An XML Messaging System for Dynamic Content Creation and Control

Abstract

We describe an XML messaging system for creating, delivering and managing general purpose XML messages. This system may be used as the foundation for human readable messages (such as messages and registration systems) as well as an event-driven application-to-application system.

Introduction

XML messages can be used to provide a platform-, programming language-, and application endpoint-independent way for both synchronous and asynchronous communication to take place. Instead of concentrating on endpoint implementations (some of which may be developed by different groups) we can develop standard message formats and use common wire protocols (such as HTTP and SMTP) to transport these messages. There are numerous potential applications for such a system, including a) a message-style system that allows users to post messages, which can then be delivered by email, generated web page, or both; b) a training registration system that allows students to register for classes and instructors to post classes and course materials for students; c) human-to-application communication, in which a human generated message results (for example) in a web page update; and d) application-to-application messaging, in which (for example) an email message from a queuing system announcing the completion of a job results in a the execution of another service, thus serving as an event system to push through a workflow chain. Finally, message systems can receive and deliver messages from multiple sources. For example, messages may be delivered both via email (for relatively critical notification) and to web sites, where they may be viewed at leisure and in the context of other postings.

Such systems have the following major components: an XML message composing tool for posting messages, an architecture for delivering the messages to the appropriate interested listeners, and a user role/access control system to define various levels of users, their privileges. We describe our implementations of each of these ideas in the following sections.
Message Composition with Wizards
We refer to the user interface for compiling and posting the message group messages as composition wizards. The essential features of this system are described in this section.
XML Message Format Schema
The first step in our system is creating the schemas that define the particular types of messages we wish to transfer. Particular XML messages are instances of these general schemas. For example, a message message may look like the following.
The advantage of the XML messaging format is that it only requires that the client application create a valid, well-formed message, which can then be handed off to the system. Thus for example a human can create a message posting by hand with any kind of text editor. Obviously, though, a composing system that reliably generates the message is desirable.

A “wizard” composing system can be used to reliably create messages from a particular schema. After defining the necessary schema for a particular application, these schemas have a natural mapping to both user interface components (HTML form elements, Java Swing components, etc.) and data objects (such as JavaBeans). We must thus generate the code for the user interface and the data model.
Data Binding
The process of mapping an XML schema to classes in a particular object oriented programming language is called data binding and that means mapping the elements of a given data format into a specific representation of a programming language. This language in our case is Java.
In most cases the content of an XML document can represent a number of different data types such as strings, integers, real numbers etc. These data types are grouped together to represent some special meaning for the domain in which the XML data is defined. Interacting with XML content as a data model represented as objects, types or data structures is an easy task for a programming language and this would improve the code readability and maintainability.

Data Binding and XML

XML data binding simply means to represent elements and attributes of the XML document into a programmatic data model that can preserve the meaning of the data and keeps the original logical hierarchy and represent the components in the native format of the programming language. In Java the data models are objects.

An object model in Java is a set of classes and a group of primitive types which are bound together in a sense to represent real world or conceptual objects. Depending of the complexity of the object the object model can consist of hundred of classes or only one class.

Data Objects
Our data object type will be Java Beans. A Java Bean is simply a Java Class that is constructed according to the Java Bean design pattern. Basically we follow some basic rules while writing our java classes so that the desired information can be obtained about our data objects.

For instance in most cases just following the method naming conventions of the design pattern for Java Beans is sufficient for tools to obtain information about the fields -properties- of our classes. The main guideline is that all publicly accessible fields have proper getter and setter access methods. A getter method is basically a method that returns us the value of the field while a setter method allows us to set the value of the field.
Creating Data Object Models

There are a number of XML parsers which can help us in creating data object models of our XML documents and data, but most of them require a significant amount of coding and that could affect our systems performance negatively. Also most of the parsers are not really compatible for system transitions. This is a very important setback for us since we do not want to rewrite all the code for each small change in any of the parts.

The particular problem of converting a schema to a set of JavaBean classes has already been solved by Castor. However, this is only one part of the problem. We must still define the creation of the user interface and the programming interface for manipulating these data objects.
Manual Creation of User Interfaces
Once we have our schema and data object model which represents the elements in the schema we need to provide an interface for users to enter their data. We use JSP to produce web pages on demand.

These pages consist of some form elements which are created according to the schema elements. Each form element in the HTML form corresponds to an element in the XML Schema.
Automatic Form Generation
Just as a tool like Castor maps the schema to data object bindings, we need a mechanism for generating user interfaces by hand. We are currently developing such a system for HTML form generation using JSP and Velocity.
Final Message Format
In addition to the schema for the message itself, we must embed this into a larger XML message. This includes additional information such as email header that contains additional pieces such as original email message headers and attached documents. The following figure illustrates the message structure. The message is now ready to be posted to the system.

[image: image1.emf] Message Header

MIME Root Body

User Message

First MIME Body

Original Mail Header

Second MiMe Part

 Attachment

 Attachment

*

*

*

Message Delivery Architecture
We need in general to support two sorts of message delivery mechanisms: a “push” model that immediately sends out the message to the subscribing application and a “pull” model that archives posting that can then be recovered on demand. Email message delivery is an example of a push system, and a database querying system with a browser front end is an example of pull. The coupling of these two systems is illustrated in the following figure.

[image: image2.emf]USER ACCESS RIGHT

MANAGAMENT PART

MIDDLEWARE

PART

MESSAGE DELIVERY PART

JMS

SERVER

MESSAGE

RECORDER

DATABASE

EMAIL

DISTRIBUTOR

MESSAGE

FEEDER

JDBC

JDBC

HTTP

JMS

Publish

JMS

Publish

JMS

Subscribe

JMS

Subscribe

JDBC

JDBC

JDBC

JDBC

RSS

or

XML

SMTP

SMTP

HTTP

HTTP

MESSAGE POSTING PART

EMAIL

HANDLER

USER

ID

GENERATOR

Socket

Socket

MESSAGE GROUPS

ACCESS RIGHTS

MANAGEMENT

MESSAGE

POSTING

WIZARD

MESSAGE

DISPLAYER

Figure 1 The XML messaging system architecture supports multiple subscribers and publishers.

A user may compose and post a message either through email or through a wizard interface. This message is published to a hub (JMS in our case) where it is both immediately pushed out to an email distributor and to an archival system (database). The email distributor delivers the message to the appropriate subscribers, while the archived messages are sent to a message recorder that writes the message to a database. The user may then recover the message later through a display system that interacts with a message feeder that pulls messages out of the database.
Email-Based Message Posting
The email handler is a bridge program that connects external email servers and the JMS message hub. The Email Handler sits in the cross-section SOAP-JMS and SMTP. Email Handler Server connects any type of email server which protocol can be POP3, IMAP or SMTP and listens to it in a pre-set time interval. We are using the Java Mail API to listen the email server. When the new mail comes to inbox, our Email Handler reads it and starts to process it. First it checks if the message is a valid XML document or not. We constructed three XML documents after processing the incoming message. The various message parts illustrated above are then split into separate documents.
Incoming message is the actual user message and it is in XML document format. It is XML schema is predefined by the system administrator and user must follow that schema in order to communicate the system successfully. In other words, their message will not be published into JMS server. You can see the sample user incoming message in appendix.
Incoming message header is the email header information. That information is not an XML format when it is read from the Email Server. Email Handler converts that header information which includes the mail delivery route information into XML document format. By saving email header information, we do not lose any information from the original email. It can be used for security purpose in the future, too. Please refer to appendix for the sample email header XML document.
There is a question now: How does Email Handler deliver the messages in to right topics:

We get the destination topic of JMS from incoming message. There is a field as

<distribution uri=”cgreports”>Community Grids Project Reports</distribution> which tells us where to publish this message.
If the incoming message incoming message is not in XML format or it not a valid XML document then our Email Handler sends an error message to the user.
Archiving and Pulling Messages
The archival middleware of the messaging system is responsible for recording the messages and providing (feeding) them to the requesters. These two parts of the system are designed to be independent of from the message creating part and the message requester part. For that reason, the server should provide us a functionality that the receiver does not need to know anything about the sender. However, the receiver and publisher have to know what message format. The server should also deliver a message to a client only once. The JMS server matches with our criteria.

The messages are received by the Java Messaging Service in the middleware of messaging system. The JMS server can be used to communicate events between Java services running on different hosts. The other modules of messaging systems which generate events register as a publisher to the JMS server. The recorder module of the middleware registers to the JMS server as a subscriber to the publication channels which we want to listen.

The recorder and feeder parts are also working independently from each other. Each received message ends with storing to the database and storing the attachments to the file system, if there is any. On the other hand, the feeder, which is invoked by the requester, independently retrieves those stored messages from the database.

Each message is assigned a URI as a unique identifier. This defines a hierarchical, searchable structure for messages: a message can contain child messages (for example, a thread in a news group system). For instance, in a message group example of messaging system, we can create the reply messages as a child of message which is replied to. By the URI type unique id, the attachments can be stored to the unique directory which is related to the unique id. In this structure, we can also store the messages as an xml file in a directory structure like we store attachments. This can be used to upload the web pages dynamically with sending an e-mail to the specific mail address.

A message has xml format, which are enveloped in a SOAP object. When a message is received, the xml objects are derived from this SOAP objects. Each message includes at least three part. The first part is includes the information about the messages such as sender name, sender e-mail and subject. The second xml object is the message body which includes original message from the sender. The third is the mail header. In the messaging system, user can send a message by e-mail. So, we keep the header of the original mail in this third object. The messages may also include the attachments. Each attachment is in a separate MIME part of SOAP objects.

Each message is stored to a database to provide persistency. The unique id can be enough to make search in database. The recorder module completes its mission with storing the message to the database and the attachment to the directory system.

The feeder part is completely working independently from the recorder part. The requests are received via JSP pages. It invokes the feeder to retrieve a message from the database. If the requested information can be found in the database, an xml file is created dynamically. This file includes the information which the requester asked.

On the contrary to recorder, in the feeder part, we should maintain a system which could accept more than hundreds connections at a time. For each access to database, we should not open and close a connection. It is better to use one connection several times because the connection is expensive in database access. However, the unclosed connections may cause memory leakage if the connection stays idle long time. For example, in the oracle database, there is not any garbage collection and the unclosed connections causes memory problem. To solve this, we used, in our implementations, the connection pooling classes which are already in oracle JDBC deriver classes. It provides us to close a connection automatically when the connection is idle during the certain time.

One of implementation is training system. The requester mainly asks two kind of request. One of them is a request which includes the information of the all messages. The response is in Rich Site Summary format. This RSS file includes the information such as the link of original message, sender name and date. The other request is for a specific message, a course. To make this request, the requester takes the RSS file and derives the information to request the message body, class information.

The security is required in the JSP files. We should not allow an unauthorized person to make a request. Therefore, the JSP files checks the coming request is authorized or not and allows only authorized requests.

It can be done by checking cookie or by checking the requester is an authorized person. In the second solution, each requester passes the name and password with a request. The password, name and request are checked whether this person is registered person and he has access to the information which is requested.
Message channel displayer uses RSS URI to construct the e-mail/message hierarchy and to get the body of messages. The MessageFeeder constructs the RSS file at the request of the Message Channel. XSL can be used to extract data from XML based message in order to show the required messages to the users. For example, Message channel displayer checks the user’s access rights by using the database. User access rights allow users to read from and write into message channel topics.
The confirmed message channel can be used by user to post or read messages. The interface read the index structure of the message channel which is RSS Feeder to get all the message ids in order to indexing the XML message based messages.

In the message channel reader, when the user selects the message channel, user's current access message channel will be listed on the message channel list section. The message channel can be reached, when user want to get all the messages for the selected message channel. A user can access the messages if he/she has read access of the message channel. Here, we secure our message channel according to the user's rights. For example, if they have access to read only, user can read the message. Users only post messages, if they have write access to message channel. These rights are requested by user first and then are confirmed by administrator.

The posted messages keep in the RSS file. According to user's selection of the message channel, the message list will extracted from RSS file. Parsers can be used to parse the XML object in message channel part.

User Roles and Access Control
Message System requires access control for security and dynamic structure for users. Regular users send or post messages. Messaging system users can have several different roles with associated privileges. We present here some specific role-based access levels and examine requirements for a more general system. We do not discuss login and authentication here. These are assumed to be inherited from some other system using the messaging system described here. Access controls are based on this external proof of identity.
Our messaging system is broken up into various message channels. As described previously, we must support several types of clients but do so using a small set of protocols (HTTP and SMTP) so we effectively have only one publisher per protocol. Likewise, messages may be delivered to any number of client applications, which is managed through general purpose message subscribers. Thus we have two points of access control: for posting and for receiving messages. We enforce privileges at these distribution points rather than within the JMS hub itself.

We may now identify the principle roles such a system requires:
Users post and receive messages. Users have privileges to read and optionally write to one or more message channels. Users have additional options with regard to the choice of message delivery mechanism. That is, a user may request message notification by email, through a web interface, or both.
Message Channel Administrators have the authority to assign users to a specific message channel. An individual may have administration privilege over more than one message channel, and a specific channel has one or more administrators. They may also modify the access rights of a user, denying a user the privilege of writing to a particular channel, for example.
Top administrators administer the entire messaging system. In addition to the administrator authorities, this role has the authority to create new messages channels and assign administrators to them.
In the access control system, top administrator controls the channel administrators, and channel administrators control the channel user objects. Each channel user object has been assigned to the role and group. Second group can modify, remove user rights from the message channel group by having these control structure.

[image: image3.emf]user a

role 1

group 1

Request User Objects

user b

role 1

group 1

user b

role 2

group 2

Administrator A

group1

Confirmed

Confirm

Administrator B

group2

user a

role 2

group 2

Administrator B

group2

Confirm edRejected

user a

user b

group 1

role 1

user a

group 2

role 2

no use of the news

channel

Some example use cases are illustrated in the figure, shown above shows the request and confirmation data flow for access control structure for XML based messaging systems. Requested user objects are initiated by the users for different message channel. User might have different roles for each message channels. In the figure, for example, Administrator A confirmed the user request for both user a and user b for the group l. Then, both user a and user b started to use the message channel by having role 1 in the message channel system. However, for the group 2, Administrator B only confirmed the user a’s request having a role 2. User b’s request for group 2 is rejected by Administrator B. Having all these control, it is easy to configure user rights for message channel, we have very powerful access control structure for message channels. Because, request objects which has different roles can be handled by different administrators.

_1084929232.vsd

_1084929799.vsd

_1084732921.vsd

