
Workload Decomposition Strategies for

Hierarchical Distributed-Shared Memory
Parallel Systems and their Implementation with

Integration of High Level Parallel Languages

Sergio Briguglio1, Beniamino Di Martino2, and Gregorio Vlad1

1 Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65 - I-00044 -
Frascati, Rome, Italy

{briguglio,vlad}@frascati.enea.it
2 Dip. Ingegneria dell’Informazione, Second University of Naples, Italy

beniamino.dimartino@unina.it

Abstract. In this paper we address the issue of workload decompo-
sition in programming hierarchical distributed-shared memory parallel
systems. The workload decomposition we have devised consists in a two-
stage procedure: a higher-level decomposition among the computational
nodes, and a lower-level one among the processors of each computational
node.

By focussing on porting of a case study PIC application, we have im-
plemented the described work decomposition without large programming
effort by using and integrating the high-level languages High Performance
Fortran and OpenMP.

1 Introduction

Hierarchical distributed-shared memory multiprocessor architectures are gaining
more and more importance for High Performance Computing. Bus-based shared
memory multiprocessor systems (SMPs) are rapidly spreading out, expecially in
the industrial and commercial world, at a wide range of scale. They range from
two-four processor configurations typical of desktop systems, to large servers
moving to one hundred processors. In addition, advances in Very Large Scale In-
tegration (VLSI) technology are pushing large scale production of multiprocessor
chips. Rapidly increasing availability and cost-effectiveness of SMP systems are
imposing them as the composing nodes of large scale distributed memory archi-
tectures: current examples range from IBM SP to Compaq/Quadrics QM to SGI
Origin 2000. At the other end of the scale, clusters of SMPs, where moderately
sized multiprocessor workstations and PCs are connected with a high-bandwidth
interconnection network, are increasingly established and used to provide high
performance computing at a low cost.

Hierarchical distributed-shared memory multiprocessor architectures are thus
emerging as a flexible architectural model: it combines the two paradigms of

shared and distributed address space in one system, thus exploiting at best the
properties of hierarchical parallelism present in most applications.

Current parallel programming models are not yet designed to take into ac-
count hierarchies of both distributed and shared memory parallelism into one sin-
gle framework. Programming hierarchical distributed-shared memory systems is
currently achieved by means of integration of environments/languages/libraries
individually designed for either shared or distributed address space model. They
range from explicit message-passing libraries such as MPI (for the distributed
memory level) and explicit multithreaded programming (for the shared mem-
ory level), at a low abstraction level, to high-level parallel programming en-
vironments/languages, such as High Performance Fortran (HPF) [11] (for the
distributed memory level), and OpenMP [15] (for the shared memory level).

A crucial issue in programming hierarchical distributed-shared memory sys-
tems is the work decomposition, i.e. the assignment of tasks composing the paral-
lel application under development among processors. The adoption of an appro-
priate workload decomposition is crucial for achieving the desired performance
results. Primary performance goals of work decomposition are balancing the
workload among processes/threads, reducing interprocess communication (for
the distributed memory level) or data access contention (for the shared memory
level) and reducing the overhead due to managing the work decomposition itself.

Work decomposition task can be accomplished without large programming
effort with use and integration of high-level languages such as HPF and OpenMP,
expecially when the issue is porting large sequential codes to hierarchical archi-
tectures. While the developer is leveraged, by the adoption of high-level lan-
guages, from a large code restructuring effort, particular care must be payed
in order to achieve performance goals, because such languages allow for a low
level of control over issues such as load balancing, optimization of interprocess
communication (for distributed memory) or locality of data access (for shared
memory).

In this paper we address the issue of work decomposition on hierarchical
distributed-shared memory parallel systems, considering the class of particle in
cell (PIC) simulations as case study. The PIC simulation consists [3] in evolving
the phase-space coordinates of a particle population in certain fields computed
(in terms of particle contributions) only at the points of a discrete spatial grid and
then interpolated at each particle (continuous) position. Two workload decom-
position strategies have been devised for this application category: the domain
decomposition [13, 10] strategy and the particle decomposition [8] one. There is
a trade-off between the respective merits of each of these methods in terms of
little program restructuring effort and high time efficiency, on one side, and low
memory occupancy, on the other side. More precisely, the particle decomposi-
tion approach comes out to be preferable with respect to programming effort
and time efficiency, while the domain decomposition one yields lower memory
requirements. When programming hierarchical distributed-shared memory sys-
tems, besides to extend one single strategy to both the distributed and the shared
memory decomposition, thus emphasizing the specific features of that strategy,

it is possible to integrate the two strategies in a hierarchical way in order to get
a suited balance of merits and defects. The class of PIC applications is then a
relevant case study for the systems under consideration.

The workload decomposition we have devised for the execution of PIC appli-
cations on hierarchical architectures consists in a two-stage procedure: a higher-
level decomposition among the computational nodes, and a lower-level one among
the processors of each computational node. The inter-node, particle decomposi-
tion strategy is adopted at the distributed-memory level. Two alternative decom-
position strategies, based on particle decomposition and, respectively, on domain
decomposition, are instead considered for the intra-node, shared-memory, level.

With regard to the implementation, we adopt the high-level language ap-
proach. We thus implement the distributed memory decomposition in HPF and
the shared memory one in OpenMP, integrating the two programming environ-
ments by means of the EXTRINSIC feature of the HPF language.

The paper is structured as follows. Section 2 describes the main physical and
computational aspects of the chosen application. The integration of the inter-
node decomposition and the intra-node one in the framework of the high-level
languages HPF and OpenMP is outlined in Sect. 3. The inter-node, particle de-
composition strategy, adopted in the distributed-memory context, is presented
in Sect. 4. Different decomposition strategies for the intra-node shared-memory
parallelization, based on particle and domain decomposition approaches, respec-
tively, are discussed in Sect. 5, which also reports experimental results obtained
with the PIC Hybrid MHD-Gyrokinetic Code (HMGC) [4], as well as validating
performance models. Conclusions on the validity of the proposed strategy are
drawn in Sect. 6.

2 The Plasma Particle Simulation Application

The investigation of turbulent plasma behaviour deals with solving the Vlasov
equation (the collisionless version of the Boltzmann equation),

dF

dt
≡ ∂F

∂t
+

∑
i

dZi

dt

∂F

∂Zi
= 0, (1)

for the plasma particle distribution function F (t, Z), with Z indicating the whole
set of phase-space coordinates Zi. In the above equation, the phase-space “ve-
locities”, dZi/dt, have a known dependence on the fluctuating electromagnetic
fields, which can be in turns computed in terms of certain moments – e.g., pres-
sure – of the particle distribution function.

A formal, approximate solution of the Vlasov equation can be obtained by
representing the distribution function F (t, Z) by its N -point discretized form,

F (t, Z) ≡
∫

dZ ′F (t, Z ′) δ (Z − Z ′)

≈
N∑

l=1

wl (t) δ (Z − Zl) , (2)

where wl(t) ≡ ∆l (t) F (t, Zl (t)) is the number of physical particles contained
in the volume element ∆l around the phase-space marker Zl. It is immediate to
show that such an expression of F satisfies the Vlasov equation if each marker
evolves in time according to the equations of motion for physical particles and
the corresponding number of particles wl is conserved (constant in time). Such
phase-space markers can then be interpreted as the phase-space coordinates
of a set of Npart (≡ N) macroparticles, each of them representing – by its
weight wl – a cluster of (non mutually interacting) physical particles. It can
be easily shown that all the relevant parameters (e.g., the Debye length, λD)
of this macroparticle plasma coincide with the corresponding parameters of the
physical plasma, notwithstanding that the macroparticle density is much lower
than the physical-particle one. Particle simulation [3] then consists in numerically
evolving the phase-space coordinates of the macroparticles (simulation particles)
in a selfconsistent way, i.e., by computing the electromagnetic fields, at each time
step, consistently with the particle distribution (through the calculation of its
suited moments).

The most widely used method for particle simulation is represented by the
PIC approach. At each time step, a PIC simulation code

– computes the electromagnetic fields only at the points of a discrete spatial
grid (field solver phase)

– interpolates them at the (continuous) particle positions in order to evolve
particle phase-space coordinates (particle pushing phase);

– collects particle contribution to the required moment of the distribution func-
tion (e.g., pressure) at the grid points to close the field equations (pressure
computation phase).

The presence of a discrete grid, with spacing Lc between grid points, leaves
the physically relevant dynamics related to the scales larger than Lc unaffected.
At the same time, the condition corresponding to long-range particle interactions
dominating over the short-range ones results in a much more relaxed require-
ment than the usual plasma condition, n0λ

3
D � 1, with n0 being the density of

simulation particles. Indeed, it comes out to be satisfied if n0L
3
c � 1.

The condition n0L
3
c � 1 can be written as Nppc ≡ Npart/Ncell � 1, where

Ncell is the number of grid cells and Nppc is the average number of particle per
cell. As one is typically interested in simulating small-scale turbulence, an im-
portant goal in plasma simulation is represented by dealing with large number of
cells and, a fortiori , for the above condition on Nppc, large number of particles.
Such a goal requires to resort to parallelization techniques aimed to distribut-
ing the computational loads related to the particle population among several
processors.

Several contributions exist, in literature, on this issue, mainly concerning
parallelization on distributed architectures (see, for example, Refs. [13, 9, 6, 14, 1,
8]). Most of them [13, 9, 6, 14, 1] are based on the domain decomposition strategy,
while the particle decomposition approach has been adopted in Ref. [8]. Several
different aspects have been addressed in these papers: Ref. [9] and, especially,

ϑ

r

R

Z

ϕ

Fig. 1. Toroidal coordinate system (r, ϑ, ϕ) for a tokamak plasma equilibrium.

Ref. [6] compare the results obtained by the parallelized code on different archi-
tectures; Ref. [14] discusses the benefits of the object-oriented approach to the
parallel PIC simulation; Refs. [1] and [8] present the results of the implemen-
tation of parallel PIC codes in HPF (with the former one also comparing such
results with those obtained in a Message Passing framework).

Here we consider the parallelization on hierarchical distributed-shared mem-
ory architectures of a specific PIC code, HMGC [4], developed, in the framework
of controlled nuclear fusion research, for the investigation of the effects of ener-
getic particles produced by fusion reactions on the dynamics of Alfvén modes in
tokamaks [5]. The code consists of approximatively 16,000 F77 lines distributed
over more than 40 procedures. Particles move in a three-dimensional toroidal
spatial domain, described in terms of quasi-cylindrical coordinates (see Fig. 1):
the minor radius of the torus, r, and the poloidal and toroidal angles, ϑ and ϕ,
respectively. Each particle is characterized by its phase-space coordinates (real
space and velocity space ones) and its weight w.

The most relevant computational effort is concentrated in the loops over
the particle population related, respectively, to the pushing phase and to the
pressure computation one. The pushing loop can be schematically represented
as follows:

real*8, dimension (n_part) :: r,...

do l = 1,n_part

r_l=r(l)

...

r(l) = r_l + g_r(r_l,...)

...

enddo

with n part≡ Npart being the number of particles and g r, . . . being rather com-
plicate nonlinear functions of the particle phase-space coordinates, which give
the time-step increment of the particle quantities in terms of the electromagnetic

fields at the neighbouring grid points. The dots, “. . . ”, stay for all the other, not
reported, phase-space coordinates and related functions.

The pressure loop can be schematized by the following one:

real*8, dimension (n_r,n_theta,n_phi):: p

real*8, dimension (n_part) :: r,...,w

p = 0.

do l = 1,n_part

j_r = f_r(r(l))

j_theta = f_theta(theta(l))

j_phi = f_phi(phi(l))

p(j_r,j_theta,j_phi) = p(j_r,j_theta,j_phi)

& + h(r(l),...,w(l))

enddo

Here, f r, f theta and f phi are nonlinear functions of the corresponding
real-space particle coordinates, determining the indices of the closest of the
nr × nϑ × nϕ spatial grid points. The pressure p at that grid point receives
a contribution from the particle determined by the function h, which takes into
account the relative position of the particle and the grid point, the velocity-
space coordinate of the particle and its weight. In practice, a more complicate
assignment prescription is adopted, which involves a higher number (eight) of
neighbouring grid points, in order to get a less noisy description of the pressure
field. In the spirit of the present discussion, however, we may neglect such details.

3 Integration of HPF and OpenMP

In this section we describe the technique we use to integrate the inter-node
decomposition and the intra-node one, and thus to express the multiple level
of parallelism, within the framework of the high-level languages used for their
implementation, namely HPF and OpenMP.

Such an integration can be obtained at a negligible programming effort with
the help of the HPF extrinsic procedures HPF LOCAL. High Performance Fortran
programs may call non-HPF subprograms as extrinsic procedures [11]. This al-
lows the programmer to use non-Fortran language facilities, handle problems
that are not efficiently addressed by HPF, hand-tune critical kernels, or call op-
timized libraries. An extrinsic procedure can be defined as explicit SPMD code
by specifying the local procedure code that is to execute on each computational
node. High Performance Fortran provides a mechanism for defining local pro-
cedures in a subset of HPF that excludes only data mapping directives, which
are not relevant to local code. If a subprogram definition or interface uses the
extrinsic-kind keyword HPF LOCAL, then the HPF compiler will assume that the
subprogram is coded as a local procedure. All distributed HPF arrays passed as
arguments by the caller to the (global) extrinsic procedure interface are logically
divided into pieces; the local procedure executing on a particular computational
node sees an array containing just those elements of the global array that are

mapped to that node. A call to an extrinsic procedure results in a separate invo-
cation of a local procedure on each node. The execution of an extrinsic procedure
consists of the concurrent execution of a local procedure on each executing node.
Each local procedure may terminate at any time by executing a RETURN state-
ment. However, the extrinsic procedure as a whole terminates only after every
local procedure has terminated.

In our case, we will use the extrinsic mechanism to embed the computations
that can express multiple levels of parallelism (inter- and intra-node) into calls
to extrinsic procedures. Each local procedure executing on a given node will
manage only the portion of the arrays assigned to that node. The bodies of the
extrinsics can therein be parallelized at the intra-node, shared-memory level, by
inserting suited OpenMP directives. The extrinsic procedures are then simply
compiled by an OpenMP compiler, while the calling HPF programs is compiled
by a HPF compiler; finally, the resulting objects are linked by the HPF linker.

In the next sections we will discuss in detail the decomposition strategies we
adopt at the inter-node (HPF) level and the intra-node (OpenMP) one.

4 Inter-node Decomposition Strategy

Standard domain decomposition [13, 10] techniques assign different portions of
the physical domain and the corresponding portions of the grid to different
computational nodes, together with the particles that reside on them. The dis-
tribution of all the arrays among the computational nodes gives this method an
intrinsic scalability of the maximum domain size that can be simulated with the
number of nodes. On the opposite side, an important problem with these tech-
niques is given by the need of a dynamic load balancing, associated to particle
migration from one portion of the domain to another one. Such a load balancing
can make the parallel implementation of a serial code complicate, expecially with
high-level languages, besides introducing extra computation and communication
overheads.

In order to avoid facing the migration of particles from one domain portion
to another, which in practice precludes the usage of a high-level programming
language like HPF, we adopt the particle decomposition [8] approach to the
inter-node parallelization of HMGC: particle population is statically distributed
among processors, while the data relative to grid quantities are replicated. As no
particle has to be transferred from one node to another, load balancing is auto-
matically enforced; moreover, no communication overhead associated to particle
migration affects the parallelization efficiency. On the opposite side, the linear
scaling of the spatial resolution with nodes, possible, in principle, in the frame-
work of a domain decomposition, is lost: the maximum achievable resolution
is limited by the Random Access Memory (RAM) resources of the single node
(indeed, different from the domain decomposition case, the grid arrays are repli-
cated on each node), and increasing the number of nodes only allows increasing
the number, Nppc, of particles per cell, i.e. the velocity-space resolution. Specific
communication and computation overheads are introduced, also in this case, be-

cause partial contributions to particle pressure coming from different portions
of the population must be summed together, at each time step, before updating
the electromagnetic fields.

The relevance of both memory and efficiency problems, however, is directly
related to the grid size. The former ones are negligible as far as the size of the
grid arrays is much smaller than that of the portion of particle arrays distributed
to each node. Such a condition can be expressed as Ncell � (Npart/nnode), or
Nppc/nnode � 1 [8].

The efficiency problems can be neglected if the amount of grid computation
(not distributed) is much smaller than that of the particle one (distributed). For a
workload decomposition among single-processor nodes, the condition for efficient
parallelization would be the same as the above one, Nppc/nnode � 1 [8]. For a
decomposition among multi-processor nodes, the further intra-node workload
decomposition must be taken into account. The efficiency condition becomes
more stringent, as it will be discussed in Sect. 5.

The implementation of particle decomposition parallelization in HPF is, in
principle, relatively straightforward and has been discussed in Ref. [8]. In particu-
lar, HPF directives for data distribution can be applied to all the data structures
(e.g., r(n part)) related to the particle quantities. By embedding the particle
loops related to the particle-pushing and the pressure-updating phases into calls
to extrinsic procedures, the distribution of the loop iterations among the nodes
according to the owner computes rule applied to the distributed data is auto-
matically enforced.

4.1 Particle pushing

The particle-pushing phase is inherently parallel, with no communication re-
quired by non-local accesses. Indeed, pushing of each particle consists in updat-
ing the particle coordinates in terms of the electromagnetic field interpolated
at the particle position, with no dependence on other-particle quantities: both
the replicated fields and the particle quantities are locally available. The HPF
calling program assumes the form

real*8, dimension (n_part) :: r,...

!HPF$ DISTRIBUTE (CYCLIC) :: r,...

INTERFACE

EXTRINSIC(HPF_LOCAL)

&subroutine extr_push(r,...)

real*8, dimension(:), intent(inout) :: r,...

!HPF$ DISTRIBUTE (CYCLIC) :: r,...

end subroutine extr_push

END INTERFACE

call extr_push(r,...)

with the local procedure given by

subroutine extr_push(r,...)

real*8, dimension(:), intent(inout) :: r,...

do l=1, UBOUND(r,dim=1)

r_l=r(l)

...

r(l) = r_l + g_r(r_l,...)

...

enddo

end subroutine extr_push

Note that each local procedure only updates the coordinates of the particles
local to the node (l=1,UBOUND(r, dim=1)).

4.2 Pressure updating

Different from the particle pushing, the updating of particle pressure at the grid
points presents two strictly linked problems: (i) such a quantity is replicated,
and thus must be kept consistent among the nodes; (ii) each element of the
pressure array p takes contribution from particles that reside on different nodes.
The strategy adopted to solve this problem relies on the associative and distribu-
tive properties of the updating laws for the pressure array with respect to the
contributions given by every single particle: the computation for each update is
split among the nodes into partial computations, involving the contribution of
the local particles only; then the partial results are reduced into global results,
which are broadcasted to all the nodes.

The scheme to handle with this “inhibitor of parallelism” within the loops
over the particles, can be implemented in HPF by restructuring the code in the
following way:

– the data structure that store the values of the pressure, is replaced, within the
bodies of the distributed loops, by a corresponding data structure augmented
by one dimension (ppar(nr, nϑ, nϕ, :)), with extent equal to the number of
available nodes;

– this temporary data structure is distributed, along the added dimension, over
the nodes; each of the distributed “pages” will store the partial computations
of the pressure, which include the contributions of the particles that are local
to each node;

– at each iteration of the loop over the particles, the contribution of the cor-
responding particle to an element of the pressure array is added to the ap-
propriate element of the distributed page;

– at the end of the iterations, the temporary data structure is reduced along
the added and distributed dimension, and the result is assigned to the cor-
responding original data structure; this is implemented by using the HPF
intrinsic reduction function SUM.

The only need for communication is related to this reduction and the subsequent
broadcast, and thus it is embedded in the execution of the intrinsic function. If

the underlying HPF compiler supports the implementation of highly optimized
versions of the HPF intrinsic procedures for distributed parameters, these com-
munications are performed as vectorized and collective minimum-cost commu-
nications. The restructured calling HPF program then looks like the following:

real*8, dimension (n_r,n_theta,n_phi):: p

real*8, dimension (n_r,n_theta,n_phi,

& number_of_processors()):: p_par

real*8, dimension (n_part) :: r,...,w

!HPF$ DISTRIBUTE (CYCLIC) :: r,...,w

!HPF$ ALIGN WITH r(:) :: p_par(*,*,*,:)

INTERFACE

EXTRINSIC(HPF_LOCAL)

&subroutine extr_pressure(r,...,w,p_par)

real*8, dimension(:), intent(in) :: r,...,w

real*8, dimension(:,:,:,:), intent(out) :: p_par

!HPF$ DISTRIBUTE (CYCLIC) :: r,...,w

!HPF$ ALIGN WITH r(:) :: p_par(*,*,*,:)

end subroutine extr_pressure

END INTERFACE

call extr_pressure(r,...,w,p_par)

p(:,:,:) = SUM(p_par(:,:,:,:),dim=4)

and the local procedure becomes:

subroutine extr_pressure(r,...,w,p_par)

real*8, dimension(:), intent(in) :: r,...,w

real*8, dimension(:,:,:,:), intent(out) :: p_par

p_par = 0.

do l=1, UBOUND(r,dim=1)

j_r = f_r(r(l))

j_theta = f_theta(theta(l))

j_phi = f_phi(phi(l))

p_par(j_r,j_theta,j_phi,1)=

& p_par(j_r,j_theta,j_phi,1)

& + h(r(l),...,w(l))

enddo

end subroutine extr_pressure

Analogously to the particle pushing case, each local procedure executes only the
set of loop iterations that access the particles local to the node and updates only
the page of p par assigned to it. At the end of the execution of the local extrinsic
procedure, all the partial updates of the components of p par are collected in
the global-HPF-index-space p par, which is then reduced to p.

5 Intra-node Decomposition Strategies

Once completed the distributed memory work decomposition, in the framework
of a particle decomposition approach, the issue of the intra-node decomposi-
tion must be addressed. Here, we assume that each node is represented by a
shared-memory multi-processor machine, with a single thread running on each
processor. It will execute both pushing and pressure loops embedded in local
extrinsic procedures, like those described in Sect. 4.

5.1 Particle pushing

It is easy to see that the particle pushing loop is suited for trivial work distribu-
tion among different processors. The natural parallelization strategy for shared
memory architectures consists in distributing the work needed to update particle
coordinates among different threads (and, then, processors). OpenMP allows for
a straightforward implementation of this strategy: the parallel do directive
can be used to distribute the loop iterations over the particles. All the variables
that are set and then used within the do loop are explicitly defined as private,
with the other ones being shared by default. The loop contained in the extrinsic
procedure outlined in Sect. 4.1 then becomes:

!$OMP parallel do private(l,r_l,...)

do l = 1,UBOUND(r,dim=1)

r_l=r(l)

...

r(l) = r_l + g_r(r_l,...)

...

enddo

!$OMP end parallel do

We have tested this strategy (and the others presented in the following), by
running the corresponding HPF+OpenMP version of HMGC on a IBM SP par-
allel system, equipped with, among the others, two 8-processors SMP PowerPC
nodes, with clock frequency of 200 MHz and 2 GB RAM, and four 2-processors
SMP Power3 nodes, with clock frequency of 200 MHz and 1 GB RAM. The HPF
code has been compiled by the IBM xlhpf compiler (an optimized native com-
piler for IBM SP systems), while the extrinsic OpenMP subroutines have been
compiled by the IBM xlf (ver.6.01) compiler (an optimized native compiler for
Fortran95 with OpenMP extensions for IBM SMP systems) under the -qsmp=omp
option. The resulting objects are then linked by the HPF linker. A spatial grid
with nr ×nϑ×nϕ = 32×16×8 has been considered (Ncell = 4096). The average
number of particles per cell has been varied from Nppc = 4 to Nppc = 256, which
corresponds to Npart ranging approximately from 16 k to 1 M .

Figure 2 shows the scaling of the speed-up (su) of the particle pushing pro-
cedure with respect to the number of processors per node, nproc, at two values
of the number, nnode, of (8-processors) nodes. Figure 3 reports the values of su,

0

4

8

12

16

0 2 4 6 8

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

s
u

n
proc

n
node

=2

n
node

=1

Fig. 2. Speed-up of the particle pushing procedure versus the number of processors per
node, for two values of the number, nnode, of (8-processors) nodes. Here, and in the
following Figures Ncell = 4096. Four different values of the average number of particles
per cell, from Nppc = 4 to Nppc = 256, have been considered (corresponding to Npart

ranging approximately from 16 k to 1 M).

for the same procedure, versus the number of (2-processors) nodes, at two val-
ues of the number of processors per node, nproc. The speed-up has been defined
as the ratio between the wall-clock time yielded by the serial execution of the
HPF+OpenMP version of the code and the one obtained by the parallel exe-
cution. By “serial execution” we mean the execution obtained, on the specific
node used in the parallel executions, after performing the HPF and OpenMP
compilations with the -qnohpf option and, respectively, without the -qsmp=omp
option. Note that speed-up values not far from their ideal limit are obtained.

5.2 Pressure updating

The immediate intra-node parallelization of the pressure loop is inhibited, as in
the inter-node case, by the updating of the array p par. Such a computation is
indeed an example of irregular array-reduction operation (cf., e.g., [12]), where
the elements to be reduced are the particle coordinates (the elements of the
arrays r, theta, phi), and the results of the reduction are the pressure values
(the elements of the array p par). The operation is a reduction because the
updating function h has associative and distributive properties with respect to
the contributions given by every single particle (i.e. with respect to the quantities
r(l), . . . w(l)), but it is not regular because the indices of the updated element
(j r, j theta, j phi) are not induction variables of the loop, but functions of it
(j r = f r(r(l)), j theta = f theta(theta(l)), j phi = f phi(phi(l))),
having the property that for two given values of the induction variable l (li, lj ,
with li �= lj) the corresponding computed values of the updating indices can be
equal: (j r,j theta,j phi)i =(j r,j theta,j phi)j. If particles that concur to
updating the same element of the array p par are assigned to different processors,

0

2

4

6

8

0 1 2 3 4

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

s
u

n
node

n
proc

=2

n
proc

=1

Fig. 3. Speed-up of the particle pushing procedure versus the number of (2-processors)
nodes, for two values of the number of processors per node, nproc. The other parameters
are chosen as in the previous Figure.

a race condition can occur, if the processors try to update the array element
“simultaneously”. In such a case, the correctness of the parallel computation
would be affected, because some of the contributions of the concurrent particles
would be retained, with the others being lost.

In the following, we discuss some possible intra-node parallelization strate-
gies for the pressure updating loop, which present close analogies to the particle
decomposition strategy or the domain decomposition one, discussed at the be-
ginning of Sect. 4 for the distributed memory, inter-node, decomposition.

5.2.1 Particle Decomposition Strategy As stated above, the most natural
parallelization strategy for shared memory architectures consists in distributing
the particle loop iterations among different processors, without respect to the
portion of the domain in which each particles resides. For this reason, such a
technique can be referred to as a particle decomposition one. It can be imple-
mented very easily in OpenMP, by using the parallel do directive, and it is
fully satisfactory for the particle-pushing loop. With regard to the pressure loop,
however, attention must be payed to protect the critical sections of the pressure
loop from race conditions, that is to ensure mutual exclusion among threads ac-
cessing shared data. The most obvious solution to this problem (and the least ex-
pensive, in terms of code restructuring effort) consists, in OpenMP, in enclosing
the updating of p par by the OpenMP critical and end critical directives.
The relevant portion of the pressure updating extrinsic procedure described in
Sect. 4 then becomes:

p_par = 0.

!$OMP parallel do private(l,j_r,j_theta,j_phi)

do l = 1,UBOUND(r,dim=1)

j_r = f_r(r(l))

j_theta = f_theta(theta(l))

j_phi = f_phi(phi(l))

!$OMP critical

p_par(j_r,j_theta,j_phi,1)=

& p_par(j_r,j_theta,j_phi,1)

& + h(r(l),...,w(l))

!$OMP end critical

enddo

!$OMP end parallel do

Unfortunately, the intra-node serialization induced by the protected critical
section on the shared access to the array p par represents a bottleneck that
heavily affects the performances (almost no speed-up) [7]. Such a bottleneck can
be eliminated, at the expenses of memory occupation, by means of an alternative
strategy, analogous to that envisaged within the framework of the inter-node
decomposition, which relies on the associative and distributive properties of the
updating laws for the pressure array with respect to the contributions given by
every single particle: the computation for each update is split among the threads
into partial computations, each of them involving only the contribution of the
particles managed by the responsible thread; then the partial results are reduced
into global ones. The easiest way to implement such a strategy consists, once
again, in introducing an auxiliary array, p aux, defined as a private variable
with the same dimensions and extent as p. Each processor works on a separate
copy of the array and there is no conflict between processors updating the same
element of the array. At the end of the loop, however, each copy of p aux contains
only the partial pressure due to the particles managed by the owner processor.
Each processor must then add its contribution, outside the loop, to the global,
shared, array p par in order to obtain the whole-node contribution; the critical
directive can be used to perform such a sum. The corresponding code section
then reads as follows:

p_par = 0.

!$OMP parallel private(l,j_r,j_theta,j_phi,p_aux)

p_aux = 0.

!$OMP do

do l=1,UBOUND(r,dim=1)

j_r = f_r(r(l))

j_theta = f_theta(theta(l))

j_phi = f_phi(phi(l))

p_aux(j_r,j_theta,j_phi) = p_aux(j_r,j_theta,j_phi)

& + h(r(l),...,w(l))

enddo

!$OMP end do

!$OMP critical (p_lock)

p_par(:,:,:,1) = p_par(:,:,:,1) + p_aux(:,:,:)

!$OMP end critical (p_lock)

!$OMP end parallel

0

4

8

12

16

0 2 4 6 8

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

n
proc

s
u

v1

Fig. 4. Speed-up of the pressure updating procedure versus the number of processors
per node for the particle decomposition version (v1), at fixed number of (8-processors)
nodes, nnode = 2, and different values of the average number of particles per cell, Nppc.

Note that this strategy (hereafter, version v1), based on the introduction of
an auxiliary array, makes the execution of the UBOUND(r,dim=1) (≈ Npart/nnode)
iterations of the loop perfectly parallel. The serial portion of the computation
is limited to the reduction of the different copies of p aux into p par. Then, its
size scales with Ncell × nproc. Such product is much smaller than Npart/nnode,
as long as the Nppc � nproc ×nnode; under this condition, a good parallelization
efficiency can be obtained. The price payed to obtain such an improvement
is represented by the increased memory requirement: Ncell × nproc more real*8
elements must be stored on each node. In order to evaluate the effective relevance
of such further requirement, this number has to be compared with the number
of elements of the shared particle arrays stored on the same node. Under the
above condition, Nppc � nproc × nnode, the whole memory requirement is not
significantly affected.

Figure 4 shows the scaling of the speed-up (su) of the pressure updating
procedure (version v1) with respect to the number of processors per node, nproc,
at fixed number of (8-processor) nodes, nnode = 2. Figure 5 reports the values of
su for the same procedure versus the number of (2-processor) nodes, at nproc = 2.
Speed-up values refer only to the execution of the section related to the updating
of the (whole) pressure array p.

In practice, the “serial” and “parallel” times, ts and tv1 respectively, can be
evaluated as

ts ≈ tloop|serial ,

tv1 ≈ tparallel + tsum ,

where tloop is the time required for the execution of the particle loop; tparallel

is the time required for the execution of the whole parallel section (including
the reduction of p aux to p par); tsum is the time needed to reduce p par to p

0

2

4

6

8

0 1 2 3 4

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

n
node

s
u

v1

Fig. 5. Speed-up of the pressure updating procedure (particle decomposition version
v1) versus the number of 2-processor nodes, at fixed number of processors per node,
nproc = 2 and different values of Nppc.

(by the HPF intrinsic reduction function SUM). We can approximate the above
expressions as follows

ts ≈ αloopNppcNcell ,

tv1 ≈ αloop
NppcNcell

nprocnnode
+ (αrednproc + αsum lognnode)Ncell ,

with αloop, αred and αsum being suited coefficients, corresponding to the detailed
operations and communications needed to perform the single loop iteration and
the intra-node and inter-node array reductions, respectively. Here we have taken
into account the logarithmic character of the SUM reduction and we have neglect
the time required to create and terminate threads and distribute the work among
them. From such approximations, we expect a speed-up approximately given by

su ≈ nproc

1 +
nprocnnode

αloopNppc
(αrednproc + αsum lognnode)

. (3)

From Fig. 4, we observe indeed, in agreement with Eq. (3), that the speed-up
values depart from the linear scaling with nproc only for nproc greater than a
certain value, which is higher, the higher the average number of particles per
cell, Nppc, is. A significant departure from the linear scaling with nnode can be
observed, in Fig. 5, only for the lowest values of Nppc, because of the small
number of nodes involved.

Assuming that αrednproc � αsum lognnode, we can conclude that such a
“double” particle decomposition approach (both for inter-node and intra-node
decomposition) is efficient as far as n2

procnnode/Nppc is lower than a certain
threshold; for the specific code considered in this paper, such a threshold comes
out to be approximately equal to 1. Under the same condition, the criterion

for this approach not to be too memory demanding, nprocnnode/Nppc
<∼ 1, is a

fortiori satisfied.

5.2.2 Domain Decomposition Strategy In the previous Paragraph, we
have discussed the implementation of what we can indicate as a particle decom-
position strategy. Indeed, the intra-node work distribution consists in assigning
the particle loop iterations to different processors, without respect to the portion
of the domain in which each particles resides. We have seen that such a strat-
egy is characterized by a perfect load balancing among the different processors
and a very limited code restructuring effort. On the opposite side, the need of
avoiding race conditions introduces a trade-off between parallelization efficiency
and memory requirements.

In order to overcome such a trade-off, at the price of a heavier restructur-
ing of the code and, possibly, the need of addressing load-balancing problems,
a completely different strategy can be adopted for the work distribution among
the different processors of each computational node: namely, the domain decom-
position strategy1. This strategy consists in reordering the particle population
according to the portion of domain in which each particle resides, and assigning
a different portion to each processor. Such a reordering gives rise, once again, to
the risk of race conditions (the particles belonging to a certain domain portion
have to be counted within a particle loop, and the updating of the counter is
a critical operation). Once assigned to the processors, however, no further race
condition occurs in updating the pressure array element, as loop iterations that
could, in principle, concur to the updating of the same element are executed by
the same processor.

A possible implementation of this strategy (version v2a, whose schematic
representation is reported in the Appendix) consists in decomposing the domain
along one of its dimensions (e.g., along the radial coordinate) and is based on
the following items:

– A particle loop is executed in order to identify the elementary portion of the
domain in which each particle falls. The number of particles that belong to
each portion is updated inside a critical section. Each particle is labelled,
inside the same critical section, by an index that spans the population be-
longing to the corresponding elementary domain portion.

– The different elementary portions of the domain are assigned to each pro-
cessor. Load balancing is enforced by adding elementary portions to a
given-processor load until the number of particles assigned to the proces-
sor approximately equals the average number of particles per processor,
(Npart/nnode)/nproc. Particles are then reordered according to the processor
they belong to.

– The pressure loop is executed in the form of a parallel loop over processors
in which a loop over the particle belonging to the processor is nested. Race
conditions are automatically avoided.

1 Note that the inter-node decomposition remains a particle decomposition.

0

4

8

12

16

0 2 4 6 8

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

n
proc

s
u

v2a

Fig. 6. Speed-up of the pressure updating procedure versus the number of processors
per node, at fixed number of (8-processors) nodes, nnode = 2, for the domain decom-
position version, v2a.

Note that the load balancing is implemented within a loop over processors. It
then causes negligible computation overheads. Moreover, different from the dis-
tributed memory context, it does not require any communication between pro-
cessors. Note also that the increment of memory requirements is very contained
(essentially limited to the integer labels of the reordered particles), and does not
scale with the number of processors per node.

Figure 6 shows the scaling of the speed-up with respect to nproc, at fixed
number (nnode = 2) of 8-processors nodes, obtained by this domain decompo-
sition version, v2a, of the pressure updating procedure. Figure 7 reports the
values of su for the same procedure versus the number of (2-processor) nodes,
at nproc = 2. The wall-clock time can be evaluated, in this case, as follows:

tv2a ≈ tpre−loop + tassign + treorder + tloop + tsum .

Here tpre−loop refers to the particle loop needed to identify the domain portion in
which each particle falls, tassign is the time required by the balanced assignment
loop (over processors), treorder and tloop are the times spent in the reordering
loop and in the pressure updating loop (both over particles), respectively.

We note that, at least for the specific application here considered, this domain
decomposition strategy appears to be an interesting compromise between the
two extremes obtained in the framework of the particle decomposition approach
(namely, the low-efficiency and the large-memory versions). We also observe that
the bottleneck, with regard to the efficiency performances, is still represented by
the critical section, although this bottleneck is not so penalizing as in the low-
efficiency critical section version, discussed at the beginning of Subsect. 5.2.1.

A significant improvement of the efficiency can be obtained, for specific (but
rather common) applications characterized by a contained particle migration
per time step from one portion of the domain to another one, by limiting the

0

2

4

6

8

0 1 2 3 4

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

s
u

n
node

v2a

Fig. 7. Speed-up of the pressure updating procedure (domain decomposition version
v2a) versus the number of 2-processor nodes, at fixed number of processors per node,
nproc = 2 and different values of Nppc.

reordering phase (and then the critical computation) to those particles that have
changed domain portion in the last step. Their number can be indeed very low
if it is possible to decompose the domain along a slow-varying coordinate. This
is moderately true for the specific application we have tested, as it can be seen
from Figs. 8 and 9 (corresponding to Figs. 6 and 7, respectively), which show the
results from a modified domain decomposition version, v2b, implementing such
a selective reordering. A comparison between the different versions examined, in
this Section, for the pressure updating procedure is shown in Fig. 10 (speed-up
versus nproc for the case Nppc = 256).

6 Concluding Remarks

We have described a two-stages workload decomposition strategy for hierarchi-
cal distributed-shared memory systems, with application to a case study PIC
simulation.

An inter-node, particle decomposition strategy is adopted at the higher,
distributed-memory, level, while different intra-node alternative decomposition
strategies, based on particle decomposition as well as domain decomposition, have
been adopted for the lower, shared-memory, level.

Some different implementations of them, based on the use and integration of
the high level languages HPF and OpenMP, have been discussed with respect
to program restructuring effort, time efficiency and memory occupancy, with
particular regard to the not-trivial pressure updating procedure. We observe a
trade-off between the merits of each method with respect to such requirements.
More precisely, the particle decomposition approach yields, at the expense of a
little programming effort, high speed-up values, while requiring a supplementary
memory resource level that scales with the number of processors and the size of

0

4

8

12

16

0 2 4 6 8

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

s
u

n
proc

v2b

Fig. 8. Speed-up versus the number of processors per node, at fixed number of (8-
processors) nodes, nnode = 2, for the selective reordering version, v2b, of the pressure
updating procedure.

the grid. This prevents any favourable scaling of the maximum spatial resolution
level that can be reached in the simulation with the number of processors. On the
opposite, the domain decomposition approach preserves such a good (essentially
linear) scaling, but it requires a relevant programming effort and produces more
moderate speed-up values.

We note that, while in a purely distributed memory system, the choice of
a high-level language parallelization would probably force adopting the particle
decomposition strategy, with the consequence of a strong penalization in terms of
memory occupancy requirements, in the present hierarchical distributed-shared
memory system case some degree of freedom is left, which allows one to balance
the competing targets of high time efficiency and low memory requirements.

As a final remark, we would like to outline that, once restructured the code
in order to implement a domain decomposition strategy, one could aim to apply
the same strategy to the inter-node parallelization. The introduction of auxiliary
arrays like p par could then be avoided, and a better scaling of the maximum
size of the domain with the number of nodes could be obtained. However, several
facts must be kept into account: first, a time-varying assignment of particles to
nodes makes HPF not very suited to the implementation of work distribution.
Second, even resorting to a lower-level message passing paradigm for the inter-
node parallelization, the migration of particles from one node to another requires
communication, different from the case of intra-node parallelization. The amount
of communication can be maintained at a reasonably low level, if only a low
percentage of the particle population treated by a node migrates at each time
step. As the same condition must hold within the intra-node decomposition
context (in order to get the improvement associated to the selective reordering
of version v2b), it can be easily seen that either the application is characterized
by two (not just one) slowly-varying coordinates (which is not the case, for

0

2

4

6

8

0 1 2 3 4

N
ppc

=4
N

ppc
=16

N
ppc

=64
N

ppc
=256

s
u

n
node

v2b

Fig. 9. Speed-up versus the number of 2-processor nodes, at fixed number of processors
per node, nproc = 2 and different values of Nppc, for the selective reordering version,
v2b, of the pressure updating procedure.

example for tokamak plasma simulations) or a “double” domain decomposition,
in order to be efficient, has to satisfy the condition, e.g., nnode × nproc � nr –
that is, the whole number of processors much lesser than the number of cells
along the slowly-varying coordinate. Then, although a domain decomposition
approach would allow for a fair scaling, with the whole number of processors, of
the maximum system size that can be simulated, the parallelization efficiency of
this approach would heavily decrease above a certain number of processors.

Appendix: Schematic Representation of the Version v2a

The intra-node domain decomposition strategy can be implemented, e.g., ac-
cording to the scheme proposed in Subsect. 5.2.2. The domain is decomposed
along one of its dimensions. The elementary portion each particle belongs to
(j r part) is identified by a loop over particles. The number of particles belong-
ing to each elementary portion (n part r) is updated inside a critical section of
the loop (in order to avoid race conditions). The relative order of each particle
within the population residing in the same portion (i r) is defined inside the
critical section too. A global portion, composed by several consecutive elemen-
tary portions, is assigned to each processor. The size of each global portion,
delimited by j r upper, is chosen in such a way to ensure an approximate load
balancing: each processor will manage a number of particles approximately equal
to (Npart/nnode)/nproc. Particles are then reordered according to the processor
they belong to. Finally, the pressure loop, rewritten as a loop over processors
in which a loop over the particle belonging to the processor is nested, can be
distributed among processors without concerns for the occurrence of race condi-
tions.

This scheme can be represented as follows:

0

4

8

12

16

0 2 4 6 8

v1
v2a
v2b

n
proc

s
u

Fig. 10. Comparison between the speed-up obtained, at different number of processors
per node and fixed number of 8-processors nodes, nnode = 2, by the domain decompo-
sition version, v2a, and the companion selective reordering version, v2b, of the pressure
updating procedure. The results of the particle decomposition implementation, v1, are
also shown for reference. The case Nppc = 256 is considered.

integer, allocatable :: j_r_upper(:)

integer j_r_part(n_part),i_r(n_part),l_index(n_part)

integer n_part_r(n_r),n_part_lower(n_r)

n_procs=omp_get_max_threads()

allocate(j_r_upper(0:n_procs))

p_par = 0.

n_part_r = 0

c

c assignment of each particle to elementary portions

c of the domain

c

!$OMP parallel do private(l,j_r)

do l = 1,UBOUND(r,dim=1)

j_r = f_r(r(l))

j_r_part(l)=j_r

!$OMP critical (n_part_r_lock)

n_part_r(j_r)=n_part_r(j_r)+1

i_r(l)=n_part_r(j_r)

!$OMP end critical (n_part_r_lock)

enddo

!$OMP end parallel do

c

c definition of the global portions of the domain

c

n_part_average=float(UBOUND(r,dim=1))/float(n_procs)

n_part_portion=0

do j_r=1,n_r

n_part_lower(j_r)=n_part_portion

n_part_portion=n_part_portion+n_part_r(j_r)

i_proc=n_part_portion/n_part_average+1

if(i_proc.gt.n_procs)i_proc=n_procs

j_r_upper(i_proc)=j_r

enddo

j_r_upper(0)=0

c

c reordering of the particles

c

!$OMP parallel do private(l,j_r,l0)

do l = 1,UBOUND(r,dim=1)

j_r=j_r_part(l)

l0=n_part_lower(j_r)+i_r(l)

l_index(l0)=l

enddo

!$OMP end parallel do

c

c pressure loop

c

!$OMP parallel do private(i_proc,j_r,i,l0,l,j_theta,j_phi)

do i_proc=1,n_procs

do j_r=j_r_upper(i_proc-1)+1,j_r_upper(i_proc)

do i=1,n_part_r(j_r)

l0=n_part_lower(j_r)+i

l=l_index(l0)

j_theta = f_theta(theta(l))

j_phi = f_phi(phi(l))

p_par(j_r,j_theta,j_phi,1) =

& p_par(j_r,j_theta,j_phi,1)

& + h(r(l),...,w(l))

enddo

!$OMP end parallel do

References

1. E. Akarsu, K. Dincer, T. Haupt and G.C. Fox, Particle-in-Cell Simulation Codes
in High Performance Fortran, in: Proc. SuperComputing ’96 (IEEE, 1996).
(http://www.supercomp.org/sc96/proceedings/SC96PROC/AKARSU/INDEX.HTM)

2. Benkner, S., Sanjari, K., Sipkova, V., Velkov, B.: Parallelizing Irregular Applica-
tions with Vienna HPF+ Compiler VFC. In High Performance Computing and
Networking. Proceedings, LNCS Vol. 1401, Springer, Berlin, 1998, p. 816–827.

3. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation (McGraw-
Hill, New York, 1985).

4. Briguglio, S., Vlad, G., Zonca, F., Kar, C.: Hybrid Magnetohydrodynamic-
Gyrokinetic Simulation of Toroidal Alfvén Modes. Phys. Plasmas 2 (1995) 3711–
3723.

5. Chen, L.: Theory of Magnetohydrodynamic Instabilities Excited by Energetic Par-
ticles in Tokamaks. Phys. Plasmas 1 (1994) 1519–1522.

6. V.K. Decyk, Skeleton PIC codes for parallel computers, Computer Physics Com-
munications 87 (1995) 87-94.

7. Di Martino, B., Briguglio, S., Vlad, G., Fogaccia, G.: Workload Decomposition
Strategies for Shared Memory Parallel Systems with OpenMP. Submitted for pub-
lication to Scientific Programming, 2000.

8. Di Martino, B., Briguglio, S., Vlad, G., Sguazzero, P.: Parallel Plasma Simulation
in High Performance Fortran. In High Performance Computing and Networking.
Proceedings, LNCS Vol. 1401, Springer, Berlin, 1998, p. 203–212.

9. R.D. Ferraro, P. Liewer and V.K. Decyk, Dynamic Load Balancing for a 2D Con-
current Plasma PIC Code, J. Comput. Phys. 109 (1993) 329-341.

10. Fox, G.C., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D.: Solving
Problems on Concurrent Processors (Prentice Hall, Englewood Cliffs, New Jersey,
1988).

11. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion, Version 2.0, Rice University, 1997.

12. Labarta, J., Ayguadè, E., Oliver, J., Henty, D.: New OpenMP Directives for
Irregular Data Access Loops, Proc. of 2nd European Workshop on OpenMP -
EWOMP’2000, 14–15 September 2000, Edinburgh (UK).

13. Liewer, P.C., Decyk, V.K.: A General Concurrent Algorithm for Plasma Particle-
in-Cell Codes. J. Computational Phys. 85 (1989) 302–322.

14. C.D. Norton, B.K. Szymanski and V.K. Decyk, Object Oriented Parallel Compu-
tation for Plasma Simulation, Communications of ACM 38(10) (1995) 88-100.

15. OpenMP Architecture Review Board: OpenMP Fortran Application Program In-
terface, ver. 1.0, October 1997.

16. Saltz, J., Ponnusamy, R., Sharma, S., Moon, B., Hwang, Y.-S., Uysal, M., Das,
R.: A Manual for the CHAOS Runtime Library, Technical Report UMIACS TR
CS-TR-3437, Univ. of Maryland, March 1995.

