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Executive Summary
The ESE Computational Technology Requirements Workshop was held April 30 and May 1 at
the Washington Plaza Hotel in Washington, DC. It was open to all interested members of the
community and was announced widely.  Three discipline specific panels — Weather, Climate,
and Solid Earth — were charged with synthesizing the community input collected during the 2
days of the workshop discussions and preparing final reports and roadmaps at its conclusion.

Weather Computational Requirements Driver
The NASA role in weather forecasting is specifically a role of enabling.  Therefore, NASA’s
activities are dependent upon the activities in other agencies.

To succeed in enabling the Nation’s weather prediction goals, NASA research activities need to
be integrated with NOAA and Navy operational requirements.  These include:

1) Techniques developed within NASA have to fit into the operational time allowance for
real-time weather forecasting.  This requires the end-to-end forecast-assimilation system to
run in less than 2 hours of wall time.

2) Attributes of NASA algorithms, e.g., resolution, data usage, parameterizations, must be
consistent with the state-of-the-art operational systems.  Otherwise, the impact of NASA
research will be diminished.

The computational requirements for the anticipated forecast-assimilation system for 2010 (see
Appendix A) are currently driven by data volume.  A data volume of 1011 observations per day is
chosen based on projections of satellite observing systems that are planned to be operational and
relevant to weather forecasting.  As a baseline, the current horizontal resolution is order 100 km,
with 50 vertical levels, and current data usage is order 106 observations per day.  Using the
presently measured sensitivities of the model and assimilation algorithm to resolution and data
usage, the projected computer requirements for 2010 are 109 times the current requirement.  The
primary driver of this requirement is data usage.  Such a requirement is unrealistic, and therefore,
to address the data usage requirements new strategies are needed to compact the information and,
effectively, reduce the data volume, prior to assimilation.  These strategies require consideration
of all aspects of the system.

Climate Computational Requirements Driver
Climate (or more generally Earth system) research, including that for improved prediction, relies
heavily on high-end computing resources. Requirements come from a variety of subdisciplines –
seasonal-to-interannual (S-I) variability and prediction, decadal variability and prediction, global
change assessments, atmospheric/ocean/land assimilation for analyses (as well as that for
forecast initialization), and coupled physical-biogeochemistry modeling, to name a few. For the
purpose of this report the panel focused on the problems of seasonal-to-interannual prediction
and decadal prediction because the types of problems to be solved and the models and
resolutions used for these areas are similar to those used for the other subdisciplines.

Current S-I climate prediction systems consist of ocean-atmosphere-land-sea-ice models coupled
to ocean and land data assimilation systems.  To be useful for climate applications, single-image
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model performance must be roughly 1,000 simulated days per wall-clock day, and since climate
forecasts need to be based on ensembles of runs, typical systems run 8 to10 concurrent coupled
images (or 15 to20 uncoupled images) now.  The panel’s assessment of requirements for future
computer platforms is based on the assumption that as computer power increases the size of the
calculation and the number of concurrent images will also increase while roughly maintaining
these performance goals (1,000 d/d single image, 20,000–30,000 d/d aggregate throughput).

During the next 10 years, the magnitude of the calculation will increase due to the greater model
complexity and increases in resolution.  The panel has assumed that the latter will be the main
driver of computer performance.  The panel also used the atmospheric model as characteristic of
the entire problem.

A single image of an atmospheric configuration of 1° resolution with 100 layers (including the
full stratosphere) and 40 on-line chemical tracers would require a throughput of about 5
TFLOPS; with a coupled ocean of 50 layers at 1/2° resolution the requirement is 6.6 TFLOPS.
The coupled model configuration with a job mix equivalent to 100 concurrent images
(ensembles, parameter sensitivity sweeps, etc) would then require 660 TFLOPS.

Solid Earth Computational Requirements Driver
The field of solid Earth science is currently mission and data poor. The panel anticipates,
however, an increasing number of missions and data in the next 10 years.  These include gravity
field determination missions such as GRACE, GRACE follow-on, GOCE; radar interferometry
missions such as ECHO; CHAMP and other magnetic field determination missions, ICESat, a
laser altimeter mission; GPS data collection from hundreds of ground stations (SCIGN/PBO) as
well as space platforms; and a wide variety of hyperspectral, high-resolution visual, multispectral
thermal, lidar imaging missions, such as VCL.

Space technologies will allow measurement of previously unobservable parameters and
phenomena, resulting in a new understanding of complex, interconnected solid Earth processes.
The next great revolution in Earth sciences will involve development of predictive models of
these processes. For these models to be successful, particularly for an understanding and
forecasting of hazards, high-resolution, global observations with real-time or near-real-time data
streams and processing will be required. Integrating the huge quantities of data and information
to be collected into forecast models will require that information technology resources be
developed in concert with advanced sensor and detection capabilities.

Taking ECHO as an example, there will be 100 GB of data per day, which should be fully
utilized for forecasting events on the global fault system. Accuracy may be refined in regions of
interest by applying finite element techniques using known variations in rheology and requiring
1 TFLOPS sustained. For forecasting, a dynamic model is required that can span scales larger
than a finite element code. Boundary element methods combined with good fault-friction models
can fulfill this need in principle, although substantial testing and development remain. Such a
system can be coupled efficiently with the finite element regional models. Operations count can
be estimated from assumptions of regional cost, plus assumptions of multipole coupling between
regions; most of the cost is then in the regional interactions. So with 80 regions covered at 10 per
day, 105 fault patches per region with hence 1010 interactions, 100 operations per interaction,
1,000 update steps for data-driven corrections (including recent history), and 0.1 computational
efficiency, the requirement is 1 TFLOPS sustained. For better forecasting, eigenpattern rate



Executive Summary

iii

techniques are needed. These pattern rates will be used to daily update an earthquake hazard
map. End to end, processing ECHO for earthquake forecasting comes to about 2 TFLOPS
sustained rate.

Technology Cross-Cut Gaps Identified
The specific technology capabilities required to address the ESE prediction goals have been
identified, based on the capability needs identified by the panels.  To the extent possible, those
capabilities are quantified and the driving science application responsible for the “high water
marks” identified.

Sustained compute throughput in the 10 TFLOPS range for single applications is common to all
of the panels.  In all cases, this capability is driven by resolution requirements.  Current model
resolutions are grossly insufficient for addressing the prediction goals. The weather model
throughput target is the stressing mark — it is higher than required for climate due to higher
resolution and the need to meet real-time processing deadlines in an operational environment.

Individual application performance is called out as an issue by both the weather and climate
panels. Currently, applications running on high-end computers typically realize only about 10%
of the peak rated performance of the constituent processors.  If that efficiency continues to hold,
achievement of teraFLOPS throughput performance will require 10,000’s of processors.
Increasing single processor performance efficiency to 40% will result in a 4x reduction in
processors required, and thus a 4x cost reduction in the computing platforms NASA must
purchase to meet these requirements.  Scaling to 1,000’s of processors for many key applications
is essential but remains untested.

All three panels specify the capability to manage petabytes (1015 bytes) of data as a requirement
in 2010.  The increases in model resolution over the decade will directly translate into dramatic
increases in input data, output data products, archival storage, and transported data volume.  It is
the number one issue for the weather panel, and a driving concern for climate and solid Earth.
With projected data products produced over the course of a year being in the 100’s to 1,000’s of
petabytes, these drive a data warehousing and distribution requirement that is quantitatively
different than the data archive center problem being addressed in other technology programs.
Indeed, the mission data archive centers will be required to feed data into the modeling activities
at rates at least as fast as the data is collected.  The rapid increase in data (both numerical and
observational) is expected to swamp existing visualization tools.

With the sources of data widely varied in the future, any application that needs to access data
from a variety of sources cannot possibly be expected to deal with the idiosyncrasies of each.
The data management system must present a uniform interface to all of the data under its
purview, even to the point of transparently translating among a set of standard formats.

The data movement implied by the data volumes required will drive requirements on network
layers between computing assets and storage assets, and end user clients into the 100’s of
Gbytes/s range.

In this era of ever-increasing complexity of scientific software, the ability to develop new
software components and assemble existing components into new applications is viewed as a
critical need across all three panels. Two of the panels (Climate and Weather) directly cite the
ESTO/CT Earth System Modeling Framework (ESMF) as a key technology to address such
capabilities in the coming decade.  Sustained government support for maintenance and future
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development of the ESMF beyond its 3-year development project is imperative.  The Solid Earth
panel envisions virtually identical issues driving the creation of a Problem Solving Environment
(PSE), which is directed towards the solid Earth modeling problems.

Portability without significant loss of performance is a capability required by all three panels.  A
key enabler of portability is the availability of standard common libraries across all of the
platforms of interest.  Libraries that are optimized to the specific platform while maintaining the
same interface across platforms are required to amortize the code development investment in
each application.  The ability for the average code developer to evaluate application performance
on thousands of processors and understand what to do to improve it is also required.

Across all disciplines, potential improvements in algorithms offer hope for significant reduction
in resource requirements or alternatively more/better scientific results from fixed resources.
Different panels predictably identified different areas in which algorithmic improvement is most
critical.  The most extreme case is in the numerical weather prediction community, where the
volume of observational data anticipated by 2010 is expected to overwhelm hardware
improvements by many orders of magnitude. History shows that as much improvement in
throughput is obtained from algorithm advancements as is obtained from hardware
improvements.

Conclusion
NASA science requires major advances in computational technology.  NASA’s unique driver is
the data.  Science applications that are key to the achievement of the prediction goals have
already been identified that will require new developments in computational technologies.
Continued, focused investment in a science driven technology development program is required
for success in the ESE.
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I. Introduction

Workshop Purpose
Fulfilling NASA’s Earth Science Enterprise (ESE) prediction goals for 2010 and beyond requires
state of the art computational technologies. As an initial step to plan for future requirements, the
high-end computing workshop, sponsored by ESE, was conceived to

� define Earth system scientific drivers needed to achieve prediction goals

� evaluate existing capabilities

� perform a gap analysis identifying required computational technologies

� prioritize identified requirements for possible Enterprise technology development
investment.

Computational technologies in this context spans both software and hardware needed to enable
efficient ingestion of large amounts of remotely sensed data into Earth system models, execute
those models in a timely manner, and understand the output of those models.  Many thrusts of
this effort will enable interdisciplinary science and applications scenarios requiring linked or
nested modeling components.

Workshop Process
The ESE Computational Technology Requirements Workshop was held April 30 and May 1 at
the Washington Plaza Hotel in Washington, DC. It was open to all interested members of the
community and was announced via email to an extensive list of NASA affiliated Earth science
researchers identified via the SYSEFUS database.

The workshop was organized into three discussion sessions under the topics of Weather,
Climate, and Solid Earth. Well-recognized contributors to the identified scientific disciplines as
well as technologists representing areas pertinent to the science were specially invited to
participate as panel members.  The three discipline specific panels were charged with
synthesizing the community input collected during the two days of the workshop discussions and
preparing final reports and roadmaps at its conclusion.

Three documents were made available to all participants in advance of the workshop for study
and preparation:

� Understanding Earth System Change, NASA’s Earth Science Enterprise Research
Strategy for 2000-2010

� Earth System Observations and Modeling Implementation Plan (Chapter 7 of the
Enterprise strategy document)

� Earth Science Prediction Goals for 2010

At the opening session, participants were welcomed by Dr. Azita Valinia (HQ/YS). Mr. George
Komar, gave an overview of the Earth Science Technology Office. Dr. Jack Kaye gave an
overview of NASA’s ESE Research and Modeling strategy. Workshop participants were then
charged by Dr. Robert Ferraro (JPL) to carry out the workshop charter.



I. Introduction

2

At the end of each day the participants were convened at the plenary session to discuss reports of
the day’s results in each panel. At the end of the second day the non-panelists were thanked for
their input and excused.

On the third day, May 2, the panelists convened in executive session and began assembling their
reports. The teams returned final reports of their respected panel within 7 to 10 days. ESTO/CT
project staff led by Mr. Jim Fischer and Dr. Robert Ferraro along with Dr. Azita Valinia
(HQ/YS) created this integrated document based on the panels’ original reports. This integrated
report was briefed to the Associate Administrator for NASA’s Earth Science Enterprise, Dr.
Ghassem Asrar, on May 23, 2002.

The body of this integrated report synthesizes the three original panel reports and provides an
executive summary of the workshop findings.  Following the introduction, it highlights the
primary scientific drivers of the identified technology gaps, tabulates the gap technologies from
all the science panels, and then prioritizes the gap technologies.  Appendices A, B, and C provide
the reports submitted by Weather, Climate, and Solid Earth panels respectively and in their
entirety. Appendix D lists the names of the 123 workshop attendees.

Summarized Charter
The elements of the ESE Computational Technology Requirements Workshop charter are:

1) Identify the Earth Science Enterprise capabilities required to achieve the Earth System
Prediction Goals for 2010.

2) Evaluate current Earth Science Enterprise capabilities against these requirements.

3) Determine and quantify what gaps in capabilities exist.

4) Determine which gaps can be addressed by advances in computational technologies

5) Identify and quantify the advancements in computational technology capabilities that
require NASA investment in order to bridge these gaps.

6) Prioritize these capability advancements in terms of their likelihood to enable the Earth
System Prediction Goals for 2010.

7) Create a roadmap for each unique capability advancement.

8) Create a final report.
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II. Science Drivers and Capability Requirements
The full reports submitted by each Weather, Climate, and Solid Earth panels appear in
Appendices, A, B, and C, respectively. In this section, we summarize the science drivers, and
capability requirements based on the reports.

A. Weather

Science Drivers

ESE Prediction Goals for Weather

The given prediction goals from the science plan are:

Today’s Capability 2010+ Capability

3-day forecast at 93%* 5-day forecast at > 90%*

7-day forecast at 62%* 7–10-day forecast at 75%*

3-day rainfall forecast not
achievable

3-day rainfall forecast routine

Hurricane landfall +/- 400Km
at 2–3 days

Hurricane landfall +/- 100Km
at 2–3 days

Air quality day by day Air quality forecast at 2 days

Observations
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(5 X 10^10 daily)
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Meso/Cloud-scale
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Hazard)

Reanalysis
Regional Climate

10 day forecast
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The diagram on the previous page represents the high-level functions that must be addressed by
the forecast-assimilation system, highlighting the development areas and interfaces that most
directly impact high-performance computational technologies. In general computational
requirements are driven by resolution, data usage, comprehensiveness or coupling (running
processes concurrently rather than sequentially), robustness (explicit representation of processes
modeled as approximations or parameterization), and data volume and data access. (These
estimates are given in the ensuing table.)

2002 System 2010+ System

Resolution
•  Horizontal
•  Vertical levels
•  Time step
•  Observations

o Ingested
o Assimilated

100 km
55
30 minutes

107 / day
105 / day

10 km
100
6 minutes

1011 / day
108 / day

System Components: •  Atmosphere
•  Land-surface
•  Data assimilation

•  Atmosphere
•  Land-surface
•  Ocean
•  Sea-ice
•  Next-generation data

assimilation
•  Chemical constituents

(100)
Computing:

•  Capability (single image
system)

•  Capacity (includes test,
validation, reanalyzes,
development)

10 GFLOPS

100 GFLOPS

Must Have

20 TFLOPS

400 TFLOPS

Important

50 TFLOPS

1 PFLOPS

Data Volume:
•  Input (observations)
•  Output (gridded)

400 MB / day
2 TB / day

1 TB / day
10 PB / day

Networking/Storage
•  Data movement

o Internal
o External

•  Archival

4 TB / day
5 GB / day
1 TB / day

20 PB / day
10 TB / day
10 PB / day

The forecast-assimilation system is represented (in the diagram) by the checked square and oval
with an interface between them.  These two components traditionally demand much of the
scientific and computational development activities.  The interface is specifically noted as the
frequency of communication between the modeling component and assimilation/analysis
component profoundly impacts computational requirements.  Projecting a target resolution
provides the most straightforward parameter to estimate requirements growth in the model.  A
horizontal resolution for a global atmospheric model of 10 km is chosen based on the target
resolution of both NOAA and the NAVY.  This resolution would resolve many features well
enough for assessment of the regional impact of changing climate-scale phenomena.  A vertical
resolution using 100 levels from the ground to the top of the mesosphere is chosen.  The
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computational requirement for the assimilation/analysis algorithm is currently driven by data
volume.  A data volume of 5 x 1010 observations per day is chosen based on projections of
satellite observing systems that are planned to be operational and relevant to weather forecasting.
As a baseline, the current horizontal resolution is order 100 km, with 50 vertical levels, and
current data usage is order 106 observations per day.  Using the presently measured sensitivities
of the model and assimilation algorithm to resolution and data usage, the projected computer
requirements for 2010 are 109 times the current requirement.  The primary driver of this
requirement is data usage.  Such a requirement is unrealistic, and therefore, to address the data
usage requirements new strategies are needed.  These strategies require consideration of all
aspects of the system.

Panel Recommendations

1.  Data and Information Management
Improved data and information management is critical.  There are two major aspects of this.  The
first aspect concern the development of computational systems that effectively acquire, order,
and prepare data for use by either other algorithms or scientific users.

The second concerns methods to improve the extraction of information from observational data
prior to assimilation must be developed.  This is termed the optimization of the observing
system, and activities are far ranging.  They range from methods advocated in computer science
such as data mining and hierarchical segmentation, to sampling and data selection techniques
used in current data assimilation systems, to increased utility of observing system simulation
experiments (OSSE’s) and observing system experiments (OSE’s).  These final approaches run
end-to-end assimilation systems to predict and validate data impact.  Increased interaction
between the modeling and assimilation components of the data assimilation system to target
which observations might have the most impact provides a potentially fruitful approach with
broad implications for computational systems. New data assimilation algorithms must be
developed that are quasi-independent of data volume.

2. Systems Software and Systems Engineering to Support High-End Computing

In order to assure that the increases in technological capability that are achieved by the field as a
whole benefits NASA applications, direct investment in systems software and systems
engineering is needed.  This investment in such a specialized field requires significant planning
for organization and integration.  The cross organization development of standards to support
vendors, applications and discipline software is essential.

3.  Application-Specific Software Tools

The development of new application-specific software environments like the Earth System
Modeling Framework (ESMF) is an example of what is needed for the future.  The weather
development community and the Earth science community in general is moving toward the open
standards efforts to support, data frameworks, visualization tools, and modular code
environments.  The current tools like IDL will be overwhelmed by the tremendous increase in
data volumes of the next decade.  The recasting of applications into truly parallel data
warehouses with supporting tools is essential for the next level in data assimilation, modeling,
and forecasting.  We strongly recommend the design basis require the remove all order one
bottlenecks in the end-to-end processing flows.
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4.  Analysis-Specific Software Tools

The analysis of product by users will be directly dependent the provided frameworks.  These tool
needs will encompass all the issues for hardware and software, and the development of tool
products from a user centric position is essential for success.  So the user groups must be
involved in the design, development, and re-design of the analysis specific tools.  Again, the lack
of a commodity marketplace for developers will require NASA-specific investments to support
discipline needs.

Visualization is an area where leveraged NASA investments can advance software and hardware
computational technology for the pursuit of the 2010 ESE weather prediction goals. As
mentioned, the data volume involved in weather prediction will increase by many orders of
magnitude by 2010. As a result, the development of weather prediction software systems will
inherently involve the analysis of huge data sets. This analysis will be interactive during the early
development stages; the search for useful analysis or assimilation techniques must be conducted
by domain experts. Humans have a sensory system that is highly evolved to transfer massive data
sets to the brain: vision. Thus, visualization technologies will be central to developing ESE
computation and data assimilation algorithms. In all stages of the program, visualization is a
critical enabling technology for transforming experimental data produced by coupled Earth
system models to information and knowledge, and an essential tool for the communication of
complex interactions to both experts, decision makers, and the public.
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B. Climate
Climate (or more generally Earth system) research, including that for improved prediction, relies
heavily on high-end computing resources. Requirements for high-end computing resources come
from a variety of sub-disciplines — seasonal-to-interannual (S-I) variability and prediction,
decadal variability and prediction, global change assessments, atmospheric/ocean/land
assimilation for analyses (as well as that for forecast initialization), coupled physical-bio-
geochemistry modeling, to name a few. During the workshop, the climate panel focused on the
problems of S-I and decadal prediction.

Science Drivers

The Seasonal-to-Interannual Prediction Scenario

In the 2010 timeframe, we envision that NASA will continue to contribute to the nation’s multi-
model seasonal predictions through forecasts and predictability experiments conducted by
NSIPP.  NSIPP will be one of approximately five national groups conducting routine
experiments, sharing forecasts, simulations, and analyses. NASA’s unique emphasis is on the
optimal use of satellite observations to enhance prediction skill. The current focus is on 6-month
prediction skill and all groups undertaking such predictions with coupled general circulation
models regard them as experimental. ESE’s goal for 2010 is for 6–12 month routine seasonal
prediction and 12–24 month experimental prediction. Increased emphasis will be placed on
larger ensembles as we attempt to extract more skill and shorter (intraseasonal) timescales and
look to predict the likelihood of extreme event (e.g., flood) occurrences.  With the expected
increase in processor speed will come the desired increase in model resolution: 25 km for the
atmosphere and 10km for the ocean.  The need to quantify forecast reliability will lead to larger
ensembles at longer lead forecast time.  This may be accommodated by multiple-scale
ensembles, with degraded resolution at longer leads. Reliable estimates of forecast spread will
require the uses of multi-model ensembles. The models will have expanded physics to account
for influences on forecast skill outside the tropical Pacific — e.g.,  high latitude processes,
stratospheric processes, changes in land cover.  As in other disciplines, attention to better cloud
representation will be essential.  The coupled initialization will continue to focus on the ocean
and land.  Since global predictions will be used to force offline regional hydrologic and crop
models, global predictions will need to be stored (and retrieved) at high spatial and temporal
resolution.  We anticipate a successful transition to complete utilization of NASA’s ESMF and
this will enable flexibility in model component mix for ensembles.

The Decadal Experimental Prediction Scenario

To this point predictions on the decade-to-century scale time frame have focused primarily on
global or hemispheric scales; for practical purposes, regional scale predictions are required.
Although confidence in regional predictions will probably increase in the timeframe to 2010, it is
to be expected that predictions will remain on an experimental track for some time.  NASA’s
contributions to these goals will emerge from GISS, with plans for a 1/2° ocean model, a 1°
atmospheric model resolving both the troposphere and stratosphere, and air chemistry with about
40 tracers if computing power is available. The same model will also be used for even longer
global change integrations, possibly at reduced resolution.
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Required Capabilities
Several developments are needed to satisfy the high-end computing requirements for climate
prediction. These are summarized as follows:

1. Computing Platforms

� Internode communications and shared memory utilization

� I/O bandwidth and storage

� Fortran compilers to improve single processor performance

2. Problem Solving Environment

� Commitment for sustainability of the ESMF

� Increased functionality of the ESMF, especially in terms of data structures, operations to
support assimilation, and integrated tools to enhance model development and utilization

3. Data Management

� High-performance networks

� High-performance analysis platform optimized for I/O

� Distributed data archive

� Standardized software for storage and analysis

� Parallel extraction tools for data mining

� Parallel and distributed analysis and visualization tools



II. Science Drivers and Capability Requirements

9

C. Solid Earth
The field of solid Earth science is currently mission and data poor. However, it is anticipated that
the number of solid Earth missions and hence related data volume will be increasing rapidly in
the next 10 years. The sub-fields of solid Earth that relate to NASA’s prediction goals and must
make use of computational resources include: earthquakes, volcanoes, tectonics, geodynamo,
mantle dynamics, surface processes, landscape evolution, gravity, magnetic fields, cryosphere
and ice modeling, and ecology, hydrology, and vegetation.

To fully understand and forecast solid hazards, high-resolution, global observations with real-
time or near-real-time data streams and processing will be required. However, even with the
most advanced observational systems, the temporal sampling of such phenomena is poor. In
order to understand fully these highly complex systems, simulations must be carried out
concurrently with observations so that the entire system can be studied. The observational data
can then be assimilated into these computational models, providing constraints and verification
of the models. Because solid-Earth processes occur on many different spatial and temporal
scales, it is often convenient to use different models. Increasing interoperability and making use
of distributed computing can enable system-level science. Integrating the huge quantities of data
and information to be collected into forecast models will require that information technology
resources be developed in concert with advanced sensor and detection capabilities.

The quantification of the computational needs is timely in light of the recent activities of the
NASA Solid Earth Science Working Group (SESWG). This group is putting together a vision for
solid Earth science for the next 25 years (http://solidearth.jpl.nasa.gov).

Science Drivers
The physical processes associated with the solid Earth take place on many scales of space and
time.  Simulations and theory must account for how these many scales interact.  The solid Earth
is complex, nonlinear, and self-organizing.  Recent work suggests strong correlations in both
space and time resulting in observable space-time patterns.  Recent advances in computational
science and numerical simulations enables studies of the complex solid Earth system making it
possible to address the following critical scientific questions:

1) How can the study of strongly correlated solid Earth systems be enabled by space-based
data sets?

2) What can numerical simulations reveal about the physical processes that characterize
these systems?

3 )  How can modern Information Technology enable new understanding of the basic
physics?

4) How do interactions in these systems lead to space-time correlations and patterns?

5) What are the important feedback loops that mode-lock the system behavior?

6) How do processes on a multiplicity of different scales interact to produce the emergent
structures that are observed?

7) Do the strong correlations allow the capability to forecast the system behavior in any
sense?
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The physical processes associated with the solid Earth take place on many scales of space and time.
Simulations and theory must account for how these many scales interact.

To fully address these questions, three-dimensional modeling of Earth’s gravity and geomagnetic
field is needed. In the next 10 years, information from multiple sources on multiple scales needs
to be incorporated into an integrated analysis. For this purpose, worldwide computational
systems supporting the gathering, integration, visualization, simulation and interpretation of
several petabytes of data per year is needed.

Required Capabilities

1. Developing a Virtual Observatory
An important aspect of data collection is to create distributed centers for storing unique data sets
and developing the infrastructure to compare, analyze, and ingest complementary data sets, such
as ice topography and sea level changes. Currently, cooperative federated databases do not exist;
and the data are heterogeneous and widely distributed in a variety of formats. Because of the
high volumes of data, now and in the future, data mining and other approaches for interacting
with the data must be developed (possibly including more onboard processing). A Solid Earth
Research Virtual Observatory (SERVO) is recommended to address the critical need for
seamless access to large distributed volumes of data. Such a system would have the following
characteristics:  distributed data at centers and ground stations; thousands of sites with volumes
of 1 TB to 1 PB; a multi-tier architecture for staging of the data; middleware to control integrity
and versioning; support standards developed within the community; working within data grid
projects; customized for key NASA solid Earth needs; and high-performance access of 100 GB
files within 40 TB datasets within 5 minutes to user and program-to-program communication in
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milliseconds using staging, streaming, and advanced cache replication. A roadmap for the virtual
observatory project is given in the full report (Appendix C).

2. Developing an Earth Science Problem Solving Environment

Creating realistic simulations of solid Earth processes requires complex models. The complexity
of the problem requires high-performance computers to realize these integrated models. The
solid Earth panel recommends the following to address this need (in order of priority):

1) Develop a solid Earth science Problem Solving Environment to support 10 solid Earth
sub-fields.  This includes a prototyping environment for developing a model in a month;
a modular framework for solid Earth applications; a collaboratory, which includes teams
of scientists and computational experts; visualization and data analysis tools, seamless
computer access; and integration of data and multicomponent models.

2) Development of improved parallel algorithms/applications (on the order of 100) with a
scaled efficiency of at least 50% on large clusters; models and model assessment
methods; and data assimilation techniques.

3) The computational needs required to address model complexity include 100 TFLOPS
sustained rate capability per model, 5 TB total memory per model, and 104 petaFLOPS
throughput (3 TFLOPS per second sustained) per sub-field per year.

A roadmap for the problem solving environment project is given in the complete panel report
(Appendix C).

3. Improving Computational Environment

Many of the solid Earth problems are extremely computationally expensive, beyond the
capability of existing supercomputers.  Therefore, the capacity of high-end computers must be
increased to petaFLOPS with terabytes of RAM.  Distributed and cluster computers should be
available for decomposable problems, for rapid development and for cost performance.  The
capacity of networks must be increased and investments should be made in the development of
Grid technologies.  Computational analysis would also be enabled by more open and seamless
access to computational resources.

A roadmap for the computational environment project is given in the complete panel report
(Appendix C).
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III. Technology Cross-Cut of Gaps Identified
In this section, we identify the specific technology capabilities required to address the ESE
prediction goals, based on the capability needs identified by the panels.  To the extent possible,
we quantify those capabilities and identify the driving science requirement responsible for the
“high water mark”.  Some technology capabilities are not easily quantified — in these cases, we
describe a use scenario that can be used to bound the capability requirement.

The technology areas are arranged in order of decreasing constituency.  Not all panels identified
the capabilities described towards the end of this section as needs.  However, this is not an
indication that these are less important than those described first.  Each technology listed will be
an important contributor to achieving the ESE prediction goals

A. Computing Platforms

Sustained Throughput
Sustained compute throughput in the teraFLOPS range for single applications is common to all
of the panels.  In all cases, this capability is driven by resolution requirements.  Current model
resolutions are grossly insufficient for addressing the prediction goals.  The weather and climate
panels identified specific model resolution targets that they feel are necessary for their prediction
goals, and solid Earth has developed its throughput requirement in terms of the expected
operations count extrapolated from current analysis codes.  The weather model throughput target
is the stressing mark — it is higher than required for climate due to higher resolution and the
need to meet real-time processing deadlines in an operational environment.  The climate and
solid Earth throughputs are less time critical, and are based on expectations of reasonable turn-
around times (1,000 days/wall clock day for climate, 1-day end-to-end processing for solid Earth
earthquake prediction).

Model Single Image
Throughput

Estimated Capacity
Required

Weather 10-Day Forecast
Atmosphere: 10 km
horizontal, 100 levels vertical
1010 observations

20 TFLOPS 400 TFLOPS

Climate S-I Prediction
Atmosphere: 25 km horizontal
Ocean: 6 km horizontal

5 TFLOPS 100’s TFLOPS

Solid Earth Earthquake Fault Slip
16M finite elements
100k boundary elements

2 TFLOPS 10’s – 100
TFLOPS

Sustained Throughput and Capacity Requirements



III. Technology Cross-Cut of Gaps Identified

13

Capacity measures the aggregated throughput capability required in the day-to-day environment.
The predication goals cannot be accomplished by single executions.  Weather prediction, for
example, is expected to be a continuous process of updates every 2 hours, model development,
testing, validation, and reanalysis of past observations.  Climate prediction is based on ensembles
of model executions (10 to 20 executions), and solid Earth advocates a scenario with many
mission data sets being analyzed by many research organizations.  Capacity estimates are often
hard to justify outside an operational environment (what is “enough”?).  The weather prediction
scenario has the most precision, since it is a reasonable extrapolation based on current
operational capabilities in the DAO.  These numbers should be taken as order of magnitude
estimates only.  But it is clear that total system throughput must be substantially larger than the
single application requirement.

Capacity is an infrastructure capability, and could be provided by federating many individual
platforms together to meet the aggregate throughput demand.  The solid Earth panel advocates
just such an approach, even to the extent that the resources are geographically distributed.  An
operational environment for weather prediction is on the other extreme.  The data volumes
ingested and the data volumes output and archived (see data management below) will drive data
transport networking requirements in the direction of a dedicated facility.  The tradeoff between
single (or a few) large platforms capable of 100’s of teraFLOPS sustained throughput and 100’s
of multi-teraFLOPS throughput systems is going to be discipline specific.

Single Application Performance
Individual application performance is called out as an issue by both the weather and climate
panels.  The following table illustrates the problem, based on the throughput requirement for the
weather forecast system.  Moore’s law is expected to govern the improvement in single-
processor peak performance throughout the rest of the decade.  Assuming that processor speeds
double every 18 to 20 months, the single processor peak performance in 2010 will be in the 20 to
50 gigaFLOPS range. Currently, applications running on high-end computers typically realize
only about 10% of the peak rated performance of the constituent processors.  If that efficiency
continues to hold, achievement of teraFLOPS throughput performance will require thousands of
processors.

Single
Application
Throughput

Projected Single
Processor
Performance

Application
Efficiency

Total Processors
Required

Total Application
Memory

20 TFLOPS 20–50 GFLOPS 10% 4,000–10,000 4 TB

Single Application Processor Count and Memory Requirements.

Current application efficiency is dominated by the inability of compilers to maximize cache
memory reuse on these types of applications.  Thus many applications run at memory access
speeds.  Memory speed is not improving as rapidly as processor speed, so a major concern for
the future is a continuous degradation in the execution efficiency of codes even though processor
speeds continue to increase.  Compiler technology, memory-to-processor bandwidth, or
program performance optimization tools will need to improve substantially over the next
decade if we are to reach 20 TFLOPS sustained performance on these applications.
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Increasing single processor performance efficiency to 40% will result in a 4x reduction in
processors required, and thus a 4x cost reduction in the computing platforms NASA must
purchase to meet these requirements.

Application scaling to thousands of processors is also a concern.  NASA’s current installed high-
end computer base first reached that number of processors on a single machine at the beginning
of this decade.  Some heroic applications efforts have demonstrated performance on a thousand
processors, but that is not the rule in the current environment.  NSIPP is typically running on 16
to 64 processors.  The DAO is operational on 100’s of processors.  Scaling to 1,000’s of
processors for these applications remains untested.  The resolution increase projected over the
next decade for the weather and climate applications is 1,000x, which will substantially help
mitigate the scaling issue in their cases, provided processor interconnect bandwidth continues to
track processor speed increases.  The solid Earth modeling applications examined, however,
have a different compute complexity than do the other areas, and the panel raised the concern
that scaling of some of these techniques is going to require investment in new algorithms.

Scaling relies on continuing improvement in processor interconnect technology, but is dominated
in practice by inefficiencies in the software layer that manages communication among
processors, or memory conflicts on shared memory machines.  Improvements in the data
transport layers on both distributed and shared memory parallel computers (both hardware
and software) at the same rate as processor speed increases is required if scalability of these
applications to 1,000’s of processors is to be achieved.

I/O and Online Storage
Input/Output capabilities and online data storage volume are often overlooked requirements
when application performance is analyzed.  Indeed, none of the panels raised these as issues.  We
include the capability requirements analysis here for completeness.

Data volume input required for application initialization has the most immediate impact on
application performance, since the application cannot proceed until the initialization is
completed.  Application output typically takes place throughout execution and could be
overlapped with computation if the platform and operating system support this paradigm.  If
output cannot be done simultaneously with computation, then it will also impact throughput.
Estimates of data transfer rates required for the weather forecast, climate S-I prediction, and
earthquake prediction applications are gathered below:

Input Data
Volume

Output Data
Volume

Sustained
Bandwidth

Weather Forecast 1 TB/day 10 PB/day 200 GB/s

S-I Prediction 10’s GB/run 100 TB/day 2 GB/s

Earthquake 100 GB/day 10 PB/run 200 GB/s ?

Online Data Storage and I/O Bandwidth Requirements
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Again, the weather forecast system has the most stressing requirements.  These have not been
adjusted for the fact that the anticipated forecast cycle time is two hours, and assume that I/O can
be overlapped with computation.  These would increase by a factor of 10 if I/O were sequential
to computation (assuming, then, that 10% of execution time is all that one would be willing to
devote to waiting for input and output).  These numbers also imply that online data storage (local
disks) must be capable of managing tens of petabytes of data.

B. Data Management
All three panels specify the capability to manage petabytes (1015 bytes) of data as a requirement
in 2010.  The data results from NASA missions and from the modeling applications themselves.
The overall factor of a 1,000-fold increase in model resolution over the decade directly translates
into a similar increase in input data, output data products, archival storage, and transported data
volume.  It is the number one issue for the weather panel, and a driving concern for climate and
solid Earth.  The anticipated data explosion from ESE missions over the next decade presents
both an exciting opportunity and a dreaded challenge for all three areas.

Each panel describes different use scenarios and constraints for their data problem.  Weather
forecasting has a data ingestion problem on a fixed time scale coupled with an output data
products storage, analysis, and dissemination problem.  Climate prediction has short-term data
storage and analysis requirements, but is not stressing for archival purposes.  Solid Earth
anticipates a data rich research environment, but with sources widely distributed geographically.
Each specifies the need to manage petabytes of data on a routine basis, with weather forecasting
again being the most stressing.

Volume Data Management
The archive and retrieval problem is one aspect of the data management capability requirements.
With projected data products produced over the course of a year being in the 100’s to 1,000’s of
petabytes, these drive a data warehousing and distribution requirement that is quantitatively
different than the data archive center problem being addressed in other technology programs.
Indeed, the mission data archive centers will be required to feed data into the modeling activities
at rates at least as fast as the data is collected.  For weather forecasting, the data will stream in
real time, possibly directly from the collection points.  Climate modeling uses archived data
sources\ but will need reasonable access speeds to prevent duplicating the data sources at the
modeling site.  The solid Earth research environment envisioned is completely distributed among
federated servers with service brokers and transparent client access.  To enable this vision, the
data servers will have to provide low latency access.  Output data generated is orders of
magnitude greater than the inputs — but has different lifetimes depending on the discipline.
Climate modeling output is mostly reprocessed almost immediately, with little long-term
archiving requirement.  Weather forecasts get archived and catalogued for later re-analysis, with
a non-trivial data stream distributed to other users.  In the solid Earth environment, the output
data is ingested back into the data archives and catalogued for later re-access by other analysis
applications.

Visualization of the catalogued data is another access mode that places unique access
requirements on the data management system.  Visualization for analysis purposes requires
indexed, low-latency, high-bandwidth access to subsets of the data in a data warehouse system.
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Data rates for visualization purposes are discussed later but are not bandwidth drivers on the data
management system.

Seamless, uniform, and standardized access to these data volumes is a major requirement.
With the sources of data so widely varied, any application that needs to access data from a
variety of sources cannot possibly be expected to deal with the idiosyncrasies of each.  The data
management system must present a uniform interface to all of the data under its purview, even to
the point of transparently translating among a set of standard formats.  Other implementation
approaches are possible — including imposing a standard representation format on the entire
system.

Observational Data Access Modes
Rates

Output Data Storage Term/
Re-access Mode

Weather
Forecast

1 TB/day
Multiple Sources
Continuous

Streamed input
20 GB/s

10 PB/day –
Archival
10 TB/day – external
distribution

Medium – Long

Catalogued

Climate
Modeling

10’s of GB from
archival sources

Data archive
request
2 GB/s
(latency
tolerant)

100’s TB/day 50% Short term
- Immediate
analysis

50% Medium
term -
Catalogued

Solid Earth
Research

100’s of GB/day
Distributed sources

Distributed
archives – low
latency access

1 PB/day – ingested
into distributed
archives

Medium – Long

Catalogued
access

Data management system capabilities required

Network Transport Requirements
The data movement implied by the data access methods enumerated and the data volumes
required will drive requirements on network layers between computing assets and storage assets,
and end user clients.  The order of magnitude bandwidth requirements are easily derived from
the ingest and output data rates.  There is an additional capability requirement that derives from
the data volumes themselves, and is often overlooked.  With petabytes per day of data moving
between compute assess and storage asset, and terabytes per day moving through external
networks, reliable and transparent transport services are required.  Failures must be
automatically corrected.  Faults must be detected and handled without user intervention.  Current
transport protocols do not scale to these data volumes.
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Compute System to Short-
Term Storage

Compute System/Short-Term
Storage to Archival Storage

External Network Interfaces (

300 GB/s 150 GB/s 150 MB/s

Network bandwidth capacity requirements derived from the Weather Forecast strawman system.

Although the network bandwidth requirements appear daunting, these are aggregate capacity
requirements.  Multiple parallel data streams will likely be needed to accommodate these
requirements.  As long as the transport mechanism is transparent to the user/application, the
details can be left to the implementation.

C. Programming Environments and Tools

Problem Solving Environments
In this era of ever-increasing complexity of scientific software, the ability to develop new
software components and assemble existing components into new applications is viewed as a
critical need across all three panels.  Applications of the future will be composed from many
separate models and data sources.  It will no longer be the case that a single person can know
every line of code in the application and know its operation in detail.  Maintaining and upgrading
such applications will require that the software be engineered and componentized and that it
makes extensive use of re-usable components and libraries.  Applications may be composed of
geographically distributed services (e.g, data severs, compute servers) that are assembled for the
task.  The researcher will need to manage the complexity of developing applications within an
environment that automates the process of design, implementation, testing, and optimization.

Two of the panels (Climate and Weather) directly cite the ESTO/CT Earth System Modeling
Framework (ESMF) as a key technology to address such capabilities in the coming decade.
Currently under development, the ESMF is expected to provide a software framework to enable
high-performance interoperability of climate and weather applications from diverse institutions
in a robust manner.  Sustained government support for maintaining and development of the
ESMF beyond its 3-year development project is imperative.  The climate panel further stressed
the need to extend the ESMF, especially in terms of data structures, operations to support
assimilation, and integrated tools to enhance model development and utilization.

The DOE Common Component Architecture is cited as another example of the emphasis placed
on this kind of technology.

Although the ESMF is not directly addressing the needs of the solid Earth (SE) community, the
SE panel envisions virtually identical issues driving the creation of some sort of Problem Solving
Environment (PSE), which is perhaps a bit broader in scope than the ESMF.  The PSE include a
prototyping environment for developing a model in a month; a modular framework for solid
Earth applications; a collaboratory, which includes teams of scientists and computational experts;
visualization and data analysis tools, seamless computer access; and integration of data and
multicomponent models.
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Portability
Achieving high performance on a single platform is limited in value if that performance cannot
be maintained when an application is moved to a different platform.  Hardware architectures
continue to change and evolve on short timescales, and applications move from platform to
platform as they move from researcher to researcher, or researcher to operational system.  Thus,
portability without significant loss of performance is a capability required by all three panels.
Efforts such as the ESMF are expected to be major improvements in the modeler’s ability to
move applications among platforms, but this effort is not considered sufficient for even the
climate modeling community.

Portability is inherently built on standards (programming language, messaging interfaces, and
common libraries).  The current major impediment to portability is that optimization done on one
platform does not carry over to a different platform.  This problem has been with us since the
beginning of scientific programming, but is more pronounced today because of the wide range of
parallel computing architectures in common use.

Libraries
A key enabler of portability is the availability of standard common libraries across all of the
platforms of interest.  Libraries that are optimized to the specific platform while maintaining the
same interface across platforms are required to amortize the code development investment in
each application.  The current diversity of architectures — especially the difference between the
tightly coupled global shared memory systems and the loosely coupled cluster computers —
makes the common optimized library problem a difficult one.  The best example currently
available is ScaLAPACK, the parallel version of the popular linear algebra package LAPACK.
It is built on the universally available message passing programming model, and is thus available
on almost all platforms.  However, it is not necessarily optimized for any platform.

Performance Tuning Tools
There is a general concern among the panels that the gap between peak and sustained
performance on commodity technology is widening and significantly lower than on previous
vector architectures.  One panel even went so far as to identify a risk that vendor focus on peak
performance may result in zero growth in sustained performance. Realignment of peak and
sustained performance would be of broad benefit across many disciplines and would directly
decrease the hardware cost for scientific investigations.

Given the variation in processor architectures, memory organization, and processor interconnect
bandwidths and latencies, the application developer is currently left to his own devices to design
and optimize his application.  Current performance assessment tools are primitive at best.  The
result is that many applications run without any optimization at all, inefficiently utilizing the
resources, and driving up the overall cost of maintaining the required throughput.  Applications
that are optimized have been made so by an expert — which is an added cost to the development
and maintenance of the application.  The ability for the average code developer to evaluate
application performance on thousands of processors and understand what to do to improve it
is required.  With regard to parallel performance tools, the climate panel specifically suggested
tools to (1) provide specialized applications greater control over shared memory usage and (2)
reduce latency by providing specialized access to switching hardware.
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Execution Management Tools
The complexity of scientific applications continues to grow not only in terms of development,
but also in terms of utilization.  Development of tools to enable effective use of complex models
was suggested by all three teams.  Solid Earth includes such activity within their PSE, while the
climate panel suggests multiple tools for this issue. The climate panel calls for a graphical user
interface for model configuration and job submissions/monitoring, and further indicates the need
for a database system for tracking and annotating model experiments.  With the transition to
operational research environments where multiple application executions on several different
platforms are coupled with output analysis of terabytes of data across those executions, the
complexity of orchestrating the entire process becomes a productivity limiting process.

An interface that standardizes the process of assembling the required inputs at the required
computing assets, automates the execution of the application (which may consist of multiple
executables on multiple platforms), and manages the transport of the application output to its
ultimate storage destination will be required to alleviate the burden on the researcher.  This
capability may need to be integrated into the problem solving environment, but would also be
useful as a stand-alone environment as well.

D. Algorithms
Across all disciplines, potential improvements in algorithms offer hope for significant reduction
in resource requirements or, alternatively, more/better scientific results from fixed resources.
Different panels predictably identified different areas in which algorithmic improvement is most
critical.  The most extreme case is in the numerical weather prediction community, where the
volume of observational data anticipated by 2010 is expected to overwhelm hardware
improvements by many orders of magnitude.  “Using the presently measured sensitivities of the
model and assimilation algorithm to resolution and data usage, the projected computer
requirements for 2010 are 109 times the current requirement.”  Effective strategies for selecting
pertinent data from the envisioned flood are imperative.  History shows that as much
improvement in throughput is obtained from algorithm advancements as is obtained from
hardware improvements.

Algorithms are often thought of as science or mathematics instead of as technology.  This is not
the case today.  The complexities of modern processor architectures, memory structures, and
interconnect structures have direct influence on the implementation of any numerical
representation of a physical model or simulation.  The panel reports identify scalability of basic
numerical algorithms like linear equation solvers, finite volume schemes, and spectral methods
as capabilities needing to be addressed.  The technology challenge is the design and
implementation of numerical algorithms in a manner that allows them to execute efficiently
within the application structure and also execute optimally on a variety of computing
architectures.

The algorithmic improvements singled out by the climate community include improved
parallelization on clusters, data assimilation techniques, and model assessment methods.  The
climate panel emphasizes the need to develop algorithms that minimize shared-memory
conflicts.  This is particularly relevant to the basic numerical methods used in solving differential
equations: finite difference, finite volume, finite elements, particle methods, and spectral
methods.  New implementations of these methods that can be adapted in individual
applications to specific processor architectures and memory hierarchies (including shared and
distributed memory implementations) while maintaining efficiency are required.
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E. Visualization and Data Mining
All three panels expect that significant technological advances must be made in the coming
decade to maintain the key scientific ability to readily render new data in a form suitable for
human consumption.  The rapid increase in data (both numerical and observational) is expected
to swamp existing, primarily serial, volume rendering tools.  Although this issue is closely
related to that of data management described above, there are some capabilities specific to
visualization that are discussed.  The solid Earth panel provided numerous specific target
capabilities for the 2010 time frame: real-time volume rendering of 109 elements, visual data
fusion from multiple datasets, co-registration and layering for 1 TB datasets, as well as support
for distributed visualization of heterogeneous data from many (104) sources.

The current set of commercial visualization tools do not scale to terabyte datasets.  And they are
implemented with the assumption that the data to be visualized is local to the visualization
engine.  With the explosion of data, it becomes necessary to have visualization capabilities that
can ingest terabytes of data from remote data sources, render arbitrary subsets and
combinations of these data in real time, and deliver the rendered images interactively to the
researcher at their local site.  The networking capability of this requirements is expected to be
less strenuous than the capability required for data management (see above), but will be a
specific driver for “last mile” infrastructure at the point where the researcher views the rendered
product.  Migration to higher and higher display resolution capabilities is required over the next
decade, perhaps by a factor of 100x increase in pixel count.  HDTV was specifically mentioned
by one panel, though the specific resolution capability required was not quantified.

Closely related to visualization is the capability to do data mining.  Targets for data mining
include pattern analysis for order 106 dimensions, wavelet analysis on the order of 106 scales,
and inversion techniques involving 106 parameters.  These requirements are mentioned
specifically by the solid Earth modeling community.  They are based on the need to analyze
phenomena that span many orders of magnitude in scale.  The climate and weather communities
would also benefit from such capabilities, but have not stated explicitly any target capability
requirements.

F. Distributed Computing
Distributed computing is expected to be driven by the need to coordinate data movement from
many sources through many services to numerous consumers.  The solid Earth panel is the main
proponent of this technology, since their community consists of individual researchers who are
widely scattered geographically.  The Solid Earth Virtual Observatory concept is based on the
availability of a distributed computing infrastructure that can provide transparent access and
coordination of data sources (in the form of data servers), compute engines (which may in fact be
distributed processing sites themselves), access portals, and a national (even international)
network of high capacity and low latency.  Seamless and uniform access, including reservation,
allocation, and scheduling of geographically distributed assets, through a layer that enables
low latency request servicing, is required if a useful distributed computing environment is to
be enabled.  Specific research and production applications would be built on top of such a layer.
Currently, there is a national effort in Grid-enabled computing that will likely be the first step
towards this capability.



III. Technology Cross-Cut of Gaps Identified

21

G. Computing Platforms System Management
The weather panel specifically identified the problem currently faced by production-oriented
computing centers in designing, implementing, and managing the infrastructure that will support
real-time forecasting at the rate and resolution envisioned for 2010.  Currently, this process is an
ad hoc collection of expert individuals, hardware vendors and their sales staff, and center staff
charged with keeping the place running.  There are apparently no system design tools that can be
employed in this process.

However, the field of system engineering is quite mature in other engineering endeavors.  Any
large production-oriented facility, from chemical and automobile manufacturing to airports and
shopping malls, has a system or facility engineering process that is used to integrate disparate
complex subsystems into a unified whole.  A similar systems management approach to the
design and operation of a computing facility that supports production computing like weather
prediction is required if the operational goals of 2010 are to be realized.  It may be possible to
borrow and tailor tools from these other system engineering application to meet this goal, but
some study is required to determine if this is feasible.
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IV. Summary with Priorities
In this section, we summarize the capability requirements derived from the panel reports, along
with their recommendations.  The panels were asked to prioritize their recommendations into
high, medium, and low categories (or must have/enabling, important to have/enhancing, or nice
to have, but will not have any major impact).  This prioritization was not done uniformly across
the panels.  The basic message from the workshop plenary sessions was that any capability
identified in their reports was at least of medium priority.

Another general message uniformly communicated by each of the panels was that they would do
their work on commercially available hardware that has vendor support, and that they do not
believe that NASA has any influence on the direction that the commercial computing industry
will take in the future.  The hardware market, including the device technology that is integral to
its capabilities, will be driven by forces outside of the government, and that researchers will do
what they can to utilize the technology as it evolves.  The community has many pressing science
issues to address as their first priority.  They require stable, commercially viable computing
resources in order to address these science issues.

However, given that the scientific computing community does not drive any market, the panels
recognize that some software technology investments will be necessary to enable them to use
what the industry provides.  This recognition is evident in the capabilities that have been
identified as enabling or enhancing, which are, for the most part, software-enabled capabilities.

A. Gaps Expected to be Filled Without Investment
All three panels expressed the opinion that no amount of investment by NASA in any hardware
technology would have any influence on the commercially available computing platforms of the
future.  Moore’s Law is expected to continue governing the advancement in processor capability
for the next 10 years.  It also governs the increase in network bandwidth at the electronics layer.
Thus, there is an expectation that the baseline component technology will provide a reliable
20x–50x in performance improvement during the next decade.

This is not the 1,000x in computing capability increase required for the stressing applications
identified by the panels.  But there is also a nearly uniform expectation that the commercial
computing industry will turn the 1,000-plus processor systems that are experimental today into
routinely delivered systems of the future — at least as a custom configurable option.  A similar
expectation for storage volume exists.  These advancements are driven entirely by the
commercial services market place, where transaction processing and data mining are driving the
industry.

It is not possible to predict the future of computing technology with any accuracy.  Video-on-
demand has been touted as the next “killer application” for the Internet — but it has yet to get off
the ground in any meaningful implementation.  If such a market place develops, then high-
bandwidth networking and large-volume, low-latency data storage access will naturally fall out
of that market segment.  If it does not, no amount of NASA investment will make it happen.
(Some other commercial interest might spur the development, though).
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Based on this analysis, it is more reasonable to list the technology areas that will progress driven
by market forces and not by government investment:

Processors: 20x–50x improvement
Memory and memory bandwidth: 20x–50x density improvement, 10x bandwidth

improvement
Network technology: 10x–20x bandwidth improvement, essentially no hardware latency

improvement
Commercial parallel and cluster computers: built upon commercial components and

optimized for non-scientific computing (probably transaction processing and data
mining), configurable into systems with 1000’s of processors and 100’s of teraFLOPS
peak performance.

Information display technology: Not predictable, outside of the gradual convergence to
HDTV formats

Data storage: commercial magnetic media will continue to follow a doubling in density every
two years, but bandwidth and latency will not significantly improve.

Given these expectations, the workshop recommendation is not to invest in these technologies
directly.  These should be assumed as the baseline, and investments should be made to enable the
profitable use of these expected commercial offerings.

B. Recommended Investments
The required capabilities identified in Section III are listed below, along with technologies that
potentially enable those capabilities.  The technologies lists may not be exhaustive – new
approaches to achieving required capabilities may arise over time.  It is important to view
specific technologies in the context of their ability to enable the requirements.  Technologies
should not be an end in themselves.  This workshop recommends that any investment in
individual technologies be made in a manner that assures that the technology development stays
connected to and driven by the science enabling capability to be provided.  Conducting the
technology development in an environment that requires direct infusion into prototype science
applications is the strategy recommended.

Sustained Throughput for Individual Applications — 20 TeraFLOPS
Vendors are expected to offer 20 to 50 GFLOPS processors, platforms with 10,000 processors,
plenty of memory and storage.  Gaps are in achievable applications performance.

Needs:

� Single-processor application performance at some significant fraction of peak
� Application scalability to thousands of processors
� I/O performance that scales with the application performance

Technology required:

� Performance optimization tools
� Compilers that achieve significant fractions of peak architecture performance

(Programming language/paradigm continues to impact this ability)
� Scalable, portable algorithms
� Scalable operating systems
� Low-latency, high-bandwidth interprocessor communications
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� Low-latency, high-bandwidth parallel I/O
� Memory management tools
� Performance assessment tools
� Efficient parallel programming paradigms
� Low overhead Operating Systems
� Thread management tools
� Highly scalable, highly efficient numerical libraries
� Low-latency remote data access (messaging or shared memory)

Seamless Uniform Access to and Management of Petabytes of Data
Vendors are expected to provide physical storage solutions.  Gaps are in management, access,
and distribution of the large data volumes.

Needs:

� Uniform, location independent service for identifying, managing, and accessing metadata
and raw data

� Data transport performance that scales to consumer requirements
� Low-latency random access

Technology required:

� Internal computing center bandwidths @ 300 GB/s
� WAN bandwidths that scale to provide 150 MB/s for every producer/consumer

simultaneously
� Reliable, location-independent data transport services
� Intelligent data caching
� New data organization and management applications
� Next-generation database tools for petabytes of science data
� Location-independent view and control of data
� Low-latency network transport protocols
� Transparently parallel data streaming

Programming/Problem Solving Environments
No specific vendor offerings are expected in this area.

Needs:

� Application frameworks/composable component architectures
� Platform independent program design and execution environment
� Highly efficient applications that scale to 1,000’s of processors without heroic effort

Technology required:

� Discipline-specific frameworks and components (e.g. ESMF, SERVO)
� Performance tuning tools
� Portable, scalable components from which to build applications

� Numerical libraries
� PDE component toolkits
� Data, information, and knowledge components

� Standardized program execution environment independent of execution assets
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Distributed Computing
Vendor offerings in this area in 2010 are unpredictable.  Currently, there is a multi-agency
investment (NSF, DOE, NASA) in this area (Grid computing).

Needs:

� Uniform, seamless, transparent access and programming environment

Technology required:

� Universal standard middleware layer for all distributed assets
� Transparent data caching mechanisms
� Reliable high-bandwidth, standardized data transport layer

� With automatic data format translation
� User single-entry point with global application execution control
� Distributed application program composition tools
� Distributed performance evaluation tools spanning the data sources, application services,

clients, and networks

Scalable Algorithms
No vender offerings are expected in this area.  New implementation paradigms for algorithms are
required that:

� Allow transparent incorporation into applications
� Maintain efficient execution on 1,000’s of processors
� Automate latency tolerance
� Are completely portable

Technology required:

� Frameworks/component architectures
� New technologies not currently envisioned

Real-Time visualization of Terabytes of Data
Current commercial offerings will not scale to these data volumes.  Future visualization systems
must use vendor provided display technology. We expect a 10x display resolution over 10 years.

Visualization Applications must:

� Ingest terabytes of data from geographically distributed sources
� Render arbitrary combinations of diverse data sets in real time
� Deliver rendered product to the end user interactively at their local site

Technology required:

� Networks/data transport layers similar to the data management requirements
� Distributed visualization applications that scale to hundreds (perhaps thousands) of

processors
� WANs with 150 MB/s bandwidth deliverable to the end user
� Low-latency service request protocols
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Scalable Data Mining
This technology is currently in its infancy.  New data mining applications for extracting science
information require development.

Computing Platform Systems Management
Currently this is an ad hoc process.  System engineering practice needs to be integrated into the
computing center infrastructure design and operation.  Building discipline specific computing
centers needs to be supported by integration tools and systems management best practices.  The
only specific technology identified is:

� Performability analysis tools

C. Identification of Infrastructure Issues (not technology related)
The issue raised uniformly across all of the panels is the need for a commitment to infrastructure
in addition to technology investment.  All three panels project a need for installed sustained
production computing throughput capacity in the hundreds of teraFLOPS for each discipline area
— aggregated Enterprise wide, the required infrastructure capacity will need to exceed a
petaFLOPS throughput.  This is perhaps four orders of magnitude greater than the Enterprise
has installed today.  A similar increase in data storage and delivery infrastructure is also
required, along with the networking bandwidth to support the volume.

The weather and climate panels both identified the need to support and expand the infrastructure
that supplies production computing cycles and storage to the researchers who will develop the
applications to achieve the prediction goals.  The availability of these resources is one of the
items critical to their success.



Appendix A

A - 1

Appendix A: Weather Panel Report
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Introduction and Charge
The Panel was charged with evaluating the adequacy of computational capabilities needed for
NASA to address its 2010 goals for enabling weather forecasts.  De facto the charge of the panel
was extended to a broader Enterprise scale, but focus was maintained on problems of weather
and environmental hazards associated with weather.  In addition, data assimilation to support
research in other areas, such as climate and chemistry, were considered.  The numbers presented
in the tables are specifically targeted at the 2010 weather prediction goals, and these related
activities would require computational resources to support them, but are not believed to require
different capabilities.  That is, the related activities require increasing the capacity of similar
capabilities, perhaps with the addition of formal interfaces to transfer software and data, either
observed or simulated, across the interfaces.

The following tenets are assumed:

1) There is no single specific programmatic or disciplinary investment that stands
independent of other programs or disciplines.  Namely, a balanced investment is needed
in science, information technology, observing systems, etc. to achieve the prediction
goals.

2) That many fundamental aspects of computational capability, processor speed, network
performance, mass storage capabilities, memory, memory bandwidth, etc. will be
determined by the evolution of the field as a whole and that NASA investment in the
evolution of the capabilities will be limited to specific Agency-centric goals.

3) That significant, additional Agency investment in the infrastructure to support
applications and system software is needed to assure that high-performance
computational platforms are available to support Agency modeling and assimilation
activities.  The prediction goals addressed by this ESTO workshop represent only a
subset of Agency goals that require high-end computing.
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ESE Prediction Goals for Weather
The given prediction goals from the science plan are:

Today’s Capability 2010+ Capability

3-day forecast at 93%* 5-day forecast at > 90%*

7-day forecast at 62%* 7–10-day forecast at 75%*

3-day rainfall forecast not
achievable

3-day rainfall forecast routine

Hurricane landfall +/- 400Km
at 2–3 days

Hurricane landfall +/- 100Km
at 2–3 days

Air quality day by day Air quality forecast at 2 days

The NASA role in weather forecasting is specifically a role of enabling.  Therefore, NASA’s
activities are dependent upon the activities in other agencies.  NOAA and the Navy both provide
operational products.  A formal mechanism linking NASA with NOAA and, soon, the Navy, is
the Joint Center for Satellite Data Assimilation.  The goals listed above were verified to be
consistent with NOAA and Navy goals.  These goals imply a link with both global and regional
activities.  The panel considers the given goals ambitious and believes that successful
achievement of the goals depends on numerous scientific and technological developments whose
success is not assured.

To succeed in enabling the Nation’s weather prediction goals, NOAA and Navy operational
requirements need to be integrated with NASA research activities.  These include:

1) Techniques developed within NASA have to fit into the operational time allowance for
real-time weather forecasting.  This requires the end-to-to forecast-assimilation system to
run in less than 2 hours of wall time.

2) Attributes of NASA algorithms, e.g., resolution, data usage, parameterizations, must be
consistent with the state-of-the-art operational systems.  Otherwise, the impact of NASA
research will be diminished.

A number of specific computational technology issues are listed as priorities due to requirements
to transition from NASA research to, specifically, NOAA operations.  These include:

1) Testbed facilities:  Results derived from NASA research activities need to be transferred
with a minimum of retesting from NASA to the operational agencies.  This requires
sharing of software, and ultimately, experimentation in the operational systems.  The
current NOAA plan calls for the development of testbed facilities that serve to support
experimentation and testing with the operational systems or candidate operational
systems.

2) Modeling framework:  The successful implementation of testbed facilities relies on the
success, evolution, and maintenance of the Earth System Modeling Framework (ESMF)
to provide a common model infrastructure.

3) Portability and tests:  The ability to port applications software from one computational
platform to another, and tests to assure that the portability is successful, is required.
Otherwise, duplicate computational systems would be required.
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Analysis of Problem: Forecasting System in 2010

In order to organize the discussion the following diagram will be used.  This diagram represents
the high-level functions that must be addressed by the forecast-assimilation system, highlighting
the development areas and interfaces that most directly impact high-performance computational
technologies.  In general computational requirements are driven by resolution, data usage,
comprehensiveness of coupling (running processes concurrently rather than sequentially),
robustness (explicit representation of processes modeled as approximations or
parameterizations), and data volume and data access.

Global
Resolution

(10 km, 100L)
Deterministic

Observations
used

(5 X 1010 daily)

High-Resolution
Applications

Coastal
Air Quality

Meso/Cloud-Scale
(Environmental

Security)
Reanalysis

Regional Climate

Weather prediction:
10-day forecast
(< 2 hours wall clock)

Climate reanalysis:
30 assimilated days
(24 hours wall clock)

Comprehensiveness/
Coupling

Upper Ocean
Land Surface

Sea Ice
Chemistry

Physics
(derived requirements

resolution, freq of transfer)

Forecast
Model

Input

Validation

Assimilation/
Analysis
Algorithm

Operational
Agency
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The forecast-assimilation system is represented by the checked square and oval with an interface
between them.  These two components traditionally demand much of the scientific and
computational development activities.  The interface is specifically noted, as the frequency of
communication between the modeling component and assimilation/analysis component
profoundly impacts computational requirements.  Projecting a target resolution provides the most
straightforward parameter to estimate requirements growth in the model.  A horizontal resolution
for a global atmospheric model of 10 km is chosen based on the target resolution of both NOAA
and the Navy.  This resolution would resolve many features well enough for assessment of the
regional impact of changing climate-scale phenomena.  A vertical resolution using 100 levels
from the ground to the top of the mesosphere is chosen.  The computational requirement for the
assimilation/analysis algorithm is currently driven by data volume.  A data volume of 5 X 1010

observations per day is chosen based on projections of satellite observing systems that are
planned to be operational and relevant to weather forecasting.  As a baseline, the current
horizontal resolution is order 100 km, with 50 vertical levels, and current data usage is order 106

observations per day.  Using the presently measured sensitivities of the model and assimilation
algorithm to resolution and data usage, the projected computer requirements for 2010 are 109

times the current requirement.  The primary driver of this requirement is data usage.  Such a
requirement is unrealistic, and therefore, to address the data usage requirements new strategies
are needed.  These strategies require consideration of all aspects of the system.

Before these new strategies are discussed, the computational attributes of the other parts of the
system are summarized.  In order to incorporate already substantiated impacts of land-surface
and oceanic processes on weather forecasts, coupling of the atmospheric models to other
geophysical models is required.  To assure that models address increasingly important issues of
environmental security (for example, flash floods, coastal flooding, and air quality), the global
models must be able to provide initial and boundary information for higher resolution models.
These higher resolution models have more robust representation of local processes such as runoff
and stream flow.  Finally, since a number of weather-related products sit at the foundation of
investigations of climate change, the ability to deliver consistent reanalysis of observations and
provide regional climate predictions is needed.  All of these applications require high-end
computational resources, including application software support and formal interfaces between
data systems and research groups.  These interfaces are symbolized in the figure.

As a matter of emphasis, the throughput requirements of the application software are also noted
in the figure.  Because of the specific product requirements of weather and climate simulation
and assimilation, if strict throughput is not maintained, then the results of NASA research is
minimized.  The throughput requirements for weather forecasting are easy to substantiate: the
forecast must be useful in near real time.  For climate research, the validation and provision of
data sets to support regularly scheduled mandated assessments pushes the time criticality.
Computational capability is highly sensitive to these time requirements.

Finally, the requirements that are discussed here are based on the idea of deterministic
forecasting.  Increasingly, probabilistic forecasts are being used and are likely to be a key part of
achieving NASA prediction goals.  Probabilistic forecasts rely on an ensemble of forecasts,
generally performed at lower resolution that the deterministic forecasts described above.  The
requirements for probabilistic forecasts are shifted away from capability towards total capacity.
However, the need to analyze perhaps 50 to 100 forecasts in a near-real-time environment
increases the demand on networking and analysis software.
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It was determined above that the data usage requirements, taken independently of any of the
other requirements, provided an insurmountable obstacle unless new techniques are developed to
utilize data and extract the information from the observations.  This is needed to compact the
information and, effectively, reduce the data volume, prior to assimilation.  This is primarily
scientific research and development.  In addition, to the increase in data volume, there will be an
increase in the complexity of the data environment.  Historically, observations to support
weather forecasting have been collected and distributed centrally through a small number of data
hubs.  As more use is made of research observations in the operational environment,
observations will be obtained directly from the data systems that support the particular
instruments.  Three issues are the necessity to:

� utilize the increasing volume of observational data

� analyze and interpret the increasing volumes of simulation and assimilated data

� interface with more and more diverse input sources and user output

These issues lead the panel to the conclusion that data management is the greatest risk facing the
meeting of the goals to enable weather prediction.

Numerical Estimates of Requirements
In the table below, numerical estimates of requirements are presented.  These were derived by
extrapolating the current DAO production system to future resolution and data use parameters.
Considerations are made for increasing the comprehensiveness and robustness of system.  Given
that a straightforward extension of the current DAO assimilation system to future data volumes
would yield an intractable problem, it is assumed that data and information management will
yield a system in which the assimilation/analysis algorithm grows no faster than the model
requirements.  NOTE: These requirements do not express the entirety of the requirements to
support all of the high-resolution applications or possible new initiatives that would build off of
the global modeling activity to support the weather prediction goals.
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2002 System 2010+ System

Resolution
•  Horizontal
•  Vertical levels
•  Time step
•  Observations

o Ingested
o Assimilated

100 km
55
30 minutes

107 / day
105 / day

10 km
100
6 minutes

1011 / day
108 / day

System Components: � Atmosphere
� Land-surface
� Data assimilation

� Atmosphere
� Land-surface
� Ocean
� Sea-ice
� Next-generation

data assimilation
� Chemical

constituents (100)
Computing:

•  Capability (single
image system)

•  Capacity (includes
test, validation,
reanalyzes,
development)

10 GLOPS

100 GLOPS

Must
Have

20 TFLOPS

400
TFLOPS

Important

50 TFLOPS

1 PFLOPS

Data Volume:
•  Input (observations)
•  Output (gridded)

400 MB / day
2 TB / day

1 TB / day
10 PB / day

Networking/Storage
•  Data movement

o Internal
o External

•  Archival

4 TB / day
5 GB / day
1 TB / day

20 PB / day
10 TB / day
10 PB / day

Panel Recommendations
The Panel’s recommendations are made on the following background.  First, for NASA to enable
the weather prediction goals, priority must be given to partnerships with other agencies.  This
requires the algorithms developed through NASA research to ultimately fit into the real-time
production window.  In addition, credibility requires resolution and physical parameterization to
be directly comparable to those used in the operational environment.

Second, it is tacit that the computational requirements to meet the weather forecast goals
prescribe a set of systems attributes that are consumptive of capabilities that will be available
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from the vendors.  These requirements are broadly consistent with those of numerous other
disciplines, though the real-time requirements may demand higher capability.  In addition, the
field will tailor the development of advanced algorithms to fit into the computational systems
that are available.

Third, it is simple to make cogent arguments of systems that overwhelm projections of
technological advancement.  Numerous programs are in place to accelerate that advancement,
notably the Department of Energy’s Accelerated Strategic Computing Initiative.  NASA should
coordinate any activity it might plan to assure that NASA investments are effective.  In addition,
NASA needs to define its role in enabling weather prediction goals relative to the role of other
agencies before research programs are initiated.

The computational requirements table above indicates that the greatest challenge facing weather
prediction is data management and assimilation. We address the data management and
assimilation challenge in Recommendation 1 below. The second greatest challenge is getting
high performance (high peak performance and high sustained percentage of peak) from of the
HPC systems that NASA purchases. The panel determined that achieving high performance will
require investment in the software infrastructure aspect of computational technology, including
systems software and engineering (Rec. 2), application-specific software tools (Rec. 3), and
visualization tools (Rec. 4). Finally, it is apparent that the path to meeting the weather prediction
goals will not be straight or easy.

Recommendation 1:  Data and Information Management
Improved data and information management is critical.  There are two major aspects to this.
First, there are issues that would normally fall under the purview of information technology.
These issues concern the development of computational systems that effectively acquire, order,
and prepare data for use by either other algorithms or scientific users.  Already, data
management issues are coming to the forefront of issues that need to be faced by computational
centers that support Earth science research.  The increasing complexity projected for the future
only magnifies the need to formally embrace the data management issues.  Parameters that must
be considered include:

� increasing number of sources of observational data
� distributed user communities involved in validation and application
� heterogeneity of observational types
� geographic or geophysical registration of observations
� data volume
� analysis in a fixed amount of time

Second, methods to improve the extraction of information from observational data prior to
assimilation must be developed.  This is termed the optimization of the observing system, and
activities are far ranging.  They range from methods advocated in computer science such as data
mining and hierarchical segmentation, to sampling and data selection techniques used in current
data assimilation systems, to increased utility of observing system simulation experiments
(OSSE’s) and observing system experiments (OSE’s).  These final approaches run end-to-end
assimilation systems to predict and validate data impact.  Increased interaction between the
modeling and assimilation components of the data assimilation system to target which
observations might have the most impact provides a potentially fruitful approach with broad
implications for computational systems.
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Third, new data assimilation algorithms must be developed that are quasi-independent of data
volume.

Several processes could be used to elucidate the systems requirements more quantitatively.
These include:

� the data ingest system of the DAO assimilation system
� examination of the validation process for a candidate forecast-assimilation system
� development of a scenario for a real-time ensemble prediction system
� development of a scenario to provide global products to a series of high-resolution

regional applications

Recommendation 2: Systems Software and Systems Engineering to Support High-End
Computing
In order to assure that the increases in technological capability that are achieved by the field as a
whole benefits NASA applications, direct investment in systems software and systems
engineering is needed.  This investment in such a specialized field requires significant planning
for organization and integration.  The cross organization development of standards to support
vendors, applications and discipline software is essential.  Numerous standards efforts are in
place and more are needed.  Given the requirements, insufficient resources are expected, and
much will depend on cooperative development with government and industry.  Further, the
significant funding levels will require continuity to ensure useful products.  A real concern is that
these expenditures will not represent influences on the marketplace.  Unlike commodity
hardware, the use of discipline-based software requires a focused design and implementation
basis with extensive planning.

While some of these tools may be generic in nature, i.e., discipline-independent, experience
shows that adaptation to the simulation environment is required.  The magnitude of needs for the
development of software tools and systems engineering tools in the next decade far exceeds a
simple enumeration of products.  The supply of current technology tools is restricted to a few
viable commercial suppliers and the open source code community.  This limited availability of
tools is not expected to change and needs addressing by the science agencies.  The HPC vendors
currently lack the willingness to support very large machine tools for financial reasons.

The capacity computing requirements will place burdens on the systems engineering tools
needed to build teraFLOPS to petaFLOPS codes.  If we assume the capacity growth is biased
toward increasing numbers of processors, then we must realize the need for control and operation
of thousands of processors for a single job.   The list of useful support systems is quite long: an
operating system, a compiler, a debugger, a mass file system, a visualization system, a program
control system, a network analysis tool, a message passing data analysis tool, performance
analysis, and an effective job submission and control program.  The list of attributes for these
tools is quite lengthy, and we shall not enumerate them, except to note the tremendous increase
in data and comment on the need for interactive visualization.  The large number of processors in
use will require direct display of all the machine and user views.

Just as specific systems software investments will improve the performance of many or all ESE
applications, so too will targeted systems engineering investments allow ESE to optimize the
design and configuration of HPC hardware for the benefit of the entire ESE simulation
environment.  Determining the optimal configuration for the ESE environment will require
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investigation for each major acquisition.  This configuration investigation and optimization
cannot be ignored or minimized.  For example, ESE systems will need to balance communication
to cache, between processors, and to mass storage.

Recommendation 3:  Application-Specific Software Tools

The development of new application-specific software environments like the ESMF framework
is an example of what is needed for the future.  The weather development community, and the
Earth science community in general, is moving toward the open standards efforts to support, data
frameworks, visualization tools, and modular code environments.  Current tools like IDL will be
overwhelmed by the tremendous increase in data volumes of the next decade.  The recasting of
applications into truly parallel data warehouses with supporting tools is essential for the next
level in data assimilation, modeling, and forecasting.  We strongly recommend the design basis
require the removal of all order-one bottlenecks in the end-to-end processing flows.

A final system software technology that will be needed for achieving the ESE weather prediction
goals is the ESMF. The ESMF uses a common model infrastructure in the NOAA language,
allowing applications to use a defined interface to interact with each other. A key driver of the
ESMF is enhancing coordination of effort at the national level, enabling the U.S. to maintain
leadership and in climate/weather prediction. Specifically, the ESMF will allow all of the
Agencies participating in the U.S. climate modeling program to more easily divide and share the
effort to advance the U.S. climate and weather prediction capability. IT will also facilitate a
smooth technology transfer from research (such as that at NASA) to operations (such as those at
NOAA).

Recommendation 4:  Analysis-Specific Software Tools
The analysis of products by users will directly depend on the provided frameworks.  These tool
needs will encompass all the issues for hardware and software, and the development of tool
products from a user centric position is essential for success.  So, the user groups must be
involved in the design, development, and re-design of the analysis-specific tools.  Again, the lack
of a commodity marketplace for developers will require NASA-specific investments to support
discipline needs.

Visualization is an area where leveraged NASA investments can advance software and hardware
computational technology for the pursuit of the 2010 ESE weather prediction goals. As
mentioned, the data volume involved in weather prediction will increase by many orders of
magnitude by 2010. As a result, the development of weather prediction software systems will
inherently involve the analysis of huge data sets. This analysis will be interactive during the early
development stages; the search for useful analysis or assimilation techniques must be conducted
by domain experts. Humans have a sensory system that is highly evolved to transfer massive data
sets to the brain: vision. Thus, visualization technologies will be central to developing ESE
computation and data assimilation algorithms. In all stages of the program, visualization is a
critical enabling technology for transforming experimental data produced by coupled Earth
system models to information and knowledge. Visualization is also an essential tool for the
communication of complex interactions to experts, decision makers, and the public.
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Climate (or more generally Earth system) research, including that for improved prediction, relies
heavily on high-end computing resources.  Significant advances in many of the key research
areas will depend on advances in computing technology. Some of these advances, such as
improvements in processor speed, can be anticipated as a surety. Others, such as software
developments, need investment from the Earth science community to ensure that they are
realized.  Requirements for high-end computing resources come from a variety of subdisciplines:
seasonal-to-interannual (S-I) variability and prediction, decadal variability and prediction, global
change assessments, atmospheric-ocean-land assimilation for analyses (as well as that for
forecast initialization), coupled physical-biogeochemistry modeling, to name a few.

For the purpose of outlining the advances in computing technology required to enable the
Enterprise’s science goals for 2010, we focus on the problems of S-I prediction and decadal
prediction.  This is justified by the fact that the types of problems to be solved and the models
and resolutions used for these areas are not substantially different from those used for the other
subdisciplines.  The burden of initialization for these predictions lies primarily with the ocean
and land surface, and since these components have far fewer observations than are available or
needed for atmospheric initialization for numerical weather prediction (NWP), the computing
technology requirements can be assessed primarily by those needed for the model simulations
and predictions.  The computing requirements for the other subdisciplines will be a (perhaps
significant) fraction of those estimated for these prediction problems.  They need to be taken into
account when the Enterprise production computing resources are estimated.

The Seasonal-to-Interannual Prediction Scenario
In the 2010 timeframe, we envision that NASA will continue to contribute to the nation’s multi-
model seasonal predictions through forecasts and predictability experiments conducted by
NSIPP.  NSIPP will be one of approximately five national groups conducting routine
experiments, sharing forecasts, simulations, and analyses. NASA’s unique emphasis is on the
optimal use of satellite observations to enhance prediction skill. The current focus is on 6-month
prediction skill, and all groups undertaking such predictions with coupled general circulation
models regard them as experimental. ESE’s goal for 2010 is for 6–12 month routine seasonal
prediction and 12–24 month experimental prediction. Increased emphasis will be placed on



Appendix B

B - 2

larger ensembles as we attempt to extract more skill and shorter (intraseasonal) timescales and
look to predict the likelihood of extreme event (e.g., flood) occurrences.  With the expected
increase in processor speed will come the desired increase in model resolution: 25 km for the
atmosphere and 10 km for the ocean.  The need to quantify forecast reliability will lead to larger
ensembles at longer lead forecast time.  This may be accommodated by multiple-scale
ensembles, with degraded resolution at longer leads. Reliable estimates of forecast spread will
require the uses of multi-model ensembles. The models will have expanded physics to account
for influences on forecast skill outside the tropical Pacific – e.g., high latitude processes,
stratospheric processes, and changes in land cover.  As in other disciplines, attention to better
cloud representation will be essential.  The coupled initialization will continue to focus on the
ocean and land.  Since global predictions will be used to force offline regional hydrologic and
crop models, global predictions will need to be stored (and retrieved) at high spatial and temporal
resolution.  We anticipate a successful transition to complete utilization of NASA’s Earth System
Modeling Framework (ESMF) and this will enable flexibility in model component mix for
ensembles.

The Decadal Experimental Prediction Scenario
To this point, predictions on the decade-to-century scale time frame have focused primarily on
global or hemispheric scales; for practical purposes, regional scale predictions are required.
Although confidence in regional predictions will probably increase in the timeframe to 2010, it is
to be expected that predictions will remain on an experimental track for some time.  NASA’s
contributions to these goals will emerge from GISS, with plans for a 1/2° ocean model, a 1°
atmospheric model resolving both the troposphere and stratosphere, and air chemistry with about
40 tracers, if computing power is available. The same model will also be used for even longer
global change integrations, possibly at reduced resolution.

Technology Areas
The advances in computing technology required to support the above prediction goals are
summarized according to groupings that have emerged as common themes from other
disciplines:

1) Computing platforms – the technology facet over which we have little control.

2) Problem Solving Environment – software developments that ease or optimize use of
high-end computing architectures, or facilitate advances in coupled models.

3) Data management  -- both hardware and software that have received little community
attention to date, but which have the potential for significant development efforts.
Without attention, this technology facet promises to be a significant impediment to
realizing scientific advances from the other two.

We now further explore these areas and identify technology gaps that impact our requirements.
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1. Computing Platforms
Current S-I climate prediction systems consist of ocean-atmosphere-land-sea-ice models coupled
to ocean and land data assimilation systems.  To be useful for climate applications, single image
model performance must be roughly 1000 simulated days per wall-clock day, and since climate
forecasts need to be based on ensembles of runs, typical systems run 8 to 10 concurrent coupled
images (or 15 to 20 uncoupled images) now.  Our assessment of requirements for future
computer platforms is based on the assumption that as computer power increases, the size of the
calculation and the number of concurrent images will also increase while roughly maintaining
these performance goals (1,000 d/d single image, 20,000–30,000 d/d aggregate throughput).

Under the modest assumption of a doubling of processor speed every 30 months (i.e., slower
than Moore’s Law), the next 10 years should give us a 16x increase in processor performance.
The actual increase we are likely to attain should be considerably higher than this because over
the next 10 years we will be running higher resolution models that will scale to many more
processors.

During the next 10 years, the magnitude of the calculation will increase due to the greater model
complexity and increases in resolution.  We have assumed that the latter will be the main driver
of computer performance — this has been the case in both NWP and climate modeling for the
last 30 years.  Resolution may be increased in a variety of ways:  by increased use of nested
regions, by using embedded cloud resolving models, or simply by uniformly increasing
resolution in global models.  We assume that all of these approaches will result in comparable
scaling properties and so take the last (a uniform global increase) to do a simple projection of
performance for the next 10 years (see Table 1).  We will also use the atmospheric model as
characteristic of the entire problem.  This is well justified for the ocean, land, and other
components, such as chemistry, that will be a bigger fraction of the calculation in the future.  It is
not well justified for data assimilation systems, which depend more on data availability than on
the resolution of the physics.  Furthermore, we can be quite sure that data assimilation will play
an increased role in climate prediction during the next 10 years.  Nevertheless, we have ignored
the different scaling of models and assimilation systems, partly for simplicity, and partly because
we feel that computational requirements for assimilation will not rise to be the driver in climate
problems that they are in the NWP problem — at least not in the next 10 years.
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Table 1:  Single Image Performance Scaling for the NSIPP AGCM

Table 1, then, represents our performance projections for this prototype calculation:  an
atmospheric GCM with uniformly increasing global resolution.  The range of resolutions
considered goes from that currently used for routine experimental prediction at NSIPP to a 3-km
global model.  This range takes us from models that resolve well the synoptic scales of weather
phenomena to models that resolve the mesoscale.  It also brings us to models that, while not
cloud resolving, are sufficiently fine to require very different parameterization approaches.  This
range also takes us from the hydrostatic models we use today to ones that must represent non-
hydrostatic dynamics.  The hydrostatic–non-hydrostatic transition occurs around 12 km, while at
25 km we begin to resolve mesoscale phenomena, a transition that may result in qualitative
improvements in AGCM results.

For these reasons, a realistic goal for S-I for the next 10 years is to begin to resolve the
mesoscale, at or near the hydrostatic limit.  We take this to be the 25-km model.  Similar
arguments can be made for ocean models reaching resolution of 1/10o to 1/16o — an increase
comparable to that of the atmospheric model.

The requirements for decade-to-century prediction are similar in scaling, although more
substantial in throughput because of increased complexity from the inclusion of atmospheric
chemistry and resolution of the stratosphere.  Although the atmospheric model will be slightly
different from that used for S-I climate, the model and simulations will need to include realistic
variability at interannual and decadal time scales. A single image of an atmospheric
configuration of 1° resolution with 100 layers (including the full stratosphere) and 40 online
chemical tracers would require a throughput of about 5

TFLOPS; with a coupled ocean of 50 layers at 1/2° resolution the requirement is 6.6 TFLOPS.
The coupled model configuration with a job mix equivalent to 100 concurrent images
(ensembles, parameter sensitivity sweeps, etc.) would then require 660 TFLOPS.

As we can see from the table, the 1/4o-model at S-I climate performance (1000 days/day)
becomes available (under the table’s assumptions) at the 10-year mark. The conservative
Moore’s Law assumption on processor speed  (doubling every 30 months) should be met easily.
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The other important assumption in these projections is that we be able to scale processor number
with problem size out to about 1,000 processors even at the faster (16x) processor speeds.
Assuming current architectural trends in the U.S. continue, this will require either much faster
memories with better shared memory utilization within SMP nodes, or better communication
between nodes, or — more likely — some combination of the two that allows scaling to keep up
with processor speed.

The assumption that we can thus maintain scaling is quite optimistic given current trends. We
should therefore view it as the largest technology gap in Compute Platforms and make it our
highest priority.  But what can we do to drive developments toward this goal?

Better shared memory utilization

Shared memory utilization has, of course, been a major goal of computer architects for many
years. Developments such as ccNUMA show that it is still a major architectural goal, but one
that we are unlikely to be able to drive. We can, however, concentrate on other parts of the
problem.  We can:

1) Promote the development of software tools that give specialized applications greater
control over shared memory usage.

2) Organize our codes to minimize shared memory conflicts.

Most of our calculations require that only a tiny fraction of the memory be shared -- most
memory accesses are local. Most shared memory usage is a matter of convenience, not necessity.
(If this were not true, message passing codes would not be as successful as they are.) Our codes
require a lot of memory accesses; if these are to a single shared memory, it results in a lot of
memory conflicts and rapid scaling degradation. But if memory accesses can be segregated into
shared and “private”, conflicts could be reduced, perhaps by orders of magnitude, and scaling
greatly improved.

Better internode communication

Better communication can most easily be achieved with faster switches. Again we should do
what we can to promote this development, but without any illusions of our ability to impact it.

Interconnect speed is measured in bandwidth and latency. Both will improve, but it is unlikely
that improvements in switching hardware alone will match increases in processor speed. Latency
improvement is generally deemed the more intractable problem. The latency impacting the
scaling, however, includes both hardware and software delays, and the latter, which presumably
we can do something about, still represent a large fraction of total latency for most applications.

Our priority in this area, therefore, should be the development of better software communication
tools to reduce latency. This probably has to go beyond work on optimizing general-purpose
message passing software, such as MPI, to providing specialized access to switching hardware
for use by the highly optimized codes used for weather and climate prediction.
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Better single-processor performance

In addition to communication, current throughput is limited by single processor performance.
Most Earth system codes achieve only 10% of the manufacturer’s stated peak processor
performance even on a single node.  In comparison, codes with even only minor hand
optimization achieved 30to 40% of peak on vector processors.  Clearly this is a performance gap
that needs to be addressed with better compilers for single-processor optimization.

Storage and bandwidth requirements

For the class of prediction systems considered here, I/O bandwidth and long-term storage
capacity can be assumed to scale fairly closely with the number of operations performed. Models
typically produce 1 byte of output for every 1,000 to 10,000 floating-point operations. More
precise estimates within this range will, of course, depend on the particular application, the
model’s resolution, etc.

For rough quantitative estimates of bandwidth and storage, we can take the most data intensive
end of the range (1 byte / 1000 ops.). Under this assumption, the GFLOPS numbers presented in
Table 1 can be reinterpreted as MB/second of output I/O bandwidth. Thus, the climate model ten
years from now, running at 2.5 TFLOPS will produce 2.5 GB/second (or 200 TB/day) of I/O
bandwidth at the high end of the range and 20 TB/day at the low end.

This volume of data is typically used only for immediate analysis, visualization, and various
post-processing data reductions. The fraction retained for long-term storage is typically only
between 1% and 10% of this. From this and a typical lifetime of 6 months in archival, we can
estimate a total storage requirement of 500 Tbytes per image or several petabytes per system.

2. Technology for the Problem Solving Environment
NASA’s Earth system prediction goals require research and operational communities that are
capable of working efficiently and systematically to configure, run, and monitor simulations,
exchange and introduce model components and parameterizations, track model experiments, and
analyze, store, and retrieve data.  The computing environment impacts the time and effort
required by scientists to develop new models and evaluate and compare physical
parameterizations.  This environment is already daunting due to the complexities of computer
systems, which we can expect to persist, and the complexities of applications, which we can
expect to increase.  The latter will be affected by the addition of new processes and components
to existing modeling applications and enhanced component interoperability delivered by efforts
such as the NASA Earth System Modeling Framework and the DOE Common Component
Architecture project.  Thus a computing environment that enables easy experimentation
accelerates progress towards prediction goals.

The ESMF will work towards improving the Earth modeling environment by delivering software
infrastructure that will buffer researchers against architectural uncertainty, increase
interchangeability, and promote reuse.  Assuming that the ESMF software is adopted by
significant portions of the modeling community, it is essential that the ESMF be maintained and
extended to support related community needs.  It is essential that one or more agencies commit
to long-term ownership and support of the ESMF in order to provide a stable software
environment.  Given that the major climate modeling groups requiring high-end computing
technology cut across different agencies, it is important that essential infrastructures like the
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ESMF receive interagency commitment to ensure that the framework longevity is adequate to
warrant full implementation in codes.

Some of the basic computing environment capabilities that are currently lacking and that no
current NASA program is committed to provide are:

1) A graphical user interface for model configuration and job submission and monitoring

2) A database system for tracking and annotating model experiments

3) A database that will serve as a common repository for model components

4) An interface to data services (e.g., remote data access, diagnostic packages)

5) Extension of interoperability tools to physics parameterizations and new components

6) Extension of the framework to include differential operators, solvers, and other
mathematical operations as well as operators relevant to innovation calculations for
assimilation

In order to be most effective, the above services must be integrated into a system that is easy to
use, deploy, customize, and extend.  There are requirements that the services provided must be
high performance, robust, and portable, and that there is a long-term plan for their maintenance.

3. Technology for Data Management
The requirement for advances in data management can be easily articulated through the S-I
prediction application. The complexity of data management for S-I prediction will be
compounded in the 2010 time frame by the increasing dimensionality of the problem.  Useful S-I
climate prediction is necessarily probabilistic and therefore requires an ensemble of realizations
to measure the uncertainty in the model integrations and hence the reliability of the forecasts.
The use of large ensembles can also provide an indication of the risk of extreme events.
Furthermore, there is a requirement to make use of multiple dynamic models with different
physics to fully characterize the probability density function of observed states of seasonal
climate. Finally, S-I predictions are being made by several groups within the U.S., so the
dynamic model output will be stored at several computing facilities across the country. In order
to be able to compare, analyze, and assess the forecasts produced by multiple models, each being
run over multiple realizations at several physically distinct locations, it is necessary to enable
data management and distributed access to and analysis of this virtual multi-model archive. The
data management problem becomes significantly more challenging by 2010 by the increasing
resolution and complexity of the individual models.

We have estimated that, by 2010, each group making experimental S-I predictions will generate
about 500 TB of data for each image and 5 PB per 10-member ensemble experiment. This
estimate is based on the discussion above on I/O bandwidth and the expected increase in model
resolution, as well as the fact that forecasts must be verified over several decades of historical
cases to quantify the level of forecast skill. The total amount of data per experiment to be shared
among, say, five prediction research groups, is about 25 PB. A data set of this size will be
generated over a period of about 6 months and will serve as a viable research data set for about 3
years. A typical problem, for example, the evaluation of extreme events over a single season,
amounts to about 30 TB data volume for each group, but volumes could be much higher.  Data
from each group must be available for analysis and comparison to all the other prediction
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research groups as well as to forecast evaluation groups and collaborating research groups
elsewhere. The required capability to transfer 30 TB of data from any of the five centers to any
of the others in less than one day represents a significant technology gap.

This anticipated evolution of S-I prediction systems leads to a technological requirement for
high-performance analysis platforms, optimized for I/O performance, at each location where
model output data sets are stored and a high-performance network connecting the participating
centers. Some combination of distributed analysis capability and high-performance data transport
capability will be needed.  In addition, there will be a requirement for stable software that
enables distributed access and analysis to the data set. Here, stable software is intended to mean
software issued in stable upward compatible and tested releases that only require standard
compilers, do not depend on a large number of potentially unstable and unsupported software
packages from a variety of sources, and conform to community standards for code and data
structures. Development of complete database documentation, automated catalogs that provide a
minimum level of performance and reliability, automated metadata generation, and parallel data
exploration and extraction tools will be required.

The capability for distributed model output data set access and analysis must be supported for the
long term. This implies support for the storage, computational capability to do analysis, and
network access at each site. It also implies that whatever strategy is followed for stable software,
interfaces, catalogs, etc., has the same community-wide applicability and support as does, for
example, the ESMF and an interagency commitment for support.

Summary: Technology Gaps of Highest Priority
Several developments are needed to satisfy the high-end computing requirements for climate
prediction.  Some of these can be achieved by (in fact require) an investment by NASA.  Those
of highest priority are:

Computing Platforms

� Internode communications and shared memory utilization
� I/O bandwidth and storage
� Fortran compilers to improve single-processor performance

Problem Solving Environment

� Commitment for sustainability of the ESMF
� Increased functionality of the ESMF, especially in terms of data structures, operations to

support assimilation, and integrated tools to enhance model development and utilization

Data Management

� High-performance networks
� High-performance analysis platform optimized for I/O
� Distributed data archive
� Stable software for storage and analysis
� Parallel extraction tools for data mining
� Parallel and distributed analysis and visualization tools
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State of Solid Earth Science
The field of solid Earth science is currently mission and data poor. We anticipate, however, an
increasing number of missions and data in the next 10 years. Space technologies will allow us to
measure previously unobservable parameters and phenomena, resulting in a new understanding
of complex, interconnected solid Earth processes. The next great revolution in Earth sciences
will involve development of predictive models of these processes. For these models to be
successful, particularly for an understanding and forecasting of hazards, high-resolution, global
observations with real-time or near-real-time data streams and processing will be required.
Integrating the huge quantities of data and information to be collected into forecast models will
require that information technology resources be developed in concert with advanced sensor and
detection capabilities.

The quantification of the computational needs is timely in light of the recent activities of the
NASA Solid Earth Science Working Group (SESWG). This group is putting together a vision for
solid Earth science for the next 25 years (see http://solidearth.jpl.nasa.gov). The group has
identified the following six science questions:

1 )  What are the nature of deformation at plate boundaries and the implications for
earthquake hazards?

2) How is the land surface changing and producing natural hazards?

3)  What are the interactions among ice masses, oceans, and the solid Earth and their
implications for sea level change?

4) How do magmatic systems evolve, and under what conditions do volcanoes erupt?

5)  What are the dynamics of the mantle and crust, and how does the Earth’s surface
respond?

6) What are the dynamics of the Earth’s magnetic field and its interactions with the Earth
system?
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The sub-fields of solid Earth that relate to NASA goals and must make use of computational
resources include: earthquakes, volcanoes, tectonics, geodynamo, mantle dynamics, surface
processes, landscape evolution, gravity, magnetic fields, cryosphere and ice modeling, and
ecology, hydrology, and vegetation.

Solid-Earth processes often take place on scales of tens to millions of years. Even with the most
advanced observational systems, the temporal sampling of such phenomena is poor. In order to
fully understand these highly complex systems, simulations must be carried out concurrently
with observations so that the entire system can be studied. The observational data can then be
assimilated into these computational models, providing constraints and verification of the
models. Because solid-Earth processes occur on many different spatial and temporal scales, it is
often convenient to use different models. Increasing interoperability and making use of
distributed computing can enable system-level science.

Computational Model for Earth Observations
One of the major problems facing scientists today is that the scientific data volumes are
increasing at a faster rate than computational power, challenging both the analysis and the
modeling of observations. Resources must be put into improved algorithms to simplify
processing and to approximate complex phenomena to allow researchers to handle the large
volumes of data as well as find the dominant physics in a given data set. Another promising
approach to handling large data volumes is to use pattern recognition to focus attention and point
out subtle features in the data.

Earth Science is experiencing a major paradigm shift as it enters an era consisting of recursive
cycles of: “Monitor-Model-Assess-Predict.” Each new Earth Science mission contributes
datasets that increase the value of those previously acquired. New missions will generate 10 to
20 TB per week. The scientific legacy and long-term value of these data results will depend on
the ability to handle complex queries over data sets from multiple instruments and multiple
missions.

We propose the development of a Solid Earth Research Virtual Observatory (SERVO), which
will enable investigators to seamlessly merge new multiple data sets and models; and create new
queries. SERVO will support new discoveries and predictions for decades to come. SERVO will
benefit from technology developed for the National Virtual Observatory (NVO) and a post-
Human Genome Project “Digital Life portal.” Simulation data must be archived together with
analysis/animation tools and the original simulation code.

Because of the complexity of the solid-Earth system, high-performance computers are essential
requirements for scientific progress. Computations of the systems being studied, from the
geodynamo to interacting fault systems, take weeks to months to run on even the most capable of
current workstations. Considerable computational technology development will be required to
make modeling an effective tool.

The new solid Earth missions will continuously measure parameters in space and use
preprocessing to reduce data as much as possible for download. The downlink data transfer
requires massive online data storage. The collaborative processing of this Earth science data with
Earth-based measurements will transform the measurements into useful derived products using
assimilation processes similar to those used for weather and climate.
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The data storage, the science based modeling building, the analysis of data, and the timely use of
derived products encompass the computational technology needed to achieve the goals set forth
by the SESWG. SERVO, the Solid Earth Research Virtual Observatory, will support the many
numerical laboratories proposed for meeting the solid Earth science objectives. These numerical
laboratories are problem focused, and have basic computational resource requirements. The
primary requirements are: data storage, computation, cognitive visualization, and computational
codes. The needs statements for these numerical laboratories are focused on vendor hardware
offering for resources. These expected vendor capability improvements have been and will be
driven by fundamental industrial processes. The expected gains in the next 10 years approach
one and a half orders of magnitude. However, to meet the science goals the hardware tools fall
short of the program needs, and we must address the science goals by committing intellectual
resources to attack the computational problems. History supports the notion that there is as much
to gain from program and code improvements as from faster hardware.

Solid Earth Research Virtual Observatory (SERVO)Solid Earth Research Virtual Observatory (SERVO)

Tier2 Center
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Figure 1.  Solid Earth Research Virtual Observatory (SERVO) and associated computational framework
for supporting solid Earth science missions, data, analysis, and modeling.

Numerical Laboratories in the Support of Solid Earth Sciences
The physical processes associated with the solid Earth take place on many scales of space and
time.  Simulations and theory must account for how these many scales interact.  The solid Earth
is complex, nonlinear, and self-organizing.  Recent work suggests strong correlations in both
space and time resulting in observable space-time patterns.  Recent advances in computational
science and numerical simulations enable studies of the complex solid Earth system making it
possible to address the following critical scientific questions:

1) How can the study of strongly correlated solid Earth systems be enabled by space-based
data sets?
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2) What can numerical simulations reveal about the physical processes that characterize
these systems?

3) How do interactions in these systems lead to space-time correlations and patterns?
4) What are the important feedback loops that mode-lock the system behavior?
5) How do processes on a multiplicity of different scales interact to produce the emergent

structures that are observed?
6) Do the strong correlations allow the capability to forecast the system behavior in any

sense?

Figure 2.  The physical processes associated with the solid Earth take place on many scales of space and
time.  Simulations and theory must account for how these many scales interact.

Three-dimensional solid Earth modeling for the gravity, geomagnetic, high-resolution visual, and
multispectral thermal data is compute intensive. The development of useful problem solving
environments (PSE’s) should focus systems approaches to data management, computing and
visualization. The management of data must meet the accessing time requirements and the long-
term storage requirements. The maximum daily input data flow of 100 GB defines several
important parameters. The two most important examples are the retention storage and the routine
analysis for quality control.

In 2010, we anticipate that multiple solid Earth missions will be flying. Petabytes of data will be
gathered every year in a widely distributed fashion. Widely distributed scientists using widely
distributed computational resources will analyze these data. There will be a growing need for the
incorporation of information from multiple sources on multiple scales into an integrated analysis.
The goal is to have worldwide computational systems supporting the gathering, integration,
visualization, simulation, and interpretation of several petabytes of data per year.
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Achieving the above goal requires the following:

1) Developing a Virtual Observatory
Such a virtual observatory will allow for seamless access to large distributed volumes of data.
This is essential for handling the numerous distributed heterogeneous real-time datasets.  Data
handling and archiving will be part of the framework.  It will include tools for visualization, data
mining and pattern recognition, and data fusion.

2) Developing an Earth Science Problem Solving Environment
The problem-solving environment will allow for model and algorithm development and testing,
visualization, and data assimilation addressing the NASA specific challenges of multiscale
modeling.  Problems developed within the environment will be scalable to workstations or
supercomputers, depending on the size of the problem to be solved. It will have compatible
numerical libraries existing within a compatible framework.  Algorithms within the framework
will include PDE solvers, adaptive mesh generators, inversion tools, fast spherical harmonic
transforms, wavelet analysis, particle dynamics, ray tracing and visualization preparation, and
image processing and spectral analysis. It shall also provide a mechanism to facilitate teams of
scientists (within and across disciplines) and IT specialists on framework design and
development.

3) Improving Computational Environments
Many of the solid Earth problems are extremely computationally expensive, beyond the
capability of existing supercomputers.  Therefore, the capacity of high-end computers must be
increased to petaFLOPS with terabytes of RAM.  Distributed and cluster computers should be
available for decomposable problems, rapid development and cost performance.  The capacity of
networks must be increased, and investments should be made in the development of Grid
technologies.  Computational analysis would also be enabled by more open and seamless access
to computational resources.

Current and Anticipated Space Missions
The global nature of solid Earth science requires a wide variety of observation types, from in situ
seismic arrays along faults to constellations of satellites. Increasingly we recognize that any
understanding of the Earth will be incomplete if it fails to characterize, understand, and predict
the interactions among the different components of the Earth system. Only with an
interdisciplinary and global focus can we hope to succeed in understanding the dynamics of our
planet. Space observations are uniquely suited to capturing infrequent events in their full
richness, including consequences and possible precursors. Major earthquakes and large volcanic
eruptions may be relatively rare in any given region, but on a global basis they occur
comparatively frequently. To understand such events, which can have enormous impact in terms
of both human life and economic disruption, continuous observations on a global scale are
required so that these events may be studied completely. Space-based observations enable
measurements not only of catastrophic events, but also of the more gradual motions that lead up
to them. By measuring the full cycle (of earthquake, volcanoes, and other solid-Earth processes),
a complete picture of the solid Earth is drawn.

Several missions are anticipated within the next decade to address these needs, which will
produce greatly increased volumes of data (see Table 1). These include gravity field
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determination missions such as GRACE, GRACE follow-on, GOCE; radar interferometry
missions such as ECHO; CHAMP and other magnetic field determination missions, ICESat, a
laser altimeter mission; GPS data collection from hundreds of ground stations (SCIGN/PBO) as
well as space platforms; and a wide variety of hyperspectral, high-resolution visual, multispectral
thermal, and lidar imaging missions, such as VCL.

In order to estimate computer resources needed for meeting the goals of advancing each science
area and substantially enhancing forecast of natural hazards, we lay out a strawman data
processing scenario for one of these missions.  The components of this scenario are not at
operational readiness, but are topics of promising research and serve as examples of methods
under current consideration that suggest plausible computational loads.

For ECHO, there will be 100 GB of data per day, which should be fully utilized for forecasting
events on the global fault system. We assume missions operations has processed raw data,
precise orbits, optimal focusing, and phase connection to produce data in the form
geographically registered images of reflectance and phase, and particularly of line-of-sight
deformation data, affected by water vapor variability and other errors. Hence before inversion
there needs to be a preprocessing stage using multiple image averaging (to deal with water vapor
variability), including local weather, resulting in deformation with some characterization of error
covariance. This stage is not highly demanding of operations, (roughly 32 global “day” images,
1010 numbers per image, and 20 operations, come to 0.1 GFLOPS sustained computing), but
taxing for I/O and data transfer rates.

Given the complexity of full forward modeling codes, it will be advantageous to make a quick
and rough inversion in terms of earthquake fault slip and change to other deformation sources.
An elastic half-space inversion for these sources naively might entail the full daily data set, 2000
iterations, 104 sources and 100 greens-function related operations, hence 200 T FLOPS. But the
iteration process can proceed from initially averaged data and other approximations, and focus
on regions of most interest, so this may be reduced to 20 GFLOPS (sustained).

Accuracy may then be further refined in regions of interest by applying finite element techniques
using known variations in rheology. Current work suggests 16 million finite elements can
adequately characterize a complex region of high interest, such as southern California. Multiple
runs involving iterative optimization techniques indicate the need for 0.1 TFLOPS rate per
region of interest, which we take to be 80; but a single day of observation would cover 10 of
these on average. Hence this stage requires 1 T FLOPS sustained.
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Figure 3.  Processor time increases linearly with mesh refinement.  Adding complexity increases the
unknowns and solution time is quadratic in unknowns.

For forecasting, we require a dynamic model that can span scales larger than a finite element
code. Boundary element methods combined with good fault-friction models can fulfill this need
in principle, although substantial testing and development remain. Such a system can be coupled
efficiently with the finite element regional models; we do not estimate the coupling overhead.
Operations count can be estimated from assumptions of regional cost, plus assumptions of
multipole coupling between regions; most of the cost is then in the regional interactions. So, with
80 regions covered at 10 per day, 105 fault patches per region with hence 1010 interactions, 100
operations per interaction, 1,000 update steps for data-driven corrections (including recent
history), and 0.1 computational efficiency, the requirement is 1 TFLOPS sustained.
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Figure 4.  A Northridge class simulation with 100,000 unknowns, and 4000 time steps takes 8 hours on a
high-end workstation.  Modeling the southern California system requires 4 million unknowns thus taking
12,800 processor hours for 1 km resolution. 0.5 km resolution would take 100,000 processor hours or 400

hours (17 days) on a dedicated 256-processor machine.

For better forecasting, eigenpattern rate techniques are needed. For each region, the 105 fault
patches imply 1015 operations to diagonalize local interactions. This may be reduced by focusing
on the primary modes, suggesting Lanczos methods. Direct methods indicate 0.1 TFLOPS
sustained.

Finally, these pattern rates will be used to daily update an earthquake hazard map. This may be
done with vector-oriented updates, and probably does not amount to more than 0.1 TFLOPS.

End to end, processing ECHO for earthquake forecasting comes to about 2 TFLOPS sustained
rate, implying 104 petaFLOPS/year.
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Table 1. Data Volumes from Observations

Mission Onboard Volume Derived Product

GRACE  50 MB/day onboard 8 GB/day derived product

ECHO 100 GB/day onboard

SRTM  12 TB raw data (mission total)

ICESat  1 GB/day onboard 2 GB/day derived

SCIGN 250 MB daily; 7.5 GB/day for
real time

Airborne observations  LIDAR

VCL  2 GB/day onboard 4 GB/day derived

Hyperspectral imagery  100 GB/day raw

Imaging LIDAR  > 20 GB/day > 40 GB/day

Table 2. Data Volumes Derived from Models

Model Today 2010
Geodynamo model 10 GB of storage for one

model run
1 PB/run with minimal need
of 10 runs

General
earthquake/lithospheric models

1 TB/run 10 PB/run (multiple scales
combined in many regions)

Gravity 100 GB/run 2 TB/run

Mantle convection models 1 TB/run 10 PB/run

Geomagnetic field models 32 GB/run 300 GB/run

Table 3. Computational Environment Metrics

Item Today 2010
Processes Currently none on

supercomputers
1 modeling run/day

Dedicated networks 1Gb/s sustained 50Gb/s sustained

Performance 100’s GigaFLOPS PetaFLOPS

Memory (RAM) 40 GB 5 TB
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Distributed Data Access
An important aspect of data collection is to create distributed centers for storing unique data sets
and developing the infrastructure to compare, analyze, and ingest complementary data sets, such
as ice topography and sea level changes. Currently, cooperative federated databases do not exist;
the data are heterogeneous and widely distributed in a variety of formats. Because of the high
volumes of data, now and in the future, data mining and other approaches for interacting with the
data must be developed (possibly including more onboard processing). A Solid Earth Research
Virtual Observatory (SERVO) is recommended to address this critical need. Such a system
would have the following characteristics:  distributed data at centers and ground stations;
thousands of sites with volumes of 1 TB to 1 PB; a multi-tier architecture for staging of the data;
middleware to control integrity and versioning; support standards developed within the
community; working within data grid projects; customized for key NASA solid Earth needs; and
high-performance access of 100 GB files within 40 TB datasets within 5 minutes to user and
program-to-program communication in milliseconds using staging, streaming, and advanced
cache replication.

This system may be modeled on known centers, such as EOSDIS, the Physical Oceanography
Distributed Active Archive Center (PODAAC), the National Virtual Observatory (NVO), and
the World Organization of Volcano Observatories (WOVO) systems.

Modeling Complexity
Creating realistic simulations of solid Earth processes requires complex models.  Multiscale and
multicomponent modeling requires that algorithms be developed and/or reengineered for current
environments and platforms so that various components can interoperate.  At present, no
appropriate environment exists for testing, calibration, visualization, and development.  Because
software programs have been developed on different platforms, it is difficult to merge them to
integrate scales and components into a more comprehensive model.  Real-time modeling poses a
problem of both data and computational latency.  The complexity of the problem requires high-
performance computers to realize these integrated models.  Both models and algorithms must be
developed to efficiently make use of high-performance computers.  Some algorithms are difficult
to parallel requiring an investment in development of algorithms and computational methods.
Adjusting the size of the problem to the resource is also difficult.  We propose the development
of an environment that recognizes the size of the problem to be solved that then farms the job out
to the appropriately sized computer.

Our recommendations, in priority order, are to:

1) Develop a solid Earth science Problem Solving Environment to support 10 solid Earth
sub-fields.  This includes a prototyping environment for developing a model in a month;
a modular framework for solid Earth applications; a collaboratory, which includes teams
of scientists and computational experts; visualization and data analysis tools, seamless
computer access; and integration of data and multicomponent models.

2) Development of improved parallel algorithms/applications (on the order of 100) with a
scaled efficiency of at least 50% on large clusters; models and model assessment
methods; and data assimilation techniques.
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3) The computational needs required to address model complexity include 100 TFLOPS
sustained rate capability per model, 5 TB total memory per model, and 104 petaFLOPS
throughput (3 TFLOPS per second sustained) per sub-field per year.

Understanding the Data
Understanding the data is critical to meeting the science objective set forth by the SESWG.  It is
difficult to explore, visualize, and understand the data, and difficult to gain meaningful
knowledge out of the large amounts of data, derived products, and model results.  The
multidimensionality of the data makes interpretation difficult.  Another bottleneck lies in
registering, map projecting, layering, and displaying the data.

We recommend an investment in visualization tools, methods, and standards for parallel
platforms.  These tools will include volume rendering in real time (109 volume elements), data
fusion, coregistration and layering for 1 TB datasets, and support of distributed visualization of
heterogeneous data from about 104 sources.  Rendering the data will require specialized parallel
graphics hardware/software to provide stereo HDTV at 120 frames/s.  The visualization tools
will make it possible to sweep through large amounts of three-dimensional data and model
output.  Three-dimensional models are required to model the very heterogeneous solid Earth
including plate tectonics, interacting fault systems, volcanoes, mantle processes, and the
geodynamo.

Visualization allows a researcher to build up an intuition of the processes being studied.  The
development of computational approaches for data mining and data understanding allow for
routine tasks to be accomplished efficiently.  They also can be used to point out subtle features in
the data, and redirect the scientist’s attention, allowing for a more thorough understanding of the
physics.  The data mining approaches include pattern analysis of on the order of 106 dimensions,
wavelet analysis on the order of 106 scales, and inversion techniques involving 106 parameters.

We recommend a combined approach of using both traditional and computerized data analysis.
Traditional analysis techniques useful in cases where lots of science knowledge is required, and
human intuition and larger understanding are valuable.  Computerized data understanding is
useful in cases where the important information is subtle and may evade even an unaided human
expert, or there is too much data for human “digestion.”  Putting the strengths of these two sides
together results in the creation of computerized data analysis that can be used as a tool for
scientists or data exploration and analysis, or can create a loop where scientists feed data into a
system for analysis, look at results, decide on a new analyses to perform, feed data in again, etc.

Risks
A number of hardware and software risks were identified. Not all of these may be realistic, but
they could not be casually dismissed. How should NASA build on the open software model?
Will the marketplace continue to support fast floating-point operations on chips? Will
performance FORTRAN support survive and if so, is that a good thing?  Continuation of
performance FORTRAN can result in the development of efficient codes as well as the support
of legacy code.  However, if the software packages are written in FORTRAN it may be difficult
to attract the younger generation of well-trained computer programmers, who have been
schooled in object-oriented programming such as JAVA and C++.  Another concern is that
coordinating a large team of researchers and technologists is difficult.  Any future programs
should foster collaboration among solid Earth and computational technologists.
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Because we anticipate large data volumes in the next decade, it is possible that the data won’t be
fully utilized unless there is a concerted effort in creating tools to understand the large data
volumes.  Bandwidth limitations for both ground and space systems may result in critical data
being lost.  We are only now learning, for example, that an earthquake on one fault can have far
reaching effects on the regional deformation field and on other faults.  We must be able to freely
explore all of the data to discover new processes.

There may be bottlenecks that limit performance but no tools to help identify limiting factors.
Performance of future computation platforms is also a risk.  It is possible that peak, but not
sustained, performance will increase.  Memory performance is constrained and is anticipated to
be a bottleneck.  To address these risks, it is important to develop high-performance algorithms
that have a high reuse of memory, and also encourage innovation in the marketplace.

Roadmaps
Developing the computational environment to address the science goals of the SESWG requires
a three-pronged but integrated approach.  Investments over the next decade must be made to
create a solid Earth research virtual observatory (SERVO), create a rich problem solving
environment, and an efficient computational environment.

Virtual Observatory Project

2003 2004 2005 2006 2007 2008 2009 2010
Timeline

C
ap

ab
ili

ty

Architecture & 
technology 
approach

Decomposition 
into services with 
requirements

Prototype cooperative 
federated data base 
service integrating 5 
datasets of 10 TB each

Prototype data 
analysis service

Prototype 
modeling service 
capable of 
integrating 5 
modules

Prototype 1920x1080 pixels 
at 120 frames per second 
visualization service

Scaled to 100 sites

• Solid earth 
research virtual 
observatory 
(SERVO)

• On-demand 
downloads of 100 
GB files from 40 
TB datasets within 
5 minutes.

• Uniform access to 
1000 archive sites 
with volumes from 
1 TB to 1 PB

Figure 5. Roadmap for the Solid Earth Virtual Observatory (SERVO).
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Problem Solving Environment Project

2003 2004 2005 2006 2007 2008 2009 2010
Timeline

C
ap

ab
ili

ty

Isolated 
platform 
dependent 
code fragments

Prototype PSE front end 
(portal) integrating 10 
local and remote services

Extend PSE to Include
• 20 users collaboratory with shared windows
• Seamless access to high-performance computers 

linking remote processes over Gb data channels.

Integrated visualization 
service with volumetric 
rendering

• Fully functional PSE 
used to develop 
models for building 
blocks for simulations. 

• Program-to-program 
communication in 
milliseconds using 
staging, streaming, 
and advanced cache 
replication

• Integrated with 
SERVO

• Plug and play 
composing of parallel 
programs from 
algorithmic modules

Plug and play composing of 
sequential programs from 
algorithmic modules

Figure 6.  Roadmap for the problem solving environment.
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Computational Environment

2003 2004 2005 2006 2007 2008 2009 2010
Timeline

C
ap

ab
ili

ty

100’s GigaFLOPs
40 GB RAM
1 Gb/s network bandwidth

~100 model codes 
with parallel scaled 
efficiency of 50%

~104 PetaFLOPs
throughput per
subfield per year

~100 TeraFLOPs
sustained capability 
per model

~106 volume 
elements rendering 
in real time

Access to mixture of platforms low cost 
clusters (20-100) to supercomputers with 
massive memory and thousands of 
processors

Figure 7.  Roadmap for the computational environment.
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Appendix D: Workshop Attendees
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Robert Ferraro, NASA JPL
Jim Fischer, NASA GSFC
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Forrest Hoffman, DOE ORNL
Roger Mitchell, Earth Satellite Corp
Massood Towhidnejad, Embry-Riddle Aero. University
Jerry Garegnani, ESRI
Yuechen Chi, George Mason University
Paul Schopf, George Mason University
Larry Fishtahler, GRSS
Bill Kneisly, IBM Corporation
Lloyd Treinish, IBM Thomas J. Watson Research Center
Alexey Voinov, IEE UMCES
Geoffrey Fox, Indiana University
Eungchun Cho, Kentucky State University
Phil Merkey, MichiganTech
Avichal Mehra, Mississippi State University
Stuart Frye, Mitretek Systems
Tom Ganger, Mitretek Systems
Thomas Passin, Mitretek Systems
Rob Van der Wijngaart, NASA ARC CSC
Douglas Ford, NASA ARC AMTI
Bryan Biegel, NASA ARC
David Gambrel, NASA ARC
Chuck Niggley, NASA ARC
Bob Shiner, NASA ARC
James Stegeman, NASA GRC
Joe Schmidt, NASA GSFC AMTI
Phil Bording, NASA GSFC CSC
Udaya Ranawake, NASA GSFC GEST
Gilberto Vicente, NASA GSFC GMU
Brice Womack, NASA GSFC Northrop Grumman/TASC
Shujia Zhou, NASA GSFC Northrop Grumman/TASC
William Putman, NASA GSFC SAIC
Leonid Zaslavsky, NASA GSFC SAIC
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Thomas Clune, NASA GSFC SGI
Spencer Swift, NASA GSFC SGI
Rodger Abel, NASA GSFC
Robert Atlas, NASA GSFC
Ben Chao, NASA GSFC
Arlindo Da Silva, NASA GSFC
John Dorband, NASA GSFC
Igor Eberstein, NASA GSFC
Jim Fischer, NASA GSFC
Watson Gregg, NASA GSFC
Milton Halem, NASA GSFC
Jeffrey Jonas, NASA GSFC
Gi-Kong Kim, NASA GSFC
George Komar, NASA GSFC
Weijia Kuang, NASA GSFC
Nand Lal, NASA GSFC
Vladimir Lumelsky, NASA GSFC
Karen Moe, NASA GSFC
John Moisan, NASA GSFC
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Christa Peters-Lidard, NASA GSFC
Michele Rienecker, NASA GSFC
Richard Rood, NASA GSFC
Ellen Salmon, NASA GSFC
Siegfried Schubert, NASA GSFC
Max Suarez, NASA GSFC
Wei-Kuo Tao, NASA GSFC
William Webster, NASA GSFC
Warren Wiscombe, NASA GSFC
Robert Wolfe, NASA GSFC Raytheon ITSS
Latonya Alexander, NASA HQ
Jim Dodge, NASA HQ
Jack Kaye, NASA HQ
Tsengdar Lee, NASA HQ
Gran Paules, NASA HQ
Jonathan Root, NASA HQ
Azita Valinia, NASA HQ
Robert Crippen, NASA JPL
Eric DeJong, NASA JPL
Andrea Donnellan, NASA JPL
Robert Ferraro, NASA JPL,
Daniel S. Katz, NASA JPL
Tony Lee, NASA JPL
Charles Norton, NASA JPL
Y.Tony Song, NASA JPL
Wendy Tang, NASA JPL
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Tuyet-lan Tran, NASA JPL
Michael Little, NASA LaRC CERES
Jassim Al-Saadi, NASA LaRC
Kuan-Man Xu, NASA LaRC
Bill LaPenta, NASA MSFC
Kirstin Riesbeck, National Computational Science Institute
Jeffrey McQueen, National Weather Service
Al Kellie, NCAR
Cecelia DeLuca, NCAR
Brian Gross, NOAA GFDL
Ming Ji, NOAA
Louis Kouvaris, NPP
Soundararajan Ezekiel, Ohio Northern University
Kevin Furlong, Penn State University
Genyuan Li, Princeton University
Nazmi Saleous, Raytheon
Troy Anselmo, SAIC
Michael Jones, SAIC
Karl Lalonde, SD School of Mines and Technology
Brian Hahn, SGI Federal
Bill Ryan, SGI Federal
Ilene Carpenter, SGI
Bruce Kiracofe, Shenandoah Mountain Geographics
Rafael Ameller, STORMCENTER Communications
Chung-Min Chen, Telcordia Technologies
C.Roberto Mechoso, UCLA
Xu Liang, University of California at Berkeley
John Rundle, University of Colorado
Jim Kinter, COLA
Antonio Busalacchi, University of Maryland, ESSIC
Tim Dixon, University of Miami
Allan Falconer, University of Mississippi
K Palaniappan, University of Missouri-Columbia
Gary Winchester, University of Pittsburgh
Nazario Ramirez, University of Puerto Rico
John Ries, University of Texas at Austin/CSR
Byron Tapley, University of Texas
Zhemping Liu, Virginia Tech


