to a standalone server – i.e. the single standalone server, 

where all applications are local (with no CORBA objects), requires more memory than a remote server having a 
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remote reference to the application.  However, publishing a local application for remote access (creating CORBA 

objects) almost doubles the memory requirements. Thus, local servers (i.e. servers to which the application connects 

directly) publishing applications have larger memory requirements, while remote servers accessing these 

applications using the middleware substrate have reduced memory requirements.  Note that the memory required for 

maintaining client state at the server is not significant. This can be inferred from the local server memory 

requirements for a single direct client and multiple remote clients.  

 

 
Figure 10. Sever memory utilization for different configurations 

8 RETROSPECTIVE EVALUATION OF THE DESIGN AND TECHNOLOGIES USED 
The primary goal of the solutions presented in this paper is to support wide deployment and global access; as a 

result we build on widely used commodity distributed technologies. For example, access to DISCOVER is provided 

using thin web browsers and the ubiquitous HTTP protocol. Our implementation builds on existing HTTP servers 

and adds new services, rather than building customized servers from scratch. The choice of CORBA as the 

middleware substrate is motivated by its inherent support for peer-to-peer interactions.  It enables seamless 

integration with 3rd party custom servers, thereby achieving interoperability through shared IDLs. Integration of 

these IDLs as standard CORBA services into an ORB is the next step towards true interoperability. The use of IIOP 

for communication among peer servers, rather than clients accessing remote servers through HTTP over a wide area 

network, provides comparable performance (to direct accesses) for indirect accesses while enabling scalability, 

higher availability and enhanced set of services and applications for the users. 

But the use of these commodity technologies is not without its disadvantages and limitations. While the use of 

HTTP for client-server interactions provides ubiquitous pervasive access through standard web browsers, it 

necessitates a poll and pull mechanism for fetching the data from the server instead of a push mechanism, as HTTP 

is a request-response protocol. The poll and pull mechanism makes it necessary to maintain FIFO buffers at the 
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server for each client to support slow clients.  Such a poll and pull mechanism may be unsuitable for large virtual 

reality collaborative environments where 3D data is involved, as it presents both memory and performance 

overheads. Similarly the use of CORBA as the middleware technology causes the middleware to give up control 

over its transport and communication policies and reduces performance when compared to a lower level socket 

based system. Furthermore, in our experience, the current commercial CORBA ORBs leave much to be desired, 

especially in the areas of high performance and interoperability. A discussion on emerging technologies addressing 

issues in interoperability and interaction of web services is presented in Appendix B. 

9 CONCLUSION AND FUTURE WORK 
This paper presented the design implementation, and operation of a middleware substrate that enables a peer-to-

peer integration of and global collaborative access to multiple, geographically distributed instances of the 

DISCOVER collaboratory. The substrate builds on the CORBA distributed object technology and enables dynamic 

application/service discovery, remote authentication and access control, coordinated interactions for collaborative 

interaction and steering. A retrospective evaluation of the design and an experimental evaluation of the middleware 

substrate were also presented. The performance of the middleware substrate over a wide area network validated the 

middleware design and justified the use of CORBA/IIOP for inter-server communication. The DISCOVER 

middleware architecture is currently operational and provides collaborative interaction and steering capabilities to 

remote distributed scientific and engineering simulations, including oil reservoir simulations, computational fluid 

dynamics and numerical relativity. The DISCOVER server network currently includes deployments at CSM, 

University of Texas at Austin, and is being expanded to include CACR, California Institute of Technology.  

A key contribution of this paper is the design of a middleware substrate that enables interoperability among 

multiple, independently administered and managed, instances of an entire collaboratory deployed at geographically 

distributed locations, with the goal of enabling global access and sharing of services across these instances with 

acceptable performance.  The DISCOVER middleware is a prototype implementation of this design providing 

services such as resource discovery, request dispatching, status monitoring, and remote authentication. 

Interoperability in the current implementation of the middleware is achieved by sharing interfaces defined in the 

CORBA IDL. We are currently working on integrating these IDLs into an open source ORB (such as JacORB [51] 

or MICO[52]) as standard CORBA services to enable true interoperability. We are also experimenting with 

interoperability using other protocols and technologies and are investigating XML based protocols like SOAP and 

peer-to-peer initiatives like JXTA. The DISCOVER middleware substrate currently allows interoperability between 

multiple instances of the DISCOVER computational collaboratory which is the first step towards achieving overall 

interoperability on the Grid. In a related effort we are building a CORBA CoG kit [18]3 that extends the middleware 

architecture to provide access to Globus [66] Grid services. 

 

 

 

                                                 
3www.caip.rutgers.edu/TASSL/CorbaCoG/CORBACog.htm 
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APPENDIX A: IIOP VS. HTTP FOR WIDE AREA NETWORKS 
 One well-known problem with HTTP is that a new TCP connection is opened for each request, and closed after 

the response has been delivered. This is an inefficient use of system and network resources and a source of delay. 

Although persistent connections or keepalive connections are supported as a standard option in HTTP/1.1, both the 

client and the server should have the keepalive capability and this should be negotiated before the start of a new 

connection. By contrast, GIOP and its mapping for TCP/IP – IIOP is designed to allow a connection to be used for 

multiple requests, and also to allow overlapping requests; amortizing setup costs over many requests/replies. Several 

requests may be sent over the same connection without waiting for a reply, and the replies may be delivered in any 

order. The replies are matched to requests by the use of identifiers. The CORBA ORB provides connection and 

session management to make best use of the available resources. Thus, larger the network path, over which IIOP is 

used, higher will be the performance gain as compared to the use of HTTP.  This idea has been used in earlier work 

to improve performance. Gateways that convert HTTP interactions into the corresponding interactions described by 

the IDL are proposed in [53] (see Figure 11). These two gateways are the I2H gateway, which converts IIOP 

requests to HTTP, and the H2I gateway, which converts HTTP requests to IIOP.  By co-locating the I2H gateway 

near the web server, and the H2I gateway near the web client, the IIOP protocol can be used over most of the route. 

In cases where this part of the route accounts for a significant part of the round trip time, the ability of IIOP to re-use 

an existing connection shows an improvement.   

 
Figure 11. Use of IIOP as the Protocol for the World Wide Web 

 

APPENDIX  B: ENABLING TECHNOLOGIES FOR INTEROPERABILITY  
Recent efforts in peer-to-peer (P2P) computing and enterprise computing address problems and issues, which 

are equally valid in a Grid environment.  Peer-to-peer computing, as implemented in Internet communication and 

file sharing tools such as Napster [54], Gnutella [55], and Freenet [56], and Internet computing as implemented by 

systems such as SETI@home [57], Parabon [58], and Entropia [59], are examples of the more general sharing 

modalities and computational structures. These technologies and systems go beyond traditional client server systems 

(representing a radical paradigm shift) and are characterizing virtual organizations where information and resource 

sharing can take place among any subset of participants. However, most of these systems have so far focused 
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entirely on vertically integrated solutions, rather than seeking to define common protocols that would allow for a 

shared infrastructure and interoperability.  

Project JXTA [60] from Sun Microsystems, is a recent effort to build interoperable, platform independent, and 

ubiquitous peer-to-peer systems. At the highest abstraction level JXTA technology is a set of protocols that use 

XML-encoded messages. JXTA remains independent of programming languages, APIs and even transport protocols. 

Many of the protocols and the objectives defined by JXTA, are equally valid and significant in Grid environments. 

A related proposal from Intel [61] presents an approach for peer-to-peer computing for enterprise systems, where 

jobs are “split” into byte-sized tasks for individual PCs. 

Finally, enterprise computing technologies such as Universal Description Discovery and Integration (UDDI) 

[62] and Microsoft’s .NET [63] are related efforts aimed at supporting discovery of web services and interactions 

between them. Another related effort is WSDL (Web services Description Language) [64], which is a general-

purpose XML derivative for describing the interface, protocol bindings and the deployment details of network 

services. WSDL complements the UDDI standard by providing a uniform way of describing the abstract interface 

and protocol bindings of arbitrary network services. 
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