

JMS Compliance in the Narada Event Brokering System

Geoffrey Fox Shrideep Pallickara
gcf@indiana.edu spallick@indiana.edu

Community Grid Labs, Department of Computer Science
Indiana University, Bloomington IN-47405

Abstract
Narada is a distributed event brokering system based on
the publish/subscribe paradigm and is designed to run on
a very large network of broker nodes. This paper
describes the process of achieving Java Message Service
(JMS) compliance in the Narada system. The paper also
describes our strategy for bringing Narada’s benefits –
scaling, availability, routing efficiencies and failure
resiliency – to existing JMS compliant systems. Finally,
we also include performance data from our JMS
compliant system.

Messaging systems based on queuing include products
such as IBM's MQSeries [1] and Microsoft's MSMQ [2].
The queuing model with their store-and-forward
mechanisms come into play when the sender of the
message expects someone to handle the message while
imposing asynchronous communication and guaranteed
delivery constraints. A widely used standard in messaging
is the Message Passing Interface Standard (MPI) [3]. MPI
is designed for high performance on both massively
parallel machines and workstation clusters. Messaging
frameworks based on the classical remote procedure calls
include CORBA [4] from OMG, DCOM [5] from
Microsoft and Java RMI [6] from Sun Microsystems. In
publish/subscribe systems the routing of messages from
the publisher to the subscriber is within the purview of the
message oriented middleware (MOM), which is
responsible for routing the right content from the producer
to the right consumers. Industrial strength solutions in the
publish/subscribe domain include products like
TIB/Rendezvous [20] from TIBCO and SmartSockets [19]
from Talarian. Other related efforts in the research
community include Gryphon [21], Elvin [22] and Sienna
[23]. The push by Java to include publish subscribe
features into its messaging middleware include efforts
like JINI [13] and JMS [14]. One of the goals of JMS is to
offer a unified API across publish subscribe
implementations. Various JMS implementations include
solutions like SonicMQ [15] from Progress, JMQ [16]
from iPlanet and FioranoMQ [17] from Fiorano.

Narada [8,9,10,11,12] is a distributed event brokering
system based on the publish/subscribe paradigm and is
designed to run on a very large network of broker nodes.
The distributed cluster architecture, which results in the
creation of “small world networks” [7], allows Narada to
support large heterogeneous client configurations that
scale to arbitrary size. Protocols controlling the addition
of broker nodes in Narada ensure that brokers being
added do not result in bandwidth degradation because of
their interconnectivity. Changes to the Narada broker
network include addition/removal of broker nodes and
communication channels between brokers. Narada
incorporates a scheme for the controlled propagation of
information pertaining to changes to the broker network
to relevant sections of the broker network. The
propagation scheme in tandem with the broker
organization makes the creation of efficient broker
network maps (BNM) an efficient one. The paths
computed, to reach any given destination, from these
BNMs tend to be very efficient since the protocols
controlling the addition of brokers and associated
connections have ensured that these connections do not
result in bandwidth degradations. Clients interested in
using Narada can attach themselves to one of the broker
nodes. Clients specify an interest in the type of events that
they are interested in and the service routes events, which
satisfy the constraints specified by the clients. Clients can
have prolonged disconnects from the broker network and
can also roam the network (in response to failure
suspicions or for better response times) and attach
themselves to any other node in the broker network.
Events published during the intervening period, of
prolonged disconnects and roams, must still be delivered
to clients that originally had an interest in these events.
The delivery constraints are satisfied in the presence of
broker and connection failures. Narada provides for a
hierarchical dissemination scheme for the delivery of
events to relevant clients. The system provides for an
efficient calculation of routes for disseminations, based on
BNMs, while ensuring that paths computed comprise only
those brokers and connections that have not failed or have
not been failure suspected. Narada is designed as an event
brokering system to support Community Grids [27] and
needs to encompass both peer to peer (P2P) [24] and the

mailto:gcf@indiana.edu
mailto:spallick@indiana.edu

traditional centralized middle tier style of interactions. We
base support for P2P interactions through JXTA [19],
which is a set of open, generalized protocols to support
P2P style communications. Details pertaining to the
JXTA integration can be found in [26]. This paper
describes the process of achieving JMS compliance in the
Narada system and strategies that bring Narada
functionality to JMS clients. This paper is organized as
follows. In section 1 we describe JMS compliance and
what the compliance implies. Section 2 provides the
rationale for achieving JMS compliance in Narada, while
section 3 describes our strategy to do so. Section 4
describes the applications that were used to test Narada’s
JMS compliance. Section 5 presents our strategy to help
JMS clients leverage Narada functionality in large
distributed settings in addition to the guarantees accorded
to these clients based on their conformance to the JMS
specification. Section 6 provides performance data from
our JMS compliant system.

1.0 JMS Compliance

The JMS specification [14] results in JMS clients

being able to interoperate with any service provider, this
process generally requires clients to incorporate a few
changes in the initialization sequences that are specific to
the vendor being used, after which interactions, as
specified in the JMS API, continue. JMS clients are
provider agnostic, and with a change in initialization
sequences a client should be able to function just as well
with any other provider. JMS does not provide for
interoperability between JMS providers, though
interactions between clients of different providers can be
achieved through a client that is connected to the different
JMS providers.

Clients need to be able to invoke operations as
specified in the specification; expect and partake from the
logic and guarantees that would go along with these
invocations. These guarantees range from receiving only
those events that match the specified subscription to
receiving events that were published to a given topic
irrespective of the failures that took place or the duration
of client disconnect. Clients are built around these calls
and the guarantees (implicit and explicit) that are
associated with them. Failure to conform to the
specification would result in clients expecting certain
sequences/types of events and not receiving those
sequences, which in turn lead to deviations that could
result in run time exceptions. JMS applications need to be
built entirely on JMS compliant calls. Some providers
tend to provide specialized calls that are either a sequence
of JMS calls or some specific features provided by the
provider. In either case such applications tend to result in
systems that are not JMS compliant.

2.0 Rationale for JMS compliance in Narada

There are two objectives that we seek to meet while

providing JMS compliance within Narada:
1. Providing support for JMS clients within the system.

This objective provides for JMS based systems to be
replaced transparently by Narada and also for Narada
clients (including other messaging styles supported
by Narada such as JXTA) to interact with JMS
clients. Support for clients conforming to a mature
messaging product within the research prototype
opens up Narada to a plethora of applications
developed around JMS. Furthermore, Narada could
then use these applications to further optimize certain
most commonly used features exploited by these
applications. The requisite changes for optimizations
would need to be made at the Narada core. JMS
clients could receive messages from non-JMS based
clients and the interaction could proceed seamlessly.
Narada also routes JXTA interactions efficiently; it is
thus possible for JMS clients and JXTA peers and
Narada clients to interact via the Narada brokering
system.

2. To bring Narada functionality to JMS clients/systems
developed around it. This approach (discussed in
section 4.0) will transparently replace single server or
limited server JMS systems with a very large scale
distributed solution, with failure resiliency, dynamic
real time load balancing and scaling benefits that
accompany highly available systems.

3.0 JMS compliance in Narada

Narada provides clients with connections that are then

used for communications, interactions and any associated
guarantees that would be associated with these
interactions. Clients specify their interest, accept events,
retrieve lost events and publish events over this
connection. JMS includes a similar notion of connections.
To provide JMS compliance we write a bridge that
performs all the operations that are required by Narada
connections in addition to supporting operations that
would be performed by JMS clients. Some of the JMS
interactions and invocations are either supported locally
or are mapped to corresponding Narada interactions
initiated by the connections. Each connection leads to a
separate instance of the bridge. In the distributed JMS
strategy, section 4.0, it is conceivable that a client, with
multiple connections and associated sessions, would not
have all of its connections initiated to the same broker.
The bridge instance per connection helps every
connection to be treated independently of the others,
despite each one being registered to different brokers.

In addition to connections, JMS also provides the
notion of sessions that are registered to specific

connections. There can be multiple sessions on a given
connection, but any given session can be registered to
only one connection. Publishers and subscribers are
registered to individual sessions. Support for sessions is
provided locally by the bridge instance associated with
the connection. For each connection the bridge maintains
the list of registered sessions, the sessions in turn maintain
a list of subscribers. Upon receipt of an event over the
connection the corresponding bridge instance is
responsible for forwarding the event to the appropriate
sessions, which then proceed to deliver the event to the
listeners associated with subscribers having subscriptions
matching the event. In Narada each connection has a
unique ID and guarantees are associated with individual
connections. This ID is contained within the bridge
instance and is used to deal with recovery and retrieval of
events after prolonged disconnects or induced roam due to
failures.

We also need to provide support for the creation of
different message types and assorted operations on these
messages as dictated by the JMS specification, along with
serialization and de-serialization routines to facilitate
transmission and reconstruction. In Narada, events are
routed as streams of bytes, so as long as we provide
marshalling un-marshalling operations associated with
these types there are no issues with support for these
message types.

In JMS the topics are generally “/” separated (e.g.
Course/CPS616/Session/HPJava) while Narada supports
topics which are created as <tag, value> pairs (e.g.
Courses=CPS616, Session=HPJava), with a provision for
wild card operators in the values associated with tags (e.g.
Courses=*, Session=HPJava) We implemented a wrapper
which efficiently maps “/” separated topics into those that
are <tag, value> separated, if the topics are already
specified as <tag, value> pairs no further processing
would be done. The destination topic contained within the
JMS message is of course not touched. In addition to this
the matching algorithm [21] used in Narada is augmented
with the JMS selector mechanism implemented in
openJMS [18].

NARADA_JMS Event

Topic Name

Delivery Mode
(Persistent/Transient)

Priority

JMS Message
Headers
PayLoad

Figure 1: Narada/JMS Event

The JMS subscription request is mapped to the
corresponding Narada Profile propagation request and
propagated through the system. The bridge maps
persistent/transient subscriptions to the corresponding
Narada subscription types. JMS messages that are
published are routed through the Narada broker as a
Narada event. The anatomy of a Narada/JMS event,
encapsulating the JMS messages, is shown in figure 1.
Events are routed based on the mapped JMS Topic name
contained in the event. Storage to databases is done based
on delivery mode indicator in the event.

JMS provides a call that ensures that subscribers do
not receive messages issued by publishers registered to
the same connection. The bridge is responsible for
suppressing these messages from being delivered to
sessions registered to the connection that created the
message. When a message is published by a publisher, the
Narada/JMS event also contains information regarding the
connection that event was published over. When the event
is received at the connection, this information is used to
suppress delivery of the message, retrieved from the
event, to those subscribers that should not receive
messages that were published over that connection. This
information is also used by Narada to ensure that the
event is not routed to the connection in the first place.

Existing JMS applications where we successfully
replaced the JMS provider with Narada include the
multimedia intensive distance education audio/video/text/
application conferencing system [28] by Anabas Inc and
the Online Knowledge Center (OKC) [29] developed at
IU Grid Labs. Both these applications were based on
SonicMQ.

4.0 The Distributed JMS Solution

By having individual brokers interact with JMS clients,

we have made it possible to replace the JMS provider’s
broker instance with a Narada broker instance. The
features in Narada are best exploited in distributed
settings. However, the distributed network should be
transparent to the JMS clients. What we seek is that the
traditional initializations involving the specification of a
single hostname and port number should still be left
intact. Each Narada broker should still be able to function
as a standalone broker. Existing systems built around
JMS should be easily replaced with the distributed model
with minimal changes to the client. In fact, the
initialization changes should be identical to those that are
required when a JMS provider is changed. JMS clients
using a standalone Narada broker as the JMS provider
should not have to make any changes with any associated
initializations. In general, setups on the client side are to
be performed in a transparent manner. Another important
constraint in the proposed distributed JMS solution is that
no changes are to be made to the Narada core and the

associated routing, propagation and destination
calculation algorithms. The solution to the transparent
distributed JMS solution would allow for any JMS based
system to benefit from the distributed solution.
Applications would be based on source codes conforming
to the JMS specification while the scaling benefits,
routing efficiencies, failure resiliency accompanying the
distributed solution are all automatically are inherited by
the integrated solution.

A simple solution to this problem would be to set up
the Narada broker network after which individual clients
choose the broker that they would connect to. Thus,
individual clients still specify the broker they need to
connect to, the only difference being that they now have a
much larger set of brokers to choose from. The clients
also need to make sure that the broker that they would be
connecting to, is currently up and running. This scheme
forces JMS clients to be aware of the broker
interconnection scheme and also to be aware of brokers
that have failed, been failure suspected, recovered and
those that have been newly added. The process of moving
towards a distributed JMS architecture is obviously not
transparent to the JMS clients. Furthermore, it is
conceivable that clients would continue to access a certain
known broker over and over again while newly added
brokers continue to be under utilized.

To circumvent the problem of discovering valid
brokers we introduce the notion of broker locators. The
broker locators’ primary function is the discovery of
brokers that a client can connect to. Clients thus do not
need to keep track of the brokers and their states within
the broker network. The broker locator has certain
properties and constraints based on which it arrives at the
decision regarding the broker that a client would connect
to.
1) Load balancing – Broker locators keep track of the

number of concurrent connections maintained by
each broker. It also maintains the published limit on
concurrent connections at a broker node. Connection
requests are always forked off to the best available
broker. This enables us to achieve dynamic real time
load balancing.

2) Incorporation of new brokers – When a new broker is
available that broker would be the best available
broker to handle new connection requests. Clients
thus incorporate these brokers faster into the routing
fabric.

3) Availability – The broker locator itself should not
constitute a single point of failure neither should it be
a bottleneck for clients trying to utilize network
services. The Narada topology allows brokers to be
part of domains. There could be more than one
broker locators for a given administrative domain.

4) Minimal logic – The broker locator is not supposed to
maintain active concurrent connections to any

element within the Narada system. The loss of the
broker locator should not affect processing pertaining
to any other node within the system.

4.1 Metrics for Decision Making

To determine the best available broker to handle the

connection request, the metrics that play a role in the
broker locator’s decision include the IP-address of the
requesting client, the number of connections that are still
available at the brokers that are best suited to handle the
connection, the number of connections that currently
exist, the computing capabilities and finally the
availability of the broker (a simple ping test). We now
discuss the sequence of operations that take place once a
decision has been made regarding the broker that is best
suited to handle connection request.

Narada Broker Cloud

Broker Locator pinging the
best available broker

Client connection to broker

Client request for Connection

Client

Broker
Locator

Figure 2: Distributed JMS approach

Once a valid broker has been identified, the broker
locator also verifies if the broker process is currently up
and running. Once this is confirmed the broker locator
proceeds to route broker information to the client. If the
broker process is not active, the computed broker is
removed the list of available brokers the broker locator
computes the next best broker and the sequence of actions
listed above is repeated. The broker information
propagated to the client includes the hostname/IP-address
of the machine hosting the broker, the port number on
which it listens for connections/communications and the
transport protocol that is used for communication. The
client then uses this information to establish a
communication channel with the broker. Figure 2 depicts
this sequence of operations and also the scenario where a
client has connections to two different brokers. Once it is
connected to a Narada broker, the JMS client can proceed
with interactions identical to the single broker case.

Based on system requirements new brokers can be
added to deal with load balancing and scaling issues.
Furthermore failure of brokers will not affect clients since
clients could be induced to ‘roam’ the broker network and
attach itself to another available broker node. The system
guarantees that the client will not loose events due to any
failures that may takes place in the system. The other
advantage is that this distributed solution would be
selective in the links and the nodes that it employs to
ensure dissemination of events. Narada also ensures that
every broker, either targeted or en route to one will
always traverse the shortest path to reach its destination.
Furthermore, the only brokers that are part of these
shortest paths are those that have not failed. The
guaranteed delivery scheme within Narada does not
require every broker to have access to a stable store or
DBMS. The replication scheme is flexible and easily
extensible. Stable storages can be added/removed and the
replication scheme can be updated. Stable store’s can fail
but they do need to recover within a finite amount of time,
however during these failures the clients that are affected
are those that were being serviced by the failed storage.

5.0 JMS Performance Data

To gather performance data, we run an instance of the

SonicMQ (version 3.0) broker and Narada broker on the
same dual CPU (Pentium-3, 1 GHz, 256MB) machine.
We then setup 100 subscribers over 10 different JMS
TopicConnections on another dual CPU (Pentium-3,
866MHz, 256MB) machine. In addition there is a
measuring subscriber and a publisher that are set up on a
third dual CPU (Pentium 3, 866MHz, 256MB RAM)
machine. Since we will be computing communication
delays setting up the measuring subscriber and publisher
on the same machine enables us to obviate the need for
clock synchronizations and differing clock drifts. The
three machines involved in the benchmarking process
have Linux (version 2.2.16) as their operating system.
The runtime environment for the broker, publisher and
subscriber processes is Java 2 JRE (Java-1.3.1,
Blackdown-FCS, mixed mode).

Subscribers subscribe to a certain topic and the
publisher publishes to the same topic. Once the publisher
starts issuing messages the factor that we are most
interested in is the transit delay in the receipt of these
messages at the subscribers. This delay corresponds to the
response times experienced at each of the subscribers. We
measure this delay at the measuring subscriber while
varying the publish rates and message sizes of the
messages being published. We control the publish rates
by varying the time interval between the publishing of
two consecutive messages. We vary the message size by
changing the payload contained in the message. For a
sample of messages received at the measuring subscriber

we calculate the mean transit delay and the standard
deviation within this sample. We also calculate the system
throughput measured in terms of the number of messages
received per second at the measuring subscriber.

Figures 3-5 depicts the transit delays for JMS clients
under Narada and SonicMQ for varying publish rates and
payload sizes. Figures 6-8 depicts the standard deviation
associated with message samples under conditions
depicted in figures 3-5 respectively. Figures 9 and 10
depict the system throughputs, during high publish rates
and smaller payloads, for Narada and SonicMQ clients
respectively. As can be seen from the results Narada
compares very well with SonicMQ while also
outperforming SonicMQ in several cases. Furthermore,
the standard deviation associated with the message
samples (for individual test cases) received at clients in
Narada were, for the most part, lower than those at clients
in SonicMQ for the cases that were benchmarked.

Transit Delays for Message Samples in Narada and SonicMQ

Narada
SonicMQ

0
5

10
15

20
25

Publish Rate
 (Messages/sec) 100150200250300350400450500550

Payload Size
 (Bytes)

0
2
4
6
8

10
12
14

Mean
 Transit Delay
 (MilliSeconds)

Figure 3: Transit Delays - Lower publish rates
smaller Payloads

Transit Delays for Message Samples in Narada and SonicMQ

Narada
SonicMQ

0
5

10
15

20
25

Publish Rate
 (Messages/sec) 1000

2000
3000

4000
5000

6000

Payload Size
 (Bytes)

0
5

10
15
20
25
30

Mean
 Transit Delay
 (MilliSeconds)

Figure 4: Transit Delays - Lower publish rates
bigger payloads

Transit Delays for Message Samples in Narada and SonicMQ

Narada
SonicMQ

0 50100150200250300350400
Publish Rate

 (Messages/sec) 100150200250300350400450500550

Payload Size
 (Bytes)

0
5

10
15
20
25
30

Mean
 Transit Delay
 (MilliSeconds)

Figure 5: Transit Delays - Higher publish rates
smaller payloads

Standard Deviation in the Message Samples - Narada and SonicMQ

Narada
SonicMQ

0
5

10
15

20
25

Publish Rate
 (Messages/sec) 100150200250300350400450500550

Payload Size
 (Bytes)

0
2
4
6
8

10
12
14
16

Standard
 Deviation

 (MilliSeconds)

Figure 6:Standard Deviation - Lower publish
rates smaller payloads

Standard Deviation in the Message Samples - Narada and SonicMQ

Narada
SonicMQ

0
5

10
15

20
25

Publish Rate
 (Messages/sec) 1000

2000
3000

4000
5000

6000

Payload Size
 (Bytes)

0
5

10
15
20
25
30
35

Standard
 Deviation

 (MilliSeconds)

Figure 7:Standard Deviation - Lower publish
rates bigger payloads

Standard Deviation in the Message Samples - Narada and SonicMQ

Narada
SonicMQ

0 50100150200250300350400
Publish Rate

 (Messages/sec) 100150200250300350400450500550

Payload Size
 (Bytes)

0
2
4
6
8

10
12
14

Standard
 Deviation

 (MilliSeconds)

Figure 8: Standard Deviation - Higher publish
rates smaller payloads

System Throughputs - Narada

Narada

0 50100150200250300350400
Publish Rate

 (Messages/sec) 100150200250300350400450500550

Payload Size
 (Bytes)

0
50

100
150
200
250
300
350

Receiving Rate
 (Messages/sec)

Figure 9: System Throughputs (Narada) - Higher
publish rates smaller payloads

System Throughputs - SonicMQ

SonicMQ

0 50100150200250300350400
Publish Rate

 (Messages/sec) 100150200250300350400450500550

Payload Size
 (Bytes)

0
50

100
150
200
250
300
350

Receiving Rate
 (Messages/sec)

Figure 10: System Throughputs (SonicMQ) -
Higher publish rates smaller payloads

6.0 JMS over UDP in Narada

We also support JMS over UDP. This feature

facilitates the creation of JmsTopicConnections, which
provide UDP communication support for the hosted
sessions and the publishers and subscribers associated
with these sessions. We however do not provide packet
loss and out of order delivery detection and associated
error corrections. This feature should thus be used only
for transient events and applications where packet losses
can be sustained. However with advancements in
networking technology the errors associated with UDP
communication tend to very few over an extended
duration of time. Applications that can sustain such small
losses can greatly benefit from this feature.

7.0 Conclusion

In this paper we outlined the process of providing JMS

compliance within Narada. There are several benefits to
be accrued by this compliance. We also describe a scheme
that allows existing JMS based applications to inherit
Narada features in distributed settings.

References:

1. IBM MQSeries. http://www.ibm.com/software/mqseries
2. Peter Houston. Building Distributed Applications with

Message Queuing Middleware. Microsoft White Paper.
3. Message Passing Interface Forum. MPI: A Message-

Passing Interface Standard. May 1994.
4. Object Management Group (OMG). CORBA Services.

http://www.omg.org/technology/documents/ . June 2000.
5. Guy Eddon and Henry Eddon. Understanding the DCOM

Wire Protocol by Analyzing Network Data Packets.
Microsoft Systems Journal. March 1998.

6. Sun Microsystems. Java Remote Method Invocation (Java
RMI) - Distributed Computing for Java. White Paper.
http://java.sun.com/marketing/collateral/javarmi.html

7. D.J. Watts and S.H. Strogatz. Collective Dynamics of
Small-World Networks. Nature. 393:440. 1998.

8. The Narada Event Brokering System
http://grids.ucs.indiana.edu/ptliupages/projects/narada/

9. Geoffrey Fox and Shrideep Pallickara, An Event Service to
Support Grid Computational Environments, to be published
in Concurrency and Computation: Practice and
Experience, Special Issue on Grid Computing
Environments.

10. Geoffrey Fox and Shrideep Pallickara, The Narada Event
Brokering System: Overview and Extensions. To appear in
the Proceedings of the 2002 International Conference

on Parallel and Distributed Processing Techniques
and Applications (PDPTA’02), Las Vegas June 2002.

11. Geoffrey C. Fox and Shrideep Pallickara , An Approach to
High Performance Distributed Web Brokering. ACM
Ubiquity Volume2 Issue 38. November 2001.

12. Pallickara, S., "A Grid Event Service." PhD Syracuse
University, 2001.

13. Ken Arnold, Bryan O'Sullivan, Robert Scheifler, Jim
Waldo and Ann Wollrath. The Jini Specification. Addison-
Wesley. June 1999.

14. Mark Happner, Rich Burridge and Rahul Sharma. Sun
Microsystems. Java Message Service Specification. 2000.
http://java.sun.com/products/jms

15. SonicMQ JMS Server http://www.sonicsoftware.com/
16. iPlanet JMQ. Java Message Queue Documentation.

http://www.iplant.com
17. Fiorano Corporation. A Guide to Understanding the

Pluggable, Scalable Connection Management (SCM)
Architecture - White Paper. http://www.fiorano.com/
products/fmq5_scm_wp.htm

18. The OpenJMS Project http://openjms.exolab.org/
19. Talarian Corporation. SmartSockets: Everything you need

to know about middleware: Mission Critical Interprocess
Communication. Technical Report: URL:
http://www.talarian.com/products/smartsockets

20. TIBCO Corporation. TIB/Rendezvous White Paper. URL:
http://www.rv.tibco.com/whitepaper.html, June 1999.

21. Marcos Aguilera, Rob Strom, Daniel Sturman, Mark Astley
and Tushar Chandra. Matching Events in a Content-based
Subscription System. Proceedings of the 18th ACM
Symposium on Principles of Distributed Computing. May
1999.

22. Bill Segall and David Arnold. Elvin has left the building: A
publish/subscribe notification service with quenching. In
Proceedings AUUG97, September 1997.

23. Antonio Carzaniga, David S. Rosenblum and Alexander L.
Wolf. Achieving Scalability and Expressiveness in an
Internet-Scale Event Notification Service. Proceedings of
19th ACM Symposium on Principles of Distributed
Computing, July 2000.

24. “Peer-To-Peer: Harnessing the Power of Disruptive
Technologies”, edited by Andy Oram, O’Reilly Press
March 2001.

25. Sun Microsystems. The JXTA Project and Peer-to-Peer
Technology http://www.jxta.org

26. Geoffrey Fox, Shrideep Pallickara, Xi Rao, Pei Qinglin.
Scaleable Event Infrastructure for Peer-to-Peer Grids.

27. Geoffrey Fox, Ozgur Balsoy, Shrideep Pallickara, Ahmet
Uyar, Dennis Gannon, Aleksander Slominski. Community
Grids. Proceedings of the International Conference on
Computational Science. Amsterdam, April 2002.

28. The Anabas Conferencing System. http://www.anabas.com
29. The Online Knowledge Center (OKC) Web Portal

http://judi.ucs.indiana.edu/okcportal/index.jsp

http://www.ibm.com/software/mqseries
http://www.omg.org/technology/documents/
http://java.sun.com/marketing/collateral/javarmi.html
http://grids.ucs.indiana.edu/ptliupages/projects/narada/
http://java.sun.com/products/jms
http://www.sonicsoftware.com/
http://www.iplant.com/
http://www.fiorano.com/ products/fmq5_scm_wp.htm
http://www.fiorano.com/ products/fmq5_scm_wp.htm
http://openjms.exolab.org/
http://www.talarian.com/products/smartsockets
http://www.rv.tibco.com/whitepaper.html
http://www.jxta.org/
http://www.anabas.com/
http://judi.ucs.indiana.edu/okcportal/index.jsp

	Abstract
	1.0 JMS Compliance
	2.0 Rationale for JMS compliance in Narada
	4.0 The Distributed JMS Solution
	4.1 Metrics for Decision Making

	5.0 JMS Performance Data
	References:

