
Advanced Concurrency Control in Java

Pascal A. Felber
Bell Laboratories

600 Mountain Ave, Room 2B-303
Murray Hill, NJ 07974

pascal@research.bell-labs.com

Michael K. Reiter
Bell Laboratories

600 Mountain Ave, Room 2T-316
Murray Hill, NJ 07974

reiter@research.bell-labs.com

ABSTRACT

Developing concurrent applications is not a trivial task. As

programs grow larger and become more complex, advanced

concurrency control mechanisms are needed to ensure that

application consistency is not compromised. Managing mu-

tual exclusion on a per-object basis is not su�cient to guar-

antee isolation of sets of semantically-related actions. In this

paper, we consider \atomic blocks", a simple and lightweight

concurrency control paradigm that enables arbitrary blocks

of code to access multiple shared objects in isolation. We

evaluate various strategies for implementing atomic blocks

in Java, in such a way that concurrency control is transpar-

ent to the programmer, isolation is preserved, and concur-

rency is maximized. We discuss these concurrency control

strategies and evaluate them in terms of complexity and per-

formance.

1. INTRODUCTION

Writing concurrent programs is a challenging task. While

it is well known that shared resources must be protected

from concurrent accesses to avoid data corruption, guarding

individual resources is often not su�cient. Sets of semanti-

cally related actions may need to execute in mutual exclu-

sion to avoid semantic inconsistencies. While databases have

native support for such \transactional" constructs, most

concurrent programming languages lack adequate mecha-

nisms to handle this task.

The system model and assumptions of concurrent appli-

cations are generally di�erent from those of databases: Un-

like databases, concurrent programs generally manipulate

transient data and may not be able to \undo" a set of ac-

tions (rollback). This means that concurrency control mech-

anisms should avoid situations where rollback is necessary

(such as deadlocks), and should implement con
ict avoid-

ance rather than con
ict resolution. This can translate into

the use of pessimistic locking strategies instead of the opti-

mistic strategies often used in databases. Another di�erence

is that the the code of a concurrent application may be ar-

bitrary complex and may not easily be reduced to read and

write operations on data items. This is especially true of

code that was not developed with concurrency in mind, but

is executed a posteriori in a concurrent context.

Concurrency control mechanisms that implement mutual

exclusion of multiple actions in concurrent applications face

a tradeo�: On the one hand, control over shared resources

must be acquired in a conservative way to avoid situations

where rollback would be necessary. On the other hand, con-

trol over these shared resources must be held for the shortest

amount of time possible to increase concurrency. While this

1

tension has been extensively studied in databases [4], sur-

prisingly little work has been performed in the context of

concurrent programming languages.

This paper discusses concurrency control mechanisms for

implementing atomic sets of actions in Java, a general-purpose,

object-oriented concurrent programming language. The goal

is provide simple yet e�cient mechanisms to implement mu-

tual exclusion on arbitrary sets of objects, in order to in-

crease concurrency of multi-threaded application without

violating safety. We take advantage of the object-oriented

nature of the language to guarantee isolation in a trans-

parent way and decouple the declaration of critical sections

from the underlying mutual exclusion mechanisms. Code

executing in an atomic block does not need to be aware of

concurrency, and existing applications only require trivial

modi�cations for taking advantage of our mechanisms. Sev-

eral concurrency control strategies are presented and eval-

uated in terms of complexity and performance. While the

mechanisms discussed in this paper have been packaged as a

class library for ease of implementation, they could easily be

added to the language through a simple extension of Java's

\synchronized" statement.

The rest of the paper is organized as follows. Section 2 in-

troduces background concepts and presents the motivations

of this work. Section 3 brie
y discusses related work. Sec-

tion 4 describes the various locking policies supported by our

Java concurrency control framework. Section 5 discusses the

implementation of atomic blocks in Java using the locking

policies previously introduced. Section 6 presents experi-

mental results from our Java implementation, and compares

the di�erent policies in terms of concurrency and runtime

performance. Finally, Section 7 concludes the paper.

2. BACKGROUND AND MOTIVATIONS

Consider the simple problem of transferring money from

one bank account to another.1 This transfer operation must

be atomic, in the sense that any other entity accessing these

accounts concurrently will see their balance before or after

the transfer, but not in between the withdrawal and the

deposit. For instance, a concurrent operation that computes

the sum of both bank accounts would return inconsistent

results if it sums the balance of bank accounts after the

withdrawal but before the deposit: the sum of the balances

is a semantic invariant that should not be violated.

Databases have native support for such constructs. They

guarantee that operations gathered into transactions satisfy

the four so-called ACID properties: Atomicity, i.e., trans-

actions executes completely or not at all; Consistency, i.e.,

transactions are a correct transformation of the state; Isola-

tion, i.e., even though transactions execute concurrently, it

appears for each transaction T that others transactions ex-

ecute either before T or after T , but not both; and Durabil-

ity, i.e., modi�cations performed by completed transactions

survive failures. Databases implement this behavior by con-

trolling access to shared data, and undoing the actions of a

transaction that did not complete successfully (roll-back).

The cost of running a transaction in a database is not

negligible, and applications that do not need all four ACID

properties could bene�t from using more lightweight mech-

anisms. In this paper we only focus on isolation guarantees

for concurrent applications that essentially manipulate tran-

1We chose the bank transfer example to illustrate our prob-

lem because of its simplicity and intuitiveness. Note however

that bank accounts are typical examples of critical data that

should be persistent and kept in a database.

2

sient data, do not need durability, and never need to abort

(mandating arbitrary actions of a concurrent application to

be reversible is incompatible with the goals of keeping con-

currency management transparent). Using a database in

this context is obviously inadequate.

In our bank application, application consistency can be

preserved by making the withdrawal and the deposit part of

an atomic block that cannot be interrupted by concurrent

threads accessing the same bank accounts. In the rest of

this paper, we will refer to the set of operations of an atomic

block using the generic term of \transactions", even though

they are not formally equivalent to database transactions

that satisfy all four ACID properties. Figure 1 shows how

the bank transfer might be implemented in Java if the lan-

guage had an \atomic" keyword for declaring atomic blocks.

1 class Bank f
2 void transfer (Account from, Account to , int amount)
3 f
4 atomic f
5 from.withdraw(amount);
6 to . deposit(amount);
7 g
8 g
9 g

Figure 1: Atomic transfer between bank accounts
with an hypothetical \atomic" keyword.

In a programming language that does not natively sup-

port transactions, like Java, isolation must be implemented

using concurrency control mechanisms. Java's built-in con-

currency support [5] allows programmers to create multiple

threads and let them execute simultaneously. Each Java ob-

ject contains a synchronization lock which can be used to

implement mutual exclusion: only one thread at a time can

hold the lock.

Java de�nes the \synchronized" keyword to acquire the

lock of an object and guard a method or a block of code.

Synchronized methods acquire the lock of the target object

or class for the duration of the method. The more versatile

synchronized block construct locks an arbitrary Java object

for the duration of the block. However, it is not possible to

atomically acquire the locks of multiple objects for a syn-

chronized block.

1 class Bank f
2 synchronized

3 void transfer (Account from, Account to , int amount)
4 f
5 from.withdraw(amount);
6 to . deposit(amount);
7 g
8 g
9 // Thread 1:

10 bank. transfer (a1, a2, 1000);
11 // Thread 2:
12 bank. transfer (a3, a4, 2000);
13 // Thread 1 and thread 2 are serialized

Figure 2: Synchronizing on a global object reduces
concurrency.

A �rst solution to the bank transfer problem using a syn-

chronized method is given in Figure 2. The synchronization

lock of the bank object is acquired when entering the \trans-

fer" method and released upon completion, thus ensuring

that no two threads can execute this method concurrently.

The problem with this approach is that it does not discrim-

inate between transfers that interfere and those that do not.

For instance, the two concurrent transfers shown in the �g-

ure (lines 10 and 12) will be serialized, although they do not

access the same accounts and thus do not interfere. If the

bank manages a large number of account and interferences

are not frequent, this approach is obviously inadequate: it

guarantees isolation but signi�cantly limits concurrency.

Another solution is given in Figure 3. Instead of obtain-

ing the lock on the bank, we obtain the locks on all ac-

count objects part of the transaction. This is implemented

using nested synchronized blocks (lines 4{5). The major

problem of this solution is that it introduces risks of dead-

lock. A deadlock is a form of liveness interference in that

it prevents progress. As shown in the �gure, two threads

3

1 class Bank f
2 void transfer (Account from, Account to , int amount)
3 f
4 synchronized(from) f
5 synchronized(to) f
6 from.withdraw(amount);
7 to . deposit(amount);
8 g
9 g
10 g
11 g
12 // Thread 1:
13 bank. transfer (a1, a2, 1000);
14 // Thread 2:
15 bank. transfer (a2, a1, 2000);
16 // Thread 1 and thread 2 may deadlock

Figure 3: Nested synchronized blocks may cause
deadlocks.

performing concurrent transfers on the same accounts but

in the reverse order may deadlock (lines 13{15). Indeed, if

one thread locks the �rst account at the same time as the

other thread locks the second account, we run into a dead-

lock situation because each thread will try to acquire a lock

held by the other thread, thus violating liveness. Database

systems traditionally solve deadlocks by selectively aborting

some transactions. In a concurrent program, it is generally

not possible to detect deadlocks and/or abort transactions,

and the appropriate strategy is to avoid deadlock.

Another problem of this approach is that it cannot easily

be applied to an arbitrary number of objects (not known

statically). For instance, it is not straightforward to imple-

ment a method that takes an array of bank accounts and

compute the sum of their balances, because the number of

nested synchronized blocks depends on the number of ac-

counts, which is not known at compile time.2 The limita-

tions of Java's concurrency control mechanisms for transac-

tional operation are further discussed in [5].

The main motivation of this work is to provide generic

mechanisms to solve these kinds of problems. Isolation mech-

2A practical solution to this problem is to use recursion to

simulate an arbitrary number of nested synchronized blocks.

However, this solution is complex and lacks generality.

anisms should have minimal impact on the application's

code (non-intrusiveness) and should increase concurrency

while avoiding deadlocks, i.e., provide both liveness and

safety.

3. RELATED WORK

There exist numerous languages or libraries for parallel

programming with various levels of transactional support

(see [11] for a survey). They introduce high-level tools and

paradigms adapted to the development of parallel applica-

tions, by enabling the decomposition of complex programs

into multiple tasks that can execute concurrently on par-

allel or distributed architectures. When available, trans-

actional semantics are generally implemented through dis-

tributed commit protocols.

In contrast, general-purpose programming languages with

multi-threading support (such as Java) generally provide

low-level concurrency-control mechanisms like locks, semaphores,

or monitors that guarantee mutual exclusion to speci�c sec-

tions of code [7]. While
exible, these mechanisms are not

well adapted to non-trivial problems such as isolation of mul-

tiple concurrent transactions.

For e�ciency reasons, database management systems (DBMSs)

generally implement advanced concurrency control mech-

anisms for executing numerous transactions concurrently

while guaranteeing ACID properties [4]. DBMSs focus on

persistent data management and provide no or limited con-

currency control mechanisms for code executing outside of

the DBMS.

The mechanisms presented in this paper have a di�erent,

less ambitious goal than parallel programming languages or

DBMSs. Instead of de�ning new tools and paradigms for

4

parallel programming or transaction management, our goal

is to provide a few simple, transparent mechanisms for in-

creasing concurrency of Java applications while preserving

some limited form of transactional integrity. These mecha-

nisms can be easily added to existing applications, without

the need of a specialized programming language or deploy-

ment of the application's data in a DBMS.

Java already o�ers two transaction frameworks: the Java

Transaction API (JTA), part of the enterprise edition of the

Java platform (J2EE) [9], and Jini Transactions [12]. The

Java Transaction API is a set of local interfaces between

a transaction manager and the parties involved in a dis-

tributed transaction system: the application, the resource

manager, and the application server. It includes transac-

tional application interfaces, a Java mapping to the standard

X/Open XA protocol, and a transaction manager interface.

While JTA aims at providing a complete set of transac-

tional mechanisms to Java applications, the Jini Transaction

Speci�cation provides a minimal set of protocols and inter-

faces to allow objects to implement transactional semantics.

The responsibility of actually implementing these semantics

is left to the individual objects that take part in a transac-

tion. Coordination between transaction objects is achieved

through a two-phase commit protocol, which is the most

widely used protocol for distributed transactions.

Both Java transaction frameworks di�er from the work

presented in the paper by several aspects. First, both JTA

and Jini transactions essentially target distributed transac-

tions, (1) as APIs to a complete distributed transaction sys-

tem or (2) as minimal interfaces for distributed coordination

between transactional Java objects. A consequence of dis-

tribution is that these frameworks must deal with situations

where transactions abort because of exceptional conditions

that a�ect only some of the distributed components (such

as partial failures or local scheduling con
icts). Finally,

JTA and Jini transactions essentially provide a declarative

APIs to the basic components of a transactional system and

thus require transaction participant to support speci�c in-

terfaces and take part to well-de�ned protocols. In contrast,

the work presented in this paper is more restrictive in that

it does not deal with distributed transactions, it does not

guarantee transaction durability nor allows transactions to

abort, and it focuses on providing transparent integration

of transactional facilities into the programming language

rather than through a programmatic API.

4. LOCKING POLICIES

To ensure mutual exclusion on a set of shared resources,

threads must lock these resources prior to accessing them,

and release the locks when they are no longer needed. The

strategy used for acquiring and releasing locks is called the

locking policy. Locking policies try to maximize concurrency

by minimizing the time during which locks are held. In this

paper, we only consider locking policies that avoid dead-

locks and thus do not require undoing partial transaction

execution.

In this section, we present several locking policies that of-

fer various tradeo�s in terms of overhead, concurrency, and

required transaction knowledge. A good understanding of

these policies is important for maximizing the performance

of a concurrent application. The �rst few policies are vari-

ations of so-called two-phase locking (2PL) strategies [1],

while the last one is a non-2PL policy. Our Java implemen-

tation of atomic blocks can use any of these policies.

5

To illustrate these locking policies, we consider the follow-

ing simple example that involves three transactions T1, T2,

and T3 executed concurrently on four objects a, b, c, and

d (Figure 4). Unlike typical database transactions, we do

not distinguish between read and write operations: we as-

sume that each object has a set of operations (\op" in the

�gure) that can perform arbitrary accesses to the state of

the object.

T1 : a:op() ; b:op() ; c:op() ; d:op()

T2 : a:op() ; b:op()

T3 : c:op() ; d:op()

Figure 4: Three sample transactions.

4.1 Two-phase Locking

The best-known deadlock-free locking policy is two-phase

locking (2PL). All objects accessed by a transaction are

locked during the �rst phase and released during the sec-

ond phase. It is not possible to unlock an object before all

objects have been locked, or to lock an object once any lock

has been released. There exist several variations of 2PL

protocols, some of which are discussed in the rest of this

section.

In order to avoid deadlocks, objects should be locked in

an order consistent with a total order on the objects. We

assume that there exists a unique value #o associated with

each object o that can be used to assign ranks to objects.

Objects are always locked in increasing rank order, thus

avoiding deadlocks (the order in which resources are un-

locked does not matter). In our example, we assume that

#a < #b < #c < #d.

Conservative 2PL. The most basic 2PL protocol is conser-

vative 2PL (also known as static 2PL). With this protocol,

all objects are locked before starting the transaction, and

unlocked after the transaction has completed. Operations

of the transaction execute only when all objects are locked.

Figure 5(a) shows an execution history of the transac-

tions of Figure 4 with a conservative 2PL policy. A trans-

action is represented by a horizontal line, split into multiple

segments that represent individual operations. We indicate

above each operation the object accessed by that operation.

Lock acquisition and release are represented in the �gures

using the notation L(o) for locking an object o and U(o)

for unlocking o. We consider that each individual opera-

tion consumes one unit of time and successful locking and

unlocking takes no time. Therefore, execution of all three

transactions take 6 units of time.

2PL with Late Locking. A �rst optimization to conser-

vative 2PL is to wait until an object is actually accessed

for locking it. This technique, known as strict 2PL in the

database world, will be referred to as 2PL with late locking

in this paper.

As with conservative 2PL, objects are locked in increasing

rank order to avoid deadlocks. Therefore, the late locking

protocol works as follows (Figure 5(b)). Before accessing an

object o, the transaction T checks if o is already locked. If

it is not the case, T locks every object o0 accessed by T such

that #o0 � #o and o0 is not yet locked, in increasing rank

order. Therefore, the e�ectiveness of this policy strongly de-

pends on the order in which objects are accessed. If objects

are mostly accessed in the same order as their rank, then

the late locking policy can signi�cantly increase concurrency

6

T1

U(abcd)L(abcd)

a b c d

T2 a b

L(ab) U(ab)

T3

L(cd) U(cd)

c d

(a) Conservative 2PL.

T1

U(abcd)

a b c d

L(a) L(b) L(c) L(d)

T3

U(cd)

c d

L(c) L(d)

T2 a b

L(a) L(b) U(ab)

(b) Late locking.

T1

L(abcd)

a b c d

U(a) U(b) U(c) U(d)

T2 a b

U(a) U(b)L(ab)

T3

L(cd)

c d

U(c) U(d)

(c) Early unlocking.

T3 c d

T2 a b

T1 a b c d

U(d)

(d) Optimal locking.

Figure 5: Execution of the transactions of Figure 4 with various locking strategies.

over conservative 2PL (if we only consider execution of T1

and T2, execution completes in 4 units of time vs. 6 for

conservative 2PL). On the other hand, if the �rst object ac-

cessed by a transaction is the object with the highest rank,

then late locking is equivalent to conservative 2PL.

2PL with Early Unlocking. 2PL with early unlocking is

another variation of 2PL. However, unlike late locking, the

e�ectiveness of early unlocking does not directly depend on

the order in which objects are accessed.

With early unlocking, all objects accessed by a transac-

tion are locked at the beginning of the transaction. After

each operation, we check if the object accessed by the last

operation will be accessed again by the transaction. If this

is not the case, we release the lock on that object. In other

words, objects are locked from the begin of the transaction

up to the last operation that accesses them.

Early unlocking generally achieves better concurrency than

conservative 2PL. For instance, if we consider only transac-

tions T1 and T2, early unlocking executes in 4 units of time

(vs. 6 for conservative 2PL). For a given set of transactions,

each of the late locking and early unlocking strategies can

have the edge. For instance, late locking performs better

with T1 and T3 while early unlocking is more e�cient with

T1 and T2. Late locking generally provides slightly lower

concurrency with random transactions that early unlocking

because it requires objects to be accessed in the same or-

der as they are locked to perform optimally. On the other

hand, the early unlocking protocol needs to know when an

object is no longer needed in the transaction, i.e., the ap-

plication must provide a description of the transaction for

taking advantage of early unlocking.

7

Generalized 2PL. The last
avor of 2PL discussed in this

paper is generalized 2PL. It combines the optimizations of

late locking and early unlocking. Locks can be acquired late

and released early as long as the locking pattern complies

with the basic 2PL protocol.

In theory, there exist multiple lock acquisition patterns

for a given transaction with generalized 2PL. Some of these

patterns are more e�cient than others, but choosing the

best pattern requires \global" knowledge of the transactions

executing in the system. For instance, with the transactions

of Figure 4, generalized 2PL can execute all transactions in

4 units of time if it executes transaction T1 according to

the following schedule: L(a); L(b); a:op; b:op; L(c); L(d);

U(a); U(b); c:op; d:op; U(c); U(d). The choice of locking c

and d and unlocking a and b between the second and third

operations of T1 is arbitrary and may be motivated by static

transaction knowledge or runtime heuristics.

In practice however, a generalized 2PL protocol tries to

acquire locks as late as possible and, when all locks have

been obtained, releases them soon as they are no longer

needed. We call this protocol \deterministic" generalized

2PL because the lock acquisition pattern does not depend on

other factors than the structure of the transaction on which

it is applied. In the rest of this paper, we will only consider

this variant of generalized 2PL. With the transactions of

Figure 4, deterministic generalized 2PL executes transaction

T1 according to the following schedule: L(a); a:op; L(b);

b:op; L(c); c:op; L(d); U(a); U(b); U(c); d:op; U(d). This

schedule is almost equivalent to late locking and executes in

5 units of time.

4.2 Tree Locking

The deadlock-free 2PL locking policies have in common

that no object can be unlocked before all objects have been

locked, and objects must be locked in a prede�ned order.

Tree locking [10] is a non-2PL policy that avoids these limi-

tations by using di�erent rules to decide when and in which

order to lock and unlock objects. Tree locking is a deter-

ministic, deadlock-free locking policy that is optimal for our

example: it executes all three transactions in 4 units of time,

as shown in Figure 5(d) (lock acquisition and release are not

shown in the �gure and will be discussed after the tree lock-

ing protocol has been introduced).

Tree locking was originally developed to take advantage

of the hierarchical structure of a database, represented as

a tree. Transactions always access data items by following

paths in the tree. Any node in the tree can be locked, and

locks held on a node implicitly propagate to all of its chil-

dren. A transaction starts by locking3 the top-most node

of the tree. Then, it travels down to the data item to be

accessed, locking every intermediate node. A node N can

be unlocked when the transaction has obtained all the locks

it needs on N 's children. Once unlocked, a node cannot

be locked again. A direct consequence of this protocol is

that the order in which locks are obtained depends on the

the structure of the tree, not on an order relation between

individual data items.

To increase concurrency of atomic actions in concurrent

applications, we use a variation of the tree locking protocol

used in databases. Resources are organized in a tree: data

3For simpli�cation we assume that there is only one type of

lock.

8

items (i.e., shared objects) are located on leaves of the trees,

and internal nodes are \arti�cial" objects that impose rela-

tionships between resources and coordinate lock acquisition

and release. Since internal nodes are not data items, the

tree does not depend on the physical structure of the data

and can dynamically evolve into con�gurations that are op-

timal for the transactions being processed. Details of the

tree locking protocol are given in Appendix A.

N N

N

a b dc

0

1 2

Figure 6: With tree locking, shared resources are

organized in a tree.

The tree locking protocol with the tree of Figure 6 results

in optimal execution for the transactions of Figure 4. It

takes only 4 units of time, which is the length of the longest

transaction, and there are always two transactions executing

concurrently. Tree locking has however the same drawback

as early unlocking: the protocol needs to know when an

object is no longer needed in the transaction. In addition,

the runtime overhead of tree locking is the biggest among all

protocols presented in this paper, since more locks need to

be acquired and released. Indeed, transactions need to lock

the nodes of the tree, in addition to the data items actually

accessed.

4.3 On Performance and Concurrency

In this section, we have presented several 2PL locking pro-

tocols, as well as a non-2PL tree locking protocol. Each

locking protocol has bene�ts and drawbacks. A general rule

is that complex protocols have more runtime overhead but

potentially achieve increased concurrency. Although we will

discuss performance in Section 6, we present a few prelimi-

nary observations below.

First, when there is low contention (i.e., it happens rarely

that two transactions compete to access a shared object at

the same time), policies that have small runtime overhead

perform better. In this scenario, conservative 2PL is gener-

ally the best choice.

On the other hand, when there is much contention it is im-

portant to maximize concurrency, even at the price of addi-

tional runtime overhead. In these situations, a locking policy

like generalized 2PL or tree locking is more adequate. Ex-

periments show that 2PL policies permit signi�cantly more

concurrency than tree locking with a static tree and ran-

dom transactions. However, with a tree that is \adequate"

for a set of transactions (i.e., the structure of the tree is

optimized for these transactions), tree locking can increase

concurrency substantially over 2PL protocols. In particu-

lar, tree locking appears to be a promising approach when

working with structured data.

The problem of �nding a tree that is adequate for a given

set of transaction is not trivial. We have identi�ed four

adequacy criteria that characterize a good tree for a given

set of transactions (see Appendix B): (1) The root node of

a transaction should be as deep in the tree as possible. (2)

The acquisition of a node must pay o� and concurrency can

be optimal when transactions access all resources located

below that node. (3) Concurrency is increased if accesses to

the resources of a subtree are adjacent in a transaction. (4)

Concurrency is generally increased if shared resources are

9

accessed by multiple transactions in the same order.

When data is naturally organized in a hierarchical manner

and accesses follow structured patterns (e.g., traversal of a

sub-tree), then a good tree can be trivially inferred from

the data's hierarchical structure. On the other hand, when

data and accesses are not structured, �nding a tree that is

adequate for a given set of transaction is a di�cult problem.

This problem can be stated as follows:

Consider a set of n transactions T1; :::; Tn with sizesm1; :::; mn.

Each transaction Ti is composed of mi individual operations

oi1; :::; o
i

mi
and is executed by a di�erent thread. All threads

start at the same time. Individual operation all take one

unit of time, and concurrency management operations (lock

acquisition and release) happen instantaneously. When two

transactions try to acquire a lock at the same time, the lock

is granted to the transaction with the smallest index (i.e.,

Ti will acquire the lock before Tj if i < j).

Problem 4.1. Given a set of n transactions T1; :::; Tn,

�nd (1) a tree Fmin such that all transactions complete in

minimum time, and (2) a tree Favg such that the average

time required by each transaction to complete is minimum.

The tree Fmin is optimal for a one-time execution of the

transactions, while the tree Favg is better when each thread

executes more than one transaction. This problem can be

shown to be NP-hard (see Appendix C). As a result, we

have primarily focused on heuristics for building a good tree

in polynomial time. To evaluate the e�ectiveness of tree

locking with unstructured data and transactions, we have

implemented a simple greedy algorithm that produces bal-

anced binary trees where objects are organized according

to their frequency and proximity in the transactions. This

algorithm tries to place objects that are close in the given

transactions in the same subtree, with the priority given to

objects that are accessed more often. The details of the

algorithm are given in Appendix D. Experiments results

with tree locking and the tree construction algorithm are

discussed in Section 6.

5. ATOMIC BLOCKS IN JAVA

This section describes the implementation of atomic blocks

in our Java Concurrency Framework (JCF). We �rst present

the design goals and introduce the notions of atomic object

and atomic block. We then describe the various mecha-

nisms used for providing transparent concurrency manage-

ment and discuss the bene�ts and drawbacks of each of

them. For ease of implementation, these mechanisms have

been packaged as a set of Java classes; we do however believe

that basic support for atomic blocks would be a desirable ex-

tension to the Java language, as proposed in the end of this

section.

5.1 Goals

Implementation of atomic blocks in JCF was in
uenced

by the following design goals:

� Transparency. Code should not be modi�ed for ex-

ecuting within an atomic block.

� Generality. Atomic blocks can be placed around ar-

bitrary Java code.

� E�ciency. Atomic blocks should add as little runtime

overhead as possible while maximizing concurrency.

� Separation of concerns. The declaration of an atomic

block should be independent of the locking strategy.

10

The �rst goal | transparency | states that atomic blocks

should not be visible by code executing within the block

and should not require modi�cations to that code. This

also means that legacy code, written without concurrency

in mind, can execute safely in a concurrent environment

just by surrounding critical operations with atomic block

constructs.

The second goal | generality | requires support for arbi-

trary code inside atomic blocks, as within a \synchronized"

statement. This code can perform arbitrary operations and

use any language construct, as long as it executes in the

context of a single thread of control. Transactions do not

need to be described in a separate language, such as SQL,

for managing concurrency and maintaining consistency.

The third goal | e�ciency | means informally that the

runtime overhead of concurrency control mechanisms should

not be higher than the performance improvements resulting

from increased concurrency. On the one hand, serial execu-

tion can be implemented with very low runtime overhead,

but no e�ective concurrency. On the other hand, advanced

concurrency control mechanisms have higher runtime over-

head, but also better concurrency. Atomic blocks should try

to minimize runtime overhead and maximize concurrency.

The last goal | separation of concerns | states that the

locking strategy used for ensuring isolation of atomic blocks

should be independent of the atomic block declaration. In

other words, the application developer can declare an atomic

block without having to know how concurrency control is im-

plemented, and the system developer can program a locking

strategy for atomic blocks without having to know the appli-

cation's code. It follows that it must be possible to con�gure

the locking strategy at deployment time (or even at runtime)

without changes to the application's code.

Note that JCF does not aim at being a full transaction

framework, intended to replace a DBMS. It rather focuses

on transparent mechanisms to ensure isolation and atom-

icity of concurrent object invocations and seamless integra-

tion with programming language constructs. A consequence

of our transparency goals is that we do not distinguish be-

tween read and write operations and we consider a restricted

transaction model that does not guarantee durability and

does not allow transactions to abort (no rollback). JFC can

be used for instance to maintain consistency of in-memory

data structures (e.g., B-tree, XML data tree) accessed by

multiple threads. Such data does not need to be persistent,

but its complex structure and large size can making explicit

concurrency control error-prone and subject to poor perfor-

mance. JCF hides this complexity by allowing non-trivial

operations such as moving data or traversing subtrees to be

performed concurrently on arbitrary nodes without having

to explicitly deal with concurrency control.

5.2 Atomic Objects and Atomic Blocks

An atomic object [6] is an object that can be accessed

concurrently by several threads. Even though accesses are

concurrent, an atomic object behaves as if accesses occur

one at a time, in an order which is consistent with the or-

der of invocations and responses. The smallest granular-

ity of atomicity supported by JCF is the invocation of an

atomic object. JCF also provides concurrency control mech-

anisms that guarantee isolation of sequences of invocations

on atomic objects. Such a sequence of invocations forms an

atomic block.

An atomic object is essentially an application-speci�c ob-

11

ject whose concurrency is managed by JCF . Application can

render an arbitrary object atomic by calling a JCF -speci�c

method (this is a one-time procedure performed during ap-

plication initialization). If the application object does not

already behave like an atomic object (i.e., it does not sup-

port concurrent invocations), JCF transparently serializes

invocations to that object. This guarantees that objects re-

main consistent individually. Global (or transactional) con-

sistency is maintained using atomic blocks.

An atomic block executes sequences of invocations to atomic

objects (and other instructions) in isolation. It is instanti-

ated with the set of atomic objects that it manages as a

parameter, and is semantically bound to a thread of con-

trol. Atomic blocks can be arbitrarily nested in practice,

but in that case | similarly to \synchronized" statements

| there exists a risk of deadlock. Atomic blocks provides

two methods, \begin" and \end", that act as delimiters. The

code executing between these methods executes in isolation

of other atomic blocks. Atomic blocks are represented by

objects that implement the \AtomicBlock" interface. There

are several kinds of atomic blocks that implement di�erent

locking policies.

1 class Bank f
2 void transfer (Account from, Account to , int amount)
3 f
4 AtomicBlock ab;
5 ab = Atomic.newAtomicBlock(new Object[] f from, tog);
6 ab. begin();
7 from.withdraw(amount);
8 to . deposit(amount);
9 ab.end();

10 g
11 g
12 // Initialization
13 for(int i = 0; i < accounts . length ; i++)
14 accounts [i] = (Account)Atomic.makeAtomic(accounts [i]) ;
15

16 // Thread 1:
17 bank. transfer (accounts [0] , accounts [1] , 1000);
18 // Thread 2:
19 bank. transfer (accounts [1] , accounts [2] , 2000);
20 // Threads 1 and 2 conflict and execute in isolation
21

22 // Thread 3:
23 bank. transfer (accounts [3] , accounts [4] , 1500);
24 // Thread 3 executes concurrently with treads 1 and 2

Figure 7: Atomic blocks improve concurrency while
ensuring isolation.

Figure 7 shows an implementation of the bank applica-

tion of Section 2 that uses atomic blocks. Initially, all ac-

count objects are made atomic (lines 13{14). In the trans-

fer method, an atomic block is instantiated with the source

and destination account as parameter (line 5). The money

transfer is performed inside the atomic block (lines 7{8),

delimited by the invocations to \begin" and \end" on the

atomic block object (lines 6 and 9). The runtime concur-

rency control mechanisms ensure that the �rst and second

transfers (lines 17 and 19), which con
ict, execute in isola-

tion. The third transfer (line 23), which does not con
ict

with the other transfers, can execute concurrently. Although

not shown in the code, a good practice is to include the in-

structions of an atomic block in a \try-catch" statement and

end the atomic block in the \�nally" block. This ensures

that all resources and locks acquired by the concurrency

control protocol will be released when exiting the atomic

block.

Atomic blocks can be customized in several ways (via over-

loading of the \newAtomicBlock" method). In particular,

they are optionally parameterized by a locking policy, which

can be chosen at runtime (some guidelines for selecting a

locking policy are given in Subsection 5.4). In the case of

tree locking, the programmer can also provide a tree gen-

erator, whose function is to construct a tree adequate for

the given transactions. Trees can evolve over time, and it

is possible to use di�erent trees for non-intersecting sets of

objects. For locking policies that require a description of

the transactions' structure (tree locking and 2PL policies

that implement early unlocking), atomic blocks are further

parameterized by a \Transaction" object, which enumerates

the individual operations of the transaction and the objects

12

they access.

5.3 Intercepting Invocations

As previously stated, a major goal of atomic blocks is

to manage arbitrary code, without having to perform mod-

i�cations to that code. A direct consequence is that the

JCF runtime must be able to transparently perform con-

currency control operations during execution of an atomic

block. Indeed, all locking policies discussed in this paper ex-

cept conservative 2PL acquire and release locks in the middle

of atomic blocks, immediately before or after invocations to

atomic objects.

JCF performs dynamic concurrency control management

by intercepting invocations to atomic objects. As part of

the process through which objects are made atomic, JCF

transparently encapsulates the application object inside a

system-level wrapper that can pre- and post-process any re-

quest targeted to the application object. Among the opera-

tions performed by this wrapper are object atomicity (if an

application object is not atomic, the wrapper serializes invo-

cations to that object) and block isolation (lock acquisition

and release according to the atomic block's locking policy).

JCF performs the actual interception of invocations through

the well-known technique of object proxying. A proxy is and

object that acts as a surrogate or delegate for another object,

and usually behaves in such a way that the its invokers have

no indication that they deal with a proxy instead of the un-

derlying object being proxied (see the proxy design pattern

in [3]). Object proxying is implemented in JCF using one of

three approaches: dynamic proxies, static proxy generation,

and custom proxies. These approaches are described in the

rest of this section.

Dynamic Proxies. Dynamic proxies are a mechanism in-

troduced in Java 1.3, which permit the creation of a class

that implement a set of interfaces speci�ed at runtime [2]. A

dynamic proxy object receives all invocation targeted at the

proxied object(s) and can perform arbitrary tasks instead of,

prior to, or after forwarding the request to its actual target.

JCF 's dynamic proxy implementation permits registra-

tion of per- and post-invocation handlers. Each locking

protocol provides its own invocations handlers, which are

registered upon entering an atomic block and unregistered

at its end. Various locking protocols have di�erent needs

in terms of invocation handlers: conservative 2PL does not

use invocation handlers, 2PL with late locking only uses

pre-invocation handlers, 2PL with early unlocking only uses

post-invocation handlers, and generalized 2PL and tree lock-

ing use both. In addition to pre- and post-invocation han-

dlers, dynamic proxies also ensure object atomicity.

Dynamic proxies have three drawbacks. First, they are a

recent addition to the Java language and are not widely de-

ployed yet. Second, because of their dynamic nature, they

have a non-negligible runtime overhead. Indeed, dynamic

proxies intercept and process requests using Java's re
ec-

tion API, which has a high cost in terms of performance.

Finally, dynamic proxies only intercept operations declared

on interfaces. In other words, for using dynamic proxies,

all operations of the application object must be declared in

interfaces implemented by that object.

Static Proxy Generation. The second approach for inter-

cepting invocations consists is generating static proxies for

atomic objects. A static proxy implements the same meth-

ods as the actual object. Each method of the static proxy

13

performs three operations: pre-processing, invocation to the

actual object, and post-processing. During pre- and post-

processing, the static proxy performs the same concurrency

control operations as dynamic proxies. The actual process-

ing of the request is delegated to the target object through

a static method call.

The static proxy generator uses re
ection to discover the

methods implemented by application objects. Proxy gener-

ation can happen at compile-time or at runtime. In the �rst

case, the code of the proxy is generated in a �le that must

be compiled to produce the proxy class. In the second case,

the proxy is directly generated as bytecode and dynamically

loaded in memory by the Java class loading mechanisms.

The latter approach is more convenient because the devel-

oper does not need to deal with proxy classes. It does how-

ever require runtime permissions that may not be granted to

code executing in a protected environment, such as applets.

Since static proxies intercept and invoke operations on

application objects statically, their runtime overhead is sig-

ni�cantly smaller than dynamic proxies. Static proxies also

do not su�er from the same limitations as dynamic proxies,

which only intercept invocations to the methods declared on

the interfaces implemented by an object.

Custom Proxies. JCF provides a third approach to in-

tercept invocations, in which the developer can explicitly

control how concurrency control is applied to application

objects. With this method, the programmer is responsible

for ensuring atomicity of objects, and for calling JCF pre-

and post-invocation handlers at relevant places in the code

(concurrency control is explicitly delegated to JCF).

Custom proxies are the most
exible approach, because

the programmer can control when and how concurrency con-

trol is applied to application objects. This may lead to �ne-

grain optimizations, such as disabling concurrency control

for methods that are not required to execute in isolation.

On the other hand, custom proxies are also the most \dan-

gerous" approach because the programmer has to comply

with a set of rules that, if not followed, may lead to viola-

tions of transaction isolation or deadlocks. In addition, it

requires code modi�cations, which makes its application to

legacy code less straightforward.

5.4 Design and Runtime Choices

JCF is a versatile concurrency framework that o�ers a va-

riety of choices. The locking strategy in
uences the concur-

rency degree of the application, and the interception mecha-

nisms a�ects the runtime overhead and in some respects the

programming model.

Decisions about the locking strategy can be performed

late in the development cycle, as late as at runtime. It is

possible to use multiple locking policies in the same appli-

cation, with the following restrictions. All 2PL policies are

compatible with each other and any combination of these

policies can be used simultaneously in an application. Tree

locking and 2PL are not compatible and they should not be

used to manage the same resources. When using tree lock-

ing for a set of objects, all threads that access these objects

concurrently must use the same tree to guarantee isolation.

This is enforced by JCF runtime, which does not allow an

object to be part of multiple trees.

The locking policy should be chosen to yield the best per-

formance for the application. The experimental results pre-

sented in Section 6 can give guidelines on how locking strate-

14

gies behave with some type of applications. If the applica-

tion exhibits repeatable access patterns, it may be wise to

test each locking strategy and chose the most e�cient prior

to deploying the application.

Unlike with locking policies, the criteria for selecting an

interception mechanism are not only based on performance.

Transparency and security constraints are other factors that

can in
uence this choice. Dynamic proxies require almost no

modi�cations to legacy application but are limited to prox-

ying interfaces and add signi�cant runtime overhead. Static

proxies are more e�cient and powerful, but they can be

cumbersome to manage and require additional permissions

in the case of runtime proxy generation. Custom proxies are

the most
exible approach, but it requires the programmer

to perform substantial modi�cation to his/her code. The

runtime impact of the di�erent interception mechanisms is

discussed in greater detail in Section 6. Note that all three

approaches are compatible with each other: objects that use

di�erent interception mechanisms can coexist in the same

application.

5.5 Atomic Blocks as an Extension to the Java

Language

The Java language de�nes a \synchronized" statement

that locks an individual object for the duration of the associ-

ated block. A simple extension to support atomic blocks in

the Java language would be to allow multiple objects as ar-

gument of the \synchronized" statement. Without o�ering

the whole spectrum of concurrency control strategies dis-

cussed in this paper, the virtual machine could use a con-

servative 2PL policy to lock all objects in a deadlock-free

manner. Since conservative 2PL does not need to know the

structure of the transactions in advance, nor does it need

to acquire and release locks during execution of the atomic

block, no additional modi�cations should be performed to

the syntax and semantics of the \synchronized" statement.

In contrast, support for other locking strategies would re-

quire additional information to be provided to the Java run-

time, e.g., using a thread-speci�c interface or extra argu-

ments to the \synchronized" statement.

6. EXPERIMENTAL RESULTS

This section presents experimental results with JCF and

the locking policies described in this paper. We also quantify

and discuss the runtime overhead of the di�erent intercep-

tion mechanisms presented in Section 5.

6.1 The Model

For concurrency measurements, we assume that the ac-

tions of locking and unlocking an object take a negligible

amount of time. This assumption is realistic with applica-

tions where operations that execute in mutual exclusion are

time consuming (e.g., disk access, remote invocation, com-

plex computations). The goal of these experiments is not

to provide absolute performance �gures, but rather to mea-

sure the degree of concurrency of an application relative to

a serial version of the same application.

For runtime overhead measurements, we concentrate on

the cost of concurrency management and interception mech-

anisms. For this purpose, we ran transactions with opera-

tions that do not perform any actual processing (empty op-

erations). All tests have been performed with Java 1.3 on a

single-processor PC (P3/750) running Windows NT 4.0.

We have implemented a simulation environment to com-

15

pare the di�erent concurrency control strategies. The test

environment permits the speci�cation of the number of con-

current threads, the length of transactions, the number of

objects in the system, the duration of operations, etc. Time

consuming operations are simulated by yielding the proces-

sor to other threads for a given amount of time (as an I/O

operation would do, for instance). The transactions are cho-

sen randomly, but the same transactions are used for all

concurrency control strategies. In the tests below, we only

used binary trees for tree locking.

6.2 Low Contention Tests

We �rst consider the case of applications where contention

is low, i.e., con
icts are infrequent. For instance, in the ex-

ample of the bank application, transactions typically have

few operations (two for transfers) and the number of ac-

counts is much larger than the number of concurrent trans-

actions, thus leading to low contention.

We have run tests with 32 concurrent transactions, each

composed of 2 randomly-chosen operations, on a set of ob-

ject of variable size. As the number of object grows, con-

tention decreases. The experimental results are shown in

Figure 8. The ordinate shows the concurrency degree ex-

pressed in percentage with respect to serial execution (i.e.,

in the case where there is no e�ective concurrency).

As one can see on the �gure, all 2PL locking policies per-

form well and the concurrency degree approaches the theo-

retical optimum (3200%) as the number of object grows and

contention decreases. There is only little gain from using

more elaborate 2PL strategies (e.g., generalized 2PL) over

strict 2PL.

On the other hand, tree locking performs poorly and re-

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

C
on

cu
rr

en
cy

 d
eg

re
e

w
.r

.t.
se

ria
l e

xe
cu

tio
n

(%
)

Nb obj

Concurrency of locking policies
(32 threads, 2 op/trans)

Serial execution
Conservative 2PL

Late locking
Early unlocking

Generalized 2PL
Tree locking

Figure 8: Concurrency degree with low contention

tests.

mains almost constant as the number of object grows.4 This

is due to the fact that, with random transaction, there is a

50% likelihood that a transaction with two operations ac-

cesses objects located in di�erent halves of the tree, and

contention appears on the root and intermediary nodes of

the tree rather than on the actual object being accessed.

This example demonstrates that tree locking is not suitable

for random transactions.

6.3 High Contention Tests

In situations where a large number of threads compete

for a small number of resources, contention is high. This

may be the case with resources such as �les, I/O devices

(disks, printers, network interfaces), or more generally ap-

plication objects that have a large granularity (e.g., a bank

object instead of an individual account). The nature of such

applications strongly limits the concurrency degree and, as

4Figures 8 and 9 show the performance of tree locking with

\non-optimized" trees, i.e., without using our algorithm for

construction good trees: there was no noticeable improve-

ment when running these experiments with optimized trees,

because of the random nature of the transactions.

16

contention grows, we can expect only little gain over serial

execution.

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35

C
on

cu
rr

en
cy

 d
eg

re
e

w
.r

.t.
se

ria
l e

xe
cu

tio
n

(%
)

Nb op/trans

Concurrency of locking policies
(32 threads, 16 obj)

Serial execution
Conservative 2PL

Late locking
Early unlocking

Generalized 2PL
Tree locking

Figure 9: Concurrency degree with high contention

tests.

Figure 9 shows execution of 32 concurrent transactions,

each composed of variable number of randomly-chosen op-

erations, on a set of 16 objects. As one can see on the �g-

ure, as the number of operation per transaction grows and

contention increases, the concurrency degree approaches a

constant value approximatively 1.5 times better than serial

execution. Conservative 2PL and early unlocking even show

no gain over serial execution starting from 8 (resp. 16) op-

erations per transaction. Tree locking performs empirically

better than 2PL locking policies when contention is high.

However, the di�erence may not be signi�cant enough to

justify the use of tree locking over a 2PL policy.

6.4 Hierarchical Data Tests

In situations where data can be organized in a hierarchy, it

is straightforward to build a tree that matches this hierarchy

and is adapted to tree locking. For instance, XML data can

be naturally stored as a tree. Let a \subtree transaction"

be a transaction that accesses every object of some subtree

exactly once. We have performed tests with 32 concurrent

subtree transactions on a variable set of objects. Since we

only consider balanced binary trees, the number of objects

in the tree is always a power of 2. In addition, because

each transaction accesses all the objects of sub-tree (set),

transactions also have a length equal to a power of 2. The

subtree accessed by each transaction is chosen randomly.

0

200

400

600

800

1000

1200

8 16 32 64 128 256
C

on
cu

rr
en

cy
 d

eg
re

e
w

.r
.t.

se
ria

l e
xe

cu
tio

n
(%

)

Nb obj (log)

Concurrency of locking policies
(32 threads, monotonous trans)

Serial execution
Conservative 2PL

Late locking
Early unlocking

Generalized 2PL
Tree locking

Figure 10: Concurrency degree with hierarchical

data.

Figure 10 shows that, with subtree transactions tree lock-

ing performs as much as 5 or 6 times better than 2PL locking

policies. This can be explained by the fact that, since the

structure of the tree matches the access patterns of transac-

tions, many transactions that con
ict can still execute con-

currently with tree locking. Therefore, the nature of an

application and the access pattern of its transactions have a

strong impact on the e�ectiveness of locking strategies and

are the key factor for choosing the best strategy.

6.5 Tree Construction Algorithm

When data accesses in a set of transactions are purely

random, we noticed that tree locking does not perform well,

independent of the structure of the locking tree. We also

17

showed that for hierarchical data and structured accesses,

tree locking can signi�cantly increase concurrency. We per-

formed additional experiments to test the e�ectiveness of the

simple tree construction algorithm presented in this paper.

For this purpose, we have generated \skewed" transactions,

where the objects accessed are chosen according to a Zipf

distribution [13]. Some objects are accessed much more of-

ten than others, making it important to locate these objects

close to each other. For this experiment, we have used short

transactions and a variable number of threads.

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100

C
on

cu
rr

en
cy

 d
eg

re
e

w
.r

.t.
se

ria
l e

xe
cu

tio
n

(%
)

Nb threads

Concurrency of tree locking policies
(32 obj, 2 op/trans)

Random Tree
Optimized Tree

Figure 11: Concurrency degree with skewed trans-

actions (random tree vs. optimized tree).

The results (Figure 11) show signi�cant improvement with

the optimized tree, even though the tree generated by the

algorithm is sub-optimal. Since real-world applications do

not generally access objects at random but according to re-

peatable patterns, algorithms for generating locking trees

adapted to these pattern could be a promising approach for

increasing concurrency of those applications.

6.6 Runtime Overhead

In this subsection, we compare the runtime overhead of

the various locking policies and the di�erent interception

mechanisms. For this purpose, we have run experiments

with a single thread that executes a sequence of transactions,

each made of 32 empty operations. Since there is only one

thread and operations take no time, the results re
ect the

cost of concurrency management when there is no contention

and no e�ective processing.

0

1e+06

2e+06

P
er

fo
rm

an
ce

 (
op

/s
)

Runtime overhead of concurrency
control mechanisms

No
locking

Serial
locking

Conservative
2PL

Late
locking

Early
unlocking

Generalized
2PL

Tree
locking

Dynamic proxy
Static proxy

Figure 12: Runtime overhead of the di�erent locking

policies and interception mechanisms.

Results are shown in Figure 12. We have measured the

cost of each locking policy with dynamic and static proxies.

The column labeled \no locking" corresponds to execution of

the application with the interception mechanisms but with

no actual concurrency management. Serial locking acquires

and releases a single global lock. 2PL locking policies ac-

quire locks on all objects accessed by the transaction. Tree

locking additionally locks and unlocks intermediary nodes

of the tree.

The results are not surprising. Static proxies are clearly

more e�cient than dynamic proxies. The cost of using re-

ection to intercept invocations appears to be signi�cantly

bigger than the cost of concurrency management. In appli-

cations that perform time-consuming operations, the run-

time overhead of dynamic proxies may be negligible in com-

18

parison to processing time. However, in applications that

perform short operations, this overhead may become a bot-

tleneck and static proxies should be preferred.

Among all locking policies, tree locking exhibits the high-

est overhead. This is easily explained by additional con-

currency management performed on the nodes of the tree.

Early unlocking and generalized 2PL pay the cost of post-

invocation �lters. Late locking performs slightly better be-

cause it only uses the less costly pre-invocation �lters. Con-

servative 2PL does not use invocation �lters at all and has

the smallest overhead among 2PL policies. Finally, serial

locking prevents concurrency by using a single global lock,

thus minimizing runtime overhead. While these �gures show

the bene�ts of using simple locking policies, one has to bal-

ance the runtime costs with the increased concurrency of

more complex locking policies. For application that per-

form time-consuming operations, concurrency must be the

key factor for choosing a locking policy and runtime over-

head should be ignored.

7. CONCLUSION

In this paper, we have presented mechanisms for imple-

menting atomic sets of actions in Java. These mechanisms

transparently manage isolation on a set of shared objects on

behalf of the application, by increasing concurrency while

preserving safety and liveness. They reduce the burden of

the developer of concurrent applications, reduce the likeli-

hood of semantic errors, and have the potential of increasing

concurrency in complex applications.

We have presented various locking policies adapted to our

application model, which consider a simpli�ed form of trans-

actions where operations are performed on transient data

(no durability) and actions never need to be undone. Each

strategy has speci�c bene�ts and drawbacks, and the choice

of the best strategy ultimately depends on the nature of the

application.

We have introduced several techniques used for the imple-

mentation of atomic blocks in Java and given some guide-

lines for choosing the technique best adapted to a given ap-

plication. Transparent concurrency control management is

achieved through object proxying. Finally, we have pre-

sented experimental results that illustrate the concurrency

degree and runtime overhead of the various strategies dis-

cussed in this paper. These results show that there are

tradeo�s between concurrency degree, runtime overhead, trans-

parency, and
exibility.

We believe that basic mechanisms for atomic blocks would

be a relevant addition to the Java language. A simple yet

elegant approach for this purpose, without adopting all the

features of our Java concurrency framework, consists in ex-

tending the \synchronized" keyword so that it can take an

array of objects as argument and lock them conservatively

using a deadlock-free conservative 2PL strategy.

8. REFERENCES

[1] P. Bernstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.

[2] J. Blosser. Explore the dynamic proxy api. JavaWorld,

Nov. 2000. http://www.javaworld.com/javaworld/jw-

11-2000/jw-1110-proxy.html.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns, Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

19

[4] J. Gray and A. Reuter. Transaction Processing:

Concepts and Techniques. Morgan Kaufmann, 1993.

[5] D. Lea. Concurrent Programming in Java.

Addison-Wesley, 1997.

[6] N. Lynch. Distributed Algorithms. Morgan Kaufmann,

1996.

[7] F. Schneider. On Concurrent Programming. Springer

Verlag, 1997.

[8] P. D. Seymour and R. Thomas. Call routing and the

ratcatcher. Combinatorica, 14(2):217{241, 1994.

[9] B. Shannon, M. Hapner, V. Matena, J. Davidson,

E. Pelegri-Llopart, and L. Cable. Java 2 Platform,

Enterprise Edition: Platform and Component

Speci�cations. Addison-Wesley, 2000.

[10] A. Silberschatz and Z. Kedem. Consistency in

hierarchical database systems. Journal of the ACM,

27(1):72{80, Jan. 1980.

[11] D. Skillicorn and D. Talia. Models and languages for

parallel computation. ACM Computing Surveys,

30(2):123{169, 1998.

[12] B. M. W.K. Edwards. Core Jini. Prentice Hall, 2000.

[13] G. Zipf. Human Behaviour and Principle of Least

E�ort. Addison-Wesley, Cambridge, Massachusetts,

1949.

20

APPENDIX

A. THE TREE-LOCKING PROTOCOL

The tree locking protocol follows these simple rules:

� A transaction T always starts by acquiring the lock on

its root node, which is the lowest common ancestor of

all the objects accessed by T .

� To access an object o, T follows the path that leads

from the last accessed node (initially the root node)

to the leaf holding o. On that path, T performs the

following operations:

{ Let N be the current node in the path, and N 0 the

next node in the path. T �rst acquires the lock on

N 0 (if T does not already hold that lock).

{ If there is no object o0 in the remaining operations

of T such that N is an ancestor of o0, then T re-

leases the lock on N . (This situation happens if T

has performed all its operations on the objects of a

branch, and is moving upstream along the path.)

{ Otherwise, if for each object o0 in the remaining

operations of T such that N is an ancestor of o0,

N 0 is also an ancestor of o0, then T releases the

lock on N . (This situation happens if all remaining

operations of T are con�ned in one branch, and T

is moving downstream along the path towards that

branch.)

� After its last operation, T releases the lock on the last

accessed object.

Figure 13 shows an execution history of the transactions

of Figure 4 with a tree locking policy. The tree is a balanced

binary tree with three levels, three internal nodes, and four

leaves. Transaction
ow is represented by dashed arrows.

Intermediary actions (i.e., locking, unlocking, operation ex-

ecution) are indicated along the arrows as they occur. The

di�erent transactions on a �gure execute concurrently and

time
ows in the direction of arrows.

B. ADEQUACY CRITERIA FOR LOCKING
TREES

We discuss below the four criteria that we have identi�ed

to characterize a good tree for a given set of transactions.

A �rst observation is that transactions can execute con-

currently if they are con�ned in separate branches of the

tree. Obviously, if all transactions compete to lock the root

node of the tree, then concurrency will be equivalent to or

worse than conservative 2PL. On the other side, if the root

node of some transactions are in separate subtrees, they can

execute in complete independence. Criterion 1: The lower

the root node of a transaction is, the better concurrency is.

Nodes high in the tree are more crucial than nodes low in

the tree, because they control a larger number of resources.

It can be highly ine�cient to lock a node high in the tree to

access a single resource below that node. For instance, with

the tree of Figure 13, a transaction that accesses a and c

will prevent concurrent accesses to b and d because it locks

nodes that control these objects. Concurrency is thus better

if the transactions that lock a node access a large number

of the resources controlled by that node. Criterion 2: The

acquisition of a node must pay o� and concurrency can be

optimal when transactions access all resources located below

that node.

The order in which transactions access resources is also

an important factor for concurrency. If a transaction leaves

a subtree in which it will return later, it has to keep locks

21

c.op()

L(N2)
T3

L(N0)
T1

L(a)
a.op()

L(N1)

L(c)

N

dc

2

0N

1

ba

N

(a) T1 executes in the left branch. T3

can execute concurrently in the right

branch.

U(a)

T3T1 L(b)
b.op()

d.op()

U(c)
L(d)
U(N2)

U(d)

2

c d

N

0N

1

b

N

a

(b) T1 and T3 do not interfere because

they execute in separate branches. T3

completes.

U(b)

T1

T2

U(N1) L(N2)
U(N0)

L(c)L(a)

L(N1)

c.op()a.op()

2

c d

N

0N

1

ba

N

(c) T1 moves to the right branch. T2

can execute concurrently in the left

branch.

U(a)

T1T2

L(d)

d.op()

L(b)

b.op()
U(d)

U(c)U(N1)

U(b)

U(N2)

2

c d

N

0N

1

a

N

b

(d) T1 and T2 �nish their execution in

separate branches without interfering.

Figure 13: Execution of the transactions of Figure 4 with a tree locking protocol.

on that subtree. On the other hand, if a transaction leaves

a subtree de�nitively, it can release the locks it holds on the

subtree. Therefore, if all accesses to the resources of a sub-

tree are adjacent, the transaction can release all locks on the

subtree when leaving it. This is the case of T1 with the tree

of Figure 13: once T1 has accessed a and b, it can leave the

left branch of the tree and release all the locks it holds on

that branch (Figure 13(c)). Criterion 3: Concurrency is in-

creased if accesses to the resources of a subtree are adjacent

in a transaction.

The �rst three criteria apply to individual transactions,

i.e., they de�ne if a tree is adequate for each transaction

in isolation. A fourth criterion can be de�ned on sets of

transactions. It derives from the observation that, if multi-

ple transactions access the same subtrees, concurrency can

be increased if they access these subtrees in the same order.

For instance, in the tree of Figure 13, if we de�ne a new

transaction T 0
1 which accesses the same objects than T1 in

the same order, T 0
1 can start executing in the left branch as

soon as T1 moves to the right branch. If T 0
1 was accessing

objects in the reverse order than T1, then it would have to

wait until T1 completes before starting execution. Criterion

4: Concurrency is generally increased if shared resources are

accessed by multiple transactions in the same order.

C. THE OPTIMAL TREE PROBLEM

The Problem 4.1 can be proved to be NP-hard. While the

details of the proof are outside the scope of this paper, the

intuition behind the proof can be outlined by considering

the special case in which each of T1; :::; Tn is of size two,

22

and accesses two distinct objects. The problem of �nding

an optimal tree for these transactions is easily seen to be

equivalent to the following problem: given a graph G =

(V;E) and a weight function w : E ! N , construct a routing

tree T for G, i.e., a tree T in which each internal node has

degree 3 and the leaves correspond to vertices of G, such that

the congestion at each internal node of T is minimized. The

congestion at a node of the routing tree is the maximum, for

any vertex x, of
P

(u;v)2E;u2S;v 62S
w(u; v), where S is one of

the three connected components obtained by deleting x from

T . The tree that minimizes B can be shown to be equal to

Fmin and Favg with the algorithm of Section 4.2, when the

weight w(u; v) of each edge (u; v) of G corresponds to the

number of occurrences of the transactions fu; vg or fv; ug.

Seymour and Thomas proved in [8] that a closely-related

problem, where the congestion of the routing tree must be

minimized at its edges instead of its nodes, is NP-hard. Our

problem can also be shown to be NP-hard by extension of

Seymour and Thomas' results.

As a result, we have primarily focused on heuristics for

building a good tree in polynomial time. Since the nodes of

a tree are arti�cial objects that are not associated with data,

their number and structure is very variable. Although we

presented a balanced binary tree in Figure 13, the algorithm

of Section 4.2 does not impose restrictions on the depth of a

tree or the arity of any of its nodes.5 These factors in
uence

the performance of the tree locking protocol and must be

chosen accordingly.

5In fact, with our simpli�ed model, for any tree with some

nodes of arity greater than 2 it is possible to �nd an equiv-

alent binary tree, at the price of increased depth.

D. TREE CONSTRUCTION ALGORITHM

Given a set of n transactions T1; :::; Tn with sizesm1; :::; mn,

where each transaction Ti is composed of mi individual op-

erations oi1; :::; o
i

mi
on shared resources r1; :::; rl. Informally,

our greedy algorithm for building binary locking trees works

as follows:

1. Shared resources r1; :::; rl are organized in an \access"

graph G = (V;E) with a weight function w : E ! N

such that w(ri; rj) is a pair of values (wd; wn): wn is

the number of occurrences of operations on both ri and

rj in each transaction T1; :::; Tn, and wd is the sum of

the distance between these operations. Let L be an

(ordered) list initially empty.

2. Select the vertex u that maximizes
P

(u;v)2E;v2V
wn(u; v).

If there is more than one candidate vertex, select the

one that minimizes
P

(u;v)2E;v2V
wd(u; v). Add u to L.

3. Select the vertex u0 =2 L that maximizes
P

(u0;v)2E;v2L
wn(u; v).

If there is more than one candidate vertex, select the

one that minimizes
P

(u0;v)2E;v2L
wd(u

0; v). Append u0

to the end of L. Repeat this step until L contains all

vertices of V .

4. Create a balanced binary tree with l leaves and arrange

the resources the resources r1; :::; rl in the leaves of the

tree in the same order as they appear in L.

23

For instance, given the transactions T1, T2, and T3 in

Figure 14, the algorithm will produce the graph in Figure 15

and the same tree as in Figure 6.

T1 : a:op() ; b:op() ; a:op() ; c:op()

T2 : c:op() ; b:op() ; d:op()

T3 : a:op() ; b:op()

Figure 14: Three sample transactions.

ba

c d

3,3

4,2 3,2 1,1

2,1

Figure 15: Access graph for the transactions of Fig-

ure 14.

24

