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ABSTRACT 

 MPI is commonly used to write parallel programs for distributed memory parallel computers.  
MPI-CHECK is a tool developed to aid in the debugging of MPI programs that are written in free 
or fixed format Fortran 90 and Fortran 77.  MPI-CHECK provides automatic compile-time and 
run-time checking of MPI programs.  MPI-CHECK automatically detects the following problems 
in the use of MPI routines: (i) mismatch in argument type, kind, rank or number; (ii) messages 
which exceed the bounds of the source/destination array; (iii) negative message lengths; (iv) 
illegal MPI calls before MPI_INITIALIZE or after MPI_FINALIZE; (v) inconsistencies between 
the declared type of a message and its associated DATATYPE argument; and (vi) actual 
arguments which violate the INTENT attribute. 
 
 

 
1. INTRODUCTION 
 
MPI [1] is commonly used to write parallel programs for distributed memory parallel 
computers.  Writing and debugging MPI programs is often difficult and time consuming. 
MPI-CHECK is a tool developed to help make this process easier and faster.  MPI-
CHECK provides compile-time and run-time checking that automatically finds many of 
the errors made when writing MPI programs. 
 
While MPI-CHECK was being developed, a similar project was being carried out at 
Lawrence Livermore National Laboratories where they were developing an MPI tool 
named Umpire, see [2]. Umpire is a tool for detecting MPI errors at run-time that 
monitors the MPI operations of an application by interposing itself between the 
application and the MPI run-time system using the MPI profiling layer.  Umpire then 
checks the application’s MPI behavior for certain errors.  Umpire’s initial collection of 
programming errors detected includes deadlock detection, mismatched collective 
operations, and resource exhaustion.  Unlike MPI-CHECK, Umpire has a central 
manager that controls the execution of the MPI program and collects the MPI call 
information.  Currently, Umpire only runs on shared memory machines and not on 
distributed memory parallel computers.  Umpire may be used with Fortran, C and C++ 
MPI programs. 

 

 1

mailto:Grl@iastate.edu
mailto:hwuachen@iastate.edu
mailto:jjc@iastate.edu
mailto:hoekstra@iastate.edu
mailto:kraeva@iastate.edu
mailto:yanzou@iastate.edu


Compile-time checking of MPI-CHECK is discussed in section 2. Section 3 discusses the 
run-time checking done by MPI-CHECK and section 4 contains our conclusions and 
future directions.   
 
MPI-CHECK may be obtained at [17]. 
 
2. COMPILE-TIME CHECKING 
 
When writing a C/C++ program with calls to MPI routines, one is required to add the 
statement #include <mpi.h> which supplies needed MPI constants and the prototypes for 
each MPI function.  When writing a Fortran program with calls to MPI routines, one is 
required to add the statement include “mpif.h” which supplies needed MPI constants but 
not the Fortran 90 interface blocks since Fortran77 compilers do not recognize interface 
blocks.  The MPI-2 standard allows one to use the statement use mpi instead of include 
“mpif.h” when compiling with a Fortran 90 compiler.  We have created a module that 
not only supplies all the information in mpif.h but also contains the interface blocks for 
all MPI routines.  This allows the Fortran 90 compiler to check each MPI routine for     

• the data type of each argument, 
• the intent of each argument, and 
• the number of arguments.   

MPI_CHECK automatically inserts the statement use MPI in each routine and supplies 
the necessary module. All include “mpif.h” and use mpi statements in the original 
program are removed to avoid conflicts with our MPI module. 
 
At Argonne National Laboratories, one can obtain an MPI module, see 
ftp://ftp.mcs.anl.gov/pub/mpi. However, there were two problems with using this module 
in MPI-CHECK (1) This module does not handle messages that arrays of more than 2 
dimensions.  (2) This module does not contain the intent information for the arguments of 
the MPI routines.  Some vendors, e.g. SGI, do provide the MPI module with intent 
information, but not all vendors do this.  The intent information for all MPI-1 and MPI-2 
routines can be found on the MPI Forum web site, see [16]. Adding the intent 
information from the MPI Forum web site with the MPI module obtained from Argonne 
National Laboratories was relatively easy, but adding all possible combinations of 
message array dimensionalities cause the module to become too large to compile, and 
caused the compiled modules to become unmanageably large.  To avoid this problem, 
MPI-CHECK creates modules only for the MPI routines used. These modules are then 
compiled and linked with the executable. Creating these modules dynamically requires 
little time.  MPI-CHECK accepts arrays up to dimension seven, the maximum allowed by 
Fortran. 
 
The following example illustrates the usefulness of checking argument intent 
information. 
 

use MPI 

integer parameter :: p = 2, n = 5 

real :: A(n)  

... 
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call random_number(A) ! initialize array A 

... 

call mpi_comm_size(mpi_comm_world, p, ierror) 

... 

q=3 

call mpi_send(A,q,mpi_real,2,1,mpi_comm_world, ierror) 

 

Notice that there are two errors in this program.  In the call to mpi_comm_size, p is a 
constant and cannot have intent(out).  Notice that the variable q has been initialized but 
its type has not been declared. Therefore q takes the default REAL type and hence is not 
used properly in the call to mpi_send. A Fortran 90 compiler with the MPI module in 
MPI-CHECK will flag both errors. 
 
3. RUN-TIME CHECKING 

MPI-CHECK accomplishes run-time checking by instrumenting the original program and 
then compiling and linking the resulting program to produce an instrumented executable. 
When the resulting executable is run, error/warning messages are automatically reported. 
The run-time portion of MPI-CHECK consists of a parser, a file containing MPI routine 
information (called the MPI Knowledge Base), and the code instrumentation portion.  In 
this section, we first discuss each of these components of MPI-CHECK and then list the 
MPI problems that are automatically detected.  MPI-CHECK run-time checking will 
check all MPI-1 and MPI-2 routines for the problems listed in section 3.3.  MPI-2 added 
the MPI_IN_PLACE option for most of the collective routines.  MPI-CHECK does not 
recognize MPI_IN_PLACE as a valid argument for a buffer and issues an error message. 
Note that MPI-CHECK does not abort execution after issuing an error unless it detects 
that the following MPI call will generate an array out-of-bounds condition. 
 

3.1 The MPI-CHECK Parser 

The MPI-CHECK parser assumes that the Fortran 90 syntax is correct and that there is at 
most one call to an MPI routine on each line.  MPI-CHECK supports programs written in 
free or fixed format Fortran 90.   
 
The MPI-CHECK parser copies all lines without MPI calls in the source program to the 
instrumented code without any change.  When the parser detects an MPI call, it collects 
the following information: the routine name, the number of arguments, the name of each 
argument, the dimension of each argument (if it exists), and line number scope of an MPI 
call.  The MPI-CHECK parser stores this information in the FUNCTION structure.  The 
productions used by the parser when encountering a call to an MPI routine are illustrated 
in Figure 1. 
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MPI_CALL:: “call” MPI_NAME ‘(‘ [ARGUMENT_LIST]* ‘)’ 

MPI_NAME:: [A-Z|a-z|0-9|_]+ 

ARGUMENT_LIST:: ARGUMENT[, ARGUMENT]* 

ARGUMENT:: VAR [(DIMENSION)]* 

VAR:: [A-Z|a-z|0-9|_]+ 

DIMENSION:: EXPRESSION [, EXPRESSION]* 

EXPRESSION:: [any ASCII]+. 

 

 

 

 

 
 
 
 
 
 Figure 1: Productions of MPI Statements 
 
 
Notice that EXPRESSION in Figure 1 is defined as a string consisting of any ASCII 
characters without any analysis. Analyzing EXPRESSION is not necessary since 
expression is used as a single unit for the MPI-CHECK instrumentation.   
 

3.2 The MPI Knowledge Base 

The information in the MPI Knowledge Base is used to determine what instrumentation 
is needed for each MPI routine.  The MPI Knowledge Base contains the following 
information about each MPI routine.  The first line in the MPI Knowledge Base contains 
the routine name, a tag = 0 or 1 indicating if MPI-CHECK uses this routine for 
instrumentation, and the number of arguments.  Each of the rest of the lines contain the 
name of each argument, an integer indicating the function of each argument, and either a 
nonnegative integer m or an *.   If the * is used, this indicates that this argument can be 
an array of any size.  If m is used, this indicates that the argument must be of dimension 
m, where m = 0 means the argument is a scalar.  If there are integers following the m, 
they indicate the size of each dimension of the array for this argument.   

 

#MPI_RECV 1 8 
BUF 20 1 * 
COUNT 60 0 
DATA TYPE 40 0 
SOURCE 81 0 
TAG 50 0 
COMM 30 0 
STATUS 10 1 MPI_STATUS_SIZE 
IERROR 10 0 

 

 

 

 

 
Figure 2: MPI_RECV in an MPI Knowledge Base   
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Figure 2 shows how this information for MPI_RECV is stored in the MPI-CHECK 
Knowledge Base. “1” indicates that MPI-CHECK uses this routine for instrumentation; 8 
indicates the number of arguments in MPI_RECV.  

 
The information for the MPI-CHECK Knowledge Base was obtained by writing a tool in 
Perl that parses the complete MPI document which can be found on the MPI Forum Web 
site, see [16].  Notice that if more MPI routines are added to the MPI standard or if 
arguments of some MPI routines change in future versions of MPI, then it would be easy 
to update MPI-CHECK since only the MPI Knowledge Base need be updated. 
 

3.3 The MPI-CHECK Instrumentation 

After parsing the MPI source code, MPI-CHECK inserts use MPI_CHECK (see section 
2) as the first line of the instrumented MPI code for the main program and for each 
function and subroutine.  For each MPI call, MPI-CHECK retrieves the entry of this MPI 
routine from the MPI Knowledge Base, interprets the function of each argument, and 
then inserts additional statements before and/or after the call to the MPI routine into the 
instrumented MPI code.  This section shows how MPI-CHECK instruments a program to 
detect MPI-specific problems. 

 

3.3.1 Buffer Data Type Inconsistency 

MPI-CHECK compares the Fortran data type of each message in an MPI call with the 
corresponding MPI data type argument.  If they are inconsistent, MPI-CHECK issues an 
error message.  For example, for the following code: 
 

real*8 ::  A(m1,m2) 
... 
call mpi_send(A, m, mpi_integer, dest, tag, mpi_comm_world) 
 

MPI-CHECK will issue the message:  
 
      Error: [File = filename, line = 30, argument = 3] data type mismatch, expecting MPI_REAL8   
      call mpi_send(A, m, mpi_integer, dest, tag, mpi_comm_world) 
 
 
Notice that it is possible to write a correct MPI program that mixes data types, but we 
consider this to be poor programming style that can easily lead to execution errors when 
running the MPI program on different machines.  In the above example, MPI-CHECK 
will also issue an error message if the MPI data type in the call to mpi_send is 
MPI_REAL4.  Matching data types between the Fortran type statement and the MPI call 
is necessary when writing portable MPI programs.  Table 4 summarizes the data type 
checking done by MPI-CHECK.  If the MPI program used data type REAL for the 
buffer, then MPI-CHECK will match the buffer with either REAL*4 or REAL*8, 
depending on the machine used.  Similar comments apply to INTEGER, LOGICAL, 
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COMPLEX, and DOUBLE PRECISION.  The mpi_packed data type can be used with 
any of the other types, so there is no checking needed.   
 

Fortran data type MPI data type 

INTEGER*1 MPI_INTEGER1, MPI_BYTE, MPI_PACKED 

INTEGER*2 MPI_INTEGER2, MPI_BYTE, MPI_PACKED 

INTEGER*4 MPI_INTEGER4, MPI_BYTE, MPI_PACKED 

INTEGER*8 MPI_INTEGER8, MPI_BYTE, MPI_PACKED 

REAL*4 MPI_REAL4, MPI_BYTE, MPI_PACKED 

REAL*8 MPI_REAL8, MPI_BYTE, MPI_PACKED 

LOGICAL1 MPI_LOGICAL1, MPI_BYTE, MPI_PACKED 

LOGICAL2 MPI_LOGICAL2, MPI_BYTE, MPI_PACKED 

LOGICAL4 MPI_LOGICAL4, MPI_BYTE, MPI_PACKED 

COMPLEX8 MPI_COMPLEX8, MPI_BYTE, MPI_PACKED 

COMPLEX16 MPI_COMPLEX16, MPI_BYTE, MPI_PACKED 

CHARACTER MPI_CHARACTER, MPI_BYTE, MPI_PACKED 

 
Table 1: Data type matching   

  
 
This data type checking is accomplished by creating a generic interface named 
type_check based on Table 1.  The generic interface for type_check defines specific 
interfaces not only for all the type-kind combinations in Table 1 but for all degrees of 
dimensionality including scalars and arrays of dimensionality from one to seven, the   
maximum allowed by Fortran. 
 
MPI-CHECK checks buffers that are MPI derived types as follows.  The parser scans for 
mpi_type_commit and stores the names of the committed derived data types in an array.  
If the MPI data type used in the MPI routine is neither a primitive MPI data type nor one 
of the committed data types, MPI-CHECK issues an error message.  
 
For primitive data types, MPI-CHECK determines if the size of the MPI data type 
matches the size of the elements of the buffer.  For examples, on an SGI Origin, MPI-
CHECK issues an error message for the following:  
 

real*8 ::  A(n1,n2) 
... 
call mpi_send(A(m1,m2), m, mpi_real, dest, tag, mpi_comm_world) 
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However, MPI-CHECK does not issue any message when this is run on a Cray T3E, 
since real and real*8 are equivalent on a T3E.  This size checking of the data type is done 
by calling mpi_type_extent(mpi_real, extent, ierror), which assigns extent the value of 8 
instead of 4.  This check is performed by the subroutine type_check.  See statement 6 in 
the example in Figure 3, Section 3.3.6.      
 
 
3.3.2 Buffer Out of Bounds 

Another problem occurs when attempting to send or receive elements that are not within 
the declared bounds of an array.  This can be checked using the Fortran 90 intrinsic 
functions LBOUND and UBOUND.  If one calls an MPI routine as in the following 
example, 
 

call mpi_send (A, m, mpi_real, dest, tag, comm, ierror) 
 

no bounds checking for the starting address need be done, so MPI-CHECK does no 
checking in this case.  In all other cases, MPI-CHECK checks the starting address.  To 
illustrate how this is done, suppose we have the following MPI call: 
 

call mpi_send (A(m1), m, mpi_real, dest, tag, comm, ierror) 
 
Then the starting address of the send buffer is inside the declared bounds if the following 
condition is satisfied: 
 
                                              lbound(A,1)  ≤  m1  ≤  ubound(A,1)   (1) 
 
where lbound and ubound are the Fortran 90 intrinsic functions that return the lower and 
upper bounds of an array.  The ending address of the message is within the bounds of the 
declared message buffer if 
 
                                              lbound(A,1)  ≤  m1 + m - 1  ≤  ubound(A,1)  (2) 
 
Notice that this assumes that the datatype of A is the same as the MPI data type in the call 
and this may not be true.  By using mpi_type_extent, MPI-CHECK removes this 
assumption.  MPI detects an out of bounds condition for higher dimensional arrays in a 
similar fashion.  This check is performed by the subroutine buffer_check.  See statement 
7 in the example in Figure 3, Section 3.3.6.      
 

3.3.3 Improper Placement of MPI_INIT 

MPI requires that the first call to an MPI routine must be to mpi_init with the possible 
exception of mpi_initialized.  MPI-CHECK inserts a call to subroutine init_check prior to 
each MPI call except for mpi_initialized and mpi_init.  This subroutine uses 
mpi_initialized to determine if mpi_init has been called.   See statement 8 in the example 
in Figure 3, Section 3.3.6.      
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3.3.4 Illegal Message Length 

MPI requires that the message length count be ≥ 0.  This checking is performed by 
calling the count_check subroutine, see statement 5 in the example in Figure 3, Section 3.3.6. 
 

3.3.5 Invalid MPI Rank 

Let p be the number of processes involved in a communicator comm as given by the MPI 
call mpi_comm_size(comm,p,ierr).  Then the rank of a processes involved in a 
communication must satisfy 0 ≤ rank ≤ p-1.  MPI requires that the root and dest 
arguments to MPI routines be the rank of the calling processor, and that the source 
argument must either be a valid rank for the communicator or be the MPI defined 
constant MPI_ANY_SOURCE.   
 
These conditions are checked by calling the rank_check subroutine, see statement 9 in the 
example in Figure 3, Section 3.3.6.  
 
3.3.6 An Example 

We present an example below to show how to use MPI-CHECK and to illustrate how 
MPI-CHECK instruments a program. Assume the example program is stored in the file 
test.f90. To use MPI-CHECK to find MPI errors at either compile time or run-time, issue 
the command 
 

mpicheck  f90  [compiler options]   -o  prog  program.f90  –lmpi  

This creates the instrumented executable prog.  Now run the executable as usual, i.e. 
 

mpirun –np 4 prog. 
 
The following example MPI program has a number of MPI usage errors: 

  

1. implicit real*8 (a-h, o-z) 
2. integer, parameter :: n = 3 
3. real*8 A(n) 
4. include "mpif.h" 
5. integer p, rank, status(mpi_status_size) 
6. call mpi_comm_size(mpi_comm_world, p, ierror) 
7. call mpi_init(ierror) 
8. call mpi_comm_rank(mpi_comm_world, rank, ierror) 
9. if (rank == 0) then 
10. do i = 1, n 
11. A(i) = float(i) 
12. enddo 
13. do i = 1, p 
14. call mpi_send(A, p, mpi_real4, i, 1, mpi_comm_world, ierror) 
15. enddo 
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16. endif 
17. if (rank > 0) then 
18. call mpi_recv(A, p, mpi_real8, 0, 1, mpi_comm_world, status, ierror) 
19. print *, 'On processor ', rank, 'A= ', A 
20. endif 
21. call  mpi_finalize(ierror) 
22. end 

 
The following shows the instrumentation produced by MPI-CHECK only for lines 6,7 
and 14 of the above program. 
 

 

 
 1 use MPI_CHECK 
 2 call init_check('/t1.f90',6,6,'mpi_comm_size') 
 3 call  mpi_comm_size(mpi_comm_world, p, ierror) 
 4 call mpi_init(ierror) 
       ... 
 5 call count_check('/t1.f90',14, 14,p>=0, 'p', 1,                & 
         'count should not be less than 0') 
 6 call type_check('/t1.f90',14, 14,A, mpi_real4, 2, .true. ) 
 7 call buffer_check('/t1.f90',14, 14, extent_mpi(mpi_real4)*p+   & 
    extent_fortran(A)*mpicheck_startarray()<=extent_fortran(A)*get_size(A),&
    'A',0,'message size exceeds the bounds of this array, please&  
   &' check the message size.') 
 8 call init_check('/t1.f90',14, 14,'mpi_send') 
 9 call rank_check('/t1.f90',14,14,i>=0.and. i<get_commsize(mpi_comm_world)& 
    ,'i', 3,'rank should be between 0 and p-1') 
10 call mpi_send(A, p, mpi_real4, i, 1, mpi_comm_world, ierror) 

       ... 

 

 

 
 
 
 
 
 
 
 

 

 
 Figure 3: Example of an Instrumented Program 
 
 
 
The first error in the above program is that in line 6 of the original MPI program, 
mpi_comm_size is called before mpi_init.  This error will be found by the subroutine 
init_check and MPI-CHECK will issue the following message:  
 
  Error: [File=/t1.f90, Line= 6 ]  mpi_comm_size must be called after 
calling mpi_init 
         call mpi_comm_size(mpi_comm_world, p, ierror) 
 
The second error is that A is declared to be of type real*8 in the Fortran program but in 
the call to mpi_send at line 14, mpi_real4 is used as the MPI data type. This error will be 
found by the subroutine type_check.  MPI_CHECK issues the following message: 
 
 
   Error: [File=/t1.f90, Line= 14  Argument=  3 ] datatype mismatch,  
expecting mpi_real8 
             call mpi_send(A,p,mpi_real4,i,1,mpi_comm_world, ierror) 
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The third error, using p as the count instead of n in the mpi_send call, is an error only 
when p > n.   When p > n, the error is found by the buffer_check subroutine and 
MPI_CHECK issues the following message  

 
  Error: [File=/t1.f90, Line= 14 , Argument= 1 ] A, message size 
exceeds the bounds of this array, please check the message size. 
             call mpi_send(A,p,mpi_real4,i,1,mpi_comm_world, ierror) 
 
 
The fourth error is that the fourth argument of mpi_send is the rank of the destination 
process and will not be between 0 and p-1 when i = p.   The subroutine rank_check finds 
this problem and reports the following message:   

 
       Error: [File=/t1.f90, Line= 14 , Argument= 4 ] i, rank should be 
between 0 and p-1 
             call mpi_send(A,p,mpi_real4,i,1,mpi_comm_world, ierror) 
 
 

4. CONCLUSIONS and FUTURE DIRECTIONS 

MPI-CHECK is a tool developed to aid in the debugging of MPI programs that are 
written in free or fixed format Fortran 90.  MPI-CHECK provides automatic compile-
time and run-time checking of MPI programs.  MPI-CHECK automatically detects the 
following problems: 

 
• mismatch in argument type, kind, rank or number 
• messages which exceed the bounds of the source/destination array  
• negative message lengths  
• illegal MPI calls before MPI_INITIALIZE or after MPI_FINALIZE  
• inconsistencies between a message’s declared type and the MPI data type used as 

an argument in the MPI routine; and  
• actual arguments, which violate the INTENT, attribute for that dummy argument. 

 
Currently, we are working on improvements to MPI-CHECK.  The improvements will be 
in the areas of adding support for C++ and detecting deadlocks.   
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