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Optimizing Operating System Performance for CC-NUMA Architecture 

 

Summary 

 
CC-NUMA (Cache-Coherent Non-Uniform Memory Access) architecture is an attractive solution to scalable 

servers. The performance of a CC-NUMA system heavily depends on the number of accesses to remote 

memory through an interconnection network. To reduce the number of remote accesses, an operating system 

needs to exploit the potential locality of the architecture. This paper describes design and implementation of 

a UNIX-based operating system supporting CC-NUMA architecture. The operating system implements 

various enhancements by revising kernel algorithms and data structure. This paper also analyzes the 

performance of the enhanced operating system by running commercial benchmarks on a real CC-NUMA 

system. The performance analysis shows that the operating system can achieve better performance and 

scalability for CC-NUMA by kernel data striping, localization, and load balancing.  

 

Keywords: CC-NUMA, UNIX operating system, remote memory access, data striping, localization, load 

balancing 

 

1. Introduction 

CC-NUMA (Cache-Coherent Non-Uniform Memory Access) architecture is an attractive solution to scalable 

servers. It offers better scalability than traditional SMPs (Shared-Memory Multiprocessors) where all the 

processors share the common bus. The CC-NUMA architecture overcomes the scalability limits by 

distributing physical memory into multiple local memory modules, while providing a single system image 

and global common address space shared by all processors [1][2]. 

A CC-NUMA system consists of multiple nodes connected by an interconnection network. Since a 

processor accesses remote memory through the network, the remote access latency is much larger than the 

local access latency. In addition, an access to remote memory increases the network traffic for maintaining 



cache coherency, which significantly degrades the system performance. Such architecture poses many 

challenges in operating system design, implementation, and performance optimization. 

In this paper, we present design and implementation of a CC-NUMA operating system based on SCO 

UnixWare 71 [3]. Since UnixWare 7 was originally designed for SMPs, we revised the global data structure 

and algorithms to exploit the potential locality of CC-NUMA architecture. We also implemented numerous 

kernel enhancements to maximize the performance. The major enhancements include large physical memory 

management, process scheduling, data localization, multi-path I/O, load balancing, and NUMA-specific APIs. 

In the following sections, we will describe the kernel enhancements and their contribution to the overall 

performance. Then we evaluate the operating system performance by running SPEC SDET and AIM VII SS 

commercial benchmarks on a real CC-NUMA system. 

 

2. Related work 

 

A CC-NUMA system consists of multiple nodes or CPU groups (CGs) connected by a high-speed 

interconnection network. Each node contains a set of processors, local memory, and a custom node controller. 

The node controller is responsible for maintaining the consistency of data distributed into multiple local 

memory modules belonging to each node. Figure 1 illustrates an overall architecture of a typical CC-NUMA 

system. 

In contrast to a SMP machine, a CC-NUMA system has different access times for different parts of 

memory. When requested data are missing in the processor cache and local memory, they are retrieved from a 

remote memory residing on another node. Since the remote data are accessed through an interconnection 

network, the remote access latency of a typical CC-NUMA system is at least two or three times the local 

access latency even without memory contention [2][4]. 

To reduce the amount of traffic in the network, the node controller may contain FMC (Far Memory Cache) 

storing the remote data temporarily. But if the requested data miss the FMC, the processor has to wait until 

                                                 
1 UnixWare 7 is a trademark of SCO (Santa Cruz Operation Inc.). 



the data are served from the remote memory through the network. Such large latency in the remote memory 

access makes the localization of the memory access the most important performance issue. 

There have been many researches on CC-NNUMA architecture in academy, including Stanford DASH [2] 

and DASH [5], MIT Alewife [6], and University of Toronto NUMAchine [7]. But most of these researches 

focused on CC-NUMA hardware performance, and only few of them focused on the operating system 

support and its performance. 

As a part of research on Stanford DASH, Rohit et al. evaluated the effect of operating system scheduling 

and page migration policies on the CC-NUMA performance [8]. They performed experiments using 

sequential and parallel applications as a workload. With given workload, they claimed that an operating 

system policy incorporating cache affinity and page migration could double the performance. 

Verghese et al. studied on dynamic page migration and replication [4]. They modeled a CC-NUMA 

machine on the SimOS simulation environment. With the simulation results, they claimed that dynamic page 

migration and replication substantially increase the application performance and reduce the contention in the 

CC-NUMA memory system. 

Chapin et al. characterized the performance of SGI IRIX, a variant of UNIX SVR4 operating system 

[9][10]. They analyzed the memory performance of the operating system using a cache miss monitor. 

Through the experiment, he proposed several enhancements for operating system such as kernel code 

replication and memory hotspot reduction. They claimed that SMP-based operating systems could be 

modified to achieve reasonable performance on CC-NUMA architecture without significant changes in the 

kernel data structure and algorithm. 

A research group at University of Toronto proposed Tornado operating system specially designed for CC-

NUMA architecture [11]. This group introduced new design concepts supporting CC-NUMA such as 

clustered objects, a protected procedure call facility, and an encapsulated locking strategy. They claimed that 

they could improve the performance by redesigning the operating system from the scratch. 

The academic researches and prototypes have been followed by commercialization of several CC-NUMA 

systems. Examples are Sequent NUMA-Q, DG Aviion 20000, and SGI Origin. 



Sequent NUMA-Q is targeted toward commercial workloads such as database and transaction processing 

[12]. NUMA-Q consists of homogeneous processing nodes connected by a high-speed ring interconnection. 

Each processing node is an Intel Quad bus-based SMP with four Pentium Pro processors. The customized 

interconnection board implements the SCI (Scalable Coherence Interface) directory protocol. 

DG Aviion 20000 also uses Pentium Pro Quads as their nodes [13]. The multiple nodes are connected by 

SCI compliant Dolphin interconnection network that links those nodes in a bi-directional ring. Each node has 

FMC (Far Memory Cache) that stores remote memory references in order to reduce the amount of traffic 

across the link. Aviion 20000 runs DG/UX or SCO UnixWare 7 operating system optimized for its 

architecture. 

Recently IBM built a CC-NUMA prototype hardware running Windows NT operating system [14]. This 

prototype also uses Intel Quad SMP as building blocks and implemented programmable performance 

monitors to measure the frequency of remote memory accesses. However, They just ported operating system 

to their prototype without modification or optimization in kernel data structure and algorithm. 

This study presents performance optimization and evaluation of UnixWare 7 operating system for CC-

NUMA architecture. While previous performance studies are based on scientific workloads on prototype 

machine or simulation environment, this study evaluate the performance of a real CC-NUMA system running 

SDET and AIM VII commercial workloads. In addition, this study focuses on performance optimization of 

the operating system, not hardware platform. In the next section, we will describe the operating system 

support and kernel enhancements for CC-NUMA architecture implemented in UnixWare 7 in detail. 



 

3. Operating system support for CC-NUMA architecture 

 

3.1 Kernel enhancements 

 

SCO UnixWare 7 is one of latest UNIX operating systems runs on Intel processor platforms ranging from 

small-scale SMPs to enterprise class multiprocessors. UnixWare 7 implements various kernel enhancements 

to for CC-NUMA architecture. In this section, we describe the major enhancements such as kernel code 

replication, kernel data striping, data localization, multi-path I/O, virtual memory management, load 

balancing and migration, and CC-NUMA specific APIs. 

 

(1) Kernel code replication 

 

The kernel code and data are most frequently accessed area in the system. A previous study reported that a 

large fraction of execution time is spent on accessing the kernel code and data [9]. UnixWare 7 reduces the 

number of remote accesses by simply replicating the kernel code to each node. At boot time, the kernel 

replicates its code to local memory on each node and maps its virtual address space to the local copy. 

Generally, the kernel code replication does not cause the consistency problem, because it is read-only 

accessible in most of cases. However, any changes to kernel code that has taken place after replication must 

be propagated to each node. For example, when a kernel debugger plants a software breakpoint, it has to 

modify every copy of affected instructions replicated to each node. 



 

(2) Kernel data striping 

 

The kernel data area are classified as two groups: read-only and write accessible. The read-only kernel data 

can be replicated without consistency control. For example, kernel page tables, the page slice table, kernel 

virtual address map, scheduler dispatch tables are read-only accessible and can be replicated to each node. 

On the contrary, most of kernel data are write accessible and cannot be replicated easily. Those kernel data 

are stripes across the nodes with a granularity of one page. The kernel data striping eliminates the memory 

hot spots by distributing memory accesses to multiple nodes. 

 

(3) Kernel data localization 

 

To increase the locality, the kernel global data structure has been revised to have per-node structure. For 

example, the system-wide global run queue has been replaced by per-node run queue, and various metrics are 

collected on a node basis. 

In addition, the kernel maintains a new data structure called cglocal to keep all the variables local to a node. 

Other global data structure such as page lists, anon slots, KMA(Kernel Memory Allocator) pools, and 

memory reservations are also maintained on a per-node basis. Each node has its own instance of kernel 

daemons such as fsflush_percg(). 

 

(4) MPIO 

 

MPIO (Multi-Path I/O) supports multiple I/O channels to access the same storage unit. It enables an operating 

system to make multiple decisions in routing an I/O to balance the load or bypass non-functional paths. MPIO 

increases the availability by re-routing the I/O request, and improves the I/O throughput by allowing the 

kernel to choose the nearest path.  



To maximize the I/O performance, CC-NUMA I/O hardware needs to be fully connected, that is, the system 

needs to have a near disk controller available on each node. The MPIO improves significantly the I/O 

performance of a CC-NUMA system by distributing I/O requests across the nodes and eliminating the I/O 

imbalance problem. 

To improve the network performance, STREAM subsystem has been redesigned to have per-node data 

structure. An instance of network driver is bound to each node and scheduling algorithms are implemented 

per-node basis. 

 

(5) Virtual memory management 

 

The virtual memory design also has been revised to support large physical memory in CC-NUMA 

architecture. A number of virtual memory interfaces have been changed for localization purposes, and a 

number of new interfaces have been implemented. 

In page pool management, each node has its own physical page pool. When a page is requested on a node, it 

comes from the local page pool by default, and return back to the local pool when it is freed. Since the page 

pools are local to each node, paging daemons such as pageout and fsflush page in and out local to each node 

and they handle only local page lists. 

The vnode management provides several placement policies specific to CC-NUMA architecture. A vnode 

page can be bound to a specific node, or replicated to each node if it is a read-only file or text file. 

Kernel memory allocator (KMA) has been changed to have preference to allocate memory local to the calling 

processor. KMA keeps per-node free lists and per-CPU free lists. A kernel memory can be allocated from 

per-CPU free lists only if a local CPU belongs to a node for which allocation request was made. Per-node 

free lists contain memory only from the local node. KMA also provides a new interface to allow a caller to 

allocate kernel memory in the indicated node. 



 

(6) Load balancing and migration 

 

Load balancing distributes the workload equally among the nodes. We implemented two load balancing 

policies: static and dynamic. Static load balancing is performed only at specific times during the lifetime of a 

process, either before the process begins (fork(2) time) or when the process instantiates a new address space 

(exec() time). The kernel identifies the most lightly-loaded node and creates a process on such node using 

resource metrics on each node such as vmmeter(). The vmmeter() maintains the resource usage information 

such as the amount of available memory and the length of the ready queues. 

In contrast, dynamic load balancing periodically checks the load among the nodes. If the kernel detects that 

the imbalance exceeds a specified limit, a process migrates from the most heavily loaded node to the mostly 

lightly loaded node. We implemented the placement policy based on three criteria: run queue length, 

processor idle time, and the amount of free memory.  

 A process can migrate to a different node for a very brief period only with the minimal memory structures 

required to execute, and return to its original node. Otherwise, the kernel may change the home node and 

move all memory objects associated with the process including kernel data. The dynamic load balancing and 

migration policy are useful for maximizing the system utilization, but it may not improve the throughput in 

case of excessive migration. 

 

3.2 NUMA-specific APIs 

 

UnixWare 7 provides new APIs to support CC-NUMA architecture. These APIs are provided to meet the 

needs of the applications targeting the CC-NUMA system. The APIs are implemented in a dynamically-

linked shared library. The interfaces and their functions are listed below. Note that CG(CPU Group) and node 

are used interchangeably in the rest of this paper. 



 

int cg_ids(int selector, int ncgids, cgid_t *array) 

 Retrieve a list of the CGs selected by selector 

int cg_processors(cgid_t cgid, int selector, int nprids, processorid_t *array) 

 Retrieve a list of the processors belonging to CG cgid and selected by selector 

int cg_info(cgid_t cgid, cginfo_t *infop) 

 Retrieve information about the specified CG. 

int cg_bind(idtype_t type, id_t id, cgid_t cg, int flags, cgid_t *ocg, int *oflags) 

 Bind or query the binding of the specified process or LWP. 

cgid_t cg_current(idtype_t type, id_t id) 

 Return the identity of the CG to which the specified process or LWP belongs 

int cg_memloc(caddr_t addr, size_t len, cgid_t *vec) 

 Determine which CG instantiates the specified pages of the caller’s address space 



 

4. Experiment 

 

4.1 Experimental environment 

 

In the previous section, we described the UnixWare 7 kernel enhancements for CC-NUMA architecture. In 

this section, we evaluate the performance contribution of those enhancements by running SPEC SDET and 

AIM VII SS [15] commercial workloads. 

The SPEC SDET benchmarks simulate multi-user workloads in a software development environment. SDET 

benchmark runs numbers of concurrent processes invoking typical UNIX commands such as make, cp, rm, 

nroff, grep, etc. The throughput is measured in scripts per minute as a function of the number of simulated 

users. The AIM VII SS (Shared System Mix) benchmark also measures the throughput in AIM jobs per 

minute versus simulated application load tasks. The SDET and AIM VII SS benchmarks are widely used for 

measuring the operating system performance, since both benchmarks spend over 50% of total execution time 

in the kernel mode. 

The hardware platform used in this experiment is a Data General Aviion 20000. Each node contains four 200 

MHz Pentium Pro processors with 512 KB L2 cache and 1.5 GB main memory. An SCI compliant Dolphin 

interconnection links the nodes in a bi-directional ring with bandwidth of 2 x 400 MByte/sec. Each node has 

32 MB FMC (Far Memory Cache) that stores remote memory references temporarily. 

To meet the I/O bandwidth requirement of the benchmark, we configure the platform system with DG 

Clariion RAID disks. We bind 10 disks for a RAID-0 logical disk, and assign four logical disks and two 

Qlogic 1040 SCSI controller to each node of the platform system. For each run, the benchmark program is 

instrumented by sar(1M) and kernel profile data are collected by profiler(1M) utility. 



 

4.2 CC-NUMA vs. SMP_ON_CCNUMA 

 

To evaluate the contribution of the kernel enhancements for CC-NUMA, we first compare the performance of 

two versions of a kernel: CC-NUMA and SMP_ON_CCNUMA. 

The SMP_ON_CCNUMA version enables an SMP kernel to run on a CC-NUMA machine, making use of all 

of the processors, memory, and I/O devices in the system. This version is developed to measure the 

comparative performance of a CC-NUMA kernel relative to an SMP kernel on the same hardware. In this 

version, the operating system considers a CC-NUMA machine as an SMP machine having only one node, 

which turns off all the kernel enhancements for CC-NUMA architecture. 

The CC-NUMA version is a base kernel that enables all of basic enhancements for CC-NUMA, including 

kernel code replication, kernel data striping, kernel data localization, and MPIO, except for load balancing 

and migration. The performance effect of load balancing and NUMA-specific APIs will be evaluated in the 

next subsection. 

The SDET benchmark requests operating system services intensively, spending over 60 % of execution time 

in the kernel. The measurement result shows that the throughput increases initially with the workload and 

reaches a peak value. After the peak value, the throughput levels off, then falls off as the workload is further 

increased. 

Figure 2 illustrates the throughput of CC-NUMA and SMP_ON_CCNUMA versions in a single node 

configuration with four processors. Figure 2 shows that the SMP_ON_CCNUMA version performs little 

better, because the CC-NUMA version has slight overhead due to the kernel modification. But the overhead 

is 4.7% at maximum, and becoming negligible as the number of users increases. 

Figure 3 illustrates the improved throughput of the CC-NUMA version relative to SMP_ON_CCNUMA in a 

2-node configuration. In Figure 3, the throughput of the CC-NUMA version exceeds that of 

SMP_ON_CCNUMA by 10 – 28%. For example, the CC-NUMA version scores the peak throughput of 

5142.9 scripts/min at 24 simulated users, which is 13.2% higher than SMP_ON_CCNUMA. At 512 users 



where the system is saturated, the throughput drops to 3445.2 scripts/min, but still 27.8% higher than 

SMP_ON_CCNUMA. 

Note that the results in Figure 2 and 3 do not show the optimal performance, because CC-NUMA version 

does not enable load balancing and dynamic migration, and the SDET benchmark does not use NUMA-

specific APIs. 

The impact of the CC-NUMA enhancements on the kernel behavior can be found in the kernel profile data 

collected by profiler(1M). Figure 4 illustrates the three most frequently used kernel routines in two versions at 

24 users in 2-node configuration. In the SMP_ON_CCNUMA version, the processors in the system spend 

15.1% of time in lock() routine and 7.8% in bcopy(). In the CC-NUMA version, these values are reduced to 

8.8% and 4.9%, respectively. This result indicates that the kernel enhancements, such as kernel data 

localization, reduce a large amount of lock contention in the CC-NUMA architecture. 

Figure 5 illustrates the scalability of the CC-NUMA version with the increasing number of nodes. When 

comparing the peak throughputs, the CC-NUMA version increases the performance by 19% for a 2-node 

configuration relative to a single node configuration. In terms of node scalability, the CC-NUMA version 

scales only 60% (=119% / 2 nodes), which is higher than SMP_ON_CCNUMA, but lower than expected. 

The reason for the poor scalability of the CC-NUMA version can be explained by the system activity report 

shown in Table 1. Table 1 shows the percent of time waiting for I/O (%wio) and idling (%idle) reported by 

sar(1M) in a 2-node configuration. In the SMP_ON_CCNUMA version, the %wio and %idle continuously 

decrease to less than 1% as the number of users increases. In the CC-NUMA version, however, the %wio 

and %idle do not decrease continuously, but remain much higher. Especially %idle is 7% at minimum, and 

remains as high as 12 - 38%.  

The higher percentages in %wio and %idle imply that the workload is unbalanced and I/O requests are not 

uniformly distributed over the nodes. The load imbalance problem results in poor scalability worse than 

expected in the CC-NUMA version. This result suggests that the operating system needs to provide a load 

balancing facility to fully utilize the resource in the CC-NUMA system. 

 



No. of Users 1 8 16 24 32 64 128 256 

% wio 43 30 12 5 4 2 2 1 SMP_ON_ 

CCNUMA 
% idle 49 4 4 3 3 2 0 0 

% wio 24 28 14 6 9 4 9 8 
CC-NUMA 

% idle 70 15 7 15 12 38 29 25 

 

Table 1. Average %wio and %idle for SDET (2-node configuration) 

 

4.3 Load balancing 

 

The experiment results in the previous subsection showed that a CC-NUMA operating system may suffer 

from poor scalability due to the load imbalance problem. To solve this problem, we implemented three load 

balancing policies: static load balancing(SLB), dynamic load balancing(DLB), and binding. 

The two load balancing policy can be enabled exclusively. When static load balancing is enabled, the 

operating system creates a process on the most lightly loaded node at fork()/exec() time. When dynamic load 

balancing is enabled, the kernel periodically checks the load among the nodes and migrates a process from 

the most heavily loaded node to the most lightly loaded node. The DLB policy also includes load balancing 

on process creation time. Both SLB and DLB policy uses a simple resource usage metric on each node based 

on the length of the run queues, processor idle time, and the amount of available memory. 

In Binding policy, a process can be bound explicitly to a specific node during its entire life without migration. 

We also implemented a set of NUMA-specific APIs supporting process binding: cg_info() and cg_bind(). 

These APIs allow a user to bind explicitly a process to a specific node to distribute the load across the nodes. 

In this subsection, we evaluate the performance improvement for each policy by running AIM VII SS 

benchmark. The AIM VII SS benchmark bas been simply modified to use NUMA-specific APIs for binding. 

The experiment is performed on 3-node configuration consisting of 12 CPUs and 4.5 GB memory in total. 



Table 2 shows the AIM VII SS throughput of CC-NUMA kernels implementing three different load 

balancing policies. Similar to SDET throughput, the AIM VII SS throughput initially increases with 

simulated loads and reaches a peak performance value before leveling off, or in some cases falling off as the 

load is further increased. In DLB policy, the load is checked every second, and the process migration is set to 

activate when the difference between per-node run queue lengths becomes larger than two processes. 

In Table 2, the DLB improves the performance by 7.6 – 8.4% at 80 and 96 simulated loads in comparison 

with SLB. The experiment also shows that Binding policy performs far better than DLB as well as SLB. For 

example, Binding policy scores the peak performance of 2763.6 jobs/min at 96 simulated loads, which is 

13.0% and 17.6% higher than DLB and SLB policies. 

 

No. of 

Users 
32 48 64 80 96 128 256 

SLB 1803 2270 2396 2256 2272 2277 2207 

DLB 1755 2331 2469 2445 2444 2393 2228 

Binding 1930 2388 2518 2622 2763 2532 2292 

 

Table 2. AIM VII SS throughput for SLB, DLB, and Binding policies on 3-node configuration 

 

For further investigation, we analyze %wio and %idle for each policy in Table 3 and 4. Table 3 shows 

average %wio on each node. For example, at 32 simulated loads, DLB policy spends 3%, 2%, 9% of total 

execution time in waiting for I/O on node 0, node 1, node 2, respectively. 

In Table 3, %wio has been reduced to less than 3% on reasonable loads for all of three policies. The small 

percentages in %wio imply that I/O requests have been distributed evenly across the nodes. This result also 

indicates that the platform system provides enough I/O bandwidth, eliminating the effect of I/O from the 

cause of performance differences between the load balancing policies. 

Table 4 illustrates the average %idle on each node, which identifies the cause of the performance difference 

between three policies. In Table 4, DLB policy performs better than SLB in reducing %idle, but its reduction 



rate is less than expected. A further reduction of %idle can be achieved by using Binding policy. At peak 

performance, Binding policy reduces maximum %idle to 12% at 96 simulated loads, while SLB and DLB 

have 53% and 43% of maximum %idle. 

Table 4 shows that DLB policy performs better than SLB, but is not sufficient to maximize the performance 

of the CC-NUMA system. The inefficiency of DLB policy comes from the limited accuracy in the resource 

metric. The resource metric needs to be updated as frequently as possible to provide accurate information for 

the processor and memory usage. The dynamic nature in memory allocation and deallocation makes status 

information less accurate, and also increases the overhead in the collection activities. In addition, DLB may 

not be useful if the process lifetime is not long enough to gain the performance benefit from the migration. 

Table 4 suggests that Binding policy can maximize the performance once the workload is well known and 

distributed evenly across the nodes. Binding policy can be easily implemented by using cg_ids() and 

cg_bind() NUMA-specific APIs as described in Section 3.2 

 

No. of 

Users 
32 48 64 80 96 128 256 

SLB 5,2,2 8,1,2 4,1,1 3,1,1 4,0,0 4,1,1 2,1,1 

DLB 3,2,9 2,1,5 1,1,4 1,1,3 1,1,3 0,0,1 0,0,1 

Binding 3,3,2 1,4,4 1,1,1 0,0,0 0,1,1 0,0,0 0,0,1 

 

Table 3. Average %wio for AIM VII SS on 3-node configuration 

 

No. of 

Users 
32 64 96 128 256 

SLB 53,28,28 50,  6,  6 50, 7,10 50, 7, 6 50, 5, 5 

DLB 35,30,86 13,  9,41 20, 7,40 16, 3,30 13, 3,33 

Binding 35,47,37 17,22,22 10,12,12 8,13,11 3, 7, 7 

 

Table 4. Average %idle for AIM VII SS on 3-node configuration 

 



4.4 Scalability 

 

In this section, we perform scalability test by running AIM VII SS on the platform with the increasing 

number of nodes. To maximize the performance for each configuration, we enable Binding policy as well as 

all of kernel enhancements described in the previous sections. 

Figure 6 illustrates the node scalability, the peak throughput of AIM VII SS for increasing number of nodes. 

In Figure 6, the peak performance increases as the number of node increases: 1505.9 jobs/min on a single 

node, 2377.8 jobs/min on 2-node, and 2763.6 jobs/min on 3-node configuration. The normalized peak 

performance values are 1: 1.58: 1.84. That is, the node scalability of the platform system is 79% with 2-node, 

but drops to 61% with 3-node configuration. This result indicates that the platform system offers reasonable 

scalability with up to two nodes, but still limited scalability beyond three nodes. 

 

4.5 Remote memory access 

 

To identify the primary factor for the poor scalability beyond 3-node configuration, we first measured the 

number of remote accesses during the benchmark run. The platform system contains FMC (Far Memory 

Cache) for each node to reduce the number of remote accesses as well as performance counters for 

monitoring the FMC misses. The FMC in the platform system has a 32 MB DRAM cache with 4-way 

associativity and 64-byte block size. 

Table 5 shows the number of FMC misses per instructions executed on each node during the AIM VII SS 

benchmark run. In the case of AIM VII SS, the FMC miss rates are extremely low. The FMC miss rate would 

be dependent on the workload, but many of commercial workloads are expected to have similar access 

patterns, because AIM VII SS is an operating system intensive benchmark invoking typical UNIX 

commands. 



Table 5 suggests that remote access is not the primary factor for the poor scalability beyond 3-node 

configuration. This result also implies that the number of remote accesses has been reduced dramatically by 

various kernel enhancements for CC-NUMA.  

 

No. of Users 32 48 64 80 96 128 256 

Executed instr. 
(x 10^7) 181 268 347 532 650 985 2333 

FMC miss rate per 
10^7 instr. 1.96 1.22 1.12 0.90 0.87 0.78 0.73 

 

Table 5. FMC misses for AIM VII SS on 3-node configuration 

 

4.6 Spin lock contention 

 

Next, we measured the time spent on spin lock contention. A spin lock contention refers to the situation in 

which two or more processors try to acquire the same lock simultaneously.  This contention consumes lots of 

processor cycles since a processor executes in a tight loop, trying to acquire a spin lock which is held by 

another processor. A spin lock contention also consumes bus cycles in the form of cache coherence traffic. In 

addition, it may also cause extra cache coherence traffic arising from false sharing. The false sharing problem 

may cause more serious performance problem on CC-NUMA system when the spin lock variables are 

allocated in the same cache line of the FMC [1]. 

The processor cycles consumed by spin lock contention can be measured by kernel profiling tool facility. 

Figure 7 shows the percent of time spent in kernel spin locks instrumented by profil(1M). Using kernel 

profiling, we found that kernel spin locks consume at peak performance (96 users) 12.25% of processor 

cycles on 3-node configuration, while 4.24% and 2.97% on 2-node and 1-node configuration, respectively. At 

256 simulated users with 3-node configuration, the kernel spin locks consume as much as 23.78% of total 



execution time. This result indicates that the spin lock contention is expected to increase exponentially as the 

number of nodes increases, resulting in a severe scalability problem of a CC-NUMA system. 

Through the individual lock instrumentation, we found that two major locks, vm_pagefreelock and dnlc lock 

are responsible for the most of time spent in spin lock contention. In UnixWare 7 implementation, 

vm_pagefreelock is a single global spin lock protecting the page free lists, and dnlc lock is a single global 

spin lock protecting directory name lookup cache. The contention on vm_pagefreelock is expected to increase 

as the size of physical memory increases, becoming more serious on a CC-NUMA system supporting large 

physical memory exceeding 4 GB. This result suggests that these spin locks should be split into finer 

granularity locks to improve the scalability of CC-NUMA system beyond 3-node configuration. 

 

5. Conclusion 

 

The CC-NUMA architecture demands operating system support for performance optimization. In this paper, 

we presented performance optimization of an UNIX-based operating system for CC-NUMA architecture. We 

implemented numerous kernel enhancements for CC-NUMA architecture, including kernel code replication, 

kernel data striping, virtual memory management, kernel data localization, multi-path I/O, load balancing and 

migration, and NUMA-specific APIs. This paper also evaluated the operating system performance using 

SDET and AIM VII commercial benchmarks. 

To evaluate the performance contribution of the kernel enhancements, we first compared the performance of 

CC-NUMA and SMP_ON_CCNUMA versions. Through the experiment, we found that the CC-NUMA 

version improves the performance by 27.7% at maximum in comparison with the SMP_ON_CCNUMA. We 

also found that kernel enhancement in CC-NUMA version reduced the processor cycles spent in lock 

contention and memory copy to the half those of SMP_ON_CCNUMA. 

We also evaluated the efficiency of three load balancing policy. The experiment results showed that Binding 

policy performs better than DLB as well as SLB by reducing the processor idle times. The results suggested 

that NUMA-specific APIs can play an important role in scheduling and migration. 



Finally in the scalability study, the platform system showed 79% of scalability with 2-node configurations 

and 61% with 3-node configurations. The poor scalability beyond 3-node configuration is due to the spin lock 

contention problem rather than remote accesses. This implies that the kernel enhancements presented in this 

paper are very useful in reducing the number of remote accesses, making the CC-NUMA technology more 

promising. 
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Fig 1. CC-NUMA Architecture 
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Figure 3. SDET throughput (2 nodes) 
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Figure 4. Kernel profile data for 2-node configuration 
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