
Implementation of the

EARTH programming model

on SMP clusters: a

multi-threaded language and

runtime system

G. Tremblay1, C.J. Morrone2, J.N. Amaral3, G.R. Gao1

1D�ept. d'informatique, Univ. du Qu�ebec �a Montr�eal, Montr�eal, QC, Canada
2 Computer Architecture and Parallel Systems Laboratory (CAPSL), Dept. of Electrical and
Computer Engineering, Univ. of Delaware, Newark, DE, USA
3 Dept. of Computing Science, Univ. of Alberta, Edmonton, AB, Canada

SUMMARY

We designed and implemented an EARTH (EÆcient Architecture for Running
THreads) runtime system for a multi-processor/multi-node cluster. For portability,
we built this runtime system on top of Pthreads under Linux. This implementation
enables the overlapping of communication and computation on a cluster of Symmetric
Multi-Processors (SMP), and lets the interruptions generated by the arrival of new
data drive the system, rather than relying on network polling. We describe how our
implementation of a multi-threading model on a multi-processor/multi-node system
arranges the execution and the synchronization activities to make the best use of the
resources available, and how the interaction between the local processing and the network
activities are organized. We also describe the EARTH programming model and its
associated programming language, Threaded-C (release 2.0), used to write programs for
this machine model. This programming model supports irregular �ne-grain parallelism
through a two-level hierarchy of threads and �bers. We introduce mutually exclusive �bers
that enable the execution of explicitly threaded Threaded-C code on a multi-processor
shared-memory system. One of our new synchronization mechanisms, atomic mailboxes,
implements a non-deterministic merge operator.

key words: multi-threading, cluster computing, parallel programming language

�Correspondence to: Jos�e Nelson Amaral, Department of Computing Science, University of Alberta, Edmonton,
AB, T6G 2E8, Canada

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 1

1. Introduction

This paper describes the design and implementation of the EARTH programming model on
a cluster formed by symmetric multi-processor (SMP) nodes. This implementation requires
an explicitly threaded language and a runtime system. The language, Threaded-C, has
evolved from earlier developments of EARTH [30, 31]. In this paper, we discuss the new
language features that we introduced in version 2.0 of Threaded-C. Earlier versions of the
runtime system were developed for distributed memory computing platforms [19]. Here, we
describe the �rst completely functional implementation of the EARTH system on a cluster of
symmetric multi-processor (SMP) nodes. This runtime system is designed for easy portability
across systems constructed with various processor nodes. It uses standard Unix sockets for
inter-node communication and splits the tasks performed in the EARTH system | thread
execution, communication, and synchronization | into three separate modules: an execution
module, a sender module, and a receiver module. As discussed in Section 4, this organization
of the runtime system is fundamental for an eÆcient and portable runtime system. This
organization is also important to avoid deadlocks when using blocking I/O for inter-processor
communication in the runtime system implementation.

This paper is organized as follows. Section 2 describes the EARTH programming model and
the programming language (Threaded-C, release 2.0) used to write programs for the EARTH
system. Section 3 describes the EARTH architecture model and the role of the runtime system
(RTS). Section 4 discusses our new design for the RTS. Performance results comparing our
implementation of the EARTH runtime system for SMP clusters with an earlier implementation
of such system are presented in Section 5. We present results for two clusters, one with 16 single
processor nodes, and another with 64 dual-processor nodes. Section 6 discusses related work.

2. The EARTH Programming Model and its Programming Language

In this section, we present the EARTH programming model and how it is encoded in the
Threaded-C programming language. EARTH's programming model has its origins in the
dataow model of computation. In a pure dataow model, �ne-grain parallelism is supported
by representing programs as graphs where each node is associated with a single instruction
and arcs indicate data exchanged between instructions. EARTH's programming model is also
based on the notion of a dataow graph, except that nodes are associated with sequences
of instructions (called �bers) whereas arcs are simply synchronization signals (without an
associated ow of data) indicating dependencies between �bers. EARTH's model supports two
levels of parallelism granularity.

EARTH's two-level hierarchy of threads and �bers

An important and distinguishing characteristic of EARTH's programming model is its two-
level hierarchy of parallelism obtained using threaded functions and �bers. Threaded functions
are instanced by the parallel activation of C functions | note that, in the remaining discussion,
the common C terminology of talking about functions has been preserved, even though those

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

2 G. TREMBLAY ET AL.

functions are in fact procedures. Threaded functions are thus similar to the threads found
in Java [21] or POSIX [9]. A distinguishing characteristic of EARTH's threaded functions,
however, is that they can themselves contain an additional level of (�ner-grain) parallelism,
called �bers. A �ber is an independent and very lightweight thread of control that corresponds
strictly to a segment of code inside a threaded function. Because the di�erent �bers of a
threaded function share the same context, viz., the activation frame of their parent function,
they allow for rapid context switch and, thus, for very �ne-grain parallelism.
Fibers possess the following characteristics:

� Fibers are scheduled using a dataow approach: a �ber becomes ready to execute when
it has received all appropriate signals. The only exception is the initialization �ber (the
code at the beginning of a threaded function) which is scheduled for execution as soon
as the thread is activated. Note that being scheduled for execution does not mean the
�ber gets executed immediately, as there may not necessarily be any available processor.
Also note that the signals received by a �ber generally represent data dependencies that
have been satis�ed.

� Instructions within �bers execute sequentially based on the underlying language
semantics (in our case, C).

� Fibers execute in a non-preemptive and non-blocking manner. In other words, a �ber
must never block because of data dependencies. These properties of �bers give rise to a
split-phase style of programming.

An example illustrating Threaded-C (release 2.0)

The Threaded-C language was designed to support the two-level threading hierarchy
of EARTH as well as the appropriate �ber semantics (dataow scheduling and non-
preemptiveness). The original design of Threaded-C focused on performance and was �ne-tuned
for the �rst hardware on which the model was implemented: the MANNA machine [31]. As a
consequence, some features of the �rst versions of the language exposed details of that machine
organization and architecture. This narrow focus on performance resulted in a language that
was at times unwieldy to less hardware-inclined programmers. Some of the shortcomings of
earlier versions of Threaded-C include [32]:

� Sync slots and �bers, which are key elements of Threaded-C programs, had to be
identi�ed with numbers (�a la machine language) instead of symbols;

� The key attributes of a �ber (its associated slot, and its init and reset count) had to
be speci�ed non-locally (i.e., far from where that information was used) using explicit
low-level instructions;

� All instructions for communication and synchronization were specialized, with distinct
variants based on the types of the operands, leading to a proliferation of such operations
(28 variants);

� Although the end of a �ber could, in general, easily be deduced from the text of the
program, explicit instructions had to be provided by the programmer to signal the end
of every �ber;

� There was no uniform convention for naming the language operations.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 3

1 THREADED fib(int n, int *GLOBAL result, SPTR done)
2 {
3 int r1, r2;
4
5 if (n <= 1) {
6 PUT_SYNC(1, result, done);
7 TERMINATE;
8 } else {
9 TOKEN(fib, n-1, TO_GLOBAL(&r1), TO_SPTR(READY));

10 TOKEN(fib, n-2, TO_GLOBAL(&r2), TO_SPTR(READY));
11 }
12
13 FIBER READY <* 2 *> {
14 PUT_SYNC(r1+r2, result, done);
15 TERMINATE;
16 }
17 }

Figure 1. Threaded-C recursive function for computing the nth Fibonacci number

Many of those limitations can be explained because Threaded-C was not initially designed
to be used for application development. Instead, the goal was for Threaded-C to be mostly
a target language for compilers. A di�erent language, called EARTH-C [16], was designed
for application programming. As it turned out, however, EARTH-C was never adopted by
application programmers and Threaded-C rapidly became the common language for writing
programs for EARTH machines.

A key factor in the non-adoption of EARTH-C was the large semantic gap that existed
between the EARTH-C language and the EARTH architecture model. This made the control of
synchronization and communication operations diÆcult. In EARTH-C, parallelism is expressed
using high-level constructs such as forall, and data can be declared as private or shared. The
compiler is in charge of identifying the thread boundaries and the split-phase transactions
required to access potentially remote data. Because of the semantic gap between this level
of parallelism expression and the distributed memory machines in which the EARTH model
was implemented, compilers had limited success when partitioning EARTH-C into threads for
Threaded-C. A major roadblock was the absence of an eÆcient alias analysis to determine
which memory references could not be shared, and thus would not need a split-phase
transaction. Recent papers made progress on both fronts: improved alias analysis [34], and
better thread partitioning algorithms [1]. However, it was too late in the history of EARTH-C
to reverse the trend of slow adoption of the language. When designing the revised version of the
Threaded-C language (release 2.0 [33] | the version presented in the remaining of this paper),
we strove to preserve a narrow semantic gap between the language and the architecture, while
simplifying the language and making it easier to use.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

4 G. TREMBLAY ET AL.

Figure 1 presents a recursive function fib, written in Threaded-C (release 2.0), for computing
the nth Fibonacci number. The keyword THREADED before fib (Line 1) indicates that parallel
activations of this function | i.e., threads | can be created and that each such thread can
itself contain �bers.

One key characteristic of the EARTH model, apparent also in Threaded-C, is its underlying
memory model. Although EARTH supports a global address space with uniform addressing, it
does not presume that remote locations can be accessed using ordinary load/store instructions.
Thus, Threaded-C introduces the notion of GLOBAL handle | a pointer to a, potentially, remote
location | as well as special instructions used to transfer data to/from remote locations.

Based on these notions, the example of Fig. 1 can be explained in more detail as follows:

� A function declared as THREADED has a void return type, thus it must return any result
through reference parameters. The argument result (Line 1) is such a parameter, whereas
n is a value parameter indicating which Fibonacci number must be computed. The role
of done is explained below.

� When an activation of fib is created, the initialization �ber (the code at the beginning
of the function body, Lines 5{11) is immediately scheduled for execution (but will get
executed only when selected for execution by a processor). When the initialization �ber
does start executing, it �rst checks (Line 5) whether recursive calls must be performed
or not. There are then two possible cases for how the execution proceeds.

� In the base (non-recursive) case (Lines 6{7), the value 1 is returned using a PUT SYNC

statement targeted to location result. This variable, declared of type int *GLOBAL, is
a reference to a location of type int, possibly remote (GLOBAL) since the caller may
be executing on another node. When the transfer of the value 1 into location result is
complete, a signal is sent to the synchronization slot done. The role of this synchronization
is to indicate to the caller that the callee has �nished producing its result (a data
dependency has been satis�ed). The current thread's job is complete and the thread
terminates (Line 7), therefore the thread's activation frame can be deallocated.

� In the recursive case (Lines 8{11), two threaded function activations (two threads) are
created using the TOKEN statement. Independent, parallel threads can be created using
either TOKEN or INVOKE statements. In our example, TOKENs are used (Lines 9 and 10),
and thus the run-time system (RTS) is responsible for selecting the processor on which
the thread will be executed. The programmer could have used an INVOKE statement |
for ex., INVOKE(i, proc, : : :) |, to explicitly select the processor that runs the thread.
These two recursive and parallel invocations of fib return their respective results using
distinct local variables (r1 and r2) but they both send a completion signal to the same
slot, as indicated by the use of the same last argument expression TO SPTR(READY).
After the creation of two parallel activations of fib, the initialization �ber stops
executing: in Threaded-C, the normal ow of control is obeyed until either a TERMINATE

statement or a FIBER keyword is encountered. When a TERMINATE statement is executed
(for ex., Line 7), the thread immediately terminates | it is a run-time error for a thread
to terminate while there are still �bers active or already scheduled for execution. When
a FIBER keyword is encountered (Lines 9{13), the current �ber simply stops executing,
although the thread remains active since other �bers from the same thread may be ready

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 5

to execute or, as is the case in this example, may be waiting for synchronization signals
before they are allowed to proceed.

� In the EARTH execution model, synchronization slots (also called sync slots) are used
to receive signals and to determine when a �ber can be scheduled for execution, namely,
when the slot's associated count drops to 0. Thus, �bers are signaled indirectly through
their associated sync slot.
Although an explicit INIT SLOT statement can be used to initialize a sync slot and bind
it to a speci�c �ber, Threaded-C (release 2.0) also allows for implicit initialization and
binding. In the example above, the declaration of �ber READY (Line 13) automatically
creates a sync slot with the same name associated with �ber READY. The \<* 2 *>"
construct appearing after the �ber name (Line 13) speci�es how many signals must be
received before the �ber becomes enabled (ready for execution). In this case, two such
signals must be received, since the results from the two recursive calls must be available
before the �nal result can be computed and then sent to the caller (Line 14), after which
the thread can terminate (Line 15).
A (possibly remote) reference to a sync slot can be obtained using the TO SPTR operator
(SPTR = Slot PoinTeR), which returns a reference that can be transmitted to other threads
and used by them in synchronization and communication instructions (SYNC, PUT SYNC,
GET SYNC, BLKMOV SYNC). Here (Lines 9 and 10), such references to slot READY are sent to
each of the two children threads.

Support for atomicity and mutual exclusion

Another key goal in designing the revised version of Threaded-C was to ensure that Threaded-C
programs execute correctly on various implementations of the EARTH architecture, including
SMP clusters where multiple processors can enjoy shared access to portions of the memory.
In general, on such machines, there can be multiple �bers, all executing at the same time and
accessing the same node memory, including multiple instances of �bers from the same thread.
Appropriate mutual exclusion mechanisms must thus be provided. The revised language
introduces two such mechanisms:

Mutually exclusive �bers: A �ber declared as EXCLUSIVE will always be the only exclusive
�ber of a given thread to be executing at any given time (similar to Java's
synchronized [21]).

Atomic mailboxes: This data type provides a form of non-deterministic merge operator,
as typically found in dataow models: a place where multiple messages from di�erent
sources can be merged and stored until retrieved by consumers. Some key operations for
this new data type are (see [33] for additional operations):

� void INIT MAILBOX(MAILBOX *mb, SLOT s): Allocates a mailbox on the local
processor and associates with it the synchronization slot s. A signal is sent to
s each time a new item arrives in the mailbox.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

6 G. TREMBLAY ET AL.

1 THREADED producer(MAILBOX *GLOBAL mb)
2 {
3 int n = NODE_ID;
4 DROP_IN(mb, &n, sizeof(int));
5 TERMINATE;
6 }
7
8 THREADED MAIN()
9 {

10 MAILBOX mb;
11 int i, total = 0;
12
13 INIT_MAILBOX(&mb, CUMULATE_ITEM);
14 for(i = 0; i < NUM_NODES; i++)
15 INVOKE(i, producer, TO_GLOBAL(&mb));
16
17 EXCLUSIVE FIBER CUMULATE_ITEM <* 1 *> {
18 int v;
19
20 RETRIEVE_ITEM(mb, &v);
21 total += v;
22 SYNC(PRINT_RESULT);
23 }
24
25 FIBER PRINT_RESULT <* NUM_NODES *> {
26 printf("total = %d\n", total);
27 TERMINATE;
28 }
29 }

Figure 2. A reduction process with multiple producers, atomic mailbox and exclusive �ber

� void DROP IN(MAILBOX *GLOBAL mb, void* item, int nb bytes):
Transfers an item (of size nb bytes) to the (possibly) remote mailbox mb. When the
item arrives in mailbox mb, a signal is sent to mb's associated sync slot.

� int RETRIEVE ITEM(MAILBOX mb, void* item): Retrieves an (arbitrary) element
from mb and stores it in the space indicated by item. The size (in bytes) of
the retrieved item is also returned. Contrary to DROP IN, this operation must be
executed on the node where the mailbox has been allocated. If the maximum size
of the item cannot be known beforehand, another operation (RETRIEVE ITEM ADDR,
see [33]) can be used to dynamically allocate a bu�er of the appropriate size and
then return its address.

An example illustrating the use of atomic mailboxes and exclusive �bers is presented in
Fig. 2, where a master process receives values from various producers and adds them together
(i.e., performs a reduction process with operator +). In this example, the initialization �ber of

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 7

the master process (MAIN, which must necessarily be THREADED) �rst creates a producer thread
on each of the processors (Lines 14{15, where NUM NODES indicates the number of processors
currently available on the machiney), sending them a reference to the mailbox mb which was
allocated on the local processor and was bound to slot CUMULATE ITEM (Line 13).

Each of the producers then transmits (Line 4) its unique identi�cation number (NODE ID)
using a DROP IN instruction targeted to the global reference to mb received as argument
(Line 1). When the item reaches its destination, a signal is automatically sent to the sync
slot CUMULATE ITEM (Line 17), which was bound to mb on initialization (Line 13). Each signal
sent to this sync slot triggers a new and distinct activation of the CUMULATE ITEM �ber | this is
our �rst example of a �ber for which multiple instances are created dynamically. The body of
the �ber CUMULATE ITEM then retrieves one of the items received through the mailbox (Line 20) z

and updates the variable total (Line 21). In this example, the updates to variable total are
atomic because �ber CUMULATE ITEM is annotated as EXCLUSIVE. If multiple items arrive at the
mailbox \at the same time," multiple instances of the �ber are ready to execute, but only a
single instance at a time is allowed to proceed. Atomicity of the mailbox operations themselves
is ensured by the RTS.

Each time an item is retrieved and processed by an instance of �ber CUMULATE ITEM, a signal
is sent to sync slot PRINT RESULT (Line 22). After all items are received and processed, (one
per processor, thus NUM NODES as shown in Line 25), the content of total is printed and the
program terminates.

In this example, each producer thread is created on a distinct processor. Therefore the
use of an exclusive �ber and of an atomic mailbox leads to a program that requires a
minimum number of inter-processor communications: once created, each producer performs
a single communication using the DROP IN operation.x Yet, all producers are allowed to proceed
concurrently and the updates to total can be done incrementally, while the values are being
received. This property would not be possible if the values were received through a �xed-size
array instead of a mailbox, since all values would need to be received before their sum could
be computed. On the other hand, if there was a single target location (e.g., v) shared by
all producers, exclusive access to this location by each producer would need to be provided.
Although exclusive access could be granted through some kind of mutual exclusion lock, access
to the lock itself would incur additional overhead (inter-processor communications to grab the
lock).

yThe name \NUM PROCS" might have been more appropriate, since we need to know the number of distinct
processors available on the machine. However, mainly for historical reasons, \NUM NODES" is still being used.
zThe operation RETRIEVE ITEM is a function that returns the size (number of bytes) of the retrieved item; if
no item was present, 0 is returned. The speci�cation for the atomic mailboxes do not require the RTS, which
manages mailboxes, to retrieve the items in the order in which they were received.
xThis communication will not necessarily be with a remote processing node, since an INVOKE of a producer is
also done on processor 0, where the MAIN thread always executes. Furthermore, on an SMP machine, there may
be multiple processors with distinct NODE ID which are part of the same processing node.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

8 G. TREMBLAY ET AL.

Split-phase operations and other synchronization mechanisms

The non-blocking EARTH �bers lead to the use of split-phase operations. In a split-phase
operation, the request for some data or resource is done in a distinct phase than the reception
and manipulation of that data or resource. In Threaded-C, this means that these two steps
have to be performed by two distinct �bers.
The most basic example of a split-phase operation is GET SYNC, an operation used to retrieve

a value from a possibly remote location. Two generic GET SYNC instructions are provided in
Threaded-C, depending on whether the sync slot is local or remote:

� void GET SYNC(T *GLOBAL src, T *GLOBAL dest, SLOT ID s)

� void GET SYNC(T *GLOBAL src, T *GLOBAL dest, SPTR s)

When GET SYNC is executed, a value of type T (any type which can be passed by value in C) is
transferred from the source address src into the destination address dest and, when the transfer
is completed, the sync slot s is signaled. An important feature of the split-phase operation is
that the GET SYNC instruction completes (almost) immediately, not when the transfer has been
performed. For instance, suppose that a thread needs to retrieve the content of some remote
locations x and y in order to perform some work on local copies of these locations (my x and
my y). This data transfer is expressed by the following explicit split-phase operations (the two
requests can proceed in parallel):

GET_SYNC(x, my_x, XY_RECEIVED);
GET_SYNC(y, my_y, XY_RECEIVED);
/* my_x and my_y are *not* yet available. */

FIBER XY_RECEIVED <* 2 *> {
/* Further work on my_x and my_y is now allowed. */
...

}

Threaded-C dataow-style communication and synchronization operations together with
exclusive �bers and atomic mailboxes have been used to develop library modules that de�ne
and implement other synchronization mechanisms such as locks, semaphores, I-structures [4],
(uni- and bi-directional) communication channels, parallel reduction boxes.{ For example,
grabbing a (split-phase) lock in order to de�ne a critical section would look as follows, where
exclusive access is ensured only when a signal has been received by slot lock obtained, not
immediately after the LOCK SYNC has been executed:

LOCK_SYNC(lock, TO_SPTR(LOCK_OBTAINED));
...

{A number of these library modules can be found at the following URL:

http://www.capsl.udel.edu/EARTH/LIBRARY-DOC/

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 9

FIBER LOCK_OBTAINED <* 1 *> {
/* Begin critical section. */
...
UNLOCK(lock);
/* End critical section. */

}

The general strategy for implementing split-phase locks, as well as many of the other
synchronization mechanisms, is based on an approach similar to the so-called active monitors
described by Andrews [3, Chap. 7]. A distinct thread | an instance of the lock handler

function | is created each time a new lock is allocated and initialized (using INIT LOCK). A
call to a lock operation is �rst handled by a proxy (since the lock can be on a remote processor)
that sends an appropriate request for manipulating the lock to the associated lock handler (the
thread created for that lock). Such a request can be a simple signal sent through a regular sync
slot (e.g., UNLOCK) or a more complex message sent through a mailbox (e.g., LOCK). Arrival of the
request will then trigger an appropriate �ber in the lock handler thread. Atomic manipulation
of the lock is ensured by de�ning all the lock handler's �bers as EXCLUSIVE. For a more detailed
presentation of the implementation of split-phase locks, the reader can consult the Threaded-C
(release 2.0) reference manual [33]. In the next section, we discuss the architecture model and
the runtime system that implements the Threaded-C primitive operations described in this
section.

3. The EARTH Architecture Model and the Role of the Runtime System

Figure 3 shows the organization of the EARTH architecture model. In this model, processing
nodes are interconnected via a network. Each processing node contains a synchronization unit
(SU) and one or more execution units (EU). The EU is responsible for doing the \useful work",
that is, for executing �bers. The SU is in charge of synchronization, inter-node communication,
scheduling, and load balancing. All of the local EUs and the SU communicate with each other
through a ready queue (RQ) and an event queue (EQ). The ready queue holds �bers that are
ready for execution, i.e., �bers that have received all their appropriate synchronization signals.
A �ber in the ready queue is waiting for an EU to become available. The event queue contains
events yet to be handled by the SU. For instance, events in this queue may include a signal
to be sent to a local sync slot, or a request to initiate a transfer to/from a remote memory
location node.
Because �bers correspond to sequences of instructions and are non-preemptive, the

instructions that constitute a �ber can be executed using a regular instruction pipeline.
The SU takes care of all synchronization tasks. The technology used to implement the SU
provides a trade-o� between speed and portability for implementations of EARTH. A custom
hardware SU tightly coupled with the network interface and with the node's CPUs would
provide the most eÆcient implementation of EARTH, but would also be the least portable. An
implementation of the SU using Custom O�-The-Shelf (COTS) hardware, but with access to
the software that controls the ow of messages in the inter-node network cards | the MANNA
and the SP-2 implementations of EARTH follow this model [17] | provides less eÆciency but

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

10 G. TREMBLAY ET AL.

IN
T

E
R

C
O

N
N

E
C

T
IO

N
 N

E
T

W
O

R
K

LO
C

A
L

M
E

M
O

R
Y

SU

EU
node

EQ

node

node

...P
E

P
E

P
E

RQ

from RQ
to EQ

memory bus

Figure 3. EARTH Architecture

is more portable because only a small part of the EARTH RTS needs to be re-written when the
network interface changes. The most portable solution | used in the implementation described
in this paper | is a software implementation of the SU's functionality using standard network
interfaces, solution that also avoids the dedication of a CPU to exclusively execute the SU
functions.
When standard COTS processors are used to build an EARTH machine, the runtime

system (RTS) handles the tasks of creating threads, scheduling �bers, and handling network
communication. In the next section, we present our new design for this RTS.

4. The Design of the New Runtime System

Our goal was to design an EARTH runtime system that is portable, makes eÆcient use of
existing standard network interfaces, uses all the processing resources available in SMP Beowulf
clusters, and delivers good performance.
The general structure of our new EARTH runtime system is shown in Figure 4. The

Execution Module executes �bers and also takes on the responsibilities of intra-node
scheduling, synchronization, communication and load balancing, tasks which were performed
strictly by the SU in previous implementations of EARTH. The Receiver Module (RM) (resp.
Sender Module, SM) handles incoming (resp. outgoing) messages. The Token Queue (TQ)
contains work that may either be performed by a processor within the local node, or that
might be sent to a di�erent node for execution. The Ready Queue (RQ) contains �bers that
must be executed locally, and the Sender Queue (SQ) contains the outgoing messages.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 11

RQ

Application

Network

TQ SQ

Execution Module

ModuleModule
Receiver Sender

Figure 4. EARTH Runtime System

While we use a single SM and a single RM per SMP node, the number of EMs per SMP
node can be con�gured when the RTS is generated. In this way, machines that have more
processors in a single SMP node can bene�t from concurrent execution within a processing
node by allowing multiple EMs to run on di�erent processors. When multiple EMs are active,
each EM has its respective Ready Queue, but all the EMs share a Token Queue and a Send
Queue. All the modules are implemented as POSIX threads (pthreads), and therefore access
the same memory space. Intra-node communication is accomplished simply and eÆciently
through memory reads and writes.

In the following paragraphs, we describe the interface between the RTS and the network,
and how our design for the RTS bene�ts from the resources available in an SMP machine. We
also discuss the trade-o� between polling and interrupts, blocking vs. non-blocking I/O, and
the potential deadlocks in an RTS.

The case for standard Unix sockets

We chose the convenience of end-point communication provided by Unix sockets to establish
the communication channels between multiple SMP processor nodes. Sockets provide an easy-
to-use Application Programming Interface (API) that is consistent across many operating
systems and networking hardware. The API for sockets provides the following important socket
operations:

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

12 G. TREMBLAY ET AL.

listen ()

bind ()

accept ()

socket () socket ()

connect ()

read ()

write ()

write ()

read ()

Server Client

data request

data reply

establish
connection

Figure 5. Example of common socket functions in use.

� socket(family, type, protocol)

Create a socket, an end-point for communication.
� bind(socket, address, sizeof(address))

Assign the name address to socket.
� connect(socket, address, sizeof(address))

Initiate a connection from a local socket to a remote address.
� accept(socket, address, sizeof(address))

Accept an incoming connection on socket. The address of the connecting socket is written
to address.

� read(socket, buffer, size)

Read size bytes from socket into buffer.
� write(socket, buffer, size)

Write size bytes from buffer into socket.
� select(max socket, readlist, writelist, exceptionlist, timeout)

Waits for a list of socket/�le descriptors to change status. Most importantly, it allows
the calling function to wait for any socket in the readlist to become readable.

Figure 5 illustrates the order in which these functions are used to establish a communication
channel between two sockets and then start using the sockets.

Our implementation of the EARTH Runtime System (RTS) uses the blocking mode of
access to sockets. Using this mode, we can avoid polling, and we can also issue blocking calls

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 13

to select(). Such calls to select() only return when incoming messages have arrived in a
socket's receive bu�er.
Earlier implementations of EARTH used custom network interfaces that allowed more

eÆcient use of the network but were diÆcult to port to newer hardware and operating
systems [19, 30].

To poll or not to poll

We know three alternatives to implement the communication between the runtime system and
the network interface: interrupts, polling, and polling-watchdog. Interrupts are usually not
desirable in a multi-threading system because they interrupt the running thread and lead to a
context switch. The preferred method is for the runtime system to poll the network between
the execution of threads, and thus avoid unnecessary context switching. A third method,
polling-watchdog, developed especially for EARTH [24], mixes polling and interrupts in the
following way: the runtime system polls the network between thread context switching, but
when a message arrives, a timer is started; if the message is not handled within a given amount
of time, the network interface interrupts the runtime system. The advantage of the polling-
watchdog approach is that it prevents a thread containing a long running loop from making
the node where it is running oblivious to what is happening in the remaining nodes of the
cluster. To implement a polling-watchdog, however, we must be able to program the network
interface to de�ne an appropriate time-out mechanism. This was done in earlier versions of
the EARTH runtime system, but made those systems less portable.
Since Unix sockets are used as our inter-processing node communication mechanism, a

polling approach would use the select() system call, requiring the kernel to perform a linear
search on its socket structures to identify which socket has an incoming message. In a large
cluster with many open sockets, polling can thus become expensive (between 2,500{15,000
processing cycles).
The drawback of interrupts is that they happen asynchronously with the thread context

switching in a multi-threading system. Nevertheless, our decision to use Unix sockets makes
interrupts unavoidable and care must be taken when handling them. When a message arrives,
the Ethernet card raises a hardware interrupt that the CPU handles by stopping the process
that is currently running. The OS interrupt handler decodes the interrupt and runs the
appropriate hardware driver. When the driver is �nished, the running process is allowed to
continue at the point where it was interrupted. In our design, the kernel informs the runtime
system of the arrival of a message and the runtime system immediately takes the actions
required to process the message within the EARTH model before allowing the interrupted
thread to resume execution.

Blocking vs. non-blocking I/O

After the runtime system has been noti�ed that a message arrived, it needs to transfer the
message's content, using a read() operation, from the socket bu�er in kernel space into a
bu�er in user space. When the runtime system needs to send a message, it issues a write()

operation to a socket. Both the read and the write operation behaviors are a�ected by the use

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

14 G. TREMBLAY ET AL.

of blocking or non-blocking I/O. Such e�ects are observed when a read requests more bytes
than are currently available in the socket bu�er, or when the bu�er overows because of a write
operation. In a non-blocking I/O system, any read or write operation returns immediately with
the number of bytes that were successfully read/written. On the other hand, in a blocking I/O
system, a call will not return (i.e., will block) until all bytes have been read/written.
Modern systems use default socket bu�er sizes of 8192{61440 bytes [29]. Because modern

processors are much faster than available networking technology, these small bu�ers often
become full. Thus, the potential blocking situation can be frequent. If blocking I/O is used in
a system where a single thread of execution, with a single program counter, alternates between
executing EARTH threads and handling network activity, a large number of CPU cycles are
likely to be wasted. Any time a socket operation blocks, the CPU sits idle until the socket
operation is able to complete.
Blocking socket access is much simpler to implement than non-blocking I/O. In our system

we leverage the simplicity of blocking I/O, but avoid wasting CPU cycles by splitting the
networking functionality of the Runtime System into two separate POSIX threads, as shown
in Figure 4. We name these two networking threads the \sender module" and the \receiver
module", to avoid confusion resulting from overloading the use of the term \thread" (Threaded-
C threads vs. POSIX threads used in the RTS).
When blocking I/O is used, a potential deadlock condition may arise when a socket send

bu�er on one end of a link becomes full. More precisely, both nodes might become blocked
in a write() operation to their send bu�er, both waiting for the other node to read from the
corresponding receive bu�er in order to allow communication to proceed. If both the writing
and reading tasks are handled by a single process, then a deadlock situation will arise.k More
general deadlock situations can also occur during the execution of multi-threaded programs
that have complex cycles of inter-node dependencies.
Our implementation of the two separate modules avoids the deadlock problem. When the

sender module blocks, the host operating system will switch to another available POSIX thread,
in this case the receiver module, and read any incoming data that is there, thus allowing the
system to make progress. If the scheduling is fair with respect to the receiver module, this
decomposition into separate modules will avoid deadlock situations, even if the execution
module is allowed to proceed when the sender module blocks.

5. Experimental Results

The experimental platform

We installed the EARTH runtime system described in this paper on two Beowulf clusters:
\Earthquake" operated by the Computer Architecture and Parallel Systems Laboratory
(CAPSL) at the University of Delaware, and \Ecgtheow" operated by the Computational

kThis situation did occur in an earlier implementation of the RTS. This problem was quite diÆcult to identify
and �x since it was hard to reproduce because of its inherent time-dependent behavior.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 15

Science and Engineering program at Michigan Technological University and sponsored by the
NASA High Performance Computing and Communications OÆce (HPCC) for the Earth and
Space Sciences (ESS) project. Earthquake has sixteen 500MHz Pentium III processor nodes
with 128MB of RAM. Ecgtheow has 64 nodes, each with dual Pentium Pro processors (a
total of 128 processors) and 128MB of RAM. The interconnection network for both clusters is
Fast Ethernet. For our RTS implementation, the most important distinction between these two
clusters is the single processor nodes in Earthquake and the dual processor nodes in Ecgtheow.
In order to evaluate the inuence of the runtime system design on the performance of the

EARTH architecture in an SMP cluster, we ran two versions of the runtime system: RTS 1.2
and RTS 2.0. The RTS 1.2 uses a polling method to access the network, implements non-
blocking sockets, and concentrates all the activities (thread execution, sender, and receiver)
for each processing node in a single module. By contrast, the RTS 2.0 uses interrupts to
interface with the network, implements blocking sockets, and separates the execution of �bers,
the sending, and the receiving activities of the network into three separate modules.

Test programs

We used three programs to evaluate our implementation of the runtime system: (1) a recursive
implementation of Fibonacci in which each non-base call to the Fibonacci function generates
two distinct recursive calls (see Figure 1, p. 3, for the Threaded-C version of this procedure);
(2) a recursive, non-throttled implementation of N-queens; and (3) ATGC (Another Tool for
Genome Comparison), a multi-threaded implementation of a dynamic programming algorithm
for sequence comparison [25]. We report results for 16 single processor nodes for all three
benchmarks on Earthquake. On Ecgtheow we report curves for 16 dual processor nodes for
Fibonacci and N-queens and the results for 60 dual processor nodes for ATGC. We do not
report results in 60 nodes for all benchmarks in Ecgtheow because the use of all the 60 nodes
requires special coordination with other users of that cluster.
Figure 6 presents the speedup curves for runs of fib(32) (a recursion with 4.3 billion

leaves) on Ecgtheow and Earthquake under both the RTS 1.2 and the RTS 2.0. The recursive
Fibonacci implementation is not throttled because it is used to test the runtime system ability
to handle applications that generate a large number of threads. Observe that, for all speedup
curves presented in this section, Ecgtheow has two processors in each processing node while
Earthquake has only a single processor in each node. RTS 2.0 (1 EM) is a version of the
runtime system that implements a single execution module in each processing node, while
RTS 2.0 (2 EM) implements two execution modules per processing node.
For clusters with more than 10 processing nodes, the RTS 2.0 signi�cantly outperforms the

RTS 1.2 in both machines. When two EMs are used in Ecgtheow, the RTS 2.0 delivers a speedup
of 15 in 16 dual-processor nodes, compared with a speedup of only 10.5 for the RTS 1.2. On
Earthquake when only eight single-processor nodes are used, the RTS 2.0 under-performs the
RTS 1.2. This is because, with a single processor per node, the cost of switching between the
multiple modules of the RTS 2.0 becomes signi�cant. This cost, however, is amortized by the
more eÆcient network interface when all 16 nodes of Earthquake are used.
The goal of the N-queens program, a recursive algorithm representative of some typical

highly parallel applications, is to determine the number of ways in which n queens may be

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

16 G. TREMBLAY ET AL.

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Nodes

Fib(32) RTS 1.2
Fib(32) RTS 2.0

(a)

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

S
pe

ed
up

Number of (Dual-Processor) Nodes

Fib(32) RTS 1.2
Fib(32) RTS 2.0 (1 EM)
Fib(32) RTS 2.0 (2 EM)

(b)

Figure 6. Speedup curves for Fibonacci: (a) On Earthquake; (b) on Ecgtheow.

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Nodes

RTS 1.2
RTS 2.0

(a)

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

S
pe

ed
up

Number of (Dual-Processor) Nodes

RTS 1.2
RTS 2.0 (1 EM)
RTS 2.0 (2 EM)

(b)

Figure 7. Speedup curves for N-Queens(12): (a) On Earthquake; (b) on Ecgtheow.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 17

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Nodes

RTS 1.2
RTS 2.0

(a)

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60

S
pe

ed
up

Number of (Dual-Processor) Nodes

RTS 1.2
RTS 2.0 (1 EM)
RTS 2.0 (2 EM)

(b)

Figure 8. Speedup curves for ATGC: (a) On Earthquake; (b) on Ecgtheow.

placed on an n � n chess-board so that no queen is in a position to attack another. Figure 7
shows the speedup curves for N-queens on a 12� 12 board. Again, the RTS 2.0 signi�cantly
outperforms the RTS 1.2.

Also important to note is the decline in speedup from 8 to 16 nodes with both versions of
the runtime system. The non-throttled version of N-queens executes the recurrence until the
end, and thus a large number of small threads are generated. These threads are distributed
on the processing nodes in the system by an automatic load balancer. With a larger number
of nodes in the system, the overhead of transferring threads to more nodes is higher than the
gain obtained from the availability of more processors. This situation would be less prominent
in machines where the di�erence between the inter-node network speed and the CPU speed in
each node is not as big as in the case of Earthquake.

Much better speedups for N-queens(12) on EARTH can be obtained when the program is
throttled at an adequate level and stops generating new threads. In this study, we do not
throttle N-queens because our goal is to assess how well the RTS handles high volumes of
tokens.

The third benchmark | ATGC | is a dynamic programming algorithm for DNA sequence
comparison. We used this program to compare two random DNA sequences, both of size 40K
base pairs. In the graph of Figure 8, the speedup curves for the RTS 1.2 and the RTS 2.0
using one EM in each processing node are very similar. ATGC is an application which is far
more CPU intensive than network intensive. Likewise, when ATGC is run on Earthquake, the
speedup curves for the RTS 1.2 and the RTS 2.0 are very similar. The advantage of the new

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

18 G. TREMBLAY ET AL.

design of the RTS 2.0 is made more evident when a second EM is activated. The RTS 2.0 is
able to fully utilize both processors in every SMP node of Ecgtheow, which results in nearly
double the speedup for ATGC. Notice that when executing on 60 nodes, Ecgtheow is using
120 processors. Thus, the speedup of 90 in Figure 8(b) is in fact sub-linear.

6. Related Work

The EARTH model has its origin in the argument-fetching dataow model, a dataow model
without ow of data [15]. EARTH also has been inuenced by early work in multi-threading
parallel architectures [22]. Earlier implementations of the EARTH system are described
in [17, 18, 30]. The ATGC program is described in [12, 25].
The EARTH runtime system implements an extensive set of elaborate dynamic load

balancers to enable the automatic distribution of the computation load when the programmer
uses the TOKEN construct in Threaded-C [19]. Amaral et al. [2] implemented I-structures [4]
for EARTH and demonstrated that I-structure caches can be e�ective. This is especially true
for cluster implementations where there is a signi�cant gap between the network latencies and
the processor speed.
There are a number of projects relevant to our research. Like EARTH, Cilk is a C-based

multi-threaded language and runtime system [6]. However, in its initial design, Cilk was
targeted exclusively toward shared memory machines. Cilk uses a provably good \work-
stealing" scheduling algorithm and follows a \work-�rst" principle. Cilk concentrates on
minimizing overheads that contribute to work, even at the expense of overheads that
contribute to the critical path [14]. Cilk-NOW is an implementation of Cilk for networks of
workstations [5, 7]. It transparently manages resources, provides transparent fault tolerance,
and implements \adaptive parallelism" which allows a Cilk application to run on a set of
workstations that may grow and shrink throughout program execution.
Cilk's underlying programming model is limited to divide-and-conquer parallelism and does

not support the two-level hierarchy of threaded functions vs. �bers that makes Threaded-C a
multi-threaded language that can express parallelism at varying levels of granularity, eÆciently
supporting programs requiring irregular �ne-grain parallelism.
Split-C [11] and UPC [10] are two other languages, also based on C, that support some form

of split-phase programming. In Split-C and UPC, however, the thread/�ber hierarchy does
not exist. Also, in both languages, a non-local access does not necessarily require an explicit
communication. This can be an advantage in terms of programming model, but does not match
the EARTH model of �bers (non-blocking, non-preemptive).
Another language whose roots are from dataow is pH [26], a (mostly-)pure functional

programming language. More precisely, pH is a parallel and non-lazy version of Haskell [27] with
a number of non-functional extensions (I-structures and M-structures). Contrary to Threaded-
C, pH is thus an implicitly parallel language, where the programmer has no control over the
communications and the decomposition into threads and �bers.
MPI is a standard interface for the message passing paradigm that seeks to combine the most

attractive features of existing message passing systems [13]. MPI is a widely accepted industry
standard that makes it possible to write portable parallel programs. MPI's programming

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 19

model, contrary to Threaded-C, supports only coarse-grain parallelism. On the other hand,
MPI provides a rich set of operations for global communication, e.g., broadcast, scatter, and
gather [8].
Some of the fundamental ideas in EARTH/Threaded-C appear in the Filaments system

implemented by Freeh et al. [23]. The Filaments system also implements a runtime system
to execute �ne-grain threads, relies on the programmer to implement thread partitioning and
implements dynamic load balancing in a runtime system. The Filaments system was designed
for shared memory machines only and, thus, does not provide the mechanisms for inter-node
communication available in EARTH.
An example of a multi-threaded runtime system for custom o�-the-shelf SMP machines

is presented in the implementation of the Superthreaded Architecture (SA) by Kazi and
Lilja in [20]. Contrary to the EARTH e�ort, the SA does not introduce an explicitly
threaded language, but instead attempts to do automatic thread partitioning and extraction
of parallelism, although it seems to have had limited success in this e�ort. Currently, most
of the parallelization is performed \by hand," and thus is limited to fairly regular parallel
programs. The implementation of SA on an SMP machine is o�ered as an alternative strategy
for simulating and testing the SA execution model, not as a high performance system on its
own right.

7. Conclusion

This paper has presented the new design of the runtime system for the EARTH multi-threaded
architecture, together with the revised version of the Threaded-C language used to write
programs for this architecture. The intended target machines for this new RTS are modern
multi-node systems with multiple processors per node (SMP clusters). We designed the RTS
with the goal of being portable, yet making it possible to bene�t eÆciently from the power
of multiple processors per node. In order to do this, our RTS implementation uses multiple
threads of execution, which also precludes deadlock situations.
On the language side, current work is being done to further improve the Threaded-C

language, yet preserve a narrow semantic gap that will ensure that programmers still have
full control over the granularity of �bers and over synchronization and communication. For
example, a notion of �ber with arguments has recently been introduced and experimented with
(using a prototype pre-processor that extends the Threaded-C language [28]), allowing the ow
of data to be made more explicit and further simplifying the speci�cation of synchronization
constraints associated with �bers. Other extensions are still under investigation, for example,
allowing �bers with multiple level of priorities.

ACKNOWLEDGEMENTS

The authors would like to thank current and former members of CAPSL at the University of Delaware
for valuable exchange of ideas. Special thanks to Kevin Theobald for the N-queens code, and to Juan
del Cuvillo and Wellington Martins for the ATGC code. Thanks to Phil Merkey and Dan Becker for
interesting discussions about the RTS design, and for Phil Merkey for making Ecgtheow available,

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

20 G. TREMBLAY ET AL.

The authors also acknowledge the partial support from DARPA, NSA, NSF (under grants NSF-INT-
9815742 and NSF-CSA-0073527), and NASA. The initial EARTH work was partially supported by
the Natural Sciences and Engineering Research Council (NSERC) of Canada. Tremblay and Amaral
are also supported by NSERC grants from Canada.

REFERENCES

1. J.N. Amaral, G.R. Gao, E.D. Kocalar, P. O'Neill, and X. Tang. Design and implementation of an eÆcient
thread partitioning algorithm. In M. Valero, K. Joe, M. Kitsuregawa, and H. Tanaka, editors, International
Symposium on High Performance Computing, pages 252{259, Tokyo, Japan, October 2000.

2. J.N. Amaral, W.-Y. Lin, J.-L. Gaudiot, and G.R. Gao. Exploiting locality in single assignment data
structures updated through split-phase transactions. Cluster Computing, 4(4), 2001.

3. G.R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-Wesley,
2000.

4. Arvind, R.S. Nikhil, and K.K. Pingali. I-Structures: Data structures for parallel computing. TOPLAS,
11(4):598{632, October 1989.

5. R. Blumofe. Executing Multithreaded Programs EÆciently. PhD thesis, MIT, Dept. of EE and CS, Sept.
1995.

6. R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y. Zhou. Cilk: An eÆcient
multithreaded runtime system. In Proceedings of the 5th Symposium on Principles and Practice of Parallel
Programming, pages 207{216, 1995.

7. R.D. Blumofe and P.A. Lisiecki. Adaptive and reliable parallel computing on networks of workstations.
In USENIX 1997 Annual Technical Symposium, California, 1997.

8. J. Bruck and al. EÆcient message passing interface (MPI) for parallel computing on clusters of
workstations. In 7th Annual ACM Symp. on Parallel Algorithms and Architectures, pages 64{73.

9. D.R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.
10. W.W. Carlson, J.M. Draper, D.E. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction to UPC and

language speci�cation. Technical Report CCS-TR-99-157, George Mason University, 1999.
11. D.E. Culler and al. Parallel prog. in Split-C. In Proc. of Supercomp. '93, pages 262{273, 1993.
12. J.B. del Cuvillo, W.S. Martins, G.R. Gao, W. Cui, and S Kim. ATGC: Another tool for genome

comparison. In International Conference on Computational Molecular Biology - RECOMB, April 2001.
13. Message Passing Interface Forum. MPI: A message-passing interface standard (version 1.0). Technical

report, May 1994. URL http://www.mcs.anl.gov/mpi/mpi-report.ps.
14. M. Frigo, C.E. Leiserson, and K.H. Randall. The implementation of the Cilk-5 multithreaded

language. In Proceedings of the ACM SIGPLAN '98 Conference on Programming Language Design and
Implementation, pages 212{223, Montr�eal, Qu�ebec, June 17{19, 1998. SIGPLAN Notices, 33(6), June
1998.

15. G.R. Gao and R. Yates. The argument-fetching dataow architecture project: A status report. In Can.
Conf. on Elec. and Comp. Eng., Montreal, Sept. 1989.

16. L. Hendren, H. Hum, G.R. Gao, P. Ouellet, X. Tang, and al. The EARTH-C programming language.
ACAPS, 1996.

17. H.H.J. Hum, K.B. Theobald, and G.R. Gao. Building multithreaded architectures with o�-the-shelf
microprocessors. In Proc. of the 8th IEEE Intl. Parallel Processing Symp. (IPPS '94), Canc�un, Mexico,
pages 288{294, April 1994.

18. P. Kakulavarapu, O. Maquelin, and G.R. Gao. Design of the runtime system for the Portable Threaded-C
language. CAPSL Technical Memo 24, Department of Electrical and Computer Engineering, University
of Delaware, Newark, Delaware, July 1998. In ftp://ftp.capsl.udel.edu/pub/doc/memos.

19. P. Kakulavarapu, O.C. Maquelin, J.N. Amaral, and G.R. Gao. Dynamic load balancers for a multithreaded
multiprocessor system. Parallel Processing Letters, 11(1):169{184, March 2001.

20. I. Kazi and D.J. Lilja. Coarse-grained thread pipelining: A speculative parallel execution model for
shared-memory multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 12(09):952{
966, September 2001.

21. D. Lea. Concurrent Programming in Java | Design Principles and Patterns (Second Edition). Addison-
Wesley, 2000.

22. B. Lee and A.R. Hurson. Dataow architectures and multithreading. IEEE Computer, 27(8):27{39, 1994.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

IMPLEMENTATION OF THE EARTH PROGRAMMING MODEL 21

23. D.K. Lowenthal, V.W. Freeh, and G.R. Andrews. EÆcient �ne-grain parallelism on shared-memory
machines. Concurrency | Practice and Experience, 10(3):157{173, 1998.

24. O. Maquelin, G.R. Gao, H.H.J. Hum, K.B. Theobald, and X.-M. Tian. Polling Watchdog: Combining
polling and interrupts for eÆcient message handling. In 23rd Annual International Symposium on
Computer Architecture, pages 178{188.

25. W.S. Martins, J.B. del Cuvillo, F.J. Useche, K.B. Theobald, and G.R. Gao. A multithreaded parallel
implementation of a dynamic programming algorithm for sequence comparison. In Paci�c Symposium on
Biocomputing, Jan. 2001.

26. R.S. Nikhil and Arvind. Implicit Parallel Programming in pH. Morgan Kaufmann Publ., 2001.
27. J. Peterson and K. Hammond (editors). Report on the programming language Haskell, a non-strict purely

functional language (Version 1.4). Technical report, Yale University, Department of Computer Science,
April 1997. http://haskell.systemsz.cs.yale.edu/onlinereport/.

28. J. Sauvageau. Extension du langage Threaded-C: Fibres avec arguments et points d'entr�ee. Rapport de
projet, bacc. en info. de gestion (prog. coop.), mai 2001.

29. W.R. Stevens. UNIX Network Programming, Networking APIs: Sockets and XTI, volume 1. Prentice-
Hall, Upper Saddle River, NJ, 1998.

30. K.B. Theobald. EARTH: An EÆcient Architecture for Running Threads. PhD thesis, McGill University,
Montr�eal, Qu�ebec, May 1999.

31. K.B. Theobald, J.N. Amaral, G. Heber, O. Maquelin, X. Tang, and G.R. Gao. Overview of the Threaded-C
language. CAPSL Technical Memo 19, University of Delaware, March 1998.

32. G. Tremblay. Threaded-C release 2.0: Motivation, description, and rationale. CAPSL Technical Note 09,
Univ. of Delaware, June 2000.

33. G. Tremblay, K.B. Theobald, C.J. Morrone, M.D. Butala, J.N. Amaral, and G.R. Gao. Threaded-C
language reference manual (release 2.0). CAPSL Technical Memo 39, University of Delaware, Sept. 2000.

34. G.M. Zoppetti, G. Agrawal, X. Tang, J.N. Amaral, and G.R. Gao. Automatic compiler techniques for
thread coarsening for multithreaded architectures. In Proceedings of the 2000 International Conference
on Supercomputing, pages 306{315, Santa Fe, NM, May 2000.

Copyright c 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:0{0
Prepared using cpeauth.cls

