What can we expect with Community Grids’ Shared Export
as a Web Service?

 Sangmi Lee

 PTLIU Laboratory for Community Grids
 Indiana University, Bloomington IN 47404

Web Services is the name of a concept that includes technologies such as XML, SOAP, and UDDI to create services that are available via HTTP to any computer on the Internet. Web Services infrastructure is required [1];

· Facilitates interoperability among disparate delivery channels. In particular, the approach must not impose a particular runtime model and must enable applications to be deployed easily for delivery through various channels.

· Supports adaptation of Web applications. In particular, a Web application must be easy to "brand" and "co-brand" for the purposes of syndication.

· Supports aggregation of Web applications into a larger user experience with no or minimal programming.

· Provides for tight and fully customizable integration between Web applications, resulting into a seamless user experience.

· Enables applications to be changed or modified easily. For example, business professionals must be able to quickly deploy and test new business models.

Our Community Grids’ Shared Export is proposed for more flexible data sharing in collaborative work. Moreover, it designed for ubiquitous access such as PDAs, or smart phones.
1. Possible System Architecture of Shared Export as Web Services
As a possible scenario, Figure 1 demonstrates how a shared export provider could product that universal accessible rendered image for various devices. The intercepting Web Server manipulates SVG document with user device information, user device stylesheets, or user preferred display types. Since Community Grids provides user device information as XML syntax in our GXOS, Web Service application on intercepting Web server can access GXOS server and get the information. We can expect that the interface for accessing GXOS can be a part of components of our Web Service, such as GetUserInfo(), GetDeviceInfo(), etc.

The Web Server located in shared export provider should support the environment for master users. The application on provider should concern the authoring environment for users, such as authoring tool or translator from Power point slides to SVG documents. The communication between provider and intercepting Web Server can be HTTP which is serviced by GMS.

The Intercepting Web Server is located between end users and Provider’s Web Server. The purpose of this Web Server is customizing SVG/XML document and rendering appropriate image for the end user application which is distributed from application distributor and providing the collaborative event handling. Basically, Community Grids is designed to detect user environment automatically. For instance, if PC user connected, the service for the PC user is provided, and when PDA user connected to Personal Server, the service is customized for PDA automatically. Our personal server for PDAs seems to be a kind of SVG application distributor. However, it does not share the message from each end user. Thus, the adoption of Web Service will be adding the back-end engines to share the message and events.

[image: image4.emf]SVG Authoring tools

or translator

Shared Export

runtime application

Remote Portal

SVG Document Provider

(Web Server)

SVG Application distributor

(Intercepting Web Server)

GMS

HHMP

(TCP/IP)

HTTP

Customized image

visualization

Application

(Stylesheets,

User Device

Information,

Preferred output

formats, etc)

SVG Authoring tools

or translator

Shared Export

runtime application

Remote Portal

Shared Export

runtime application

SVG Document Provider

(Web Server)

(SVG, XML)

HHMP

(HTTP)

HHMP

(TCP/IP)

HTTP

Customized image

visualization

Application

(Stylesheets,

User Device

Information,

Preferred output

formats, etc)

Collaboration Engine

SVG Authoring tools

or translator

Shared Export

runtime application

Remote Portal

SVG Document Provider

(Web Server)

SVG Application distributor

(Intercepting Web Server)

GMS

HHMP

(TCP/IP)

HTTP

Customized image

visualization

Application

(Stylesheets,

User Device

Information,

Preferred output

formats, etc)

SVG Authoring tools

or translator

Shared Export

runtime application

Remote Portal

Shared Export

runtime application

SVG Document Provider

(Web Server)

(SVG, XML)

HHMP

(HTTP)

HHMP

(TCP/IP)

HTTP

Customized image

visualization

Application

(Stylesheets,

User Device

Information,

Preferred output

formats, etc)

Collaboration Engine

 Figure 1 Possible system architecture of Shared Export as Web Services.

2. Example from IBM (WSXL and Macromedia Flash)
IBM’s Web Service Framework has four components of [2]:
· Base Component: interfaces for life cycle management, event handling, and generation of output markup
· Data Component: an extension of the base component that encapsulates a DOM-accessible representation of instance data and optionally associated model definitions
· Presentation Component: an extension of the base component that encapsulates a DOM-accessible representation of the elements in a user interface "page"
· Control Component: an extension of the base component that manages the micro-control between instantiated data and presentation components in order to bind them together
Here are examples of IBM’s WSXL with Macromedia’s Flash in their framework. We can compare with our SVG standard format exporting with these implementation examples. WSXL components can live on any tier of the network and are independent of output markup.
[image: image2.jpg]
Figure 2: WSXL and Flash markup

Figure 2 demonstrates a WSXL application producing Macromedia Flash content.

[image: image3.jpg]
Figure 3 WSXL and Flash Presentation Component

In the example shown in Figure 3, the WSXL Presentation component is moved to the client in order to support direct generation of presentation using the Flash runtime engine. The Flash runtime is implemented inside a WSXL Flash Presentation Component as an extension of the base WSXL Presentation Component. As such, the WSXL Flash Presentation interfaces include the base WSXL Component interfaces for DOM access and events (shown in red in the Figure), and the standard WSXL Presentation interfaces (shown in blue). The WSXL Flash Presentation component defines additional interfaces (shown in yellow) to support Flash specific functions such as display and physical interaction with the user.

WSXL components may execute on any tier of the network, and use W3C DOM Events to signal changes between them through arcs established by WSXL Control Components. In the figure, the WSXL Flash Presentation Component interacts with the remainder of a WSXL application through control links established by a WSXL Control Component. Data can be provided to the Flash presentation, and results returned from it, by receiving and raising events on these links. Changes in the interaction state of the flash presentation can also be signaled using events in order to synchronize the behavior of the flash presentation with non-flash parts of the user interface that may also be present.

3. Implementation of Shared Export as Web Services

Shared Export as Web Services can be implemented in various ways. There are several design issues especially for Community Grids’ Shared Export:
· The location of presentation component
· Event Interaction and composition
· Adoption of P2P network architecture

The presentation component can be on intercepting Web Server or end user display application as shown in the WSXL’s example. Personal Server for SVG shared export can be an example shown in figure 2. Since PersonalJAVA virtual machine does not support Swing APIs which is used in Batik rendering machine, the presentation component of Personal Server is implemented in server side. After generating image, the image delivered to end user devices, PDAs. However, PC-to-PC shared export generates image in each end user application. Therefore, if we want to design and implement Web Service, the location of presentation component will be one of major design issues. The performance can depend on the location of presentation component.

Dr. Fox already mentioned about the object event issues in his presentation [3]. He says that shared event is like shared Web service but is a custom “implementation” for each application.

Since there does seem to be computer-to-computer interaction, Web Service seems to be a P2P. Nevertheless, it is not P2P because there is no dynamic network of peers. The truth is that Web Services are, at least for the moment, almost exclusively server based. The good thing about Web Services is that they can be used by JXTA. Because Web Services are usually HTTP based, they can breach firewalls and other barriers [4]. Thus, if one of our future works is aiming the P2P network architecture, it sounds positive.
4. Conclusion

The concepts of Web Services provide sophisticated philosophy to develop a universal accessible collaborative system with its interoperability. Our Community Grids’ Shared Export can be implemented as an example of Collaborative Web Service. Since there are some performance issues, there can be researches with various architectures. When we consider the amount of SVG document data and unstable wireless connection status, communicating with image not SVG document can be expected better performance (usually SVG document data has 10 ~ 20 times bigger than rendered image data) for PDAs. However, PC-to-PC Shared Export as Web Services cannot be expected which architecture will perform better.
The Web Services is expected to add more general interoperability to our system. Since the back-end collaborative engine processes message based shared events, newly added devices can be merged easily with developing its own end-user viewer to collaborate with previous devices.

References

[1] OASIS Web Services for Interactive Applications TC, http://www.oasis-open.org/committees/wsia/
[2] Arsanjani, A. et al. Web Services Experience Language (WSXL), 2002, http://www-106.ibm.com/developerworks/library/ws-wsxl/
[3] Fox, C. G. Collaboration and Web Services, http://grids.ucs.indiana.edu/ptliupages/publications/presentations/
[4] Brookshier, D., Govoni, D., and N. Krishnan, JXTA: Java P2P Programming, SAMS 2002

[image: image1]