
DRAFT

Combined Navy

Developer’s Guide

DRAFT – 4/25/02

DRAFT

Table of Contents

1.O Introduction .. 8

1.1 Executive Summary.. 8

1.2 Objective ... 11

1.3 Scope.. 11

1.3.1 Intended Audience .. 13

1.4 DoD and Navy Guidance Context .. 13

1.5 Assumptions .. 14

2.0 Enterprise Architecture, Web Services, Infrastructure,
Standards/Practices .. 17

2.1 Enterprise Architecture ... 17

2.1.1 Architecture Background ... 17

2.1.2 Architecture Assumptions ... 17

2.1.3 Architecture Purpose. ... 18

2.1.4 Architecture Scope .. 18

2.1.5 Architecture Technology Selection ... 18

2.1.6 Security Architecture ... 19

2.2 Web Services ... 19

2.2.1 Definition .. 19

2.2.2 Benefits ... 20

2.3 Infrastructure.. 23

2.3.1 Task Force Web and Web Services ... 24

2.3.2 NMCI and Web Services .. 24

2.3.3 IT-21 and Web Services ... 25

2.4 Process for developing web services .. 25

2.4.1 New Services ... 25

2.4.2 Web Services from legacy applications 26

2.5 References ... 26

2.6 Standards and Practices .. 27

2.6.1 Web Services... 27

DRAFT

2.6.2 Standards and Practices for the Navy Enterprise Architecture 33

2.6.3 Portal Integration Standards and Practices .. 36

2.6.4 Development Coding Standards and Practices 42

2.6.5 Emerging Standards and Practices for Reference 52

3.0 Integration Processes .. 55

3.1 Application and Database Review .. 56

3.1.1 Data Collection and Assessment.. 56

3.1.2 Rationalization ... 56

3.1.3 Process for Rationalization.. 57

3.1.4 Task Force Web Registration.. 58

3.1.5 Certification and Accreditation.. 60

3.1.6 Certification of Functional Need.. 60

3.1.7 Authoritative Data Source.. 61

3.1.8 Application Hosting Determination Process.. 61

3.1.9 License Management ... 61

3.1.10 Approvals ... 61

3.2 Application Development ... 62

3.2.1 NMCI Development Environment ... 62

3.2.2 Accreditation Plan... 62

3.3 Before Visiting NMCI for an Engineering Review... 62

3.3.1 Recommended Steps prior to an Engineering Review 63

3.3.2 Security Certification and Accreditation Process 63

3.3.3 NMCI and Connection Approval Process (NCAP)............................... 63

3.3.4 Testing Considerations .. 64

3.4 TFWeb Beta Test Processes... 64

3.4.1 IT-21 NIPRNET Beta Lab Process... 64

3.4.2 IT-21 NIPRNET Beta Lab Process... 66

3.4.3 NMCI Beta Test Process ... 68

3.5 Certification Lab Activity... 71

3.5.1 Application Certification Liaison Letter .. 71

3.5.2 Information/Materials for Lab Testing .. 71

DRAFT

3.6 Certification Lab Process ... 72

3.6.1 PCL Process Steps... 72

3.6.2 Parties to the Process .. 74

3.6.3 PCL Process Documents... 75

3.6.4 Developer Impact.. 75

3.7 Before Deployment/Migration .. 75

3.7.1 WEN IT Governance .. 75

3.7.2 Help Desk Procedures ... 76

3.7.3 Training ... 76

3.7.4 Backup and Recovery.. 76

3.8 Deployment/Migration ... 76

3.8.1 NMCI Hosting of Applications on Terminal Services........................... 76

3.9 System Changes ... 78

3.9.1 Emergency Production Fixes .. 78

3.9.2 Recertification Procedures .. 79

3.10 System Retirement/Sunset ... 79

3.11 Reusable Components .. 79

3.12 Interfaces/Adapters .. 80

3.13 Metrics.. 80

3.14 Knowledge Services .. 80

3.15 Timelines (Generic) ... 80

4.0 Interfaces ... 81

4.1 NMCI Group Policy Objects .. 84

4.1.1 Application of Group Policy Objects ... 84

4.2 Group Policy Object Creation .. 85

4.3 Terminal Services Group Policy Object ... 85

4.4 Workstation Preference GPO Settings... 85

P_XXXX_WKSTUserPref_v5.06 Settings... 86

4.4.1 Process PRI Request ... 90

4.4.2 Build Application SOAP Request .. 92

4.5 Error Handling .. 96

DRAFT

4.5.1 Application.. 97

4.5.2 Service Module .. 97

4.5.3 SSO... 98

4.5.4 Module Server ... 98

4.5.5 Service Registry.. 98

4.5.6 Portal Connector ... 99

4.5.7 Application Event Log... 99

4.5.8 Portal... 99

4.5.9 Browser... 99

4.6 Messaging Protocols ... 99

4.6.1 SOAP .. 100

4.6.2 The SOAP Client... 100

4.6.3 The SOAP Server ... 101

4.6.4 SOAP Programming Interfaces .. 101

4.6.5 Service Registry.. 101

4.7 Session Management ... 102

5.0 Legacy System Migration and Evolution.. 103

5.1 Applications and Databases of concern to NMCI and TFWeb................... 104

5.2 Application Owner/Analyst Guidance ... 104

5.3 Pre-Service Registration Phase .. 105

5.3.1 Determining TFWeb Integration Goals .. 105

5.3.2 Reviewing Existing Services ... 106

5.3.3 Supportability and Maintainability... 107

5.3.4 Web Enablement Determination... 107

5.5 Intent to Migrate ... 110

5.5.1 Submission to the application information database......................... 110

5.5.2 Integration Level Appropriateness.. 110

5.5.3 Identify if the program uses Java, JavaScript, ActiveX, or plugins . 110

5.5.4 Examine the application database for similar programs that are
currently under development... 110

5.5.5 Determine current security model and whether IATO/ATO exists, or
is required... 111

DRAFT

5.5.6 Determine XML integration requirements ... 111

5.6 XML/SOAP-Enabling Navy Legacy Systems .. 114

5.6.1 Architecture Considerations .. 115

5.6.2 XML Procedures.. 116

5.7 Migrating and Retiring Navy Legacy System(s), Replacing them with Navy
Enterprise Domain Solutions .. 118

5.8 Service Registration .. 121

5.8.1 Verify completeness and accuracy of portal metadata 122

5.8.2 Verify migration plan for level of integration is submitted 122

5.8.3 Ensure IATO/ATO has been updated if security model changed for
TFWeb migration... 122

5.8.4 Verify initial access control list submitted along with information
describing method of updating ACL... 122

5.8.5 Portal Compliance Testing .. 122

5.8.6 Review summary of testing accomplished.. 123

5.8.7 Review portal integration information submitted 123

5.8.8 DoN XML guideline compliance.. 123

5.8.9 Set next review date ... 123

5.8.10 Verify database entry is complete and accurate in AMCS
application database... 123

5.8.11 Technical Review.. 124

5.8.12 Configuration Verification .. 124

5.8.13 Ensure application is logged in the DON CIO Data Management
and Interoperability Repository. .. 124

5.8.14 Verify all application data structures and data interfaces are
documented... 124

5.8.15 Verify AMCS OIC has approved migration plan for application/data
overlap. ... 124

5.8.16 Documentation of Developer Requirements. 124

5.9 Application/Service Delivery Phase .. 125

5.9.1 Application Acceptance.. 125

5.9.2 Application Delivery.. 125

5.9.3 Application Integration .. 125

DRAFT

6.0 Information Assurance.. 126

6.1 Strategic Overview.. 126

6.2 TFW IA Overview .. 126

6.2.1 Authentication... 129

6.2.2 Confidentiality... 130

6.2.3 Integrity.. 130

6.2.4 Availability... 130

6.2.5 Non-Repudiation.. 131

6.2.6 Accountability... 131

6.3 Certification and Accreditation.. 132

6.4 Security Policies.. 132

6.4.1 Single Sign-On Security Architecture 133

6.4.2 Public Key Infrastructure .. 138

6.4.3 Non-NMCI User Access ... 140

6.4.4 TFW Mobile Code Use Policies .. 140

6.4.5 Legacy Application Access Control Mechanisms................. 141

6.5 TFW IA Conclusion... 142

7.0 Development Tools and Resources ... 146

Appendix A Web Enablement Checklist .. 148

Appendix B Taxonomy ... 150

DRAFT 8

1.O Introduction

There is no shortage of historical writings that chronicle the evolution of the Navy and
Marine Corps since their inception. During the close of the 20th Century we focused on
the Revolution in Military Affairs and all that it portended. We saw a beginning of the
shifts in warfare doctrine to the current approaches to Network Centric Warfare. The
Navy today is pursuing the digital network in support of its Information Technology for
the 21st Century (IT-21) and the Marines have established both a Marine Corps Enterprise
Network (MCEN) and a Marine Corps Tactical Network (MCTN). We are a global
military force that requires a global network—one that seamlessly links forces at sea with
support bases and technologies ashore. Networks have become key to current and future
Naval war fighting. A Global network will also allow the establishment of common
databases and lead to the use of standard approaches to problem solving. The Naval
Forces requires this kind of network to retain its military and technology advantage over
potential adversaries (Footnote-Admiral Natter Article).

Today we are in the early stages of implementing and transitioning the Navy and Marine
Corps to the Navy Marine Corps Intranet (NMCI), an outsourcing procurement that was
awarded during October 2000. The objective for “NMCI is an enterprise-wide network
that will provide the Navy and Marine Corps with secure, universal and integrated
access to voice, video and data information exchange services.” The NMCI goal parallels
the IT-21 initiative to field an end-to-end Information Network Infrastructure for Naval
war fighting and business functions.

On 28 August 2001, Vice Chief of Naval Operation (VCNO), issued a memorandum
subject: Software/Applications for [Navy Marine Corps Intranet] NMCI. A key
requirement identified in this memo was the need for “a simple but clear definition of
what a web enabled Navy would be.” As a result, numerous organizations came together
to determine the high- level technical issues associated with web enabling the Navy. Soon
after, between October and November 2001, key requirements and broad timelines were
finalized. In December 2001, the VCNO chartered Task Force Whiskey (TFW) to
perform a detailed analysis, and provide, a workable execution strategy for web enabling
the Navy. On 31 January 2002, the final report was delivered providing a vision for
operational, technical, and system architectures as well as a proposed implementation
timeline. Task Force Web (TFWeb) was established to implement a web-enabled Navy,
“To provide integrated and transformational information exchange for both the ashore
and afloat navy to take full advantage of Navy's IT21 and NMCI infrastructure
investments.”

1.1 Executive Summary

The NMCI initiative was designed to provide guidance for software developers that
outlines the operating environment in which legacy applications and systems must
operate. Legacy application owners must modify their existing systems to comply with
NMCI guidelines or be forced to operate outside the NMCI enclave. The NMCI Mission

DRAFT 9

is quoted as follows: “NMCI is an enterprise-wide network that will provide the Navy
and Marine Corps with secure, universal and integrated access to voice, video and data
information exchange services.”

The architecture envisioned for NMCI consists of the architecture management services
in the Figure 1-1, anchored by networks, platforms, system services and applications.

FIGURE 1-1. ARCHITECTURE MANAGEMENT SERVICES

Task Force Web (TFWeb) was established to implement the vision of a Web Enabled
Navy. The mission of TFWeb is quoted as follows: “To provide integrated and
transformational information exchange for both the ashore and afloat navy to take full
advantage of Navy's IT21 and NMCI infrastructure investments.” This vision is being
enabled by an enterprise three-tiered architecture describing where the different web
technologies reside. The three tiers include presentation, application, and data (see Figure
1-2). The communication between the layers is based on standard Application
Programmer Interfaces (API) and open- industry standards, such as XML. It also
leverages various standard NMCI and TFWeb Afloat horizontal services. The proposed
architecture is a comprehensive solution that provides a number of benefits, including

• Multiple physically distributed portals with only one logical portal

Architecture Management ServicesArchitecture Management Services

Information
Assurance
Information
Assurance

ManagementManagementApplications

Security
Mechanisms

Security
Services

Security
Objects

Security
Management

Network
Management

Systems
Management

Service
Management

Application
Management

Site Configuration
Management

Site Content
Management

Servers

File/Print
Svcs

Search
Engines

and
Agents

Legacy
Systems
Access

Directory
Services

Messaging
and

Collab-
oration

Standard
Internet
Services

Information Access and System Services

Platforms

Networks (WAN, BAN, & LAN)

Authoring Development

Web Sites Custom
Applications Off the Shelf

Security
Mechanisms

E-business Support

StorageClients

WAN BAN LAN Voice

Video

Architecture Management ServicesArchitecture Management Services

Information
Assurance
Information
Assurance

ManagementManagementApplications

Security
Mechanisms

Security
Services

Security
Objects

Security
Management

Network
Management

Systems
Management

Service
Management

Application
Management

Site Configuration
Management

Site Content
Management

Servers

File/Print
Svcs

Search
Engines

and
Agents

Legacy
Systems
Access

Directory
Services

Messaging
and

Collab-
oration

Standard
Internet
Services

Information Access and System Services

Platforms

Networks (WAN, BAN, & LAN)

Authoring Development

Web Sites Custom
Applications Off the Shelf

Security
Mechanisms

E-business Support

StorageClients

Architecture Management ServicesArchitecture Management Services

Information
Assurance
Information
Assurance

ManagementManagementApplications

Security
Mechanisms

Security
Services

Security
Objects

Security
Management

Network
Management

Systems
Management

Service
Management

Application
Management

Site Configuration
Management

Site Content
Management

Servers

File/Print
Svcs

Search
Engines

and
Agents

Legacy
Systems
Access

Directory
Services

Messaging
and

Collab-
oration

Standard
Internet
Services

Information Access and System Services

Platforms

Networks (WAN, BAN, & LAN)

Authoring Development

Web Sites Custom
Applications Off the Shelf

Security
Mechanisms

E-business Support

StorageClients

WAN BAN LAN Voice

Video

DRAFT 10

• Load balancing and clustering, providing scalability and high availability

• Open, flexible, distributed, and extensible architecture

• Minimizes risk against the use of new technologies

• Strategic foundation for business and process integration, providing a
consolidated view of the enterprise.

In
fo

rm
at

io
n

 A
ss

u
ra

n
ce

(S
S

L
, P

K
I,

C
A

C
)

Application

Presentation

Navy Portal

Data/Content

Navy XML Infrastructure

Enterprise
(E-1)

Enterprise
(E-1)

Enterprise
(E-1)

Web
Clients

In
te

ro
p

er
ab

ili
ty

FIGURE 1-2. THREE TIERS OF THE TFWEB PORTAL

The primary capabilities of the web services architecture are

1. The ability to clearly establish the context of a users request for service. A users
request context consists of a clearly established user identity and role, the level of
authentication, and the ability to establish the delivery channel, or path, the
request must traverse.

2. The ability to discover and execute services on behalf of a user or application
request. This includes access to or hosting of the application or information
services, as well as filtering based on the context of the request.

3. The ability to effectively manage the infrastructure, applications and information
that are delivered through the web services framework.

Most client server applications are not accessed through the portal. A “fat” client is
loaded on the desktop and is the primary means of accessing the application. In some
cases, a client server application is hosted from a terminal server. The terminal services
client can be accessed through the portal to establish a session with the terminal server.

DRAFT 11

As previously stated, NMCI has the goal of merging both client and web applications into
one Network when the enterprise development is completed. Task Force Web’s
architecture also defines levels of integration for application developers. The Task Force
Web initiative provides guidance for software developers that outlines how legacy
applications must be integrated into the Navy Enterprise Portal. The difficulties
encountered with both initiatives led to the analysis between the two sets of guidelines to
determine if the two would be compatible or synergistic. TFWeb and PEOIT Enterprise
Solutions formed a partnership based upon a common view of the end state architecture
for the DON and a very real sense of urgency to document this view. The merger of the
former Application Resource Guide and Task Force Web Developers Guide represents
the understanding that the most coherent approach would be to provide application
developers the tools that support Enterprise Application Management.

1.2 Objective

This guide communicates the technical and management direction an Application/Web
Services Developer must follow to effectively develop or modify applications intended to
operate on the NMCI. It is the intent of this guide to provide Navy service owners (i.e.,
developers, integrators, and implementers) of operational and business processes with
detailed guidance while ensuring the seamless integration of existing service applications
into the Enterprise Portal infrastructure. By providing sufficient information, this
document seeks to reduce the time and cost of developing/modifying and fielding those
applications. As a consolidated resource, the guide eliminates the confusion of multiple
documents that address only portions of the application development process. Wherever
this document does not provide specific direction, supplementary references are provided.
It is assumed that all analysis and requirements gathering will be completed prior to
initiating the development effort, therefore this guide will only focus on those technical
elements required for integration of services into the portal. This document does not
address the decision of when to create a service, or which service modules should be
created to access specific application functionality.

It is assumed that the applications being considered for integration into the Enterprise
Portal have been web enabled. This document focuses on the integration into the
Enterprise Portal and does not describe detail level on how to web enable the application
itself; however, it does provide developers with high- level items to consider prior to
migrating their applications. As described in Section 2, there are increasing levels of
integration, and simple web enabling of an application (i.e., access to an application
through a web-browser client) only achieves hotlink integration with the Enterprise
Portal, which is the least desirable level of integration.

1.3 Scope

This application developers guide addresses information and processes necessary to
transition, modify and develop applications intended for use within DoN, operating on
the NMCI. This guide provides a consolidated source of information, guidance and

DRAFT 12

direction to developers who build or modify applications and/or the acquirers of
applications intended for use within NMCI. Included are processes required for ISF
certification, and security certification and accreditation (C&A), of applications prior to
integration and operation on NMCI. Additionally, the document presents methods,
processes, and interfaces for use by applications that extend beyond NMCI boundaries
and other agency, service, contractor or joint applications that need to be accessed by
NMCI users. This guide documents a rapidly evolving environment and is intended to be
a work in progress with enhancements inserted as required to support the current state of
NMCI implementation. As such, it is a work in progress and will change over time as the
technology is enhanced and as additional integration issues are identified. Each section
will be expanded as more information becomes available and guidance to developers
/implementers is generated.

Information in the guide presently represents NMCI Release 1.0. and discusses the NMCI
infrastructure architecture and the requirements necessary to develop and certify a new or
emerging application for inclusion on the NMCI. It further, contains the checklists
developers and/or acquirers of applications should follow as the application goes through
its development or modification process. Additional sections address
standards/programming practices, processes, and miscellaneous topics such as reusable
components, metrics, and timelines. The guide concludes with resource appendices.
Further, for the purposes of this Guide, Legacy Applications refer to any customer
software application that exists prior to the Assumption of Responsibility (AOR) that is
not included in the NMCI standard seat services or the CLIN 0023 catalog. The NMCI
Legacy Application Transition Guide will be used for Legacy Applications, and provides
a detailed look at the processes used to transition DON legacy applications into the
NMCI environment.

This document will answer the question, “How do I develop my applications to be
compliant with NMCI?,” “What can I do as a developer to assist with the ISF
certification process?,” or “How do I get my application into the operational Enterprise
Portal environment?” The following detailed guidance will be provided on performing
the following activities:

• Registering a developer for access to the TFWeb environment.

• Registering and querying applications, data structures/fill, Object Interfaces
/Application Programming Interfaces (APIs).

• Scheduling integration and operational testing.

The role of the TFWeb team with regard to the portal integration development process
will be to

a) Establish registry requirements for applications served by the Enterprise Portal
(e.g., applications, content).

b) Establish and track metrics to ensure

• Timeliness and availability of updates for specific applications

• Consolidation of applications

DRAFT 13

• Bandwidth and storage projection.

c) Generate and maintain the technology implementation/migration plan.

d) Establish security policy.

e) Act as Designated Approval Authority (DAA) for the Enterprise Portal testing,
beta and pilot environments, as necessary.

1.3.1 Intended Audience

This guide is focused on the Presentation tier and its integration to the
application/business logic tier. Other documents will address NMCI applications and
provide the synchronized integrated guidance that addresses TFWeb/NMCI applications
and web enablement. Procedures that lead to compliance with ITSG architectures and
DoN standards will also be included. Thus, this guide is intended for the following
audience:

• WEN Integration Architects/Engineers

• NMCI Integration Architects/Engineers

• WEN Application Developers

• NMCI Application Developers

• Subject Matter Experts (SMEs) involved in NMCI and Web enabled application
development

• Application/Content Owners.

1.4 DoD and Navy Guidance Context

A challenge facing programs today is identifying and complying with policies, directives
and mandates from multiple sources. Exacerbating this situation, programs find that some
guidance, with which they must comply, appears to conflict. This [application resource
guide] serves to provide one stop shopping to interpret the various sources of guidance
and provide its context. Using this guide, programs can successfully deliver systems that
meet their ORD requirements and also comply with DoD and DON CIO policies,
directives and mandates.

Figure 1-3, Information Technology Guidance Context, provides a top level depiction of
that guidance. Within the sections of this developers’ document, guidance from the
various sources depicted in this figure is presented. For example, the security section
presents guidance from the DoD and Navy (i.e., Policy, COE, DITSCAP, Task Force
Web and NMCI) sources in a logical manner to support complying with them all.

DRAFT 14

FIGURE 1-3. INFORMATION TECHNOLOGY GUIDANCE CONTEXT

1.5 Assumptions

The following assumptions were made regarding the environment in which this
Enterprise Portal will be implemented.

• Scope – The capabilities of the Enterprise Portal will be deployed to ashore and afloat
organizations and facilities. The Enterprise Portal will leverage NMCI and TFWeb
Afloat infrastructures. The Enterprise Portal provides access to the content and data,
which are accessible through web-enabled applications.

• Focus – The focus of the Enterprise Portal is initially internal. That is, initial
functionality will be developed and deployed to support NMCI business and warfare
operations processes. The middle and long-term possibilities include using the portal
system to inter-operate with Allies, coalition forces, commercial suppliers, retirees,
and dependents. The Enterprise Portal will be structured to host or link to other
service (Joint/non-DoD) applications whenever possible.

DoD

DON

Joint Technical
Architecture (JTA)

DoD Common Operating Environment (COE)

DoD XML Registry

DoD Security Policy

DON Business Systems Enterprise Architecture (NBSEA)
- To Be Published

DON CIO XML Policy and Guidance

DON Business Systems Enterprise Application Resource Guide
(NBSEARG)

DON Business Systems Enterprise List of Hardware and
Software Products and Standards - To Be Published

DON Information Technology Infrastructure Architecture (ITIA)

DON Information Technology Standards Guidance (ITSG)

DON Data Management and Interoperability (DMI)
SECNAVINST 5000.36

DRAFT 15

• Implementation – Implementation and deployment of web-service capabilities will
be incremental; that is, delivery of functionality and content to the users will be
evolutionary. This concept of operations (CONOPS) is expressed from the viewpoint
of a steady state, fully functional Enterprise Portal system, where the information
content of the system is ever changing.

• Examples – where possible, realistic examples are provided of source code.
However, URLs used in these examples are not literal and should be replaced with
correct references.

• Commercial Standards-Centric – Where possible, the Enterprise Portal will use
commercial standards for its interfaces, underlying technologies, and applications.
Some of the technologies and/or interfaces being considered for use include, but are
not limited to, the following:

• Java/Java 2 Enterprise Edition (J2EE): Java was introduced in 1995 by Sun
Microsystems. It is an object-oriented language designed for the World Wide Web
(WWW), similar to C/C++, in which the source is compiled into ‘bytecode’, which is
then interpreted by run-time environment (known as a Java Virtual Machine) on the
host machine. J2EE is a java-centric environment for developing and deploying mult-
tiered web-based applications. Some key features of J2EE include:

• Enterprise JavaBeans (EJB). EJB is a Java API developed by Sun that defines the
component architecture for multi- tiered systems. EJBs are the objects in a multi-tiered
object-oriented J2EE environment that enable the developers to focus on actual
business architecture as opposed to developing the interfaces between the different
components themselves.

• Servlets and Java Servlet Pages (JSPs). Servlets are java applets that run on the server
side as an alternative to Common Gateway Interface (CGI) applications. JSPs are an
extension of servlets that allow web developers to dynamically build web pages.

• eXtensible Markup Language (XML): XML is an extension/subset of Standard
Graphical Markup Language (SGML) specifically designed for WWW dissemination
and display of data. It is an open framework in which developers can develop (and,
more importantly, standardize and validate against) a tagged data format. When done
properly, the tagging becomes a form of metadata that can be used to more easily
transition/translate the data inter/intra system or application. Furthermore, the
rendering of XML is detached from the data itself. Therefore, the data in an XML
document/file can be reformatted for display or processing any number of ways
without ever having to modify the tags they contain.

• XML Schema: While XML 1.0 supplies a mechanism, the “Document Type
Definition” (DTD) for declaring constraints on the use of markup, automated
processing of XML documents requires more rigorous and comprehensive facilities in
this area. The requirements are for constraints on how the component parts of an
application fit together, the document structure, attributes, data-typing, and so on.
XML Schema addresses the means for defining the structure, content and semantics
of XML documents

DRAFT 16

• SOAP: SOAP is a lightweight protocol for exchange of information in a
decentralized, distributed environment. It is an XML based protocol that consists of
three parts: an envelope that defines a framework for describing what is in a message
and how to process it, a set of encoding rules for expressing instances of application-
defined datatypes, and a convention for representing remote procedure calls and
responses. SOAP can potentially be used in combination with a variety of other
protocols; however, the only binding defined in this document is SOAP in
combination with HTTP.

• UDDI: The Universal Description, Discovery and Integration (UDDI) specifications
define a way to publish and discover information about Web services. The term “Web
service” describes specific business functionality exposed by a company, usually
through an Internet connection, for the purpose of providing a way for another
company or software program to use the service.Even when one considers XML and
SOAP, though, there are still vast gaps in implementing a communications
infrastructure. The UDDI specifications borrow the lesson learned from XML and
SOAP to define a next- layer-up that lets organizations share a way to query each
other’s capabilities and to describe their own capabilities.

• NMCI - The Navy Marine Corps Intranet (NMCI) will supply the shore-based and
embarkable infrastructure.

• TFWeb Afloat – TFWeb Afloat and related shipboard standards and delivery
mechanisms will provide an afloat infrastructure.

DRAFT

17

2.0 Enterprise Architecture, Infrastructure, Web
Services, Infrastructure, Standards/Practices

2.1 Enterprise Architecture

2.1.1 Architecture Background

The Department of the Navy (DON) Chief Information Officer (CIO) has established an IM/IT
strategic plan, which outlines the mission, vision, and guiding principles designed to “ensure that
our Sailors, Marines, Civilians, and Reservists have the right information, knowledge, and
technology to successfully perform the DoN missions.” One of the key visions laid out in the
document is the need to establish an effective, flexible, and sustainable DoN enterprise wide
information and technology environment…” Furthermore, this strategictThe plan outlines as its
first goal, the establishment of an IT infrastructure architecture. The DoN IM/IT Strategic plan can
be located at www.don-imit.navy .

 2.1.2 i One of the key visions laid out in the document is the need to establish an
“effective, flexible, and sustainable DoN enterprise-wide information and technology
environment…”ii Furthermore, this strategic plan outlines, as its first goal, the establishment of an
IT infrastructure architecture. The DoN IM/IT Strategic Plan can be located at www.don-
imit.navy.mil.

2.1.2 Baseline

2.1.2 Architecture assumptionsAssumptions

This document[ARG] makes several Several architecture assumptions have been made in this
document. There arefor several reasons for stating these assumptions. In many cases, the
document provides guidance in areas that have not yet been addressed at the policy level. It
should also be noted that Also, Program Managers may have additional requirements beyond the
scope of this first version, which must be taken into account. In other areas, such as the role that
the DII COE plays in a web services oriented architecture are being addressed but have not yet
been resolved. Those assumptions are:

• DoN CIO will develop and publish ann enterprise Enterprise architectureArchitecture,
including a set of Architecture Principles to be followed regardless of technology and
standards evolution over time. . Furthermore, t

• The DoN CIO aEnterprise Architecture will be consistent with this document.

• Program managers/software developers will be developing software componentssystems that
will be hosted on platforms that meet their Operational Requirements Document (ORD),
including existing higher echelon architecture requirements such as compliance with the JTA
and DIIDoD Common Operating Environment.

• [THIS MIGHT NEED TO BE MOVED TO "SCOPE" IN SECTION 1] This document applies
only to all new programs and to those legacy applications that have been approved for
continuation via the Navy’s ongoing application reduction initiatives.

DRAFT

18

2.1.3 Architecture Purpose.

While work is beginning on the development of a Navy DoN Enterprise Architecture (DoNEA)
architecture, this document attempts to outline the high level architectural requirements deemed
essential to integrate with Task Force Web and NMCI that will support the Navy’s movement
towards a Web web Services services-oOriented riented Architecture architecture(WSOA). In a
future iteration this section will be expanded to document architectural implications of additional
ORD-specified requirements facing programs, including the DoD JTA and Common Operating
Environment (COE).

2.1.4 Architecture Scope

This aGrchitectural direction uidance provided in section 2.0 focuses on the providing provides
technology selection advice and discusses web services, infrastructure and standards. using
open, standards-based protocols and interfaces. While some protocols for the development of
web services oriented architectures have yet to be completed, it is the Navy’s intention to adopt
these standards as soon as they are commercially acceptable and are capable of meeting the
Navy '’s needs. This architectural guidance serves as the foundation forsupports Program
Managers / Central Design Authorities (CDAs) to provide component-based information systems
to that deliver required services across distributed, heterogeneous platforms, hiding the complex
distribution issues from both the end-user and the applications developer. The architecture
exploits the benefits of encapsulation and component reuse, and it promotes designs that
interoperate with legacy and other external systems. It also facilitates system maintenance,
enhancement, management, and a high degree of security and reliability.

2.1.5 Architecture Technology Selection

Critical decisions face Program Managers and other Central Design Authorities (CDAs), tasked to
design/develop/deploy new systems or evolve existing legacy systems. Among them are
architectural decisions to select technologies that will facilitate certification under Task Force
Web, NMCI and DoD JTA and COE requirements. These decisions need to take into account life
cycle cost implications, such as those brought about by technology evolutionving and the level of
vendors emerging or stopping support for legacy and emergingof products. For example, if a
Program/CDA had to replace one system component for any reason, then they should not be
forced to replace others or the whole architecture.

Guidance in this respect should be addressed in a DoN Enterprise Architecture, addressed in
assumptions above. Also, Enterprise Domain Architects may have decided upon technologies for
use with all systems within their domain. An example would be the selection of the J2EE
Distributed Object Computing (DOC) technology for use within the Navy Personnel Domain.
However, in the absence of guidance from a DoN Enterprise Architecture or an Enterprise
Domain Architect, Program Managers/ CDAs are encouraged to perform trade studies that
consider all requirements to make prudent decisions. This document[ARG] provides references
to some requirements sources in the last paragraph of this section. Also, a wealth of information
to support technology trades is available by Gartner and other online sources.

One of the more crucial decisions regards which DOC technology to use. J2EE and .Net are
current options. Both options are consistent with Task Force Web, NMCI and DoD JTA and COE
requirements and should be included in trade studies.

DRAFT

19

2.1.6 Security Architecture

For address of security aspects of architecture, refer to the Information Assurance Section 6.0.

2.22.1.5 Web Services

2.2.1 Definition
Several definitions of web services are provided below.

2.2.1.1

According to Graham Glass, author of The Web Services (rrR)EEvolution, a web service
is a “collection of functions that are packaged as a single entity and published to the
network for use by other programs. Web services are building blocks for creating open
distributed systems, and allow companies and individuals to quickly and cheaply make
their digital assets available worldwide.”

2.2.1.2

Gartner Group describes web services as “loosely coupled software components that interact
with one another dynamically via standard internet technologies.”

Web services provide a lightweight interface to and from systems using open, standards-
based protocolsthat comply with this architectural guidance. They make it possible to
expose all business functions provided by the architecture with a low barrier of
technology compatibility. Through the use of XML and the HTTP and SOAP protocols,
web services can be provided irrespective of the language and technology of both the
accessing system and other systems within the Domain architecture. Web services
effectively hide the internal organization of the Domain architecture and implements
distributed object computing. There is no need to use mechanisms such as CORBA,
DCOM or RMI to access remote methods in the Domain architecture. Any part of the
Domain architecture API can be exposed in the form of a web service. It is possible to
expose a method as a web service, through RMI or through CORBA in response to a
variety of functional and performance requirements.

DRAFT

20

2.2.2 Benefits

A Web serviceiii is a collection of functions that are packaged as a single
entity and published to the network for use by other programs.
Web services are building blocks for creating open distributed
systems. A Web service can aggregate other Web services to
provide a higher-level set of features.

Web services provide the following benefits to the Domain architecture:

Interoperability. Any Web service can interact with any other Web service.
Thanks to SOAP, the new standard protocol supported by all of
the major vendors (and most of the minor ones too), there is no
need for converting between protocols such as CORBA or DCOM.
Web services can be written in any language.

• Interoperability. Any Web service can interact with any other Web service.
Thanks to SOAP, the new standard protocol supported by all of the major
vendors (and most of the minor ones too), there is no need for converting
between protocols such as CORBA or DCOM. Web services can be written
in any language

• Ubiquity. Web services communicate using HTTP and XML. Therefore, any
device that supports these technologies can both host and access Web
services.

• Low barrier to Entry. The concepts behind Web services are easy to
understand and free toolkits from vendors like IBM and Microsoft allow
developers to quickly create and deploy Web services. In addition, some of
these toolkits allow pre-existing COM components and JavaBeans to be easily
exposed as Web services.

Industry Support. All of the major vendors are supporting the current and
emerging web services protocols such as XML and SOAP.

•

Industry Support. All of the major vendors are supporting SOAP and the
surrounding Web services technology.

• Encourages reuse of previously developed components, therefore reducing total
development cost to the enterprise.

Reduced complexity by using encapsulation to hide the implementation details of the
services[This section moves to the interfaces section] 2.1.6 Simple Object Access
Protocol

In the W3C Simple Object Access Protocol (SOAP) 1.1 Note of May 8, 2000,
SOAP is defined as follows. SOAP provides a simple and lightweight
mechanism for exchanging structured and typed information between peers in

DRAFT

21

a decentralized, distributed environment using XML. SOAP does not itself
define any application semantics such as a programming model or
implementation specific semantics; rather it defines a simple mechanism for
expressing application semantics by providing a modular packaging model
and encoding mechanisms for encoding data within modules. This allows
SOAP to be used in a large variety of systems ranging from messaging
systems to RPC.

SOAP consists of three parts:

? The SOAP envelope construct defines an overall framework for expressing
what is in a message, who should deal with it, and whether it is optional or
mandatory.

? The SOAP encoding rules defines a serialization mechanism that can be used to
exchange instances of application-defined datatypes.

? The SOAP RPC representation defines a convention that can be used to
represent remote procedure calls and responses.

Although these parts are described together as part of SOAP, they are functionally
orthogonal. In particular, the envelope and the encoding rules are defined in
different namespaces in order to promote simplicity through modularity.

[Need to replace the sections 2.1.7 and 2.1.8 with one that:

?Addresses Thursday teleconference conclusion: "We
discussed that DOC technology really needs to be
addressed in a Navy Enterprise Architecture artifact and
that the DOC technology selected may need to be the
decision of each Domain Architect within the Navy,
based on consideration of Architecture Principles."

? Identify the two Distributed Object Computing
alternatives and the Architectural Principle implications
of the Domain decision to select each one.

?Provides references to source materials.

?Provides advice that if they embrace these alternatives
that they have a reasonable expectation of integrating
with NMCI and TFW]

 2.1.7 Enterprise JavaBeans Component Model

What is a web service?

DRAFT

22

 A Web service is a “collection of functions that are packaged as a single entity
and published to the network for use by other programs. Web services are building
blocks for creating open distributed systems, and allow companies and individuals to
quickly and cheaply make their digital assets available worldwide.”iv Gartner Group
describes web services as “loosely coupled software components that interact with
one another dynamically via standard internet technologies.”

 2.1.5 What are the benefits of adopting a web services architecture?

? Greatly simplifies integration of legacy applications by using wrapper technology.

? Improved interoperability due to the use of components, which communicate via
standard protocols such as SOAP and XML.

? Reduced complexity by using encapsulation to hide the implementation details of the
services.

? Widespread industry support for the open standards being adopted to support web
services.

? New functionality can be developed and deployed quicker than existing architectures.

• Encourages reuse of previously developed components, therefore reducing total
development cost to the enterprise.

2.1.6 There are many reasons for adopting a web services oriented architecture. The most
significant reason is to support an orderly migration of the Navy’s vast number of legacy
applications into the NMCI and TFW architectures. Using industry standard protocols such as
XML, SOAP, and UDDI, it offers a cost effective and timely mechanism for exposing business
functionality contained within existing monolithic systems via web interfaces.

The diagram below (figure 2-1), provided by The Stencil Group, identifies the protocol stack,
indicating which web services standards are currently in force or emerging. The Navy intends to
adopt the emerging standards as they become commercially acceptable and are capable of
meeting the Navy’s needs.

Layer Type

Emerging Layers

Core Layers

Other Business Rules (undefined)

Web Services Flow Language (WSFL)

Web Services Description Language (WSDL)
Simple Object Access Protocol (SOAP)
Extensible Markup Language (XML)
Common Internet Protocols (TCP/IP, HTTP)

Universal Description, Discovery and Integration (UDDI)

DRAFT

23

Figure 2-1 Web Services Protocol Stack

 Source: The Stencil Group

2.32 Infrastructure Web Services Infrastructure
 2.32.1 The Navy’s Web Services Infrastructure will not specify
implementation details, such as selecting a specific framework such as J2EE or
Microsoft’s .NET, but will specify interface standards and protocols that will
ensure the ability of components to communicate with each other to maximize
interoperability. This guidance does not preclude the specification of such
frameworks by lower level organizations that seek to maintain consistency within
their functional or domain area.

DRAFT

24

An example would be the adoption of the J2EE framework for use within
the personnel domain as managed by the SPAWAR Information
Technology Center (SITC). The diagram below (figure 2-1),
provided by The Stencil Group, identifies the protocol stack for a
web services architecture and indicates which standards are
currently in force, or emerging. It shall be the Navy’s intent to
reach the objective architecture by adopting the emerging
standards, as they become commercially acceptable.

 Figure 2-1 Web Services Protocol Stack

 Source: The Stencil Group

2.32.21 Task Force Web and Web Services

Task Force Web is putting the web services infrastructure in place for the Navy. The Task Force
has firmly established the use of XML and SOAP as an interface between components and has
moved towards establishing a UDDI registry for the Navy. Task Force Web’s Service Registry will
migrate to the UDDI standard in the near future.

2.32.32 NMCI and Web Services

By using the web services infrastructure, it should be easier to migrate legacy applications into
NMCI. This should be possible for several reasons. Since the transport interface is defined as
SOAP/XML, which is firewall-friendly, services provided by the legacy application should be more
widely available to NMCI users, and also easier to use. Developers should find it easier to
combine available services to create new functionality. Deployment of new services should occur

Layer Type

Emerging Layers

Core Layers

Other Business Rules (undefined)

Web Services Flow Language (WSFL)

Web Services Description Language (WSDL)
Simple Object Access Protocol (SOAP)
Extensible Markup Language (XML)
Common Internet Protocols (TCP/IP, HTTP)

Universal Description, Discovery and Integration (UDDI)

DRAFT

25

more quickly because standardized application servers will be provided by NMCI. Because the
developer is only providing software components, the NMCI certification process can be
streamlined. In the short term, application owners that are concerned about large portions of their
customers losing access to the application due to the NMCI rollout, it may be possible to rectify
this situation by developing SOAP interfaces directly between the TFW portal and the existing
application. This would allow the customer base to access the application (or portions of it) even
though the application resides within the NMCI enclave and the customers have not yet migrated
to NMCI.

2.32.43 IT-21 and Web Services

As part of the TFW initiative, efforts are underway to web enable and provide access via the TFW
portal to all existing applications that are used aboard ship. As such, TFW is putting hardware
and software aboard ship that will support those application developers with migrating their
functionality into web services. The TFW architecture includes an application server (currently
BEA WebLogic) that could be leveraged to host the components (.NET or J2EE) supporting these
services. This would serve to reduce the hardware costs of the developer and reduce the footprint
requirements on the ship.

2.43 Process for developing web services

This section will discuss two approaches for developing web services. The first discussion will
provide high levelhigh-level guidance for developing new functionality or services. The second
discussion will discuss how to create web services from existing legacy applications. More
detailed information on this subject can be found in the Migration Planning section of the
document.

2.3.1 Baseline assumptions. Several assumptions have been made in this document. There
are several reasons for stating these assumptions. In many cases, the document provides
guidance in areas that have not yet been addressed at the policy level. In other areas, such as
the role that the DII COE plays in a web services oriented architecture are being addressed but
have not yet been resolved. Those assumptions are:

? DoN CIO will develop and publish an enterprise architecture. Furthermore, the
DoN CIO architecture will be consistent with this document.

? Program managers/software developers will be developing software
components that will be hosted on platforms that meet existing higher
echelon architecture requirements such as JTA and DII COE.

• This document applies only to those legacy applications that have been
approved for continuation via the Navy’s ongoing application reduction
initiatives.

2.43.1 New Services

• Identify a service that is required by existing or future users.

• Search the enterprise registry to determine if a similar service already exists and is suitable.

DRAFT

26

• Define the SOAP/XML request and response messages for the service. (This definition
requires describing all arguments required by the service, and well as all data returned by the
service.)

• Implement a module that accepts the SOAP request message, performs the indicated
service, and generates the SOAP response message.

• Submit the module to the appropriate registration authority for publishing in the enterprise
service registry. (Registration authority will conduct testing and verification prior to
publication).

2.43.2 Web Services from legacy applications

• Identify key functionality that is required to support existing and future users of the
application.

• Decompose the application into discrete services that provide the functionality identified
above.

• For each service, search the enterprise registry to determine if similar service already exists
and is suitable.

• For each service, define the SOAP/XML request/response messages.

• Implement a module that accepts the SOAP request message, performs the indicated service
and generates the SOAP response message.

• Test the service

• Submit the module to the appropriate registration authority for publishing in the enterprise
service registry. (Registration authority will conduct testing and verification prior to
publication).

2.5 References
This section has briefly discussed several technologies and protocols. Additional information on
these topics addressed in this section can be found at the following web sites:

• J2EE http://java.sun.com/j2ee/

• .NET http://microsoft.com/net/

• Web Services

o http://webservices.org/

o http://www.xml.com/pub/a/2001/04/04/webservices

• UDDI http://www.uddi.org/

• XML http://www.xml.org/

• SOAP http://www.w3c.org/tr/soap/

• COE http://diicoe.disa.mil/coe/

• JTAhttp://www-jta.itsi.disa.mil/

DRAFT

27

2.6 Standards and Practices

The NAVY is drastically changing toward the use of today’s most innovative IT technological
standards. The NAVY Web Enablement Initiative is designed to coordinate, utilize, leverage and
bolster resources, including current and projected expenditures, in order to meet the CNO
mandated plan to web-enable the NAVY, known as the Task Force Web (TFWeb). These
requirements are in the areas of web services, XML and other emergent technologies associated
with web enablement. Success of the Navy being web enabled is dependent on an efficient,
uniform and consistent process to transform NAVY from an application-centric to an
information/service-centric Enterprise, via the web services architecture. To accomplish this all
Navy Applications must be HTML-enabled with data being rendered through the use of XML.
Style sheets will be used to express the data in the business logic needed by the user of the
service that is being provided. All applications or data must be decompressed into Web Services
for integration into the Navy Enterprise Portal.

The Navy Architecture and Infrastructure depends on standard configurations of networks,
servers, data, services and workstations to achieve the goals the DoN has set for it. Therefore,
applications developed for, existing on, or accessed through NMCI assets must comply with the
architectures, standards, protocols, and constraints (such as NMCI naming conventions, TFWeb
Levels of Web Enablement) imposed by these networks, services, servers and workstations.
(Sections 3and 6). In addition, the DoD and the DoN have established additional standards,
protocols, and architectures that are recommended for use as needed when modifying,
developing, or evolving DoN applications (JTA, ITSG, GIG, etc.). The Navy strongly recommends
that modern programming practices and procedures be used during the modification,
development, or evolution of applications intended for operation on, or interaction with, NMCI.
Examples of these practices can be found in ANSI, IEEE, and ISO Software Practices and
Principles. They can be found at the following URLs:

1. https://www.infosec.navy.mil

2. http://www.DISA.dod.mil/dii_coe

3. http://www.eds.com/nmci/legacy_applications_transition_guide.doc

The following sections describe standards that must be adhered to for Web Enablement and the
integration of all applications into the Navy Enterprise Portal.

2.6.1 Web Services

The process for devolving an application into Web Services requires some reverse engineering of
the application. Applications are usually developed from a Product Requirements Document
(PRD) that details what the application is supposed to accomplish for the user and owner. From
this document the functional elements (tasks) are determined. These functional elements are or
will become the Web Services that the application will supply. Web Services are the business
logic/rules that an application uses, not the presentation. A Level of integration for this Web
Service can be selected from this process and presented by a Service Module through the Navy
Enterprise Portal. (Section 1.0)

DRAFT

28

2.6.1.1 Service Module Definition

A Service Module is a lightweight application connector that reveals some piece of application
functionality and makes it available, in a web-enabled format, to end-users through the portal. A
Service Module does not contain application business logic. Application business logic and data
continue to reside within the application or its existing data store.

Application owners are responsible for creating and maintaining the Service Modules and their
back-end applications and services. These may be created using any capable application server
platform or language, but they must conform to the TFWeb requirements.

2.6.1.2 Levels of Integration

Levels of integration are defined to be the degree of integration between a service or application
and the enterprise portal. Web enabling of an application will provide some degree of access to
an application through a web browser, but the levels of integration defined here describe the
degree to which the web-enabled application has been integrated into the portal.
Application/Data Integration is the desired level of integration; however, there may be justifiable
reasons why that level of integration cannot be achieved or does not make sense for a particular
application. Rationale will need to be provided for applications that will only achieve Hyperlink or
Presentation levels of integration.

Each level of integration defined below will have specific requirements for integrating with the
enterprise portal. While this section defines the levels of integration and the integration goal,
Section 3.2.1 will describe the integration requirements and process for each of these levels of
integration. Please note that this discussion refers to the integration of services/applications with
the TFWeb Portal.

• Level 1 – Hyperlink Integration
Hyperlink Integration provides “as is” access to an existing web-based application
through a hyperlink or a list of hyperlinks displayed within a pane of the portal. The
hyperlink is created as a service within the service repository, with access to this service
controlled through the permissions management application. When accessed, the
hyperlink is displayed within a pane of the portal on the user’s desktop, and generally
includes a brief description of the application being accessed, and possibly an associated
lightweight graphic. When the user selects the hyperlink, a new browser window is
opened on the user’s desktop, through which the application will execute. At this point,
communication occurs directly between the new browser window and the application.

This method is usually easiest to implement, though it is the least desirable. Application
owners attempting this level of integration must first obtain a waiver from TFWeb, and
must also provide a migration plan for achieving a higher level of integration. Hyperlink
Integration requires no true integration with enterprise portal services or content, other
than the initial authentication that the user has access to the service containing the
hyperlink. Therefore, there is minimal benefit gained in its integration into the enterprise
portal. When working with multiple applications using hyperlink integration, multiple
browsers will be opened on the user’s desktop.

Hyperlink Integration is commonly referred to as Level 1 Integration.

• Level 2 – Presentation Integration
Presentation Integration provides “as is” access to an already web-enabled application.
This level of integration requires that all application content be rendered within a pane of

DRAFT

29

the portal. The initial connection to the application is created as a service module in the
Enterprise Service Repository utilizing a standard HTTP redirect to the application.
Access to the service module is controlled through the permissions management
application. When accessed by the user, the application is displayed within a pane of the
portal on the user’s desktop. The user is able to directly interact with the application
appearing in this pane. All communication between the user and the application must
flow through the portal. This type of communication is implemented through a reverse
HTTP proxy mechanism within the enterprise portal, and requires that the application
present its content in portal compliant HTML or XML/XSL. The definition of portal-
compliant HTML or XML/XSL is defined in a later section of this document.

Application owners attempting this level of integration do not need to obtain a waiver from
TFWeb, but they must provide a migration plan for achieving a higher level of integration.

Presentation Integration allows multiple applications to be visible within multiple panes
(e.g., channels, frames) of the same browser window of the enterprise portal. However,
the content and data access mechanisms still reside outside of the service repository,
and therefore may not match the presentation rendering guidelines of TFWeb.

Presentation Integration is commonly referred to as Level 2 Integration.

• Level 3 – Application/Data Integration
Application/Data Integration involves a more closely coupled integration of the application
with the enterprise portal. Application/Data Integration is the TFWeb-preferred level of
integration. All application content is provided through services that reside in the service
repository. These types of services act as lightweight connectors, exposing some portion
of application functionality in a manner that is compliant with the enterprise portal.
Application logic continues to reside within the application/data layers, and not within the
service. When accessed by a user, all application content is rendered within a pane of
the portal on the user’s desktop. Access to all services is controlled by the permissions
management application. The user is able to directly interact with the application
appearing in this pane. All communication between the user and the application must
flow through both the portal and the service repository.

When invoked, a service decomposes the request, accesses the appropriate application
or data source to process the request, formats the results of the request into the
appropriate portal-compliant HTML or XML/XSL response, and returns the response to
the enterprise portal. The definition of portal-compliant HTML or XML/XSL is provided in
a later section of this document. A description of the service will be registered with the
global service registry to provide the enterprise portal with quick access and search
capability. Section 8 provides service developers with additional details of how to build
Application/Data Integration services.

Application/Data Integration is commonly referred to as Level 3 Integration.

• Capability Comparison Across Integration Levels
There are a number of capabilities that are desirable for the Enterprise Portal, and the
level of integration achieved for an application or service may impact the degree to which
a particular capability can be achieved. A finite set of desirable capabilities are defined
as follows:

1. Single Sign-on – The ability for users to authenticate once to the portal and be
able to access all authorized resources within the enterprise. A single point sign-
on accepts the user's name and password and automatically logs on to all
appropriate services.

2. Access to Service – The ability to obtain access to a service from the portal.

DRAFT

30

3. Service Presented in Portal – The ability to view/manipulate some portion of the
service’s information from within the portal’s presentation with the assumption
that multiple services can be viewed in the same portal presentation at the same
time.

4. Policy-enforced Look-and-Feel – The manual enforcement of standards by
publishing policies and manually checking for compliance.

5. Automatically enforced Look-and-Feel – The enforcement of standards by being
the single point of control. In the case of the portal, if the portal is uniquely
responsible for all presentation of information, then ensuring that the portal’s
presentation meets the standard can automatically enforce the look-and-feel.

6. Data Sharing (cut-n-paste) – Data or information from one service is simply
captured and then pasted into another service with the user taking responsibility
for the format and definition of the data (e.g., cutting and pasting a text string).
There is no understanding of the data by the portal. The portal processes
information presentation (e.g., HTML) without having to understand the
underlying data definition.

7. Data Sharing (data aggregation) – The portal processes the information and is
responsible for formatting the presentation (e.g., XML style sheets) and provides
the potential for additional business logic that manipulates dat a from multiple
sources and data aggregation.

8. Business Process Integration – The re-engineering of existing business
processes through the aggregation of services and data.

Table 2-4 shows the degree to which these capabilities can be achieved across the levels of
integration. Clearly, application/data integration is the goal, but significant capability can be
achieved with presentation integration. While hyperlink integration is not desirable, it may be an
acceptable first step from web enabling to portal integration.

Table 2-4. Capabilities By Levels of Integration

Capabilities Hyperlink Presentation Application

Single Point Sign-on ü ü ü

Access to Service ü ü ü
Service Presented in Portal ü ü
Policy-enforced Look-and-Feel ü ü ü
Automatically-enforced Look-and-
Feel

 Limited ü

Data Sharing (cut-and-paste) Limited ü ü
Data Sharing (data aggregation) ü
Business Process Integration ü

• Integration Level Requirements Summary

Some of the most significant requirements for each level of integration are summarized in
Table 2-2. These requirements will be discussed in further detail throughout this
document, see the document sections that are referenced in Table 2-5 for detailed
information on each requirement.

DRAFT

31

Table 2-5. Integration Level Requirements

Integration Level Requirement

(Section Reference) 1. Hyperlink 2. Presentation 3. Application/Data
Integration

Service Module
Implementation

Section 2 and 7

Static HTML or
XML/XSL file with
lightweight images and
one or more hyperlinks

ASP, JSP, or CGI
containing HTTP
Redirect

ASP, JSP, or CGI with
PRI and SOAP interface
handlers

PRI Interface (HTTP
Header Message)
Support

Section 7, Appendix
B, (Code Samples)

No No As required by the
application for session
management and error
reporting

SOAP Interface
Support

Section 7

No No Required – SOAP Client
in service module,
SOAP Server in the
application

Service Module
Security

Section 6

Enterprise SSO Integrated, URI protected by application ACL

Application Security

Section 6

Prompt for username and password unless the application is integrated with the
Enterprise SSO.

Preferred Application
Security Challenge

Section 6

None Username and
Password in HTML
Form in the application

Username and
Password in HTML Form
in service module. HTTP
BASIC authentication
over SSL, or better, is
required in the
application

EMS to Application
Communications

Section 6

HTTPS (128 bit SSL, DoD PKI Server Cert.)

Support for 1 way or
2 way SSL in
Application
Communications

Section 6

Per Application Requirements

Portal Connector
Reverse Proxy (URL
Rewrite)

Section 3

No Required Required

HTML BASE TAG for
relative references

Section 3

No No Required only for
application backend
references

DRAFT

32

Integration Level Requirement

(Section Reference) 1. Hyperlink 2. Presentation 3. Application/Data
Integration

Portal Rendering of
XML/XSL to HTML
(XSLT)

Section 7

Supported in Portal
Connector for Service
Module XML/XSL only
(Xalan-Java version
2.2.D11)

Supported in Portal
Connector (Xalan-Java
version 2.2.D11)

Supported in Portal
Connector (Xalan-Java
version 2.2.D11)

EMS XML Parsing
Support

Section 7

Not Applicable Not Applicable Support is provided for:
ASP: MSXML 4.0

BEA: Xerces Java 1.4.4
XML

EMS SOAP Support

Section 7

Not Applicable Not Applicable Support is provided for:
ASP: MS SOAP Toolkit
Version 2.0 SP2

BEA: WebLogic Web
Services

Portal IFRAME
compatibility

Section 3

No Required Required

EMS Data Storage
and Replication or
Update

Section 4.2

Not Available Not Available Not Available

EMS Hosted
Applications

Section 4.2

Not Available Not Available Not Available

Service Module
Output

Section 7

HTML or XML/XSL HTML or XML/XSL XML/XSL

Application Output

Section 7

HTML or XML/XSL HTML or XML/XSL One or more SOAP/XML
service interfaces

Mobile Code
(Applets, ActiveX,
client-side script)

Section 6

Allowed within TFWeb policies and guidelines

Client-Side Script

Section 7

Supported Supported with the
following restrictions:

• Frame refs can
not refer to
‘_top’ frame

• No dynamically
generated URL
links

Supported with the
following restrictions:

• Frame refs can
not refer to
‘_top’ frame

• No dynamically
generated URL
links

DRAFT

33

Integration Level Requirement

(Section Reference) 1. Hyperlink 2. Presentation 3. Application/Data
Integration

Application
Frames/Iframes

Section 7

Supported Supported with the
following restrictions:

• Cannot target
‘_top’ frame.
Frame refs
should be
named

Supported with the
following restrictions:

• Cannot target
‘_top’ frame.
Frame refs
should be
named

Popup child windows

Section 7

Supported Not recommended, must
identify application in
title bar

Not recommended, must
identify application in
title bar

Maintain State in
EMS module

Section 7

NA Not supported, session
ID is provided

Not supported, session
ID is provided

Cascading Style
Sheets

Section 3

Supported See style-sheet
reference

See style-sheet
reference

Waiver Required

Section 11

Required No No

Level 3 Migration
Plan Required

Section 11

Required Required No

2.6.2 Standards and Practices for the Navy Enterprise Architecture

The Navy has accepted the following industry standards and practice for the implementation and
integration towards a web-enablement and portal integration of a Web Service oriented
architecture.

2.6.2.1 XML

The Department of the Navy will fully exploit Extensible Markup Language as an enabling
technology to achieve interoperability in support of maritime information superiority. XML is a
proven technology focused on a common method for describing information exchange parcels to
achieve true interoperability is rapidly sweeping the Internet world. This technology, the
Extensible Markup Language (XML), is radically transforming approaches to capturing, storing,
processing, and exchanging information. XML is a meta-language to define other languages. In
particular, it can be used to define languages that serve as a means of exchanging data between
application systems across the Internet.

DRAFT

34

At its inception, XML provided a method for identifying and exchanging data. However, XML has
become much more. Among other things, the components of the XML "family of standards"
provide a framework for creating data models (XML), formatting XML data for output to different
devices (XSL--print, audio, web, cell phones), parsing the models to extract data for processing
(DOM), and linking XML-components (XLink, XPointer, XPath). The biggest activity around XML
is the development of business standards, and XML enabled end-user services and applications.
The two together now comprise a framework for achieving the global Internet based network of
tomorrow. XML is being used with databases, with Web pages, with Web services, and as the
basis for exchange protocols. XML enables new paradigms for achieving transportability of data.

XML’s ability to provide a platform and application neutral format for preserving archived
information against time is being leveraged to ensure data archived in an XML format will be
readily available years later to new and different applications and databases. Because XML is
platform and operating system independent, its application is enabling transportability of
information management across systems. Additional new and exciting uses of XML in creating
the truly interoperable ubiquitous global computer network are being discovered and implemented
almost daily. The true power of this technology is in its ability to create application-to-application
and application-to-human interoperability through a standard suite of protocols. In addition, the
application of XML may reduce or eliminate the need for costly middleware systems and services
to achieve data transformation.

In short, XML’s growing set of information exchange protocols and ever-expanding suite of use
concepts are ideally suited–and, in many cases, specifically developed, to support each
functional element of application-to-application and application-to human-interoperability. XML is
rapidly becoming an integral part of the vast majority of software applications already being
introduced into the Navy architecture, from simple office automation to complex database and
knowledge management applications. The broad support for XML—by developers, vendors, and
users alike—as a robust and platform-independent data-description language has resulted in
broad support for, and acceptance and adoption of, XML-based specifications and protocols as
formal standards.

2.6.2.1.1 XML Technical Specifications

The World Wide Web Consortium (W3C) suite of XML technical specifications focuses on key
areas within the global network computing architecture. Each of these facets will play key roles in
the Navy enterprise architecture as well. The following summarizes the different facets of the
XML technical specifications and their role in the developing Navy enterprise architecture

Data Definition: The core XML standard defines the rules for creating and using data
markup (descriptors) to define data.
Content Management: The XML Linking Language (XLink), XML Pointer Language
(XPointer), XML Path Language (XPath), XML Query Language (XQuery) and XML
Namespaces provide methods for linking, referencing, extracting, transforming, and
associating XML defined data.
Output Management: The Extensible Stylesheet Language (XSL) defines how XML
defined information will be presented in web pages, paper media, or transformed between
formats. XSLT relevant for transform to HTML.
Structure Management: The Resource Description Framework (RDF) provides an
XML based lightweight ontology system for describing entity relationships and
exchanging machine-understandable information. XML Schema defines “the structure,
content and semantics of XML documents (W3C).”

DRAFT

35

Processing Management: The Document Object Model (DOM) provides a web based
application-programming interface (API) for processing object hierarchies.
Protocols: The W3C XML Protocol activity and its Simple Object Access Protocol
(SOAP) precursor define how multiple peers will exchange encapsulated XML
information packets for remote procedure calls and document exchanges in a distributed
environment.
Security: XML Encryption, XML Digital Signature, and XML Key Management address
crucial pieces of security. These key security specifications, in conjunction with the
electronic Business XML (ebXML) secure and reliable messaging transport specification,
make XML particularly attractive in meeting today’s security challenges.

2.6.2.2 SOAP 1.1

In the W3C Simple Object Access Protocol (SOAP) 1.1 Note of May 8, 2000, SOAP is defined as
follows. SOAP provides a simple and lightweight mechanism for exchanging structured and
typed information between peers in a decentralized, distributed environment using XML. SOAP
defines a vocabulary in XML that allows heterogeneous components to collaborate to perform
services. The use of XML as the data format for the interfaces to SOAP messages means that
implementers are free to represent the data as they see fit in the language of their choice.
Generic XML tools can also be used to support SOAP. SOAP does not itself define any
application semantics such as a programming model or implementation specific semantics; rather
it defines a simple mechanism for expressing application semantics by providing a modular
packaging model and encoding mechanisms for encoding data within modules. This allows
SOAP to be used in a large variety of systems ranging from messaging systems to RPC. The
increasing adoption of SOAP on the Internet will enable a new generation of Web Services to be
developed. Up until now Web Services have relied heavily on technologies such as CGI and
Servlets. These take simple information in the form of text from a HTTP request, process it to
provide a service and then return a response. The most familiar examples are Web pages that
allow users to fill text into forms for submission to the server. SOAP provides a much more
powerful interface into such servers allowing users to make more complex method calls to invoke
more sophisticated services. This allows SOAP to be used in a large variety of systems ranging
from messaging systems to RPC.

SOAP consists of three parts:
1. The SOAP envelope construct defines an overall framework for expressing what is in a

message, who should deal with it, and whether it is optional or mandatory.

2. The SOAP encoding rules defines a serialization mechanism that can be used to
exchange instances of application-defined datatypes.

3. The SOAP RPC representation defines a convention that can be used to represent
remote procedure calls and responses.

Although these parts are described together as part of SOAP, they are functionally orthogonal. In
particular, the envelope and the encoding rules are defined in different namespaces in order to
promote simplicity through modularity.

DRAFT

36

Extended Markup Language (XML)

Simple Open Access Protocol (SOAP)

Universal Discovery, Discription, Integration (UDDI)

Common Internet Protocols (HTTP, TCP/IP)

Universal Service Interop Protocols
(these layers are not defined yet)

Interop
Stack

2.6.2.3 UDDI

The Universal Discovery Description and Integration (UDDI) specifications define a way to publish
and discover information about Web Services. The term “web service” describes specific
business functionality exposed by a company, usually through an Internet connection, for the
purpose of providing a way for another company or software program to use the service.

At first glance, it would seem simple to manage the process of Web Service discovery. After all, if
a known business partner has a known electronic commerce gateway, what’s left to discover?
The tacit assumption, however, is that all of the information is already known. When you want to
find out which business partners have which services, the ability to discover the answers can
quickly become difficult. One option is to call each partner on the phone, and then try to find the
right person to talk with. For a business that is exposing Web Services, having to staff enough
highly technical people to satisfy random discovery demand is difficult to justify.

Another way to solve this problem is through an approach that uses a Web Services description
file on each company’s web site. After all, web crawlers work by accessing a registered URL and
are able to discover and index text found on nests of web pages. The “robots.txt” approach,
however, is dependent on the ability for a crawler to locate each web site and the location of the
service description file on that website. This distributed approach is potentially scalable but lacks
a mechanism to insure consistency in service description formats and for the easy tracking of
changes as they occur.

UDDI takes an approach that relies upon a distributed registry of businesses and their service
descriptions implemented in a common XML format. UDDI specifically consist of an XML schema
for SOAP messages, and a description of the UDDI API specification. Together, these form a
base information model and interaction framework that provides the ability to publish information
about a broad array of Web Services. The UDDI specifications borrow the lesson learned from
XML and SOAP to define a next-layer-up that lets two companies share a way to query each
other’s capabilities and to describe their own capabilities.

The following diagram depicts this layered view:

UDDI is a “next layer” in an emerging
stack enabling rich Web Services.
UDDI uses standards-based
technologies such as TCP/IP, HTTP,
XML and SOAP to create a uniform
service description format and service
discovery protocol.

Refer to the following URL for detailed information pertaining to UDDI

http://uddi.microsoft.com/developer/tech_white_paper.doc

2.6.3 Portal Integration Standards and Practices

The following sections describe the portal standards that must be adhered to by all
integrating applications. Most importantly, the response generated by the

DRAFT

37

application/service shall conform to DoD Section 508, “Web page accessibility” and all
security policies stated by Department of the Navy.

2.6.3.1 Incorporate Portal Templates with Module Server

This section illustrates issues to be considered by the Service Developers for the incorporation of
portal-defined templates and styles. The portal uses different style sheets for each template or
theme; however, the name of the style sheets and their elements (referred to as “tags”) remain
the same.

It is advisable that the Service Developers incorporate these cascading style sheets (CSS) into
their applications to keep the look and feel across all applications consistent with the portal and to
create a more seamless, user-friendly experience. In some instances, maintaining a template’s
predefined color palette may be critical for a particular working environment, such as a ship’s
command center where the implemented template may be designed for a dark room environment
and a bright white application would be hard to use. Incorporating the CSS will promote display
consistency across multiple pages and once incorporated, will save time in both developing and
maintaining existing and new applications.

How to incorporate the Portal Template into Service:

1. Include the URL path used to reference the Cascading Style Sheets

2. Include tags (selectors/elements) in applications to define the attributes to be
implemented

• Include the URL path used to reference the Cascading Style Sheets
The Service Developer must reference the style sheets at the top of their web pages, between
the “header tags”.

For example:

<HEAD>

<LINK REL='stylesheet' HREF='/servlet/media/templates/’ & <ClientStyle> & ‘/styles.css'
TYPE='text/css' title=’TEMP_STYLES’>

</HEAD>

The above referenced style tag will be an attribute defined in the PRIDataRequest as ClientStyle.
If the Service Developer chooses to incorporate the user’s look and feel into their application, the
line above will need to be included in each page. (See Table 7-1)

• Include tags in applications to define the attributes to be implemented
In addition to referencing the user’s specific CSS, the Service Developer will also need to
reference each style tag (Elements) as defined in the CSS.

For instance, below is HTML that may be in the Service Developer’s current web application:

<Table>

 <tr>

<td>Welcome, John Doe!</td>

 </tr>

</Table>

Assuming the CSS is referenced at the top of the page, the above would be replaced with:

DRAFT

38

<td class=”welcome”>Welcome, John Doe!</td>

where CSS tag “welcome” is defined in the stylesheet as:

.welcome

{

 COLOR: blue;

 FONT-FAMILY: arial, verdana, helvetica;

 FONT-WEIGHT: bold;

 FONT-SIZE: 10px

}

The value in using the CSS, is that if changes to the rendering are needed, e.g. fonts, colors,
margins, typefaces and other aspects of style, on a web application, only one change is made in
the CSS, rather than in all pages that use these styles.

How to reference specific the style tags defined by the CSS:

Below are a table and screenshots that demonstrate how to implement the style tags in the CSS.
The table lists all of the elements and classes as defined by all style sheets used in the portal.
The attributes for these elements and classes will change depending on the template chosen,
however the code will not need to be modified once classes are referenced. The attributes listed
below are one example of a template available on the portal. The screenshots map out where
these have been used in a template for the portal. These may be used as a guideline for Service
Developers to reference when adding the class names to their web applications.

Table 3-5: Style Tag Descriptions for Style Sheets

Element/Class Description Attributes How to reference

 A Hyperlink COLOR: #0163e4;
FONT: 10pt univers, verdana,
arial, helvetica, sans-serif;
TEXT-DECORATION: none

No additional code
needed

Td
Table Data FONT: 8pt univers, verdana,

arial, helvetica, sans-serif
No additional code
needed

Th
Table Header FONT: bold 10pt univers,

verdana, arial, helvetica, sans-
serif

No additional code
needed

contentheader Header COLOR: black;
FONT-FAMILY: univers, verdana,
arial, helvetica;
FONT-SIZE: 12px

class=”contentheader”

currentdirectory COLOR: #a9a9a9

explorerbg Background Color BACKGROUND-COLOR:
#8CAAE7

class=”explorerbg”

explorertabindicator FONT-FAMILY: univers, verdana,
arial, helvetica;
FONT-SIZE: 12px;
TEXT-DECORATION: none

class=”explorertabindic
ator”

explorertablebg BACKGROUND-COLOR: #f3f3f3 class=”explorertablebg”
file File font COLOR: darkblue;

FONT-FAMILY: univers, verdana,
arial, helvetica;
FONT-SIZE: 11px

class=”file”

fileselected Selected File BACKGROUND-COLOR:
#FF9933;COLOR: #ffffff;
FONT-FAMILY: univers, verdana,

class=”fileselected”

DRAFT

39

Element/Class Description Attributes How to reference

arial, helvetica;
FONT-SIZE: 11px

folder Folder Name COLOR: #666699;
FONT-FAMILY: univers, verdana,
arial, helvetica;
FONT-SIZE: 11px;
FONT-WEIGHT: bold

class=”folder”

folderselected Selected Folder BACKGROUND-COLOR:
#FF9933;

COLOR: #ffffff;

font1 Font option FONT: 12pt univers, verdana,
arial, helvetica, sans-serif

class=”font1”

font2 Font option COLOR: #919191;
FONT: 14pt univers, verdana,
arial, helvetica, sans-serif

class=”font2”

font3 Font option FONT: 8pt univers, verdana,
arial, helvetica, sans-serif

class=”font3”

libraryselected Selected Library BACKGROUND-COLOR:
#FF9933;

COLOR: #ffffff

librarypath Background color
option

BACKGROUND-COLOR: #f3f3f3 class=”librarypath”

lightwash Background color
option

BACKGROUND-COLOR: #f3f3f3 class=”lightwash”

mediumwash Background color
option

BACKGROUND-COLOR: #f3f3f3 class=”mediumwash”

menuitem Menu Items COLOR: white;
FONT-FAMILY: univers, verdana,
arial, helvetica;
FONT-SIZE: 11px;
FONT-WEIGHT: bold

class=”menuitem”

menulink Menu Link FONT: 14pt univers, verdana,
arial, helvetica, sans-serif

class=”menulink”

message BACKGROUND-COLOR:
##EFEFEF;
COLOR: black;
FONT-FAMILY: univers, verdana,
arial, helvetica;
FONT-SIZE: 16px

class=”message”

mout Mouse Out COLOR: darkblue class=”mout”

mover Mouse Over COLOR: red class=”mover”

na COLOR: #2a71ac;
FONT: bold 10pt univers,
verdana, arial, helvetica, sans-
serif

class=”na”

nc1 BACKGROUND-COLOR: #c9e6ff class=”nc1”

nc2 BACKGROUND-COLOR: #f3f3f3 class=”nc2”

nh COLOR: #919191;
FONT: 15pt univers, verdana,
arial, helvetica, sans-serif

class=”nh”

notselected BACKGROUND-COLOR: #ffffff;
COLOR: #385273

class=”notselected”

selected Selected Option BACKGROUND-COLOR: #ffffff;
COLOR: #666699;
FONT-FAMILY: univers, verdana,
arial, helvetica;
FONT-SIZE: 11px;
FONT-WEIGHT: bold

class=”selected”

title Title COLOR: #333366;FONT: 18pt
univers, verdana, arial,
helvetica, sans-serif

class=”title”

DRAFT

40

Element/Class Description Attributes How to reference

toolbar Toolbar BACKGROUND-COLOR:
#6BA8E6

class=”toolbar”

upload BACKGROUND-IMAGE:
url(/servlet/media/images/base/
toolback.gif);
VERTICAL-ALIGN: top

class=”upload”

white COLOR: #ffffff class=”white”

wpadvice Large Instructions COLOR: #555555;
FONT-FAMILY: univers, verdana,
helvetica;FONT-SIZE: 24px;
FONT-WEIGHT: bold

class=”wpadvice”

wpcontentlist1 BORDER-BOTTOM: #6666CC;
BORDER-LEFT: #6666CC;
BORDER-RIGHT: #6666CC;
BORDER-TOP: ##EFEFEF

class=”wpcontentlist1”

wpcontentlist2 BORDER-BOTTOM: ##EFEFEF;
BORDER-LEFT: ##EFEFEF;
BORDER-RIGHT: ##EFEFEF;
BORDER-TOP: ##EFEFEF

class=”wpcontentlist2”

Wpdefaultcursor Default cursor style CURSOR: default class=”wpdefaultcursor
”

wpelemtoolbar COLOR: #ffffff;
FONT-FAMILY: univers,
verdana,arial,sans-serif;
FONT-SIZE: 8pt;
FONT-WEIGHT: bold

class=”wpelemtoolbar”

wpoptions Options FONT-FAMILY: univers,
verdana,arial,sans-serif;
FONT-SIZE: 8pt;
FONT-WEIGHT: normal;
TEXT-DECORATION: none

class=”wpoptions”

wpselectedtitle Selected title BACKGROUND-COLOR:
#8CAAE7;
COLOR: #ffffff;
FONT-FAMILY: Arial, Helvetica,
sans-serif;
FONT-SIZE: 9pt;
FONT-WEIGHT: bold;
TEXT-DECORATION: none

class=”wpselectedtitle”

wptitle BACKGROUND-COLOR:
#e5eaee;
FONT-FAMILY: univers,
verdana,arial,sans-serif;
FONT-SIZE: 8pt;
FONT-WEIGHT: normal;
TEXT-DECORATION: none

class=”wptitle”

wptoolbar Toolbar BACKGROUND-COLOR:
#e5eaee;
FONT-SIZE: 9pt;
FONT-WEIGHT: bold

class=”wptoolbar”

wptreetop Background image BACKGROUND-COLOR:
##EFEFEF;
BACKGROUND-IMAGE:
url(/servlet/media/templates/16
/images/background.gif);
COLOR: white

class=”wptreetop”

DRAFT

41

2.6.3.2 Portal Friendly Service Development
Service Developers may need to modify existing application code to have the service work
properly in the TFWeb Portal. They may need to modify the application code to ensure the
service works appropriately when accessed via Reverse Proxy from within the Portal Framework.

The Portal Connector reverse proxy feature handles the reconfiguration and rewriting of links to
properly flow back through the portal infrastructure, but there may be potential reverse proxy
issues with “absolute paths” versus “relative paths”. Some development may be necessary if the
paths are generated dynamically or programmatically.

These service development recommendations can be considered by the Service Developers to
ensure a portal friendly interface between their application and the TFWeb Portal.

2.6.3.3 Reverse Proxy
When the Portal Connector is used to proxy access to URIs in web content, it does so by re-
writing the links to redirect connections back through the portal. This allows a single access point
through the portal through any firewalls, and ensures that content is managed through the portal
interface. The Portal Connector examines the HTML on a web page and looks for certain key
tags. When it encounters one of these tags, it prepends a call to the Portal Connector to the URI.
When the Portal Connector gets a call of this type, it sets up an HTTP client session and requests
the content on behalf of the user. The content is then examined for URIs to re-write and
forwarded on to the user.

While this is a powerful capability, it does require that application/service developers be aware of
certain limitations.

1. The Portal connector must be able to identify the link to re-write it. The connector identifies the
following HTML tags for re-writing:

HREF=

SRC=

URL=

BACKGROUND=

ACTION=

All other methods for producing links, especially those that rely on client side code or code
imbedded in objects is not supported and will result in an application being considered as “Level
1” integration. The filter cannot handle links it can't find to re-write.

2. It is good design practice to use relative links within HTML for specifying some links. This
means that the object being referred to is at a location relative to the page being displayed. For
example:

refers to a graphics image in a folder one level below where the HTML is located. In many cases,
the Portal Connector can accurately rewrite these references. To do so, it must be able to
establish the "base" URL. This can be determined in most cases for “Level 2” integrated
applications as the header contains a document reference that can be prepended to the relative
link. For “Level 3” integration, the Portal Connector has no idea of the URI to the content that is
presented, so the use of the header tag "BASE HREF=" is required in the HTML header:

<HEAD> <TITLE>Page Title</TITLE> <BASE
HREF="http://homeport.nmci.navy.mil/html/"> </HEAD>

This allows the Portal Connector to establish the URL base as defined in:

• Section 12 of the HTML 4.1 standard (http://www.w3.org/TR/html4/)

DRAFT

42

• RFC 1808 Relative Uniform Resource Locators

• RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1

As defined in the HTML standard, an undefined or underivable base will result in an unresolvable
URI and a "broken" link.

For example: if the folder structure on this site looked like the following:

http://homeport.nmci.navy.mil
/--- html / --- images

and the current document resides in the html folder,relative links should look like this:

 Next Page

When rewritten by the Portal Connector, the links would look something like this:

<img src= "http://portal/PortalConnector/user=joe@http://homeport.nmci.navy.mil/
html/images/mygif.gif">
<a href= "http://portal/PortalConnector/user=joe@http://homeport.nmci.navy.mil
/html/nextpage.html">Next Page

Impact of Reverse Proxy by Integration Level
Hyperlink Integration (Level 1)

The Portal Connector affects no HTML in “Level 1” applications as all content, other than the
initial hyperlink, occurs in communication directly between the client browser and the
application/web server.

Presentation Integration (Level 2)

All HTML in “Level 2” applications is run through the Portal Connector. The base URL is derived
from the path to the page in which the link is embedded. If an application developer suspects that
the proxy may not be able to detect the proper base, the base should be explicitly defined using
the <BASE HREF=tag>, as defined above. URIs generated on the client side cannot be proxied
under any circumstances.

Application/Data Integration (Level 3)

URIs produced by “Level 3” Service Modules are required to explicitly state the base URL. (see
above). URIs generated on the client side cannot be proxied under any circumstances.

2.6.4 Development Coding Standards and Practices
In order to maintain a large organization of applications and services, certain code based naming
conventions need to be applied. This guide is presented as a straightforward suggestion that will
streamline potential conflicts within each service and application. This is only meant to be a
guideline where there are no guidelines present. Where there are current guidelines, those
should take precedence over any procedures in this guide. Many of these suggestions have
been adapted as the “industry standard” or “best of breed” and are well known within the IT
industry.

Questions and suggestions should be referred to the Open Source Site at https://tfw-
opensource.spawar.navy.mil/RegRepTeamApps/WebHelp/

2.6.4.1 Directory Structure and Variable Naming Conventions

While the directory structure for a service module is highly subjective to the internal plans of the
particular development shop, it was felt necessary to provide some guidelines on directory

DRAFT

43

structure and variable management. Below is a suggested outline for application directories. In
the next section variable management will be discussed. This should not supersede any internal
mandate already in place.

The use of this outline is suggested and voluntary. This section was written to aid in the
development process for the service application provider

Assumptions
• The web administrator or web master has provided space for the web site on the web

server

• All virtual directories have been created and configured by the web master or web
administrator on the web server

• The user has sufficient rights to add, edit and delete files and directories in the target
environment

• A saved backup incase a restore is required

• A clear idea of the functionality that is to be represented by the web site

• Source code control procedures or applications are being used

• All URL references should use relative URL instead or exact URL references.

2.6.4.2 Directory Structure for Storing Services in the Enterprise Module
Server
The TFWeb Enterprise Module Server (EMS) provides support for Service Modules developed in
J2EE, ASP or CGI, where CGI refers to Windows-compliant C++ or Perl. The location on the
EMS file system where the Service Module is stored is based on the Service Module type (ASP,
JSP or CGI). The location and type of Service Module also affects the URL that the portal
connector uses to address the Service Module.

The following sub-sections outline where on the EMS file system to install each type of service
module.

2.6.4.2.1 J2EE Service Modules
BEA WebLogic Server (WLS) 6.1 is the execution engine for J2EE Service Modules. J2EE
Service Modules are deployed in BEA WLS as Web Applications or Enterprise Applications, with
the distinction between each being the type and number of J2EE components being deployed.

J2EE Web Applications
A J2EE Web Application contains the following types of resources:

• Servlets

• Java Server Pages (JSP)

• JSP Tag Libraries

• Static HTML pages and images

Although limited to containing only these types of resources, a Web Application is still able to
access all services and APIs available in WLS, including EJB components, JDBC database
connections and Java Messaging Service (JMS) resources.

Web Applications components are packaged in a Web Archive (WAR) file, which is a Java
Archive (JAR) file, with a .war extension. WAR files bundle all component files in a directory
into a single file, maintaining the directory structure. WAR files also include XML descriptors
that instruct WLS how to deploy the components.

DRAFT

44

The J2EE Web Application WAR file must packaged in compliance with J2EE standards, as
described at http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html, and must follow the
naming standards defined J2EE Naming Standards Section

J2EE Enterprise Applications
An Enterprise Application may contain a larger set of components, including:

• Web Applications (one or more)

• Enterprise Java Bean (EJB) components1

• Connector components – resource adapters

A J2EE Enterprise Application, consisting of assembled Web application(s), EJB components,
and resource adapters, is packaged as an Enterprise Application Archive (EAR) file, which is a
JAR file with an .ear extension. Web Applications are packaged in a WAR file. Enterprise Java
Beans are packaged in JAR files with .jar extensions. Resource adapters are packaged in a JAR
file with a .rar extension. An .EAR file contains all of the .jar, .war, and .rar component archive
files for an application and an XML descriptor that describes the bundled components.

Each Web Application contained within a J2EE Enterprise Application file corresponds to a
service module, must be assigned a service key, and must comply with all J2EE Web Application
requirements.

The J2EE Enterprise Application EAR file must packaged in compliance with J2EE standards, as
described at http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Overview4.html, and must follow the
naming standards defined in Section 0.

J2EE Addressing Standards
J2EE service modules are addressed in the following manner:

https://<ems-hostname>/servlets/<service-key>/<entry-point>.<ext>

Where:

• <ems-hostname> is the fully qualified domain name of the EMS server

• <service-key> is the 32-character Globally Unique Identified (GUID) assigned to the
service when it is registered in the Service Registry

• <entry-point> is the filename that corresponds to the entry point to the service

• <ext> is the appropriate extension of the service module entry point

The following is an example based on the above:

https://services.homeport.navy.mil/servlets/ACC7A3AB-B29C-47FE-A300-
D7DE965FC530/myService.jsp

J2EE Directory Standards
J2EE Service Modules are stored within the EMS as BEA WLS applications. BEA WLS
applications must be stored in the following directory:

<BEA-Product-Directory>\config\<BEA-Domain>\applications

Where:

• <BEA-Product-Directory> is the directory identified during installation where BEA
product files will be installed (i.e. e:\bea\wlserver6.1)

1 The Enterprise Module Server v1.1 supports only stateless EJB components.

DRAFT

45

• <BEA-Domain> is the BEA domain name identified during installation (i.e. EMSDomain)

Controlled by TFWeb Policy

Controlled by Service Developer/Owner
(but must comply with J2EE WAR/EAR standards)

WLS
Applications

WEB-INF

Images,
Subfolders,

etc.

Main.jsp

Service
Key.war

(ex: EBA6BD34-3CA3-4F5D-B9EC-
D6855AF54618.war)

e:\bea\wlserver6.1\config\EMSDomain\
applications

Figure 0-1J2EE Directory Structure

J2EE Naming Standards
J2EE Service Modules are stored on the EMS as either Web Archive (WAR) or Enterprise
Application Archive (EAR) files. The filename for the service must follow the following
convention:

<service-key>.<ext>

Where:

• <service-key> is the 32-character Globally Unique Identifier (GUID) assigned to the
service when it is registered in the Service Registry

• <ext> is the appropriate file extension of the application archive (i.e. .war or .ear)

The following is an example:

ACC7A3AB-B29C-47FE-A300-D7DE965FC530.war

DRAFT

46

In the case of EAR files, which may contain more than one Web
Application, each Web Application stored within the EAR must be
assigned (and named after) a unique service key. The EAR file will be
named using the service key of the primary Web Application stored
within the EAR.

For example: ACC7A3AB-B29C-47FE-A300-D7DE965FC530.ear.

2.6.4.2.2 ASP Service Modules
Microsoft IIS is the execution engine for Active Server Pages (ASP) Service Modules. Microsoft
ASP is a server-side scripting language that allows for the creation of dynamic Web content. An
ASP Service Module may also contain static HTML pages and images.

ASP Service Modules are delivered to TFWeb in Microsoft CAB archive format. The service
modules are then un-archived and stored on the EMS server in exploded directory format in order
to be accessed.

ASP Addressing Standards
ASP Service Modules are addressed in the following manner:

https://<ems-hostname>/<service-key>/<entry-point>.asp

Where:

• <ems-hostname> is the fully qualified domain name of the EMS server

• <service-key> is the 32-character Globally Unique Identified (GUID) assigned to the
service when it is registered in the Service Registry

• <entry-point> is the filename that corresponds to the entry point to the service

The following is an example of an ASP URL:

https://services.homeport.navy.mil/ACC7A3AB-B29C-47FE-A300-
D7DE965FC530/myService.asp

ASP Directory Standards
ASP Service Modules are stored within the EMS as Microsoft IIS applications, which require that
a new virtual directory be created for each Service Module. ASP services are stored under the
IIS standard inetpub directory, in a sub-directory that corresponds to the assigned service key.

<wwwroot>\<service-key>

where:

• <wwwroot> is the default IIS directory for storing web applications (e.g.
e:\inetpub\wwwroot)

• <service-key> is the 128- bit Globally Unique Identified (GUID) assigned to the
service when it is registered in the Service Registry

An example would be:

E:\inetpub\wwwroot\ACC7A3AB-B29C-47FE-A300-D7DE965FC530

After installing the service module, a new virtual directory must be configured that corresponds to
that directory. Virtual directories are created via Wizard from the Microsoft Internet Services
Manager tool. The service key should be used as the alias for the new virtual directory. Virtual
directories created for ASP service modules will require “Read” and “Run scripts” security
permissions (configured during virtual directory creation).

DRAFT

47

GUID - 128 bit
key, 16 bytes

wwwroot

Service Key

Controlled by TFWeb Policy

Controlled by Service Developer/Owner

MAIN.ASP

GUID - 128 bit
key, 16 bytes
IMAGES,

SubFolders,
ETC.

(ex: e:\inetpub\wwwroot)

(ex: EBA6BD34-3CA3-4F5D-B9EC-
D6855AF54618)

Figure 0-2ASP Directory Standards

ASP Naming Standards
Naming standards for ASP Service Module content stored under the service key directory is at
the discretion of the service developer/owner, with the following exceptions:

• Files containing ASP scripts shall end in the extension .asp.

• Files containing HTML content shall end is the extension .html or .htm

• Files containing XSL content shall end in .xsl

The use of common naming standards is recommended as best practice for Web development,
but is not provided as policy within this document.

2.6.4.2.3 Static HTML Service Modules

The EMS can also support Service Modules that contain only static HTML pages and associated
images content, in particular for Level 1 (Hyperlink) Integration Service Modules. Static HTML
Service Modules shall be stored and addressed using Microsoft IIS in the same manner as ASP
Service Modules, with one exception – virtual directories created for static HTML Service
Modules will require only “Read” security permissions (configured during virtual directory
creation).

The following is a sample URL to access a static HTML service module:

DRAFT

48

https://services.homeport.navy.mil/ACC7A3AB-B29C-47FE-A300-
D7DE965FC530/myService.html

2.6.4.2.4 CGI Service Modules

CGI Service Modules consist of either Perl or Windows-compliant C/C++. ActiveState ActivePerl
5.1.6 is the execution engine for Service Modules developed using Perl. C/C++ is not an
interpreted language, and hence does not require an execution engine. It is executed natively by
the Windows operating system.

CGI Addressing Standards
CGI Service Modules are addressed in the following manner:

https://<ems-hostname>/<service-key>/<entry-point>.<ext>

Where:

• <ems-hostname> is the fully qualified domain name of the EMS server

• <service-key> is the 32-character Globally Unique Identified (GUID) assigned to the
service when it is registered in the Service Registry

• <entry-point> is the filename that corresponds to the entry point to the service

• <ext> is the appropriate extension for the service module type (i.e. .pl for Perl and .exe
for C/C++)

The following is an example of a CGI URL:

https://services.homeport.navy.mil/ACC7A3AB-B29C-47FE-A300-
D7DE965FC530/myService.pl

CGI Directory Standards
CGI Service Modules are stored within the EMS as Microsoft IIS applications, which require that a
new virtual directory be created for each Service Module. CGI services are stored under the IIS
standard wwwroot directory, in a sub-directory that corresponds to the assigned service key.

<wwwroot>/<service-key>

Where:

• <wwwroot> is the default IIS directory for storing web applications (e.g.
e:\inetpub\wwwroot)

• <service-key> is the 32 character Globally Unique Identified (GUID) assigned to the
service when it is registered in the Service Registry

An example would be:

E:\INETPUB\WWWROOT\ACC7A3AB-B29C-47FE-A300-D7DE965FC530

After installing the service module, a new virtual directory must be configured that corresponds to
that directory. Virtual directories are created via Wizard from the Microsoft Internet Services
Manager tool. The service key should be used as the alias for the new virtual directory. Virtual
directories created for ASP service modules will require “Read”, “Run scripts” and “Execute”
security permissions (configured during virtual directory creation).

CGI Naming Standards
Naming standards for CGI Service Module content stored under the service key directory is at the
discretion of the service developer/owner, with the following exceptions:

DRAFT

49

• Files containing Perl scripts shall end in the extension .pl

• Files containing Windows-compliant C++ code must be compiled and end in the
extension .exe

• Files containing HTML content shall end is the extension .html or .htm

• Files containing XSL content shall end in .xsl

The use of common naming standards is recommended as best practice for Web development,
but is not provided as policy within this document.

2.6.4.2.5 Filename Standards

General filename standards should also be present when developing web sites. Each file should
tell a little bit about what the file should do. This helps developers to organize code in a way that
is logical and somewhat organized. As always the shop rules apply to filename naming
conventions before applying any outside rules.

Each file should be saved in its appropriate directory, with the appropriate extension, in order to
promote organization and reuse.

2.6.4.3 Variable Management

Variable management is also another aspect of web site planning that is highly subjective to each
shop. If the current shop has already published guidelines for variable management, all parts of
this discussion that comply with the policy should be followed, noncompliant directions should not
be followed. This discussion is for service developer’s information and should be taken into
account when using client side variables.

Each service module is created within its own virtual directory, therefore, each service module will
run within its own address space and there will be no collisions between applications for variable
names. Also, because each service module will be running within its own address space the use
of global.asa with ASPs is allowed.

By complying with the broad guidelines below, “variable collision” could be held to a minimum.
“Variable collision” can be defined as two variables with the same name that have different
functionality within applications. The collision occurs when the variable is called and the desired
functionality does not occur, other functionality has rendered the variable inconsistent with the
desired results. This behavior can occur when using cookies, JavaScript or other client side
validation techniques.

2.6.4.3.1 General Naming Conventions for Variables

In general naming conventions should be meaningful to the web site developer and should
describe the functionality of that specific variable. As with any programming language, any
variables should be named to express function or purpose. Care should also be taken to not use
reserve words as variables because there could be unexpected results. When appropriate the
developer should comment the application to aid with maintenance issues.

Comments help to explain why and how this part of the code works. This allows for more detailed
documentation right where the developer needs it, in the code. There are many different ways to

DRAFT

50

comment code a standard should be defined and followed throughout the coding effort. Check
with the particular programming language to detail how to comment functionality within the code.

2.6.4.3.2 Local Variables

Local variables are variables that reside inside a function or procedure. These variables should
not have subsequent pages rely on the values, as they will disappear on any subsequent page.
Nonetheless, local variable naming should also express function or purpose. When necessary, it
is always a good idea to type cast and declare variables (dim persarray(9) as array, declare
persarray[] as array).

The following are examples of good variable names.

• personcount – counter to increment number of people logged in.

• lname - last name

Some examples of inefficient variable names:

• Ddrfvdse -unless it makes sense

• Yadayadayada – not descriptive enough

•

2.6.4.3.3 Global Variables

Global variables should be avoided if possible. If a global variable is used, make sure the
variable is prefaced with some indicator that it is globally unique. A good naming standard is one
that is planned in advance. This will also aid in the “non-collisionary” variable path that each web
site seeks to encounter. Once a global variable is not used, destroy it so as not to encumber
other application specific functions.

The following are some examples of global variables:

• gblUserID – the gbl designates that the UserID is global

• gv_Role – gv_ designates that the Role is a global variable

• globalRank – global designates the scope of the variable

Some poorly defined global variables:

• Out – could be confused with other functions like print.out

• In – could be confused with other functions like input()

• Count – reserved word

• Id- could be confused with any other id that may be used

2.6.4.3.4 Cookies

• Temporary Client Side Cookies
Temporary cookies are allowed. These are cookies that are removed from the browser when the
web application ends. These cookies can maintain temporary pieces of information that are
needed during the execution of the service module or backend application.

• Permanent Client Side Cookies

DRAFT

51

The use of permanent client side cookies should be restricted as these cookies can always be
tracked back to users or user computers. DoN CIO has found that cookies are in violation of a
federal policy that prohibits the use of Internet technology that collects identifying information on
individuals who access its web sites. That policy prohibits the use of web technology to collect
identifying information to build profiles on individuals, and prohibits the use of persistent cookies
unless certain conditions are met, including obtaining the personal approval of the head of the
agency.

If a cookie must be used, use the GUID number. This a unique number for each web site on the
NMCI web portal. This unique naming convention will almost guarantee that cookies are not over
written.

2.6.4.3.5 Server Side Session Variables

Server side session variables should use the same naming convention as all other variables. As
always the shop conventions should be adhered to before changing any parts of the code.
Session side variables should be used sparingly as they take up memory on the server and could
potentially cause lags in service.

In order to save some of the processing power, be sure to destroy all unused session variables at
the time the session variable is no longer used.

2.6.4.3.6 JSP, CGI and ASP Standards

Refer to the following web sites for the most up to date information regarding standards for the
various development languages.

All languages TFWeb Open Source Site:

https://tfw-opensource.spawar.navy.mil/RegRepTeamApps/WebHelp/

ASP: http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28000522

CGI: http://msdn.microsoft.com/

Cleartrust: http://www.rsasecurity.com/products/cleartrust/index.html

BEA Documentation can be found at the following web site: http://e-
docs.bea.com/wls/docs61/index.html. Documents from the BEA site that are will help with the
development and deployment of services on BEA site are:

• Programming WebLogic Enterprise JavaBeans at: http://e-
docs.bea.com/wls/docs61/ejb/index.html

• Programming WebLogic JSP at: http://e-docs.bea.com/wls/docs61/jsp/index.html

• Assembling and Configuring Web Applications at: http://e-
docs.bea.com/wls/docs61/webapp/index.html

IIS reference at web site: http://www.microsoft.com/

CleverPath (formerly Jasmine): http://ca.com/products/jasmine/app_server.htm

Java Coding standards please follow the standards listed at web site:

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

JSP: http://java.sun.com/products/jsp/

DRAFT

52

2.6.4.3.7 Environment Cleanup

Environment cleanup refers to cleaning up variables, record sets, objects, connections, and
streams after you are done with them. As each object is no longer being used, it is a good idea to
destroy these objects to save memory leaks and to have the application perform at an optimum
level. Do not rely on the garbage collector to clean up the environment. It is up to each
developer to make sure that his or her environment is optimal.

2.6.4.4 Informaiton Assurance Standards and Practice

All information pertaining to IA is expressed in Section 3 of this document.

2.6.5 Emerging Standards and Practices for Reference

The Navy has identified some emergent technologies associated with web enablement for
possible future standards that may be implemented into the Navy Service Oriented Architecture.

2.6.5.1 WSDL 1.1

WSDL defines an XML-based grammar for describing network services as a set of endpoints that
accept messages containing either document-oriented or procedure-oriented information. The
operations and messages are described abstractly. They are bound to a concrete network
protocol and message format to define an endpoint. Related concrete endpoints are combined
into abstract endpoints (services). WSDL is extensible to allow the description of endpoints and
their messages regardless of what message formats or network protocols are being used to
communicate. However, the only bindings described in this document describe how to use WSDL
in conjunction with SOAP 1.1, HTTP GET/POST, and MIME.

• Specification
http://www.w3.org/TR/wsdl

• Schema
WSDL Framework: http://schemas.xmlsoap.org/wsdl/ .

WSDL SOAP binding: http://schemas.xmlsoap.org/wsdl/soap/.

WSDL HTTP GET & POST binding: http://schemas.xmlsoap.org/wsdl/http/.

WSDL MIME binding: http://schemas.xmlsoap.org/wsdl/mime/.

• Status
WSDL 1.1 was submitted to the W3C and became a W3C Note 15 March 2001.

• Introduction
SOAP defines a message as an Envelope and allows users to define specific Headers and Body
formats using XML. XML Schemas (XSD) provides a mechanism for describing an XML format,
but cannot describe a message or endpoint. The Web Services Description Language (WSDL) is

DRAFT

53

an XML-based document format that introduces an extensible grammar for describing message
endpoints while leveraging XSD for defining message content.

• Goals
1. Transport and encoding extensibility: New transports and encodings can be added to

the base specification without having to revise it.

2. Abstract definitions: Endpoints and messages can be described abstractly, and then
mapped onto one or more concrete transports or encodings.

3. Reuse of definitions: Existing endpoint definitions can be used to create new
definitions.

• Non-goals
1. Flow language: WSDL describes four basic message flow patterns (one-way,

request-response, solicit-response, and notification) and leaves description of more
complex flows to other specifications that extend the base patterns.

2. Expose implementation details: WSDL focuses on describing wire formats, not on
describing implementation details of an endpoint.

3. Exchange of documents: WSDL defines a document format for describing message
endpoints but leaves the exchange of such documents to other specifications (such
as UDDI).

• Details
1. The WSDL grammar contains the following elements that are used together to

describe endpoints:

2. Message: References to XML Schemas defining the different parts of the

3. Operation: Lists the messages involved in one message flow of the endpoint. For
example, a request-response operation would refer to two messages.

4. PortType: The set of message flows (operations) expected by a particular endpoint
type, without any details relating to transport or encoding.

5. Binding: The transport and encoding particulars for a portType.

6. Port: The network address of an endpoint and the binding it adheres to.

7. Service: A collection of related endpoints.

• Implications
As communications protocols and message formats are standardized in the Web community, it
becomes increasingly possible and important to be able to describe the communications in some
structured way. WSDL addresses this need by defining an XML grammar for describing network
services as collections of communication endpoints capable of exchanging messages. WSDL
service definitions provide documentation for distributed systems and serve as a recipe for
automating the details involved in applications communication.

• Related Specifications
1. WSDL builds on XML, XML namespaces, and XML Schemas.

2. WSDL is extensible, allowing other specifications that define new protocols to
introduce WSDL-specific grammar for conveying information about those protocols.

3. WSDL deliberately does not define complex flow information, but rather leaves this to
flow languages.

DRAFT

54

4. WSDL does not define how WSDL documents are exchanged, but instead leaves this
to inspection and directory specifications such as UDDI.

References: This section has briefly discussed several technologies and protocols. Additional
information on these topics can be found at the following web sites:

• J2EE http://java.sun.com/j2ee/

• .NET http://microsoft.com/net/

• Web Services

i. http://webservices.org/

ii. http://www.xml.com/pub/a/2001/04/04/webservices

• UDDI http://www.uddi.org/

• XML http://www.xml.org/

• SOAP http://www.w3c.org/tr/soap/

DRAFT

55

3.0 Integration Processes

Integration of an application in the WEN and NMCI requires application developers to complete
several review and test processes. These processes are also highlighted in Appendix 9, ARG
Checklists. Included are entry criteria for these processes and the rationale for
exclusions/exceptions.

<INSERT SUMMARY OF NMCI PROCESS>

The TFWeb Service Certification Process is designed to ensure application services meet the
security and functional standards of TFWeb and the Government prior to implementation within
the production TFWeb Portal.

Package
Review and
Registration

NMCI Beta
Lab Test

App Service
Promotion to
Production

Submit "Intent to
Migrate" Package

IT-21
SIPRnet Beta

Lab Test

IT-21 NIPRnet
Beta Lab Test

Passed?
Passed

Both IT-21 &
NMCI?

Network
Class.?

WEN IT
Governance

Approval

Yes No

NIPRnet

No

RemediateRemediate

Yes

No

Start

SIPRnet

Yes

Figure 0-1 Service Certification Process.

DRAFT

56

The certification process commences when the Service Owner delivers the Intent to Migrate
Package to its Application Migration Customer Support (AMCS) point of contact (POC). The
AMCS Team will review the Intent to Migrate Package for completeness and assists in
assembling the required information for approval of the final Request to Migrate by the AMCS.

The TFWeb Beta Test Team will then perform Beta Testing within the IT-21 SIPRNET Lab for
SIPRNET services and both the IT-21 NIPRNET and NMCI Beta Lab environments for NIPRNET
services. The Test Team will communicate any issues encountered during testing to the Service
Owner and the AMCS POC.

3.1 Application and Database Review

3.1.1 Data Collection and Assessment

NMCI has created the “ISF Tools” database which lists all current applications and
database that reside on NMCI as well those in migration. This database also includes
points of contact and status of the application through NMCI testing. All TFWeb
applications must be listed in the database by June 1, 2002. Functional Application
owners must provide developers of new or emerging applications the ability to review
this data. It is the responsibility of both developers and application/database owners to
conduct an analysis of this data to ensure that the proposed application does not duplicate
existing functionality. Applications and databases with data overlapping the new
application or database shall be identified and a data migration plan shall be established
identifying the resolution of overlap. Approved resolutions are sharing data, establishing
synchronization of data, or elimination of the legacy data source or program. Functional
Application owners should ensure that shared access to any data generated and access to
legacy data sources is established as a requirement from the beginning of application
development. Also, owners as well as developers should ensure that their new application
or database meets the technical standards of the WEN and NMCI early in the
development process.

Since all applications are required to migrate to the TFWeb environment by 2004, all new
applications and databases should submit an Intent to Migrate package to Task Force
Web. This package consists of an entry in the application information database managed
by TFWeb and a copy of the current IATO/ATO (if existing). The information will be
reviewed by a member of TFW Application Migration Customer Support (AMCS) to
determine the requirements for the final Service Registration package.

3.1.2 Rationalization

Rationalization is the process of identifying only those desktop and server-based
applications, both COTS and GOTS, required to support command or DON missions,
goals, and business processes. It includes the integration, consolidation, and elimination
of applications and associated databases to improve standardization, enhance security,
reduce duplication, and minimize support costs. Not all applications need be targeted for
NMCI and TFWeb. Many application requirements will be met by utilizing alternative

DRAFT

57

applications or by validating new requirements for applications under development.
Rationalization policy and guidance is the responsibility of the DON CIO. Service- level
policy and guidance for rationalization is the responsibility of respective Service CIO.
Claimant/Marine Corps-level policy and guidance for rationalization of software
applications is the responsibility of the CIO of the claimancy/Marine Corps organization.
The DON CIO memorandum, “Management of DON Software Applications,” dated 23
April 2001, promulgates policy for the review and reduction of applications and describes
a plan for DON-wide application rationalization. This memorandum is available at:
http://www.donimit.navy.mil/textversion/summaryTemplate.asp?catID=1&initID=44&th
eID=04262001OG A7754564. The DON-level rationalization process is a structured
approach to an information management framework. This will include functional and
acquisition program managers to ensure horizontal integration of systems and databases
and will tie into the Enterprise Resource Planning and Task Force Web initiatives. This
effort includes identifying duplicative applications, older versions of applications,
applications that have already been certified, and others and working with the Navy
claimants and Marine Corps organizations to resolve these issues.

3.1.3 Process for Rationalization

The purpose of rationalization is to reduce the number of redundant and/or obsolete
applications and corresponding databases. It is the responsibility of the Functional
Application Owners to ensure that the application has been rationalized in accordance
with all applicable directives or guidance prior to the beginning of the development of a
new or modified application.

The rationalization of GOTS applications begins with a search of the applications database to
identify whether or not this application is a Department of Defense (DoD)-standard or DON-
standard application, or whether your claimancy or Marine Corps organization, as appropriate,
has accepted this application as a standard. If the GOTS application is flagged as a standard by
any of these organizations, the rationalization process is complete and the application is moved
to the next step in the transition process. Those GOTS applications that have not been flagged as
standard are submitted to the Claimancy CIO, or USMC CIO, for review and approval. If the CIO
approves this application as a standard, the CIO is responsible for submitting pertinent
information for incorporation in the application database. The CIO shall consider Information
Technology for the 21st Century (IT-21) and Marine Corps Tactical Network (MCTN) published
standards as aids in their decision.

Some criteria that are normally disqualifying include the following: (WHERE ARE THESE FROM
– some don’t make sense for GOTS; more like COTS)

No personal, non-mission, or non-business-related software

No games

No freeware or shareware

No beta or test version software packages

No application development software (exception applies for approved science and technology
[S&T] seats)

No agents

DRAFT

58

No duplication of standard seat services

No duplication of Contract Line Item Number (CLIN) 0023 software applications; CLIN 0023
applications are standard for their respective functional areas

Adequate business case for requirement must be demonstrated (NEED TO LINK TO AN
EXAMPLE)

Applications must be compliant with DON/DoD Security policy (allowances should be made for
applications mandated by other Government agencies that DON is required to use)

Exceptions to any of these rules must have the approval of either the claimant CIO or the
Stakeholders’ Council [SHC]).

All GOTS applications must receive the permission of their Echelon II CIO via the “ISF
Tools” database prior to testing in the NMCI environment. In addition, all applications
must be approved by TFWeb prior to testing in the NMCI or TFWeb environments.

The rationalization of COTS applications begins with a search of the NMCI contract, with
amendments, to identify whether or not this version of this application is already included in the
standard seat services or in CLIN 0023. If yes, then this version of this application is already
approved for use on NMCI. If not, then using the applications taxonomy provided on the EDS
NMCI Web site, look for and migrate to applications that offer duplicate functionality or an
acceptable level of functionality and are included on the NMCI contract, with amendments. If an
application is found with duplicate or similar functionality, but is not on the NMCI contract, then
look for and migrate to applications that are certified for use on NMCI as identified on the NMCI
PMO-certified applications list. See the NMCI PMO Web site for the latest list of approved,
certified COTS applications. If there are no certified applications that provide duplicate or similar
functionality, submit this fact to your claimant CIO or USMC CIO for review and approval as a
standard for your community, using the same criteria listed in the GOTS rationalization process
(above). With that approval, your application can be submitted via the NMCI PMO for certification
testing. If the CIO approves this application as a standard, the CIO is responsible for submitting
pertinent information for incorporation in the application database.

3.1.4 Task Force Web Registration

The Service Registration Package should be submitted in memo form by an authorized
representative of the Echelon II command to the appropriate TFW AMCS POC via email
and should address the issues listed below. Portions of existing documents may be
submitted to prevent unnecessary duplication of effort. However, the submission should
be organized to provide the following information. Guidance is provided in section 11.3
on the Service Registration Package review process

Interim Authority to Operate (IATO) or Authority to Operate (ATO) from the appropriate
Designated Approval Authority (DAA) for the software developer.

NMCI Request for Service (RFS) form for NIPRNET applications

Migration plan to level 3 integration with appropriate milestones (separate document)

Waiver for level 1 integration included (if applicable)

DRAFT

59

Registry Metadata

Module Server package

Access control list (See Section 6.7.1)

Test plan and cases

Temporary login with access to non-administrator portions of the application - if a level 1 or 2
application

Summary of previous testing accomplished

Configuration of local application servers or remote module servers and estimated concurrent
users of service

Documentation of application data structures and data interfaces

Migration plan - if application/data overlap has been identified

Migration plan - if XML not in compliance with Navy standards is in use

In some cases a single application will be comprised of multiple individual services, each with its
own service module. If an application has multiple service modules then the service owner
should submit a separate test plan and RFS (if applicable) as part of the migration package.
Some services may also have multiple distributed physical instances. This typically requires each
service instance to have a unique URL as well as a separate ACL. In this situation the service
owner should submit a separate service module and ACL for each physical instance of the
service with the migration package.

All contents of the Service Registration Package should be placed in a Zip file and forwarded to
the AMCS POC via email.

3.1.4.1 Registry Metadata

The Service Owner should include the following information for integration into the portal registry.

Description of portal service to be integrated

The URL of the service to be integrated

The Owner of the service to be integrated (lead development organization)

The taxonomy category under which the service will be listed (see Section 5)

Point(s) of contact information for user access. This information should include names, phone
numbers, email addresses

Any parameter information required by the service

Target User Community (role/platform/location)

Service versioning information

3.1.4.2 Module Server Package

The Service Owner will need to put together a module server package that includes all resources
that the service will require for being included in the Enterprise Module Server. The module
server package contents will vary depending on the level of integration required by the service.

DRAFT

60

These module server resources can include any of the following types of items: HTML pages,
icons and images, XML files, XSL templates, JSP pages, Java Servlets, EJBs, ASP pages,
COM/COM+ components.

The following file formats are acceptable for the module server packages:

Java developers should deliver their module server package in WAR/EAR format. WAR/EAR
files are an executable file archive format used to package deployment files for a Java
enabled application server.

ASP developers should deliver their module server package in CAB format. The CAB format is a
file archive pattern used to package deployment files in the Microsoft Information Server
environment.

3.1.5 Certification and Accreditation

Refer to DoD – DITSCAP tailorable; Navy IA Pub 5239-13 (vols I, II, & III).
The DoD Instruction (5200.48) Defense Information Technology Security Certification
and Accreditation Process (DITSCAP) defines the activities leading to security C&A.
Activities are grouped in a logical sequence. This instruction presents the objectives,
activities, and management of the DITSCAP process. The objective of DITSCAP is to
establish a DoD standard infrastructure-centric approach that protects and secures the
entities composing the Defense Information Infrastructure (DII). The set of activities
presented in DITSCAP standardize the C&A process for single IT entities that leads to
more secure system operations and a more secure DII. The process considers the system
mission, environment, and architecture while assessing the impact of operation of that
system on the DII.

The Navy has documented implementation guidance for DITSCAP in Navy IA Pubs
5239-13 (vols I, II, & III). A main tenant of DITSCAP is tailorability. The level of effort
(LOE) to accomplish C&A can be customized to the application seeking accreditation.
DoN has based customization on application/system complexity, mission criticality, and
the mode of operations of the environment that the application is functioning in. Detailed
information can be found in the NMCI Connection Approval Process (NCAP).

It is the Service Owner responsibility to obtain an Approval to Operation (ATO) or Interim
Approval to Operation (IATO) for an application prior to registering it for migration to the TFWeb
Portal. Please see the Information System Security Manager (ISSM) representative for your
command for more information.

3.1.6 Certification of Functional Need

Certification of Functional Need is the process by which the functional owner/milestone
decision authority provides concurrence to the initiative.

DRAFT

61

3.1.7 Authoritative Data Source

AUTHOR: AEAG
This section will describe how to identify the data owner (listing of Navy/Marine Corps
data standards and sources (see section 2.2) and any associated processes. These are
customer functions: when developers are subject to the authority herein and when the
enterprise authority takes precedence over a Claimant Need; a catalog, listing of other
approved applications; how to go about getting authority to modify an application
belonging to another owner; how to go about making modifications to applications
designed for joint use; how a developer determines the existing and approved
applications available for use; and need to get questions answered prior to initiating any
development actions.

3.1.8 Application Hosting Determination Process

AUTHOR: PMO
This section intends to provide decision factors on the use of CLIN 0029 by the Acquirer
of the Application, and to identify POCs needed for the described service.
Refer to

http://www.eds.com/nmci/clinlist.doc

3.1.8.1 CLIN: 0029 Legacy Systems Support

Service Description. The Legacy Systems Support CLIN provides to the Acquirer of
the Application the ability to obtain initial integration services for legacy applications as
well as new or emerging operational and functional applications to enable them to run on
NMCI. System support can also provide additional services beyond basic integration.
These additional services provide a range of options that include, but are not limited to,
NMCI ISF hosting of applications, operations and maintenance support, database
management, and training, if ordered. This service may include participation of the
NMCI ISF in business process re-engineering activities.

3.1.9 License Management

The ISF asset management scope includes software asset management for items procured
by the ISF directly for, or in support of, a CLIN under the NMCI contract. Whether the
DoN provides the ISF the 'right to use' or whether the ISF procures software to meet its
own contractual obligations, the ISF will manage the licenses of that software, in
accordance with the NMCI contract beginning with Section 1.0.

3.1.10 Approvals

AUTHOR: PEO-IT
This section will describe any known DoN approvals required during the development
and deployment of the application, including Claimant/Activity Application Review

DRAFT

62

Process guidance. This will describe how to identify the data owner and any associated
processes: customer functions; when developers are subject to the authority herein and
when the enterprise authority takes precedence over a Claimant.
A catalog listing of other approved applications; how to go about getting authority to
modify an application belonging to another owner; how to go about making
modifications to applications designed for joint use; how a developer determines the
existing and approved applications available for use; and the need to get questions
answered prior to initiating any development actions, all will be included. Parts are
applicable to sections 1 and 6.

3.2 Application Development

3.2.1 NMCI Development Environment

The Science and Technology (S&T) Working Group has defined CLINs to support the
unique processing requirements of the S&T communities. These CLINs are numbered
0038AA-AH. Some of the requirements include:
• Ability to rapidly reconfigure hardware
• Ability to work collaboratively and share large data files
• Support for non-WIN2K Operating Systems
• Support for non-standard protocols
• High bandwidth requirements
• Appropriate security mechanisms
A detailed description of the CLINs can be found on the ISF web site at
http://www.eds.com/nmci/catalog.htm.

3.2.2 Accreditation Plan

While developing the Systems Security Authorization Agreement (SSAA), one of the
early activities is to develop the C&A strategy, plans, and LOE. This information is
captured in the SSAA and agreed upon by the key C&A personnel (defined by DITSCAP
as the DAA, CA, CA, ISSM, ISSOs, user reps, and the PM). The DITSCAP and Navy
implementation documents describe the information required to develop the C&A Plan,
LOE etc., and can be found at the Navy INFOSEC website URL:
https://www.infosec.navy.mil. The specific NMCI C&A tailoring guidance can be found
in the NCAP posted at http://www.eds.com/nmci

3.3 Before Visiting NMCI for an Engineering Review

The process of transitioning applications to NMCI entails a set of interrelated processes
that impact various DoN components and the ISF. The Applications Resource Guide
seeks to communicate the transition requirements and expectations with the objective of
enabling the customer to effectively plan and efficiently execute their transition to NMCI.

DRAFT

63

3.3.1 Recommended Steps prior to an Engineering Review

The following checklist is recommended for use by developers prior to entering
Engineering Review:
• Architecture Review Board Report
• Software Test Reports
• Code Review Inspection Reports
• Risk Management Plans
• Software Implementation Plan
• Software Users Manual or adequate Help Facility
• Configuration Management Plan
• Certification Accreditation Letters
• Software Quality Assurance Plan
• Release Procedures, if not included in the Implementation Plan
• A copy of the Engineering Review Question Set (provided by the ISF)
• A copy of the Security Working Group Process document.
• A copy of the Applications Resource Guide.

3.3.2 Security Certification and Accreditation Process

AUTHOR: PMW161, MITNOC
As described in VI.B.3 Security C&A, the C&A efforts integrated into the application
should be appropriately documented in the SSAA Key elements of the SSAA for review
are as follows:
• Definition and appointment of IA personnel (DAA, CA, CA, ISSM, ISSOS, user reps,

and the program manager)
• Mission Description and System Identification
• Environment Description
• System Architectural Description
• System Security Requirements
• Organizations and Resources
• DITSCAP Plan

3.3.3 NMCI and Connection Approval Process (NCAP)

If application is accredited according to DITSCAP and Navy Policy, NCAP is a request
for connection (RFC) process. RFC pulls the pertinent information from the application
accreditation package to allow the NMCI connection decision authority (NMCI DAA) to
make an informed connection decision.
If the C&A process has not been integrated, the NCAP defines the ways to tailor the
DITSCAP to specific situations and still produce all necessary information to make a
NMCI connection decision. The NCAP can be located at the Navy INFOSEC website at
URL: https://www.infosec.navy.mil.

DRAFT

64

3.3.4 Testing Considerations

Applications must successfully complete the Developer Test and Evaluation (DT&E),
including the creation of test scripts and testing scenarios. It must be verified that the
application will work on an NMCI-certified workstation. Developers must describe the
types of tests done in the NCMI Certification process (e.g., will the application print, will
office applications continue to operate); any consideration for prototype/pilot testing; the
steps, data, and logical conditions necessary to trigger programmed authentication
processes (LDAP, Active Directory, file sharing, file writes, etc.) to ensure Group Policy,
Lockdown, and Security areas are thoroughly examined by the Certification and
Directory Services Teams. Developers ensure logon ids used have the same access rights
as end-users, not developers.

3.4 TFWeb Beta Test Processes
TFWeb Beta Lab testing ensures that application services function appropriately within
the portal environment and that they adhere to the TFWeb standards outlined in the
Integration Developers Guide. There are three TFWeb Beta Test Labs, an IT-21
SIPRNET lab, an IT-21 NIPRNET lab, and an NMCI NIPRNET lab. All application
services functioning across the SIPRNET will be tested in the IT-21 SIPRNET Lab.
Services functioning across NIPRNET will be tested in the IT-21 NIPRNET Lab as well
as the NMCI Beta Lab.

3.4.1 IT-21 NIPRNET Beta Lab Process

The AMCS POC will submit SIPRNET services packages the IT-21 SIPRNET Beta Lab. As
packages are submitted for testing the following process is followed:

The AMCS POC submits a service package to Beta Lab POC via email. The package must
include the following items required by the Beta Lab for testing:

Registry Meta-data

Module Server package

Test plan and test cases

Description of any special application functionality that will be required and/or tested

The Beta Test Team reviews the service package for completeness. If the package is complete,
the service is scheduled for testing and notification is sent to the service owner and the
AMCS POC. If the package is incomplete notification is sent requesting the missing
components before scheduling the service for testing.

The Beta Test Team creates the global unique identifier (GUID) key for the service, installs the
service module, creates the Registry entries, and creates the portal connector for the service.

The Beta Test Team performs the tests.

If the application fails any test cases or if its performance impacts that of the Portal environment
the application will not pass the Beta Test. In this case the Service Owner and the AMCS

DRAFT

65

POC are notified with specific reasons for failure. AMCS may request support from AMTS to
remediate any technical issues preventing approval.

Once the service has passed testing, the service will progress to the WEN IT Governance. Upon
approval from WEN IT Governance the service is promoted to production.

Receive
Registration

Package

Schedule Beta
Test

Perform TFWeb
Beta Test

Passed

Install and
Configure

Service

Generate
Acceptance

Letter

Generate Non-
Acceptance

Letter

YesNo

Start

Figure 0-2 TFWeb IT-21 SIPRNET Beta Test Process

DRAFT

66

3.4.2 IT-21 NIPRNET Beta Lab Process

The AMCS POC will submit NIPRNET services packages to both the NMCI Beta Lab and the IT-
21 NIPRNET Beta Lab. The labs coordinate so that each service package is tested in only one
lab at a time. This helps balance the load between the labs and ensures that any issues
encountered during testing are addressed by one lab thus minimizing delays in the other lab. As
packages are submitted for testing the following process is followed:

The AMCS POC submits a service package to Beta Lab POC via email. The package must
include the following items required by the Beta Lab for testing:

Registry Meta-data

Module Server package

Access control list

Test plan and test cases

Request for Service (RFS) form

Description of any special application functionality that will be required and/or tested

The Beta Test Team reviews the service package for completeness. If the package is complete,
the service is scheduled for testing and notification is sent to the service owner and the
AMCS POC. If the package is incomplete notification is sent requesting the missing
components before scheduling the service for testing.

The Beta Test Team creates the global unique identifier (GUID) key for the service, installs the
service module, creates the Registry entries, and creates the portal connector for the
service.

The Beta Test Team performs the tests.

If the application fails any test case or if its performance impacts that of the Portal environment
the application will not pass the Beta Test. In this case the Service Owner and the AMCS
POC are notified with specific reasons for failure. AMCS may request support from AMTS to
remediate any technical issues preventing approval.

The IT-21 Beta Lab collaborates closely on testing NIPRNET services with the NMCI Beta Lab. If
the service has passed testing in the IT-21 NIPRNET Beta Lab it is then forwarded to the
NMCI Beta Lab to complete the TFWeb certification process.

When the service passes the Beta Test in both the IT-21 and NMCI Beta Labs a notification letter
will be sent to the Service Owner and the AMCS POC.

Once the service has passed testing, the service will progress to the WEN IT Governance. Upon
approval from WEN IT Governance the service is promoted to production.

DRAFT

67

Receive
Registration

Package

Schedule Beta
Test

Perform TFWeb
Beta Test

Passed

Completed
NMCI Beta

Testing

Install and
Configure

Service

Generate
Acceptance

Letter

Generate Issue
Report

Forward
Application

Service Package
to NMCI Beta Lab

Yes

No

YesNo

Start

Figure 0-3 IT-21 NIPRNET Beta Test Process

DRAFT

68

3.4.3 NMCI Beta Test Process

The AMCS POC will submit NIPRNET services packages to both the NMCI Beta Lab and the IT-
21 NIPRNET Beta Lab. The labs coordinate tests so that each service package is tested in only
one lab at a time. This helps balance the load between the labs and ensures that any issues
encountered during testing are addressed by one lab thus minimizing delays in the other lab. As
packages are submitted for testing the following process is followed:

The AMCS POC submits a service package to Beta Lab POC via email. The package will include
the following items required by the Beta Lab for testing:

Registry Meta-data

Module Server package

Access control list

Test plan and test cases

Request for Service (RFS) form

Description of any special application functionality that will be required and/or tested

The Beta Test Team reviews the service package for completeness. If the package is complete,
the service is scheduled for testing and notification is sent to the service owner and the AMCS
POC. If the package is incomplete notification is sent requesting the missing components before
scheduling the service for testing.

If a service requires the modification of the desktop configuration (i.e. plug-ins, active-X controls,
etc.) then NMCI requires that desktop application go through an additional process in order to
certify the security of the mobile code. NMCI also requires that the mobile code be tested on the
standard NMCI desktop to ensure that it does not impact other standard desktop application. The
latter process (NMCI Application Certification Process) is outlined in the following section.

The Beta Test Team creates the global unique identifier (GUID) key for the service, installs the
service module, creates the Registry entries, and creates the portal connector for the service.

The Beta Test Team performs the tests.

If the application fails any test cases or if its performance impacts that of the Portal environment
the application will not pass the Beta Test. In this case the Service Owner and the AMCS POC
are notified with specific reasons for failure. AMCS may request support from AMTS to remediate
any technical issues preventing approval.

A security (Green Team) scan is performed to ensure that the service module meets information
assurance (IA) criteria.

The NMCI Beta Lab collaborates closely on testing NIPRNET services with the IT-21 NIPRNET
Beta Lab. Services are not tested simultaneously in both labs. If the service has passed testing
in the NMCI Beta Lab, but has not been tested in the IT-21 NIPRNET Beta Lab it is then
forwarded to that lab to complete the TFWeb certification process.

When the service passes the Beta Test (both the IT-21 and NMCI Beta Labs for NIPRNET
services) a notification letter will be sent to the Service Owner and the AMCS POC.

Once the service has passed testing, the service will progress to the WEN IT Governance. Upon
approval from WEN IT Governance the service is promoted to production.

DRAFT

69

Receive
Registration

Package

Schedule Beta
Test

Perform TFWeb
Beta Test

Passed

Completed
IT-21 NIPRNET
Beta Testing

Install and
Configure

Service

Generate
Acceptance

Letter

Work with
Service Owner to

Remediate

Forward
Application

Service Package
to ISF Beta Lab

Yes

N o

YesNo

Start

Service
Requires
Mobile
Code?

NMCI
Legacy

Application
Certification

Process

Yes

No

IA Green Team
(Security) Scan

Passed?

Yes

No

Figure 0-4 NMCI Beta Test Process

DRAFT

70

3.4.3.1 NMCI Application (Mobile Code) Certification Process
The NMCI Application Certification Team will be responsible for processing all desktop
applications (e.g. mobile code) through a two-phase testing cycle. Phase 1 consists of basic
application functionality testing, and Phase 2 consists of standard seat service integrity testing.
Any special or additional test requirements must be identified by the Navy claimants prior to the
beginning of testing, and preferably in the NMCI RFS.

The certification criteria currently required for Phase 1 testing include:

Basic functionality:

Launch the application

Create or Open a new document or file

Save a new document or file

Print a new document or file

Close the application

Execute “best business practice” or “customer-defined” testing scripts applicable to the
application.

Phase I Test
Level 1
Level 2

Install
Application

Update
Packaging Phase I Test

TART
Review

Level 2
Test

Publish
Application

Pass

Fail

Standard
Seat

Servvice
(Gold Disk)

Initial
Packaging

Certification
Test

Site Solution
Engineering /

Re-engineering

Fail

Fail

Generate
Report of

Certification

Onsite
Connectivity

Test

Pass

Start

Fail

Pass

Figure 0-5 NMCI Application Certification (Mobile Code) Process

Any additional functionality testing needs to be defined and scripted by the Service Owner to
ensure proper execution. Once the lab receives an application, the Service Owner can track the
status by viewing the report posted online at http://www.eds.com/nmci/transition.htm.

DRAFT

71

3.5 Certification Lab Activity

For familiarization and preparation of the Application Certification Process, developers
can initiate several processes and documents. The public NMCI web site,
www.eds.com/nmci contains a link to a page titled Making the Transition’. This page
has links to online documents for the following:
• Legacy Application Transition Guide
• Legacy Application Certification Liaison Letter (700-W02FN)
• Legacy Application Pre-Certification (700-W02FK)
• Legacy Application Certification - Request for Service (RFS) (700-W02FB)
For the purposes of this guide these documents can be used for either Legacy or New and
Emerging Applications. Of these, the Transition Guide familiarizes developers with all
the end-to-end processes for application transition into NMCI and the Liaison Letter
serves as a checklist for preparation steps for the certification lab. An excerpt of the
Liaison letter appears below.

3.5.1 Application Certification Liaison Letter

This letter describes the information and materials a site must submit to the NMCI
Proving Center/Certification Lab (PCL) before the Lab can begin testing unclassified and
classified applications for certification. If any media is received without an RFS then it
will be considered Not Received (NR), or if an RFS is submitted without media then it
will be considered Incomplete. In either case the site Government representative (CTR)
and PMO will be contacted in order to acquire the appropriate documentation and/or
media. All items will be tracked and pursued by the Certification Lab Site Liaison and
PMO jointly in order to ensure completion of delivery. In order to maintain
accountability for shipping and receiving every package should include a shipping list
complete with content details (Application Name, Version, and clearly marked media).
Upon receipt of the package, the Certification Lab will confirm with the site all
applications received or not received to ensure accountability. Anything reported as sent
but not received will be reported to the PMO and the site’s CTR.
During testing an application’s progress can be checked online at
www.eds.com/nmci/transition.htm. Each application submitted to the Lab will complete
the Application Certification Process, but before the Lab can begin testing, it must have
sufficient information and materials.

3.5.2 Information/Materials for Lab Testing

The following are materials the laboratory must have for testing:
• A complete NMCI Request For Service (RFS).
• A valid key/license (if required).
• A copy of the application’s original software media that is functional, readable,

installable and complete.

DRAFT

72

• All available or applicable software documentation, including installation details and
procedures.

• A description of any special application features and functions that will be required
and/or tested, including server connectivity and access issues.

• Manual test scripts (step-by-step descriptions of test procedures) for special
application functionality tests. The Lab may require a manual script to test a GOTS
application or unusual software whose experienced users are not available for
questions.

3.6 Certification Lab Process

This section describes the classified and unclassified lab certification processes, including
POP in the Box (a mobile server that approximates the NMCI environment-permits
testing to check configuration). Developers are encouraged to review the Certification
Process documents and the NMCI Transition Guide to gain the full perspective of these
processes. (See Appendix 10 and 17 for links to these documents.
The steps for Proving Certification Lab (PCL) processes are illustrated in Exhibit 11.

Lab

Certification DoN / ISF

NOC

Package
Push / Install

Application

TART

Prepare
Gold Disk

Environment

Engineer
Solution

Generate
Reports

Return Reports
And Provided

Media to
Claimant

Audit
(ARRT) Schedule

Scheduler
Receives

RFS

Update
Packaging
Repository

Advanced
Application

Certification
Testing (AACT)

Phase 1 & 2
Test

Level 1
Level 2

Advanced
Application

Certification
Testing (AACT)

Phase 1 & 2
Test

Level 1
Level 2

NO

Final
ResultsTest

Results

Initial
Failure

Final Failure

POP in the Box Analysis
Results

Configuration
issue

Connectivity
Issue

Returned from POP
for Cert Testing

Sent to POP
For Validation

Pass

Packaging Failure

RFS and Media
Received by

NOC Classified
Material Custodian

Exhibit 11: Proving Certification Lab (PCL) Processes

This process is applied identically for Classified and Unclassified applications with one
exception. The first step initiated by the NOC: ‘RFS and Media Received by NOC
Classified Material Custodian’ is only necessary for Classified applications.

3.6.1 PCL Process Steps

Customer/ISF Initiation - Initiation of the certification process:

DRAFT

73

• ‘As Is’ environment – prior to cutover to NMCI, ISF, PMO and customer sites
work together to identify and collect data on Legacy Applications, rationalize
lists, then submit a Request for Service (RFS) for each Application.

• ‘To Be’ environment – after cutover to NMCI, the Acquirer of the Application
may introduce New or Emerging Applications by submitting a Request For
Service via the proper chain of command and issuing a CLIN 0029 Task
Order for certification testing.

Request For Service

• Will be the tool used to gather information from the Customer.
• This information will consist of Customer, Application, Installation, and

Testing-specific information. In addition, the RFS should be accompanied
with the appropriate media, key/license, and any Customer Test Scripts or
Special Instructions, if applicable.

Audit (ARRT)

• A review process to assure that all informational and material requirements
have been met for certification processing. Conducted internally at the
Certification Lab by the Application Rationalization and Review Team
(ARRT).

Scheduling

• After a successful audit the RFS is then scheduled to a resource/cell. If there
is a need to prioritize a RFS, this should be done by contacting the PMO, who
then conveys the priority need to the ISF/Certification Lab (PCL).

Packaging

• Is the process of combining an Application with automated installation scripts
for use with the NMCI software distribution system (Novadigm Radia). The
entire package must be certified.

Level 1 Testing

Level 1 constitutes actual Certification Testing and comprises two parts:
• Phase 1: Application Basic Functionality Testing – the application works after

deployed to the NMCI environment.
• Phase 2: Gold Disk Integrity Testing – the application does not harm the

NMCI environment.

Level 2 Testing (TART)

• Is only conducted on those Applications that fail Level 1 Testing, and in those
cells identified for Advanced Application Certification Testing (AACT).

• AACT will be the process of redeploying the initial package to a specially
equipped test cell that can provide a more detailed analysis of the application
installation, configuration and packaging.

DRAFT

74

Validation
• Is conducted on site utilizing the PoP in the Box engineering tool. Some

applications require site connectivity in order to validate application
functionality and/or connectivity/security compliance.

• The Proving Center/Certification Lab may send an application to PoP in the
Box pre or post testing in the Lab.

Certification Pass/Fail

• The responsible Certification Team Manager generates a NMCI Technical
Certification Letter, NMCI Application Release Notes, and NMCI
Certification Certificate stating the results of the Certification Process.

3.6.2 Parties to the Process

Following are parties to the PCL process:
• Customer/Claimant – The Navy and Marine Corps entity or site representative

requesting the certification.
• Application Owner – The Navy/Government on site application administrator and/or

user if he/she is both.
• Central Development Activity (CDA) – The Government application developer.
• (Classified Applications only) NOC Classified Material (CMS) Custodian – The ISF

(Raytheon) individual responsible for receipt and accountability of classified material
at the NOC facility.

• Application Rationalization and Review Team (ARRT) – This team is responsible for
providing an initial review/audit of the RFS and ensuring all informational
requirements have been fulfilled.

• Lab Scheduler – This is the individual responsible for managing the lab resources,
and coordinating packaging and certification cells. Cell utilization and productivity
will be the focus of this step.

• Packaging Technical Lead – The individual responsible for supervising the initial
packaging team.

• Certification Technical Lead – The individual responsible for supervising the Testing
Cycle and completing the NMCI Certification Technical Lead Checklist.

• System Administrator – The individual responsible for conducting the testing.
• Technical Application Review Team (TART) – This is the technical review team that

will attempt to resolve installation or configuration issues that preclude an application
from passing certification.

• Certification Manager – The manager responsible for the Certification Team that
performed the testing.

• Site Liaison – Proving Center Lab personnel responsible for assisting, monitoring,
and coordinating the application gathering effort.

• POP in the Box – This is an engineering tool that provides pre/post-validation of
applications connectivity in order to certify for NMCI. It simulates the NMCI
environment, and includes firewall, VPN, router, and client components.

DRAFT

75

• Certification Data Warehouse (CDW) – The database to be used to store, track, and
control the certification process.

3.6.3 PCL Process Documents

• 700-W02FB NMCI Request For Service (Web based/Form)
• 700-W02FC NMCI Application Audit (Web based/Form)
• 700-W02FD NMCI Certification Technical Lead Checklist (Printed/Checklist)
• 700-W02FE1 NMCI Novadigm Radia Packaging Details (MSI) w/ Amendments

(Web based/Form)
• 700-W02FE2 NMCI Novadigm Radia Packaging Details (Non-MSI) w/ Amendments

(Web based/Form)
• 700-W02FF NMCI Application Installation Details w/ Amendments (Web

based/Form)
• 700-W02FH NMCI Certification Test Checklist (Printed/Checklist)
• 700-W02FI NMCI Test Results Summary (Web based/Form)
• 700-W02FJ NMCI Technical Certification Letter (Web based/Report)
• 700-W02FK NMCI Application Release Notes (Web Based/Report)
• 700-W02FL NMCI AACT Details (Web based/Form)
• 700-W02FM NMCI Application Certification Certificate (Web Based/Report)
• 700-W02FN NMCI Application Certification Liaison Letter (Standard Letter)

3.6.4 Developer Impact

Developers perform the following:
• Required to follow the Certification processes and forms to have their application

authorized to be operating within NMCI.
• Must follow these processes and related life cycle processes anytime application

changes are performed and planned for release into NMCI.
• Be responsible for performing corrections and re-submitting the application for

certification if lab results are unsatisfactory.
• Not required to be present (on location) at the Certification Lab during certification

steps but are invited to do so if they wish.
• For POP in-Box testing, developers are responsible or involved in the Pre/Post

Certification processes, documents, providing application test scripts, application
installation instructions, user IDs, license keys, being present of installation (if
necessary), etc.

3.7 Before Deployment/Migration

AUTHOR: ISF / PMO

3.7.1 WEN IT Governance

Programs that do not meet all requirements for migration may rarely be allowed to proceed
through the testing process while simultaneously completing these requirements. In addition,

DRAFT

76

applications that fail portions of the testing may be functionally displaced by another application
by the time they are ready for migration to the production portal. Testing may also demonstrate
substantial overlap with another application or organizational issues that prevent immediate
migration of the application. Final approval of migration is currently a function of the Task Force
Web Executive Steering Group. This approval may be delegated to a lower level based on
application compliance with TFWeb standards.

3.7.2 Help Desk Procedures

Developers must ensure that application and NMCI help desk are properly notified and
prepared to handle user issues. They link to any help desk processes from the transition
guide. Developers add description of whether the help desk is being hosted by the ISF or
identify who is providing the service; they need to update the desk providing the final
service if partial help is provided from another source. See Appendix 16 for the NMCI
Help Desk phone number.

3.7.3 Training

At the time of desktop installation, an initial, personal introduction to the machine is
provided. In addition, extensive access to a variety of computer-based training courses
also is available at no additional cost. SLA 17 defines training requirements.

3.7.4 Backup and Recovery

Developers must create and test an appropriate backup and recovery process and identify
an up-to-date B/R plan.

3.8 Deployment/Migration

3.8.1 NMCI Hosting of Applications on Terminal Services

Many bases/sites/Commands have a pre-existing "thin client architecture" that serves as
the foundation for how applications run and behave on a terminal server. Most of the
server-based applications in the Navy/MC are based on the NT4 Terminal Server
operating system. The existing Navy/MC architectures and assumptions are likely
incompatible with the "NMCI Thin Client Architecture". For example, existing
Navy/MC thin client architectures include security, permissions and domains standards
that accommodate the applications. Moving the applications to the more stringent NMCI
Windows 2000 infrastructure with new domains and security models makes it unlikely
the applications will operate correctly without modifications. It is important to remember
each base/site/Command may have their own “thin client architecture"; so leveraging
solutions across sites/Commands/bases may not be possible.

DRAFT

77

3.8.1.1 Typical Scenarios for Hosting Applications on Terminal Services

There are four categories for moving/migrating/converting applications to a terminal
server platform and three of them require issuing Task Orders under CLIN 0029 to host
the application(s). The two high- level criteria for determining if CLIN 0029 needs to be
executed are based on (a) leaving applications on existing platforms or (b) moving them
to NMCI-supported hosted platforms:

Legacy Application Access: The claimant runs applications on Terminal Services today,

and the claimant wants to perform their own server support, the ISF will provide
connectivity to the "Legacy Application" through Terminal Services client(s). The
claimant will maintain the servers and administration like other legacy applications.
In this case, a software distribution package will be necessary to deploy the client
software to the NMCI seat.

1. Legacy Server Support : If a claimant runs applications on Terminal Services today,
and they want the ISF to support pre-existing servers , a Task Order under CLIN
0029 must be executed for re-engineering and hosting services.

2. Move/Migrate/Convert Multi-User Legacy Application: If a claimant runs
applications on Terminal Services today, and the claimant wants the ISF to
engineer the applications to run on NMCI Terminal Servers, a Task Order under
CLIN 0029 must be executed for engineering and hosting services.

3. Move/Migrate/Convert Single-User Legacy Application: If a claimant does not
use Terminal Services today, but the claimant wants the ISF to engineer an
application to run on ISF Terminal Servers, CLIN 0029 Task Order must be
executed for re-engineering and hosting services.

Results when Executing CLIN 0029 for Applications on Terminal Services
Determine compatibility with Windows 2000 Professional and Windows 2000 Terminal

services.
4. Determine how many sessions a terminal server can support.
5. Determine reusability of existing hardware and software.
6. Determine network connectivity and Security requirements.
7. Determine ID, group and OU requirements
8. Determine if portal integration is necessary.
9. Determine performance measurements.
10. Determine ongoing costs, if any.

3.8.1.2 Programming Standards for a Terminal Server Platform

Development Guidelines. For applications to work well in a multi-user environment,
certain programming standards must be used. Terminal servers host applications for
multiple end-users, but the application must be written so that user-specific information is
not tied directly to a machine. For example, applications cannot use the TCP/IP address
to uniquely identify a user because many users on a terminal server share the same
address. Microsoft provides guidance on the following categories:
• Building a Terminal-Services-Aware Application

DRAFT

78

• Application Setup in a Terminal Services Environment
• Storing User-Specific Information
• Kernel Object Name Spaces
• IP Addresses and Computer Names
• Client/Server Applications
• Graphic Effects
• Peripheral Hardware
• Background Tasks
• Thread Usage
See Appendix 3 for a link to the Microsoft site for Terminal Services Programming
Guidelines.

Tuning and Optimizing Applications. In addition to the categories mentioned above,
Microsoft provides specific tuning and optimization guidelines. Adhering to these
standards helps ensure applications run efficiently, or run, or in some cases, run at all.
The following standards are not only good to use for a multi-user platform, but are good
best practice techniques. Programming guidelines to use are as follows:
• Support Customization Through User Profiles
• No Memory Leaks
• Do Not Replace System Files
• Do Not Assume Computer Name or IP Address Equates to Single User
• DCOM Support
• Consider the Peripheral Hardware Environment
• Do Not Assume Persistence of Files in Temp
• Disallowing Multiple Instances of Some Applications
• Do Not Assume the Windows Shell
• Do Not Modify the GINA
• Negotiate Client/Server Connections Inside the System and Network
• Multilingual and International Usage Scenarios
See Appendix 3 for a link to the Microsoft site for Optimizing Applications for Windows
2000 Terminal Services.

3.9 System Changes

Following are procedures for system changes.

3.9.1 Emergency Production Fixes

Emergency production fixes may be authorized only if the problem is critical or may
jeopardize safety, or the problem adversely affects the mission and an interim
workaround is not possible.
Emergency production fixes are not authorized if the following occur:
• The problem adversely affects the mission but a workaround may be used in the

interim until the formal change process may be completed.

DRAFT

79

• The problem is inconvenient but does not affect essential capability.
• The change will adversely affect firewall policy compliance.
• Any question on the Recertification Checklist is answered “Yes”.

Procedures:
• The problem is investigated to determine the cause.
• A fix is developed.
• The fix is tested for adequacy.
• The fix is regression tested.
• The fix is entered into the configuration management process and tracked so that it

can be entered into and follow the formal release process.
• The fix will be included in the next formal release.

3.9.2 Recertification Procedures

Once an application has been certified for NMCI under the application access process,
any modifications to the application require re-certification. This re-certification effort, to
include this distribution of the update, is a purchasable item from the contract. This
orderable item is currently being developed (as of 08/22/01) and is anticipated to be
available within the next month. It is currently not determined which CLIN will be used
to make this service available for order. This document will be updated once the
contractual activities have been completed. This CLIN would also be used for initial
certification of "new" applications being introduced to NMCI.
Any code change will require re-certification. This includes hard-code logic changes,
parameter changes in configuration files, include files, copybooks, etc., and any change
that requires the application to be recompiled.

3.10 System Retirement/Sunset

Processes and procedures for shutting down an application currently do not exist. Refer
to the transition guide where appropriate. Should include the ISF and others impacted
by the decision.
Process for developers to follow when retiring a system under NMCI:
• Notify the users, NMCI, and any others of the application’s retirement date.
• Stop the application from running on the retirement date.
• Make a backup copy or and an archive to store for history purposes.
• Remove the application and any extra software needed to run from all applicable

machines.
• Notify the users, NMCI, and any others that the system has been retired.

 3.11 Reusable Components

Developers perform the following:

DRAFT

80

• Establish the procedures and tools to develop a reuse repository and associated
policy.

• Establish a reuse component manager who will control the reuse component
maintenance. This person will be responsible for approval, logging, and retirement of
reusable components.

• Obtain a tool for tracking and logging of reusable components.
• Create a process for submitting and approval of reusable components.
• Keep track of a ranking and “lessons learned” history (a developers perspective) on

reusable components.

3.12 Interfaces/Adapters

Developers establish the procedures and tools to develop an interface adapters central
repository and associated policy.

3.13 Metrics

Describe what reporting metrics that NMCI will provide the application owner.
Describe what NMCI monitoring facilities are available for the application to
communicate with. Describe what metrics are required by DoN / DoD to be tracked by
applications. A developer’s view…
Who are the peak users of my application?
How many are using my application?
What are peak usage times for the users of my application?
Visibility of any logs that may be generated when the application is run.
If the application has a problem, help with tracking and tracing the issue or bug.

3.14 Knowledge Services

Describe what is available from the knowledge management community to the
application developer. Describe any associated procedures. Describe the developer
news groups available to share information.

3.15 Timelines (Generic)

The NMCI Transition Guide and Lab Certification processes (see Appendices) detail the
requirements, processes, and general timelines. These documents contain specific and
general time frames for all phases, from Data Gathering to Deployment. Because the rate
of an application progressing through the transition processes will depend upon its
network complexity (local area, intranet, or internet connectivity), business criticality
(mission support / administrative or mission critical), and the parties involved, timelines
for applications fully completing NMCI deployment will vary.
It is recommended for developers to review this Guide and the Lab Certification process
to become fully familiarized with the necessary processes and time line guidelines.

DRAFT

81

4.0 Interfaces

Interfaces to network infrastructure components are commonly identified by reading
component specifications. Proper interfacing with the two Enterprise infrastructures of
interest (NMCI and TFW Portal) is required to ensure that the infrastructures continue to
operate according to their original design. This section seeks to identify infrastructure
interfaces, API’s, and application specifications for the various types of applications that
will share the NMCI Windows 2000 desktop and Task Force Web Portal network
environment. Developer responsibilities and common approaches to these interfaces will
be enumerated in an effort to protect, respect and maximize our investment in the
common Enterprise network infrastructure. The goal for a developer should be to
develop NMCI and TFW Portal sensitive applications that will work securely and
harmoniously with common network resources. An overview of the interfaces should
help a developer gain the understanding needed to properly interface with Enterprise
architectures, affording both developer and user a successful experience with the new
Navy Enterprise. An interface compliance checklist (NMCI/ TFW Portal) can be found in
Appendix 0X. Excellent resources that define these specifications are, the “Windows
Logo Program” that may be found on the Microsoft’s developer network website at
http://msdn.microsoft.com/certification/download.asp, the Microsoft Platform SDK
(Software Developer Kit) that documents the Win32 API, and Microsoft’s ADSI (Active
Directory Service Interface) model (see Appendix X0 for industry references to common
interfaces used in NMCI/ TFW Portal).

Desktop Application Specification (The Legacy Approach)
Although it is the intent of this document to provide guidance towards developing web
enabled applications, it will be, in some cases necessary to develop or modify existing
desktop applications to ride on the NMCI infrastructure. This section describes the
standard Windows 2000 API’s used in NMCI workstations and discusses NMCI’s use of
Novadigm Radia (a software distribution system) and Active Directory technologies to
manage software availability to a workstation or an end user of NMCI.

Desktop applications developed for NMCI’s Windows 2000 environment must undergo
an ISF certification process (enumerated in Appendix XXX) in order to be “pushed” on
to workstations via a Novadigm Radia instance (see Appendix XXY for a sample install
script and what is required). The NMCI network, monitored by ISF will protect
connected user workstations, data, and application servers if and only if guidance is
headed by developers or users interfacing with the network. Both applications and users
will be controlled as objects and removed from participation in NMCI should they violate
policy or specification..

DRAFT

82

Boundary 4:
Protects NMCI Hosts,

Servers

COI B3 COIB3

COI

B3

Boundary 3:

Protects between

NMCI COIs and NMCI

B3

NMCI

Boundary 2 :

Protects between

NMCI and users/applications

located in Navy legacy networks

B2

NMCI

Navy Legacy
Networks

App

NIPRNet
SIPRNet

Boundary 1:

Protects between
NMCI users and services

located in External Networks

B1

NMCI
B1

B2

BT

NMCI
WAN

Boundary Transport:

Protects between NMCI
and Transport Wide Area
Network

NMCI BT
BT

Remote Dial-In

Boundary 4:
Protects NMCI Hosts,

Servers

COI B3COICOI B3 COICOIB3B3

COI

B3

COI

B3B3

Boundary 3:

Protects between

NMCI COIs and NMCI

B3B3

NMCI

Boundary 2 :

Protects between

NMCI and users/applications

located in Navy legacy networks

B2B2

NMCI

Navy Legacy
Networks

AppApp

NIPRNet
SIPRNet
NIPRNet
SIPRNet

Boundary 1:

Protects between
NMCI users and services

located in External Networks

B1B1

NMCINMCI
B1B1

B2

BTBT

NMCI
WAN

Boundary Transport:

Protects between NMCI
and Transport Wide Area
Network

NMCI BT
BT

NMCINMCI
WANWAN

Boundary Transport:

Protects between NMCI
and Transport Wide Area
Network

NMCINMCI BTBT
BTBT

Remote Dial-In

? Desktop Apps Interface Diagram goes here 1

Standalone Application (no network connectivity while running, just install and use)
A standalone application, for the purpose of this section may be defined as an application
that requires installation on an NMCI workstation but does not require use of the network
for its operation. An example could be the common Windows “calculator” application on
most Windows computers. This type of application does not interface with any Windows
2000 Services or network infrastructure resources/objects.

Windows 2000 Interface specification.

Win2k standard desktop specification is provided by Microsoft at
http://msdn.microsoft.com/certification/download.asp

The desktop specification clearly outlines what a developer will need to qualify for a
“Certified for Windows” logo.

DRAFT

83

NMCI lockdown policy is highly restrictive to both the end user and the application and
will allow writing to the disk only during the Novadigm Radia push, applications and end
users are only allow to write so certain portions of drive C as follows

• NMCI Desktops are set with the NMCI ISF screen saver. This cannot be changed by

the desktop user.

• Users cannot create folders sub to the root of C:

• Users can create new folders sub to C:\PROGRAM FILES; however, most existing
folders under C:\PROGRAM FILES are read only.

• All operating system level files (autoexec.bat, WINNT directory, etc.) are not
available for update by applications.

• Desktop users are not allowed to make changes to application files. Application files
are distributed to the user’s desktop using Active Directory, Novadigm Radia, and
Gold Disk processes.

Applications deployed to NMCI clients should be placed in a folder below
C:\PROGRAM FILES.

Applications to be used in NMCI need to be packaged with Novadigm Radia. Radia
delivers applications to the PC without being affected by file permissions because it runs
under the system account.

Application data should be stored in the user’s My Documents folder. The location of the
My Documents folder should be obtained programmatically because this will not be the
same for all users – for example Terminal Services users have their My Documents folder
re-directed to their home folder on the network. The location of folder is defined in the
following registry key:

HKEY_CURRENT_USER\Software\Microsoft\Windows \CurrentVersion\Explorer\Shell
Folders\Personal

The location can also be obtained using the following Visual Basic, C/C++ function:

SHGetFolderPath(NULL, CSIDL_PERSONAL, NULL, 0, szPath);

To ensure that NMCI workstations are both secure and stable, users (and applications) are
allowed to write in only designated directories on their local hard drive. These
permissions are enforced using the Windows 2000 Group Policy.

For a complete list of the current directory permissions, see Appendix 6, Directory
Permissions

Summary of Responsibilities
NMCI Gold Disk & standard image interfaces
Network Sensitive (requires an NMCI network connection to run)
Network related API’s other than standard Win2K API’s can ISF identify any more that
developers need to be especially aware of to write network aware enterprise code?
Microsoft Active Directory Service Interface (ADSI) may prove useful for proper
understating of the Enterprise benefits of AD and can be found here:

DRAFT

84

(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/netdir/adsi/active_directory_service_interfaces_adsi.asp)

Authentication and login (permissions & control)
Group Policy

Group policy eases managing the ongoing change and configuration issues that arise as
administrators try to ensure that people are productive as they use their computers to
complete their day-to-day work. Group Policy allows the administrator to stipulate users'
environments only once, and then rely on the operating system to enforce them thereafter.
Group Policy objects are not profiles. Profiles are user environment settings and are
configurable by the user. Policies are standards configured by the administrator that are
applied during computer boot-up and user logon. They specify system behavior and
restrict what users are allowed to do. There are local and non- local policy types. Local
policies are stored locally, within the computer’s registry. Non- local policies are stored
in Active Directory (AD). Local policies will not be configured within the NMCI
environment.

Group Policies are processed first at the site level, then the domain level, and finally at
the organizational unit (OU) level. The administratively specified order determines the
Group Policy settings that a user or computer actually receives. Furthermore, policy can
be blocked at the Active Directory domain, or OU level.

Application of Group Policy can be filtered by the use of security groups. The location
of a security group in Active Directory is irrelevant to Group Policy.

4.1 NMCI Group Policy Objects
4.1.1 Application of Group Policy Objects

Within NMCI, Group Policies will be linked to the area(s) to which they apply:

User and Computer specific Group Policies will be linked to the Command Level OUs

Domain Controller specific Group Policies will be linked to the Domain Controller OUs

General server Group Policies will be linked to the Application Services OU

Specific application server Group Policies will be linked to the appropriate OU under
Application Services

Legacy Apps Group Policies will be linked to the Command Level OUs, as needed

Workstation preference Group Policies will be linked to the Command Level OUs

The following tables display the NMCI Group Policy links, by domain: (See Appendix
XXX for Group Policy Specifications)

DRAFT

85

4.2 Group Policy Object Creation
NMCI workstation and AD object lock down will be achieved via restrictive Group
Policy Objects implemented at both workstation startup and user authentication.

4.3 Terminal Services Group Policy Object
Terminal Services within the NMCI environment will use a Terminal Services Group
Policy linked to the Application Services/Terminal Server OU. This Group Policy
includes required computer and user settings for terminal services sessions. The Group
Policy will be configured following the instructions included within the NMCI Terminal
Services documentation and makes use of the loopback mode option.

4.4 Workstation Preference GPO Settings
P_XXXX_WKSTCompPref_v5.05 Settings
This table lists the workstation preference Group Policy computer configuration settings.
These are the only configured settings within the Group Policy. All other settings are
"Not Configured" or similar.

Section Name of Key Setting

Computer Configuration\Administrative Templates\Windows
Components\

Windows
Installer\

Disable browse dialog box for new source
(Check to force setting on)

Enabled

 Disable patching Enabled

 Enable user control over installs Disabled

 Enable user to browse for source while elevated Disabled

 Enable user to use media source while elevated Disabled

 Enable user to patch elevated products Disabled

Allow admin to install from Terminal Services
session Enabled

System\ Disable Autoplay (Select CD-ROM) Enabled

 Don’t display welcome screen at logon Enabled

 Disable legacy run list Disabled

DRAFT

86

P_XXXX_WKSTUserPref_v5.06 Settings

This table lists the workstation preference Group Policy user configuration settings.
These are the only configured settings within the Group Policy. All other settings are
"Not Configured" or similar.

Section Name of Key Setting

User Configuration\Administrative Templates\

Desktop\ Prohibit user from changing My Documents path Enabled

Control Panel\

Add/Remove
Programs

Hide the "Add a program from CD-ROM or floppy
disk" option Enabled

 Hide the "Add programs from Microsoft" option Enabled

 Hide the "Add programs from your network option" Enabled

Display Disable changing wallpaper Enabled

 Hide Screen Saver tab Enabled

Screen saver executable name(Executable name:
NMCI.SCR) Enabled

 Password protect the screen saver Enabled

 Screen Saver timeout (Setting: 300 seconds) Enabled

System\

Do not run specified Windows applications (Add:
autorun.exe, install.exe, setup.exe)

Enabled

Logon/Logoff Disable legacy run list Disabled

DRAFT

87

Directory Permissions
NMCI Directory Permissions are defined in Appendix XXX, with
the following legend:
FC = Full Control
R = Read
E = Execute
W = Write
D = Delete
The Directory Permissions List Requires ISF maintenance to remain
up to date –HOW do we address this as a group?

Registry Permissions

NMCI Registry permissions are enumerated in Appendix XXX, with
come with basic guidelines.
Installer agent (Novadigm Radia, run with administrative privileges)
can modify the desktop registry during application installation only.
Users and applications cannot modify registry keys other that those
specified in Appendix XXX

Active Directory User Objects
Any client that is locating a Windows 2000 service should query Active
Directory to obtain binding information for the services that are of interest.

In Windows 2000, services publish their existence via objects in
Active Directory. The objects contain binding information that
applications use to connect to instances of the service. To access a
service, an application does not need to know about specific
computers; the objects in Active Directory include this
information. An application queries Active Directory for an object
representing a service (called a connection point object) and uses
the binding information from the object to connect to the service.
In a distributed system, the computers are engines; the interesting
entities are the services that are available. From the user's
perspective, the identity of the computer that provides a particular
service is not important. What is important is accessing the service
itself.
To take advantage of the service-centric view afforded by the
Active Directory Service, client applications must:
· Query Active Directory for accessible services.
· Present these services to the end user or automatically
select the appropriate service connection point object.

DRAFT

88

· Connect to the service using the binding information
contained in the selected connection point object.
For examples and more detailed information, see the section titled
“Searching Active Directory” in the Active Directory
Programmer’s Guide at
http://msdn.microsoft.com/developer/windows2000/adsi/actdirguid
e.asp .

OSI Model, Network connectivity / ports
The OSI model illustrates the various network layers (An interface
diagram is needed here as appropriate to NMCI architecture).

Application Interface dependencies & Portability
Summary of Developer Responsibilities

Developers are ultimately responsible for their applications running
on the NMCI infrastructure. Applications may be rolled back by ISF
if they impact the performance of the network, compromise security
or are otherwise non-compliant (see application checklists, rules and
regulations). It is highly recommended that developers ensure their
applications are good citizens and follow guidelines to protect user’s
data.

Web (The Recommended Approach) (NEED TFW REP RECOMMEND WHAT TO

KILL & KEEP HERE…)

DRAFT

89

Browser Portal

Service
Registry

SSO

Local
Module Server

App2 App3 App4

Web
Server

3. Application/Data
Integration

PRI Interface

HTTPS -
SOAP 1.1
(XML)

1. Hyperlink
Integration

HTTPS (HTML or XML/XSL),
HTTPS – SOAP 1.1, JDBC/ODBC,
J2EE, Other native protocol

HTTPS -
SOAP 1.1
(XML)

2. Presentation
Integration

Enterprise
Module Server

Not Recommended/Migration
Plan Required

HTTPS
(HTML/XML)

HTTPS

App1

Enterprise Portal

HTTPS
(HTML/XML)

HTTPS
(HTML)

? TFW Portal Interfaces 1

The above diagram shows the various application, portal and user interfaces for the
various levels of TFW integration (1 to 3). As with NMCI interfaces, Active Directory is
the common element that binds these objects together.

Client / Server Interfaces
The required level of integration is LEVEL 3 (Application Data Integration), defined as
Application/Data Integration involves a more closely coupled integration of the
application with the Enterprise Portal. This integration level requires that the application
move toward supporting what are commonly known as “Web Services”.

Application/Data Integration is the TFWeb-preferred level of integration. All application
content is provided through Service Modules that reside in a Module Server, either the
Enterprise Module Server or a Local Module Server. These types of Service Modules act
as lightweight connectors, exposing some fine-grained portion of application
functionality in a manner that is compliant with the Enterprise Portal. Application logic
and data continue to reside within the existing application and data layers, and not within
the Service Module. When accessed by a user, all application content is rendered within
a pane of the portal (an IFRAME) on the user’s desktop. Access to all services is
controlled by SSO, in the case of Service Modules hosted in the Enterprise Module
Server. Local Module Servers are responsible for controlling user access to local Service
Modules. The user is able to directly interact with the application appearing in this pane.
All communication between the user and the application must flow through both the
Enterprise Portal and a Module Server. All communication between the service module
and the back-end application must utilize the Simple Object Access Protocol (SOAP)
v1.1 XML messaging standard.

DRAFT

90

When invoked, the Service Module interacts with the backend application or web service
(as described in Section 7), and formats the results of the request into the appropriate
XML/XSL response. Additionally, because all content is passed through the portal, any
service module or application providing XML/XSL content will be converted to HTML
by the XML rendering engine that resides in the Enterprise Portal.

App4 in Figure 2-1 employs Application/Data Integration. The application exposes a
SOAP interface to the Service Module, and the Service Module implements the PRI
interface to the Enterprise Portal. App3 in Figure 2-1 may also be integrated at Level 3
as long as the Local Module Server implements the PRI to the Enterprise Portal, and also
exposes a SOAP interface when communicating with other applications or services. In
this case, both App3 and App4 would be considered “Web Services”, providing
interoperability capabilities fully aligned with the TFWeb vision. Level 3 integration
may appear the same to the end-user as a Level 2 integrated application, as shown in
Figure 2-3.

A description of the Service Modules will be registered with the global Service Registry
to provide the Enterprise Portal with quick access and search capability. Section 7
provides service developers with additional details of how to build Application/Data
Integration Service Modules.

Application/Data Integration is commonly referred to as Level 3 integration.

API’s (common approaches)

PRI
SOAP
J2EE (need guidance references)
.NET
XML (defacto standards, don CIO, interoperability)

4.4.1 Process PRI Request

The Portal Request Interface (PRI) will place the XML PRI request in the HTTP header
as variable PRIDataRequest containing an XML message. The service module must
determine if the PRI request is present and if it is valid. Standard Java classes are
available on the Open Source Site
(https://tfw-opensource.spawar.navy.mil/RegRepTeamApps/WebHelp) to allow for this
validation, see appendix B for a description of this class, PRIRequest. If the PRI request
is not present in the HTTP header or the PRI request is invalid, the service module must
exit with a 403 error.

All communication between the Enterprise Portal and the module server occurs using the
Portal Request Interface (PRI) specification. The PRI, as illustrated in Figure 0-1, is
based on open, industry standards – specifically HTTPS and XML. The portal sends an
HTTPS request to the URL that corresponds to the service being called. The request is
an HTTPS “post” or “get”, with an additional XML message passed as an http header
parameter. The XML message contains session channel context information for the

DRAFT

91

request, such as the user identification and delivery channel, that the service may require
in order to process the request.

Portal
Enterprise Module

Server

Portal
Connectors

Service
Modules

PRI
Request
Encode

XML Content

HTTPS Request

HTTPS Response

PRI
Response

Encode

PRI
Response
Decode

PRI
Request
Decode

Figure 0-1: Portal Request Interface

After processing the request, the service sends a standard HTTPS response back to the
portal. The content of this HTTPS response is either HTML, or XML and an XSL style
sheet, which the portal will then render and display to the user. Included within the
header of the HTTPS response is an XML message that includes some information and
instructions that the portal requires in order to render the response.

The PRI interface currently does not provide the capability to dynamically set the timeout
value to wait for a response from the module server for each request / reply transaction.
The timeout value is currently a static value, configurable by the portal administrator

The following table provides additional detail on the PRI Request.

Table 0-2: PRI Request Data Definition

Data Element
Name

Size / Format Description Notes

Standard information to be sent as part of the HTTPS request

Standard HTTP
Request Headers

See section Error!
Reference source
not found..

Standard HTTP
headers that the
portal received from
the client browser.

HTTP headers are passed
in the request from the
source to target system
reflect the header
information received from
the client browser via web
infrastructure.

PRIDataRequest data elements sent as a XML message in the HTTP header

UserID 200 characters
(Alphanumeric)

The portal user’s
identification based
on the Navy flat
name space
schema.

The portal framework must
determine the user ID from
either the client browser or
the directory service.

DRAFT

92

Data Element
Name

Size / Format Description Notes

RoleAssignments Array of
Alphanumeric Strings

The user’s role
assignments.

The portal framework must
determine the user role
assignments from the
directory service.

PortalLocation 80 characters /
Alphanumeric

The location of the
portal instance.

Either “ashore” or “afloat”.
For the Pilot, the portal is
not required to dynamically
determine this value. It may
be manually configured
within the portal connector
template instance.

Client 80 characters /
Alphanumeric

The content delivery
channel to the client.

For the Pilot, the only
supported delivery channel
will be “browser”. The portal
is not required to
dynamically determine this
value. It may be manually
configured within the portal
connector template
instance.

CheckBandwidth 10 characters /
Alphanumeric

A flag to inform the
service module that
communication
bandwidth
restrictions may
exist for this request.

This value will be either
“true” if the service module
is required to verify
bandwidth availability, or
“false”. The portal is not
required to dynamically
determine this value. It may
be manually configured
within the portal connector
template instance.

SessionID A 32-digit Globally
Unique Identifier
(GUID) in the format
“nnnnnnnn-nnnn-
nnnn-nnnn-
nnnnnnnnnnnn”.

A session identifier
for the portal user’s
browser session.

The portal dynamically
generates and maintains
this value. Applications may
use this to maintain state.

ClientStyle 200 characters /
Alphanumeric

Reference to the
Portal stylesheet
that corresponds to
the users current
template

Allows the application's
page to maintain a
consistent look and feel with
the Portal

4.4.2 Build Application SOAP Request

The service module will create the necessary XML that is required by the application
SOAP server. This is completely dependant on the services that are available by the
application. The XML will be encapsulated within the SOAP request.

DRAFT

93

4.4.2.1 Prompt for application username and password

If the application is not integrated with the TFWeb SSO product, see section 6.3(TFWeb
SSO Architecture), and the application requires users to be authenticated prior to use, the
service module must display a userid/password prompt. The user/password entered will
be passed to the application in the SOAP request. The service module cannot trust the
userid, which is passed as part of the PRI header, is valid. The prompt for a
userid/password should loop between the prompt and the SOAP request to the
application. If the application fails with an authorization error the script should reprompt
the user for the security info. The service module should prompt for the security info 3
times before failing with a security violation.

4.4.2.2 Send SOAP Request to Application

Two types of requests can be made to the application for data.

4.4.2.2.1 Enterprise Module Server Request

The service module makes the SOAP request to the back end application. By the nature
of the request SOAP an XML document will be return in the response.

4.4.2.2.2 Local Module Server Request

If the request is not going to use SOAP, then the request will be made from a Local
Module Server, service module. The request from the Local Module Server is not
required to use XML and the request/response mechanism must be defined between the
service module and the back end application

4.4.2.3 Application Processes Request

This is not part of the service modules process. The application that a request is made of,
as described in Section 0, will have to accept the SOAP request acting as a SOAP server
and process the request. The application will return a SOAP response.

4.4.2.4 Receive SOAP Response

The application will encapsulate the response with the SOAP response.

DRAFT

94

4.4.2.5 Process Application result data

The data returned by the application may need to be reformatted or transformed to some
extent by the service module prior to returning to portal. This should be kept to a
minimum, as the service module should not contain any business logic. The portal will
transform any XML to HTML for display in the browser.

4.4.2.6 Build PRI Response

The service module will create a PRIResponse object, this is optional, it is only required
for application error reporting. (see appendix B for description). The PRI Response will
be in the HTTP header for processing by the Portal Request Interface (PRI). The
following table explains the fields in the PRIDataResponse

Table 0-3: PRI Response Data Definition

Data Element
Name

Size / Format Description Notes

Standard information to be returned as part of the HTTPS response.

Standard
HTTP/HTTPS
Response
Headers

See Section
Error!
Reference
source not
found..

Standard HTTP response
headers from the service
module.

HTTP/HTTPS headers are
passed in the response
from the service module.

Standard HTTP
Body Content

Level 1 & 2:
XML/XSL
(preferred) or
HTML

Level 3:

XML/XSL

The content returned from
the service to be rendered
by the portal and displayed
in the client browser.

The service module must
respond with portal
compliant HTML. Please
see the TFWeb Portal
Service Architecture Design
Document for more details
concerning portal compliant
HTML/XML requirements.

PRIDataResponse data elements sent as a XML message in the HTTP header (Optional)

ReturnCode
(Optional)

Numeric
(Integer)

A numeric value optionally
returned by the service
module to indicate success
or failure of the operation.

The following are valid
return code values:

0 – Success

1 – Informational

2 – Warning

3 – Fatal

Please see Section xxx for
more information.

DRAFT

95

Data Element
Name

Size / Format Description Notes

ReturnMessage
(Optional)

Alphanumeric
(String)

An alphanumeric string
optionally returned by the
service module that
provides a textual
description of any error
condition that may have
occurred.

Timeout
(Optional)

Numeric
(Integer)

A numeric value optionally
returned by the service
module to specify, in
seconds, the default
request timeout value for
subsequent portal to
module server requests
made by that specific portal
connector.

A numeric integer value,
greater than zero. This is a
future capability that will not
be supported in the Pilot.

4.4.2.7 Application Results Return and Error Handling

Lastly, the service module will return the results from the application request and the PRI
Response to the portal. The portal will format this data for rendering within the browser
(See Section 3)

DRAFT

96

4.5 Error Handling

Portal

Portal Connector

Browser

Module Server Service

Application

Application Event Logging

200 Successful
return

302 Redirect -
Presentation
Integration

Authorization
Form Generated

for 403 error

PRIDataResponse Return Code>0 Return
Message may be logged, depends on

property file setting

500 severe error
occurred

200 - Display HTML response to the browser

200, 302, 403 or 500 HTTP response,
PRIDataResponse Return Code and Return Message

set, all other http responses should be handled by
service module

HTTP response

Authorization Form Generated for
403 error

Service Registry

Return Code Value

Module Server

IIS

BEA

Module Server

CLearTrust SSO

User Authorization

200, 302, 403 or 500 HTTP response,
PRIDataResponse Return Code and Return Message

set, all other http responses should be handled by
service module

Figure 0-4: Application Return Response and Error Handling

DRAFT

97

The above figure will be explained from the application response at the bottom of the
diagram up to the browser. Each of the steps along the way has the potential to generate
an error and pass the error to the calling program this explanation will follow that path.

4.5.1 Application

The application will generate a response based on the HTML or SOAP request. The
response will be passed to the Module Server for processing. Any error can be returned
to the Module Server Service Module, however, only 200, 302, 403 and 500 messages
should passed up the chain from the Module Server Service Module.

4.5.2 Service Module

The following table will describe the Service module’s response to the HTTP request
from the portal. In general, the service module should trap any errors the application
might send it and send informative error messages back in the PRIDataResponse (for
logging purposes) and the HTTP message body (for end user viewing).

Table 7-5: Service Module Response

Field Value What the setting
indicates

How the Portal Connector
interprets the field

200 OK

Successful
communication
between the Portal
and the Module
Server.

Utilize the
PRIDataResponse and the
HTTP Response Body as
described below.

302 Moved
Temporarily

Type 2 (Presentation)
integration is in effect.

Utilize the
PRIDataResponse as
described below.

Make a new HTTP request
to the redirected URL.

HTTP Response
Code

Other Either the Service
Module encountered a
serious error and
crashed or IIS, BEA,
or the SSO
component did not
allow the Service
Module to execute.

Log the error.

Generate a meaningful
message to send back to
the end user. (In the case
of a 403 error from the
SSO component, generate
an authorization request
form.)

PRIDataResponse Missing from
response

No error occurred Take no logging action

DRAFT

98

Field Value What the setting
indicates

How the Portal Connector
interprets the field

0 or not defined No message. No
error occurred

Take no logging action.

1 Informational
message.

Log if configured to log
informational messages.

2 Warning message. Log if configured to log
warning messages.

PRIDataResponse
Header –
ReturnCode

3 Fatal Error message. Log.

PRIDataResponse
Header –
ReturnMessage

String Message to be placed
in the log.

The message that may be
written to the log.

HTTP Response
Body

HTML or
XML/XSL
Content.

Content displayed to
the end user.

If content type is text/xml,
parse XML for XSL
stylesheet reference and
use to turn into HTML.

4.5.3 SSO

The SSO will be invoked by IIS plug- in to validate user access to the application. If the
user is not authorized the return code from the IIS plug- in will generate a HTTP 403
response. The Module Server will not be called if the SSO does not authorize the user.
The 403 responses will be passed up to the portal connector.

4.5.4 Module Server

The Module Server will invoke the SSO plug-in to authorize the user. If the user
is not authorized to use the service the Module Server (IIS) will return a 403
response. All messages from the service are not changed by the Module Server
and are passed directly to the Portal Connector.

4.5.5 Service Registry

The portal connector accesses the Service Registry via the service registry API to
determine the information required to invoke the service module. The integer return code
from the service registry API indicates one of three types of conditions:

Success (0)

Invalid Key/Service not found (10210)

Database Error (any value other than success or key not found –
maps directly to the SQL Server database error code)

DRAFT

99

4.5.6 Portal Connector

The portal connector calls the service registry to determine the information required to
invoke the service. If an error is returned from the service registry the portal connector
will log the error in the application event log. Also, the error will be passed back to the
portal with in the HTML response to indicate the error message. The HTTP response
will be a 200.

The portal connector calls the module server to invoke the service. If an error occurs
with that call the error will be logged. Also the portal connector should examine the
PRIDataResponse to determine if an error occurred in the module server. If the
PRIDataResponse contains an error the error should be logged in the Application Event
Log.

If a 403 is returned to the portal connector by the module server the portal connector will
generate an HTML response that contains a form for submission to the application owner
for to allow access to the application for the user.

4.5.7 Application Event Log

The portal connector will log all errors to portal’s logging mechanism

4.5.8 Portal

The portal will display the HTML to the user. The error returned from the Portal
Connector will be displayed within the pane for the application. If the portal connector
returns XML/XSL the portal will process the XML/XSL into HTML for display to the
user.

4.5.9 Browser

Users browser will render all HTML returned by the portal.

4.6 Messaging Protocols

A messaging transport is the technology that facilitates peer-to-peer application
communication using open standards. The module server will communicate with
applications via the following protocols:

DRAFT

100

Table 7-11: Module Server protocols

Protocol Enterprise Module
Server to application

Local Module Server
to application

HTTPS Optional

SOAP Required Optional

Other RPC Optional

Because the communication between the application and the module server must take
place over HTTPS an HTTPS server is required on the application server. This can be
any server that will allow communication over HTTPS.

4.6.1 SOAP

In the scope of the Task Force Web Portal, the term ‘Web Service’ is used to describe a
piece of application functionality that is exposed to the Portal environment. To
implement a functional, Level-3 integrated Web Service, the Service Developer will need
to understand the role of the Simple Object Access Protocol (SOAP) specification.
SOAP 1.1 is a lightweight protocol for exchanging structured and typed information
between peers in a decentralized, distributed environment. It is an XML based protocol
that consists of three parts: an envelope that defines a framework for describing what is in
a message and how to process it, a set of encoding rules for expressing instances of
application-defined data types, and a convention for calling and receiving responses from
a SOAP server. From the perspective of the Service Developer, the role of SOAP is to
serve as the messaging framework between the EMS Service Module and the backend
Application entry point. All Level-3 integrated Web Services should execute in a
synchronous manner for the pilot. You can think of SOAP as a standard way of
packaging up the method calls and their corresponding return values.

4.6.2 The SOAP Client

For Level-3 Integration, the EMS Service Module component will represent a SOAP
Client. This component will be physically deployed on the Enterprise or Local Module
Server and will serve as the broker between the Portal Connector and the back end
Application entry point. It is the responsibility of the Service Module component to:

Decompose the PRI Request posted by the Portal Connector

Build a SOAP Request Message (A packaged Remote Procedure Call)

Send the Request Message to the back end Application entry point via HTTPS

Receive the SOAP Response (A packaged Result set or Fault)

DRAFT

101

If the call executed without error, bubble up the returned XML/XSL back to the Portal
server. If a SOAP Fault is returned by the backend Application or an HTTP Error occurs,
bubble up the error back to the Portal server in the PRI Response structure.

4.6.3 The SOAP Server

The backend Application entry point component is a SOAP Server; therefore, it is the
responsibility of the SOAP Server component to:

Listen and receive SOAP Requests

Decompose the SOAP Requests and make the proper handoff (i.e. method call) to a
locally implemented business logic component

Format the XML/XSL Data to be returned

Build and return a SOAP Response Message, including the XML/XSL Data as a return
parameter.

4.6.4 SOAP Programming Interfaces

The Enterprise Module Server will provide SOAP Programming Interfaces for both the
BEA Web Logic and IIS Module Servers. The SOAP Programming Interfaces provide
programmatic abstractions that allow developers to build and manage SOAP Messages
without having to work directly with the XML Document Object Model. The TFWeb
Portal will only support SOAP 1.1 standards. The BEA Web Logic J2EE Application
Server provides built in SOAP Services that can be utilized by JSP or Servlet based
Service Modules. Example Service Module source code using the BEA Web Logic
SOAP Services can be downloaded from the Registry Module Server Developer’s
Network on the BEA Level 3 Integration Examples and SOAP Home pages. The
Microsoft SOAP Toolkit 2.0 will provide the SOAP Programming Interfaces for ASP-
based Service Modules deployed in the IIS Module Server. Example Service Module
source code using the SOAP Toolkit 2.0’s interfaces can also be downloaded from the
Registry Module Server Developer’s Network on the IIS Level 3 Integration Examples
and SOAP Home pages. The Registry Module Server Developer’s Network is located
at:

https://tfw-opensource.spawar.navy.mil/RegRepTeamApps/WebHelp/

4.6.5 Service Registry

The Task Force Web Service Registry is the physical directory that stores and manages
information and metadata about Web Services. The three major data entities that are
managed by the Service Registry are

DRAFT

102

Echelons - The Echelon is the top- level entity and logically maps to the major
organizational divisions within the Navy. Contact, Address and general “white
page” information is stored at the Echelon level. Each Echelon can own 0-to-
many Application entities.

Applications - The Application entity falls under the Echelon entity and logically
maps to a software application managed by the Echelon. Each Application can
own 0-to-many Web Services.

Web Services – The Web Service entity falls under the Application and logically
maps to a specific piece of functionality provided by the Application. The
Service Registry provides extendable storage facilities for Web Service technical
metadata through the use of Technical Specifications. Technical Specifications
can be registered and instances attached to a Web Service.

4.7 Session Management

The Module Server does not provide persistent storage space to service modules to
maintain state between user connections. This is primarily due to the limitations imposed
by the clustered and dynamic load balanced configuration of the Enterprise Module
Servers.

DRAFT

103

5.0 Legacy System Migration and Evolution

This section focuses on efforts required to migrate existing Navy Legacy Systems into
NMCI and TFW in the near term. It also addresses the long term Navy Enterprise
Domain IT goalGoal: Navy Systems that are Enterprise Domain Informa tion Technology
Solutions, providing web services and employing XML/SOAP interfaces within and
between Enterprise Domains.
Sections 5.1 through 5.5 describe process activities associated with integrating
Navy Legacy Systems with TFW and NMCI, including Legacy Rationalization.
Section 5.6 addresses technical steps to XML and SOAP enable the Legacy
Systems. Section 5.7 addresses steps to meet the above goal. The Section 5.7
steps address migration and retirement of legacy systems into a next generation
Navy Enterprise Domain System.

Near Term Solution to advance toward the Goal: XML/SOAP-
Enabled Navy Legacy Systems
Most Navy legacy systems require modification of interfaces to make them meet
TFW and NMCI requirements. By XML/SOAP-enabling these systems, using
DoD standard XML, these systems may be able to interoperate on the TFW
portal in an NMCI environment. This section describes steps required to
XML/SOAP-enable Navy Legacy Systems.

XML/SOAP-enabling steps

[MOVED FROM ARCHITECTURE SECTION]

Web Services from legacy applications

? Identify key functionality that is required to support existing and future users of the application.

? Decompose the application into discrete services that provide the functionality identified above.

? For each service, search the enterprise registry to determine if similar service already exists
and is suitable.

? For each service, define the SOAP/XML request/response messages.

? Implement a module that accepts the SOAP request message, performs the indicated service
and generates the SOAP response message.

? Test the service

? Submit the module to the appropriate registration authority for publishing in the enterprise
service registry. (Registration authority will conduct testing and verification prior to
publication).

[END]

DRAFT

104

Some Navy legacy systems may require additional system architectural changes to
comply with NMCI and TFW requirements. The next section describes those
architectural requirements.

NMCI and TFW system architectural requirements

5.15.1 Applications and Databases of concern to NMCI and
TFWeb

The first step in dealing with a legacy application is to determine if it falls under the
cognizance of NMCI, TFWeb or both.

NMCI is concerned with all the applications and databases on the NMCI network, with
the exception of those on science and technology workstations. However, there will be
networks at the Navy that are not under NMCI control. (True??)

TFWeb is concerned with applications and databases that are candidates for web or portal
enablement. In Section 5.2.4, Web Enablement Determination, there are criteria
presented for Web enablement. If an application does not meet the criteria in this section,
then it is not an application of concern to TFWeb.

The NMCI and TFWeb criteria result in a large number of applications and databases that
will be of concern to both NMCI and TFWeb. However, there will applications and
databases that are of concern to one but not the other. Therefore, this section will note
when the guidance comes from NMCI and when it comes from TFWeb. Applications and
databases that are of concern to both NMCI and TFWeb should consider all of the
guidance provided in this section. Applications and databases that are only NMCI or only
TFWeb should consider the appropriate subset of this guidance.

5.15.2 Application Owner/Analyst Guidance
The process for migrating an existing application into the Navy portal is designed to
ensure that the target application meets all portal standards, security requirements, does
not utilize a data environment duplicative of an existing authoritative data source, and
does not provide a duplicative service.

The process begins with the service provider determining the applicability of migrating
the application to the Navy portal. Next, a review of existing services and data sources is
conducted to identify various duplication issues. Once the decision is made to migrate the
application to the Navy portal, the developer submits an Intent to Migrate notification to
the TFWeb Application Migration Customer Support (AMCS) team. An AMCS officer
will be assigned to the application who will assess the application, help to identify
overlapping applications and data sources, and assist in compiling the Request to Migrate

DRAFT

105

for submission to the Task Force Web AMCS team. After review, the AMCS team will
forward applicable portions to the beta test labs for final technical review prior to
integration. This chapter will discuss the AMCS processes and the specific steps required
to complete each.

5.25.3 Pre-Service Registration Phase

Before starting the TFWeb integration process, the developer must answer for themselves
a number of questions:

• What is my TFWeb integration goal (see this section Determining TFWeb Integration
Goals)?

−• What is my virtual interest group (see Determining Communities of Interest this
section)?

• Is there an approved DoN/DoD application or service already in existence that
provides this service/content (see Reviewing Existing Services this section)?

−• How do I find other registered services on the Enterprise Portal (see Market Review
of Existing Services and Content this section)?

−• How is “best of breed” determined (see Registered Services and “Best of Breed”
Determination this section)?

• Is my application/service already web-enabled (see Section Web Enablement
Determination this section)?

−• If so, now what (see Existing Web-Enabled Applications this section)?

−• If not, should I web-enable it (see Non-Web-Enabled Applications this section)?

Once these factors have been determined, the program, application, or content manager
will have the data needed to determine what migration plan/POA&M will be required to
achieve their targeted level of integration.

5.2.15.3.1 Determining TFWeb Integration Goals

What is a “web-enabled” application? This term is often misunderstood. A “web-
enabled” application is simply an application or service that is accessed within the
context of a browser and is based on Internet communications standards. This includes,
but is not limited to, applications/technologies such as Java (beans, applications, scripts,
applets (signed), server pages), Active Server Pages (ASPs), ActiveX components
(signed), multimedia, and other approved plug- ins.

DRAFT

106

Regardless of your current web posture, there are certain key things that a developer,
program, application, or content manager must determine before considering integration
into the Navy Enterprise Portal:

• Defining Communities of Interest.

• Market review of existing services and content.

• Supportability and Maintainability.

5.2.1.15.3.1.1 Determining Communities of Interest

A key objective of web-enablement is the cross-pollination of data within and across
communities of interest. WEN service providers are required to determine the virtual
interest group (as shown by the taxonomy in Section 5) for their application. This
determination is based upon the types of information services and/or data that are
common to the community’s processes or business operations and whether they would
benefit from web-enabling as well as portal integration and dissemination. Combining
services within virtual interest groups will illustrate size, priority, and complexity of
data/information and application sharing and aid in determining cost-benefit and other
intangible benefits (e.g., reduction in system operator/administrator task complexity).
The managers of each community of interest (e.g., ASNRDA-CHENG/OPNAV for
Battleforce information requirements) will provide the developer with the location of
their authoritative data source(s) through the WEN IT Governance Board/TFWeb
process. The goal is to provide an integrated data environment that will use smart data
replication to allow enterprise access to authoritative data sources observing the demands
of limited operational bandwidth and connectivity. This environment will promote
application re-use/consolidation around the authoritative data sources.

The Functional Data Manager, established under SECNAVINST 5000.36, should be an
important part of this community and should be included in all application and database
decisions.

5.2.25.3.2 Reviewing Existing Services

5.2.2.15.3.2.1 Market Review of Existing Services and Content

Program, application, service, or content managers should review existing applications
(commercial or otherwise) for overlapping capabilities. Build/Buy/Re-engineering
decisions should be predicated on examining the list of existing services and content and
their respective descriptions to ascertain whether an existing service or content can be
reutilized. In short, is there an approved DoN/DoD application or service already in
existence that provides this service/content?

DRAFT

107

5.2.2.25.3.2.2 Registered Services and “Best of Breed”
Determination

Information regarding current registered services and content is found at the site of the
master registry or from AMCS. If a new service or content is being proposed for addition
to the Enterprise Portal environment, an Intent to Migrate package (Section 8.2) must be
submitted to the AMCS for review. AMCS verifies that there are no applications in the
WEN environment that provide overlapping functionality or content, and that the
implemented technologies, styling, and supportability requirements provide for TFWeb
integration.

In the event that there is overlapping functionality, AMCS works with the application
owners to understand and document the overlap and develop a migration plan. If a
migration plan cannot be agreed upon by AMCS and the concerned application owners,
the documentation is given with a recommendation to the TFWeb Executive Steering
Group (ESG), which then determines which applications will be allowed to integrate with
the portal. The ESG may also make recommendations to OPNAV and Echelon II
commands to resolve application/data overlap. This decision is based upon the following
criteria:

• Technical/Architectural analysis performed by an independent TFWeb engineering
team. This analysis includes all relevant engineering requirements (e.g., security) as
defined by this and other DoD/DoN/TFWeb guidance.

• Operational Advisory Group Analys is. An OAG comprised of members from the
appropriate service elements evaluates the applications for use in their environments
to meet their operational needs. Several functional groups already exist and these are
utilized when possible.

• Business Case analysis. Each application provider is required to build a business case
analysis for evaluation. This includes review of the funding requirements, ILS Plan,
and other similar documentation.

5.2.35.3.3 Supportability and Maintainability

A product that is successfully integrated into the Enterprise Portal environment will be
unsuccessful if it is not adequately supported. Each WEN service provider is required to
show an ILS Plan that demonstrates maintainability and supportability of their
application or service.

5.2.45.3.4 Web Enablement Determination

Being “web-enabled” does not mean, “TFWeb-ready”. “TFWeb-ready” connotes that the
developer has followed the registration, development, integration/testing, and deployment

DRAFT

108

processes laid forth in this document, and been approved by the WEN IT Governance
board.

5.2.4.15.3.4.1 Existing Web-Enabled Applications
Even though web enabling is not equivalent to being TFWeb-ready, being web-enabled
will help accelerate the process. The main issues that will impact the developer with
regards to TFWeb integration will be:

? Implementation of web technologies (and appropriate versions) specified in the WEN
Technology Baseline (e.g., Java/J2EE, Perl, CGI)

? Presentation styling. The developer’s web presence may be in conflict with TFWeb
promulgated styling conventions or incompatible with the portal interface.

• Implementation of naming conventions and data interoperability standards (e.g.,
XML).

The ultimate decision to undertake realignment or retrofit of existing web-enabled
applications into the Enterprise Portal environment is left to the program, application, or
content manager. It is strongly recommended that the entire TFWeb registration process
be reviewed prior to these undertakings.

5.2.4.25.3.4.2 Non-Web-Enabled Applications
Before launching into an intensive integration effort to “web-enable” an existing Navy
service or application, it must first be determined whether there is value in doing so. It
may not make sense to web enable every application or service. In many cases, the
application may not be integrated into a web-based environment, but the data it provides
may be hosted on the portal as relevant content. This section of the guidance document
identifies a set of criteria that can be used to evaluate an application or service for
“whole” or “partial” web enabling. The following should be used as general guidance for
the program, application, or content manager to determine whether or not they should
endeavor to web-enable their application, and then integrate it into the Enterprise Portal
environment.

The criteria identified to date include the following:

• Information Services

• Real-Time Versus Non-Real-Time

• Service/Application User environment.

• User/Administrator

It is important to note that while all applications may not require web-enabling, and
therefore, do not require integration into the Enterprise Portal environment, all
applications will be subject to review by the appropriate program, application, or content
manager.

DRAFT

109

5.2.4.2.15.3.4.2.1 Information Services

If your application provides some content that would be usable by other elements of the
Enterprise Portal, then it is a candidate for some level of TFWeb integration. It is
important to remind developers that TFWeb ‘web-enabling’ is not equivalent to simple
“web enabling.” It does not necessarily mean that the application runs within the context
of a browser. It may simply mean that the application offers up its data for browser-
presentation rendering by the Enterprise Portal engine. It also means providing of
content to a shared/common data environment.

Determination of content relevance across the enterprise is determined, in part, by
identifying virtual interest group, and coordinating with the appropriate authoritative data
source.

5.2.4.2.25.4.3.2.2 Real-Time Versus Non-Real-Time

The Web or Internet is not a real-time medium. There is no intention of firing a weapon
from a web browser. Real- time, rapid response systems are not good candidates for web
enabling. However, there may be status information from a real- time system that can and
should be web enabled and made available.

If the application that you are working on does not meet the criteria for TFWeb enabling
because it is real-time or near real- time, then distributed component architectures, such as
CORBA, DCOM or J2EE may be appropriate. If it is used within a real-time simulation
than the High Level Architecture (HLA) could be used.

5.2.4.2.35.4.3.2.3 Service/Application User Environment

Web applications are by definition multi- tiered network services that deliver content
(e.g., application components or data) based on an established network, data persistence,
and security model. There are application and service environments that are fundamental
to operational requirements (e.g., small community of interest users that are distributed
across large areas) regardless of user community size. For example, there’s a
community of senior flag officers that are extremely essential to operational requirements
as a community of interest. These users require specific applications/data, unique to their
environment, with high levels of security that must operate in a distributed manner.

5.2.4.2.45.4.3.2.4 User/Administrator

Much of the development effort of any application goes into the management interface.
While required, this interface may be used by a small fraction of the total number of
users. It is recommended that application owners focus first on the end-user interface to
deliver as much capability to the end user as resources and time permits. Rewriting
existing management interfaces often has a cost higher than any benefit gained by the
managers. New applications, however, should expect that all functionality is web-based
when originally developed.

DRAFT

110

5.35.5 Intent to Migrate
Once the decision is made to migrate an application to the Navy Enterprise Portal, the
developer must notify the TFWeb team of the intent to migrate an application or service.
Completion of these steps (Section 8.3)of this section is required for application-specific
AMCS/AMTS support. This serves to notify all concerned of integrator or sponsor’s
intent to provide a given service via the TFWeb portal and allows migration tracking and
preparation for receipt of required information for migration. It also helps to prioritize
and focus technical support assets based on the impact of the application, timeframe of
migration, and difficulty of transition. The following actions are taken by the AMCS
contact assigned based on the application owner submission.

5.3.15.5.1 Submission to the application information database.

This database is maintained by AMCS. AMCS will review the submission to determine if
fields are complete and understandable. Descriptions should be useful and thorough.
Yes/no answers may need further comment. Other information may be required to be
tracked for the application. Implementation dates should be reasonably achievable. The
AMCS contact for the application ensures the submission is properly reviewed and
entered in the database and notifies the Echelon II contact of any changes made during
the review process to their submission.

5.3.25.5.2 Integration Level Appropriateness

Level 1 applications require specific detailed explanations why they cannot be Category 2
and require AMCS OIC’s approval of a waiver for integration into the portal. Category 2
applications may be approved by the TFWeb Echelon II liaison for preexisting
applications and for applications that require immediate rollout beyond the portal user
base.

5.3.35.5.3 Identify if the program uses Java, JavaScript, ActiveX, or plugins

Additional review/analysis of these issues are coordinated through the TFWeb Echelon II
liaison with the appropriate AMCS department head covering technical issues. In
addition, non-mobile ActiveX or plug- ins must have a satisfactory distribution plan in
compliance with applicable NMCI and IT-21 policies. Determine current status of
application compliance with Navy Mobile Code Policy and document any waivers
currently granted.

5.3.45.5.4 Examine the application database for similar programs that are
currently under development

The AMCS contact reviews data sources for possible data overlap and examines
overlapping applications reported by other application owners. If possible overlap exists,
they interface with program managers of all concerned programs and data sources to
determine exact functionality, user base, and IT requirements. If consolidation

DRAFT

111

possibilities exist, they brief AMCS OIC on overlap and application/data owners’
intentions to determine any further action warranted.

5.3.55.5.5 Determine current security model and whether IATO/ATO exists,
or is required

Determine what changes, if any, are required to the current application security model in
order to integrate application. Is the current security model compatible with TFWeb
security model (issues like SSN)? Data-only applications (using XML/XSL or HTML
data pages) do not normally require an IATO/ATO. Applications utilizing mobile code
always require an IATO/ATO unless that mobile code is covered by the IATO/ATO of an
application previously integrated into the portal. If no changes are required, the AMCS
contact ensures a copy of existing IATO/ATO cover sheet is sent to AMCS IA.

5.3.65.5.6 Determine XML integration requirements

Evaluate the plan for design and registration of the schema and other XML
documentation. Does this need to be coordinated with other commands using similar
data? Ensure that the application owner is familiar with the DoN XML instruction.

5.4 Service Registration
The Service Registration package (Section 8.3) is submitted to the AMCS contact after
development has been completed. AMCS performs the following items as part of the
package review. This section also applies to changes required as part of the beta testing
procedures prior to restarting testing.

5.4.1Verify completeness and accuracy of portal metadata

This should include the directory entry text, category, description, application owner, and
application “customer service” contact. This is information available to any user of the
portal. Is it sufficient to determine whether access to an application is required and how
to obtain access? Does it address intended user base and purpose of the program? Similar
programs directed at other user bases should be mentioned in the description.

5.4.2Verify migration plan for level of integration is submitted

Migration plan is required for applications migrating at Level I or Level II. For the pilot
program, the application may enter beta testing prior to submission of a migration plan.
However, the TF Web Governance Board will not approve integration into the production
portal without a migration plan. A migration may be as brief or as detailed as desired;
however, timeframe, critical path, and issues to be resolved must be included. Retain
copy of migration plan in AMCS Echelon II notes for future reference. Brief the
migration plan to AMCS OIC for approval.

DRAFT

112

5.4.3Ensure IATO/ATO has been updated if security model changed for TFWeb
migration

Provide copy of IATO/ATO cover letter to AMCS IA for reference documentation.
Submission of full accreditation paperwork is not required unless determined necessary
by AMCS IA.

5.4.4Verify initial access control list submitted along with information describing
method of updating ACL

Verify method is compatible with current portal capabilities and user expectations. If
access cannot be given in a timely manner, ensure it is indicated in the application
description visible to the user. Review and approve appropriate roles for application
visibility. For most applications that control security at the application level, the ACL
should be “All Portal Users”.

5.4.5Portal Compliance Testing

The AMCS liaison shall be provided a temporary login with access to key features of the
application. In the event access to key areas cannot be provided due to security/access
issues, alternate methods will be coordinated between AMCS and the application
developer. Spot check to ensure claimed capabilities of user description are provided and
significant limitations are documented. Spot-check HTML used is "portal compliant" (no
frames). Record all concerns, discuss with developer or program manager. Submit any
unresolved discrepancies to AMTS (for pre-beta review) or as part of the AMCS beta
testing notes. This is not intended to be a thorough review of the program. Rather, it
serves to ensure any obvious issues are recognized and documented prior to the beta
testing process to help expedite testing

5.4.6Review summary of testing accomplished

Summary should include duration, type of users, type of test scripts performed, type of
data used, and environment in relation to the production platform. What is the risk that
the program will fail beta testing? Has there been sufficient operator testing to ensure
utility in the production environment?

5.4.7Review portal integration information submitted

To ensure effective use of testing time and to allow maximum preparation time for
testing, all required portal integration information should be submitted as part of the
request. While further changes may be necessary or desirable, this allows for a package
of all required information to be submitted from AMCS to the beta test site. Ensure
integration module code has been provided.

Identify if substantive revisions have been made to sample code. Module code should be
fully documented and readable. Evaluate code for posting to open source site (based on
differences from baseline code). If review of code is required, submit request to AMTS.
Are there any reusable components that should be separately maintained?

DRAFT

113

5.4.8DoN XML guideline compliance

If the application does not meet DoN XML guidelines, ensure migration plan is submitted
and approved by AMCS OIC.

5.4.9Set next review date

General guideline is 1 year if all requirements met or halfway to next integration level (3
month minimum) if a migration plan has been submitted for non-Level 3 integration or
noncompliant XML are used. If IATO has been submitted, review date should be prior to
its expiration. By this review date, a member of AMCS will review documentation and
implementation history, and determine if any additional information is required.
Milestones in migration plans or further functionality development will be reviewed.
Also, database information will be verified.

5.4.10Verify database entry is complete and accurate in AMCS application database

AMCS database information is in section 11.2.1.

5.4.11Technical Review

AMCS may request a technical review at any time from the AMTS or alternate source.
This technical review may evaluate code base, technology, mobile code, or security
among possible areas. In some cases this is used to evaluate leading-edge technology and
possible unforeseen impacts on TFWeb environment. In other cases, it is used to check
for compliance with TFWeb architecture in a more thorough fashion than is possible in
the beta testing environment. If necessary to evaluate an application’s readiness for
migration, this review is completed and any discrepancies resolved prior to permission
for beta testing. The AMCS is the final arbiter of whom discrepancies are required to be
resolved prior to beta testing, though review of an AMCS decision may be requested
from the TFWeb Executive Steering Group.

5.4.12Configuration Verification

Verify configuration of any local application servers or local remote module servers are
documented. The ability of local infrastructure to support numbers of users intended
should be documented as well as ability to scale to additional users. Any known
scalability issues should be documented.

5.4.13Ensure application is logged in the DON CIO Data Management and
Interoperability Repository.

DMIR is currently in the beta testing stage. This is an optional requirement until full
functionality in the second quarter of 2002.

5.4.14Verify all application data structures and data interfaces are documented.

Databases should be accessible independently of application if underlying database
engine and security supports. Data interfaces should also be accessible independently.

5.4.15Verify AMCS OIC has approved migration plan for application/data overlap.

Migration plan should address duplicative applications and data sources and their planned
resolution. Migration plan is not due until final review of application after beta testing.

DRAFT

114

5.4.16Documentation of Developer Requirements.

Ensure developer requirements for future capability upgrades of the WEN architecture
and implementation of the architecture are documented. This should consist solely of
architecture or cross-application services, not those useful only to a single application.
This helps prioritize additional requirements based on the ability of the developer
community to capitalize upon the new features. This should only include functionality
developers are currently able to utilize.

5.5Application/Service Delivery Phase
5.5.1Application Acceptance

Only applications that have completed the migration request process with TFWeb are
submitted (e.g., application components, links/icons, datafill, DTDs/Schemas) for
integration in Enterprise Portal. All applications need to ensure compliance with required
DoN/DoD policies in addition to those required by TFWeb. The TFWeb process does not
supercede individual program, application, or content manager processes. It is expected
that the Enterprise Portal will receive applications that have gone through internal system
engineering and logistics processes (e.g., CCB, internal testing, CM).

5.5.2Application Delivery

Each application is expected to deliver system and administration documentation that
conforms to Enterprise Portal documentation guidelines (e.g. XML or HTML). This
includes software operation and concise loading instructions to enable
users/administrators to load and administer the applications with minimum intervention.
The instructions should also include load verification and load back-out procedures.

Once the application is successfully loaded into the TFWeb developmental portal
environment, the developer will then continue with the remainder of the self-certification
procedure, moving into the performance criteria.

5.5.3Application Integration

The developer is encouraged to notify TFWeb of an impending application release no
later than 30 days prior to portal integration. This gives the TFWeb team time to arbitrate
schedule conflicts with other application developers.

The application integration process differs depending upon the type of application to be
integrated, and the level of integration the application is achieving. In all cases the goal
is to provide the developer a process and supporting infrastructure by which they can
develop, test, and certify their application(s) for use in the Enterprise Portal environment
with a minimum involvement by a core TFWeb team or other external agencies.

5.65.6 XML/SOAP-Enabling Navy Legacy SystemsLegacy
Rationalization and Levels of Integration
This section focuses on implementing the near term solution, XML/SOAP-Enabling
Navy Legacy Systems, to advance toward the long term goal: Navy Systems that are
Enterprise Domain Information Technology Solutions, providing web services and

DRAFT

115

employing XML/SOAP interfaces within and between Enterprise Domains. <To reach
the goal, legacy systems may need to be migrated and retired to minimize duplicate
functionality and data within a domain ..replaced by a next generation system providing
web services.>

TFW and NMCI requirements that Navy legacy systems must meet are stated in
section 2.4. By adhering to the stated requirements, including use of DoD/DON
standard XML, Navy Legacy systems may be able to support Level 3 integration
on the TFW portal and be certified in an NMCI environment. This section
describes steps required to XML/SOAP-enable the Navy Legacy Systems that
have approval to proceed per the process steps described in sections 5.1 and 5.2.
The guidance of this section must be observed in concert with process steps in
section 5.3.

5.6.1 Architecture Considerations

Most Navy legacy systems require additional system architectural changes to comply
with NMCI and TFW requirements. Section 2.0 provides some guidance in the absence
of a DoN Enterprise Architecture or guidance from an Enterprise Domain Architect.

There are three basic types of Navy Legacy systems that must be modified to comply
with NMCI and TFW: Mainframe, Client-Server and Web-Architected. Approaches for
each type architecture are described below. Basic XML steps to be followed, which are
common to all architectures, are described in the section titled, XML Procedures.

5.6.1.1 Mainframe systems
Mainframe systems can be XML/SOAP-enabled fairly quickly using fifth-generation
screen-scrape component solutions, such as JACADA, which recently entered a
partnership with SeeBeyond. Using this type of technology, green screen interfaces can
be implemented using XML and SOAP to support a level 3 integration with the TFW
portal. However, NMCI requirements, which may entail a rehosting activity, cannot be
met with this approach. For this situation, refer to section titled, Migrating and Retiring
Navy Legacy System(s), Replacing them with Navy Enterprise Domain Solutions, for
what may be the most cost-effective solution.

5.6.1.2 Client-Server
Client-Server systems may require additional software components for
XML/SOAP enabling, including an application server and web server. Non-web
enabled applications should first strive to invest in the effort to become
compliant with a Distributed Object Computing technology to select an
application server. <Refer to section 2.0 for a discussion on technology
selection.> However, if the application is written in a computer language or
system not supported by a Distributed Object Computing technology, then they
should next strive to be XML/SOAP Enterprise Architecture compliant directly.
Following one of these two approaches should provide the lowest life-cycle costs
for these types of applications.

DRAFT

116

5.6.1.3 Web -Architected Applications
Web -Architected Applications may have the components necessary to be TFW
and NMCI certifiable. A developer may simply need to follow the below steps to
XML/SOAP-enable the application.

5.6.15.6.2 XML Procedures

5.6.2.1 XML Guidance

The following XML Guidance is applicable to support XML Design and Registry
Use.

DoD COE Data Emporium and XML Registry, URL:
http://diides.ncr.disa.mil/shade/index.cfm
DON CIO Interim XML Policy, URL: TBP
DON CIO XML Guidance, URL: TBP

5.6.2.2 XML DTDs (Data Type Definitions)
Applications that support XML using the older XML DTD (Data Type
Definition) description of their file format first need to migrate to XML Schema.
Once migrated to XML Schema, they should follow the guidelines provided
under the XML Schema guidelines section. A number of tools exist for
automatically converting XML DTD’s to XML Schema’s have been to found to
be useful in performing this migration, one of which is ‘dtd2schema’
(www.dtd2schema.com).

5.105.6.2.3 XML Design Procedures

1)Determine location(s) of interface(s) between legacy system and the outside
world. Interfaces should be well defined, and contain the data moving in and out
of the system.

2)Capture and document any data structures, file formats, SQL calls, objects,
layouts, ERD’s, etc. that may be present at that interface. If the data structures
at the layout are time-varying or sequenced, then document that as well.

3)Call out any standards used by data structures or file formats above and check
XML registries that may have already been defined for that data representation
or file format. First, check the COE XML Registry, URL:
http://diides.ncr.disa.mil/shade/index.cfm, then check other sources like www.xml.org
for XML DTD’s or Schema’s. <Prefer XML Schema’s to XML DTD’s.> For
example, several standard file formats already have XML Schema’s specified for
them. Do several web searches using Google or other Internet search engine to
look for keywords and concepts embodied in the data representations.

DRAFT

117

4)If a standard XML Schema has been identified, map your data structure, file
format, etc. to that schema. If no standard XML Schema was identified, then
arrange the data structure in as hierarchical an arrangement as possible. Note
that many relational database products now come bundled with tools that will
automatically convert a database schema into an XML Schema. However, this
does not always apply when one needs to map a database to an externally defined
or standard XML Schema. Use a tool like XMLSpy to create a custom XML
Schema when an existing one cannot be located.
5)Once XML Schema’s have been defined for each interface, gather them
together and review them for commonalties that may provide the opportunity to
share a schema type that differs only slightly between one interface and another.

6)Create several, if not many, different sample data files and validate them
against the newly minted XML Schema using a tool like XMLSpy to verify that
the schema actually reflects what is wanted.

7)Let your developers work with the schema, reading and writing the data at the
interface as XML files to make sure that it is straight forward to access from a
programmer’s point of view. Sometimes, a small change in the schema can make
writing the code much simpler. Also, take the opportunity to review the schema
for redundancy in optional features, and specifying cardinality. Make sure
required things are really required. Are these attributes really necessary, or
would they be better as elements.

8)Upon completion of the above step, you have an XML Schema definition and
some sample data files to hand over to the development team <which will
appreciate you spending the extra time to develop a good specification.>

9)Once the XML Schema has matured, submit it to the DoD XML Registry, cited
above, to promote re-use. Continue to look at new XML Registry schemas, as
they become available, for opportunities to merge emerging existing Schemas
using the process improvement methodology of “best practices”.

5.6.2.4 Web Services and Legacy Applications

The following bullets describe a top- level approach to create Web Services from legacy
applications, summarizing aspects of sections 5.1 through 5.4. RETAINING THIS
WRITEUP IN SECTION 2.0 MAY HAVE VALUE
? Identify key functionality that is required to support existing and future users of the application.

? Decompose the application into discrete services that provide the functionality identified above.

? For each service, search the enterprise registry to determine if similar service already exists
and is suitable.

? For each service, define the SOAP/XML request/response messages.

DRAFT

118

? Implement a module that accepts the SOAP request message, performs the indicated service
and generates the SOAP response message.

? Test the service

? Submit the module to the appropriate registration authority for publishing in the enterprise
service registry. (Registration authority will conduct testing and verification prior to
publication).

TFWeb provides steps for the process of phasing out a legacy
application. TFWeb specifies different level of integration for
applications and services. If an application is to be phased out,
but it is desired to TFWeb enable the application in the interim,
then the application should be integrated in a minimum manner.
This would mean Level 1 or Level 2 integration. Level 1 and
Level 2 integration require the least amount of development and,
therefore, the minimum amount of investment in an application
that is do for replacement.

Goal: Navy Systems that are Enterprise Domain Information
Technology Solutions, employing XML/SOAP interfaces within and
between Enterprise Domains

Level 3 Integration Solution: XML/SOAP-Enabled Navy Legacy
Systems

Most Navy legacy systems require modification of
interfaces to make them meet TFW and NMCI requirements.
By XML/SOAP-enabling these systems to Level 3 TFWeb
integration, these systems should be able to interoperate on
the TFW portal in an NMCI environment. The steps required
to achieve Level 3 integration are described in Section 2.4.

5.75.7 Method for Migrating and Retiring Navy Replacing Legacy
System(s), Replacing them with Navy Enterprise Domain
Solutions
This section focuses on implementing the Long Term Goal: Navy Systems that are
Enterprise Domain Information Technology Solutions, providing web services and
employing XML/SOAP interfaces within and between Enterprise Domains.
Replacement Solution: Migrate and retire Navy Legacy Systems into
Enterprise Domain Information Technology Solutions, employing XML/SOAP
interfaces within and between Enterprise Domains

DRAFT

119

Some Navy legacy systems may require replacement to comply with NMCI and TFW
requirements. Navy legacy systems, XML/SOAP-enabled or not, Navy legacy systems in
most cases represent stovepipe systems that duplicate both functionality and data with
other systems, both within an Enterprise Domain and between several of them …for the
same or different purposes. Bus iness and system architectural changes may be required to
evolve one or several of these Navy legacy systems into a next generation system that is a
an effective good Enterprise Domain Information Technology Solution providing web
services. This section describes the steps required to migrate and retire one or several
Navy legacy systems into a Navy Enterprise Domain System employing an object
oriented design to provide web services. Figure 5-1 provides an example of an Enterprise
Domain Application Object Model

The following graceful approach supports users migrating from legacy systems,
facilitating legacy retirement. It also provides the framework and foundation to facilitate
the phased evolution of Navy Enterprise Domain Systems to replace one or several
legacy systems. The approach entails building interfaces to the legacy system to be
replaced and operating in parallel until interfaces are built to bypass it. At that point, the
user can retire the legacy system at any time. Connectors and APIs will be used as
standard mechanisms for interfacing with Navy Enterprise Domain Systems during
legacy system migration and for maintaining the long-term interfaces with corporate
systems. To reduce complexities and the associated development costs of implementing
multiple interfaces simultaneously with legacy systems, a system-based replacement
strategy is preferred rather than a function-based strategy. In situations where multiple
legacy systems are to be migrated, priorities are set by business decision.

The example in Figure 5-1— Legacy System Migration Approach, N1 Example, uses
four phases for legacy system retirement. The number of phases used in a particular
legacy migration depends on the complexity and scope of the target system. Phases on
the graphic are numerically labeled.

The first phase entails providing interfaces to port data (receive) from the legacy system.
During the second phase, interfaces are provided back to the legacy system to exchange
(send) data. In the third phase, two-way interfaces are established with systems that are
dependent upon the legacy system to be replaced. Lastly, in phase four, the Navy
Enterprise Domain System is validated and the legacy system is retired.

Referring to Figure 5-1, key aspects of phase one are listed below.

? Navy Enterprise Domain System data transformation services dynamically convert
data (format and values) from the legacy system.

? Navy Enterprise Domain System data transformation services make use of a
thesaurus (meta-data repository) to maintain all legacy system mappings to the
internal system format.

? Brokerage service provides a layer of transparency and manages data from multiple
sources.

DRAFT

120

Key aspects of phase two are listed below.

? Business process-reengineered legacy system functionality is developed and
deployed in the Navy Enterprise Domain System.

? Connectors are developed to interface back to the first level legacy systems.
? First- level legacy-system users are trained and migrated to the Navy Enterprise

Domain System user interface.
? The Navy Enterprise Domain System uses its broker and the legacy system

connectors to pass information to the legacy systems in a manner they expect.
? Legacy systems will be able to keep their second level external interfaces vibrant,

while the Navy Enterprise Domain System develops new interfaces to these
dependent systems.

Key aspects of phase three are listed below.

? Two-way connectors are developed to interface to second- level dependent legacy
systems which perform OLTP.

? Users are trained and migrated off second level OLAP systems.
? The Navy Enterprise Domain System uses its broker and legacy system connectors

to pass information to the first and second level legacy systems in a manner they
expect.

• Key aspects of phase four are listed below.

? The Navy Enterprise Domain System is fully operational with migrated users and
functionality.

? The first level legacy systems are fully retired.

DRAFT

121

Figure 5-1 —Legacy System Migration Approach, N1 Example

5.8 Service Registration
The Service Registration package is submitted to the AMCS contact after development
has been completed. The package template is available at URL: NEED URL. AMCS
performs the following items as part of the package review and, as such, the Service
Registration package must pass the following described scrutiny. This section also
applies to changes required as part of the beta testing procedures prior to restarting
testing.

HTML

Hire Mobilize Pay Promote

Person Task Entitlement …

SOAP SQL

…

Specific
Business
Functions

Domain
Services/
Functions

Resources
• Entity Objects

Managed by
Domain

• Base
Components

Client

Web Portal
(TFW)

…

4. Services turn off Legacy Systems

1. Obtain data from Legacy System.
2. Move Legacy System Business Rules into new
Object-Oriented System. Move User Interface to
Web Portal. Enable two way data exchange with
Legacy System, running in parallel.

3. Build Brokered Interfaces for
Legacy External Interfacing Systems.
Kill off unnecessary data warehouses

First
Level

Second
Level

Legacy
System

Legacy
System

Legacy
System

Legacy
System

Legacy
System

44

2

3 3

Legacy
System

Legacy
System

1

Connector/Adapter/Broker

Internet Architecture Gateway and Portal

111
2

2 2

2

3

Domain-Unique
Database

ERP

Organization

DRAFT

122

5.8.1 Verify completeness and accuracy of portal metadata

Portal metadata should include the directory entry text, category, description, application
owner, and application “customer service” contact. This is information available to any
user of the portal. Is it sufficient to determine whether access to an application is required
and how to obtain access? Does it address intended user base and purpose of the
program? Similar programs directed at other user bases should be mentioned in the
description.

5.8.2 Verify migration plan for level of integration is submitted

Migration plan is required for applications migrating at Level I or Level II. For the pilot
program, the application may enter beta testing prior to submission of a migration plan.
However, the TF Web Governance Board will not approve integration into the production
portal without a migration plan. A migration may be as brief or as detailed as desired;
however, timeframe, critical path, and issues to be resolved must be included. Retain
copy of migration plan in AMCS Echelon II notes for future reference. Brief the
migration plan to AMCS OIC for approval.

5.8.3 Ensure IATO/ATO has been updated if security model changed for
TFWeb migration

Provide copy of IATO/ATO cover letter to AMCS IA for reference documentation.
Submission of full accreditation paperwork is not required unless determined necessary
by AMCS IA.

5.8.4 Verify initial access control list submitted along with information
describing method of updating ACL

Verify method is compatible with current portal capabilities and user expectations. If
access cannot be given in a timely manner, ensure it is indicated in the application
description visible to the user. Review and approve appropriate roles for application
visibility. For most applications that control security at the application level, the ACL
should be “All Portal Users”.

5.8.5 Portal Compliance Testing

The AMCS liaison shall be provided a temporary login with access to key features of the
application. In the event access to key areas cannot be provided due to security/access
issues, alternate methods will be coordinated between AMCS and the application
developer. Spot check to ensure claimed capabilities of user description are provided and
significant limitations are documented. Spot-check HTML used is "portal compliant" (no
frames). Record all concerns, discuss with developer or program manager. Submit any
unresolved discrepancies to AMTS (for pre-beta review) or as part of the AMCS beta
testing notes. This is not intended to be a thorough review of the program. Rather, it

DRAFT

123

serves to ensure any obvious issues are recognized and documented prior to the beta
testing process to help expedite testing

5.8.6 Review summary of testing accomplished

Summary should include duration, type of users, type of test scripts performed, type of
data used, and environment in relation to the production platform. What is the risk that
the program will fail beta testing? Has there been sufficient operator testing to ensure
utility in the production environment?

5.8.7 Review portal integration information submitted

To ensure effective use of testing time and to allow maximum preparation time for
testing, all required portal integration information should be submitted as part of the
request. While further changes may be necessary or desirable, this allows for a package
of all required information to be submitted from AMCS to the beta test site. Ensure
integration module code has been provided.

Identify if substantive revisions have been made to sample code. Module code should be
fully documented and readable. Evaluate code for posting to open source site (based on
differences from baseline code). If review of code is required, submit request to AMTS.
Are there any reusable components that should be separately maintained?

5.8.8 DoN XML guideline compliance

If the application does not meet DoN XML guidelines, ensure migration plan is submitted
and approved by AMCS OIC.

5.8.9 Set next review date

General guideline is 1 year if all requirements met or halfway to next integration level (3
month minimum) if a migration plan has been submitted for non-Level 3 integration or
noncompliant XML are used. If IATO has been submitted, review date should be prior to
its expiration. By this review date, a member of AMCS will review documentation and
implementation history, and determine if any additional information is required.
Milestones in migration plans or further functionality development will be reviewed.
Also, database information will be verified.

5.8.10 Verify database entry is complete and accurate in AMCS application
database

AMCS database information is in section, Submission to the application information database.

DRAFT

124

5.8.11 Technical Review

AMCS may request a technical review at any time from the AMTS or alternate source.
This technical review may evaluate code base, technology, mobile code, or security
among possible areas. In some cases this is used to evaluate leading-edge technology and
possible unforeseen impacts on TFWeb environment. In other cases, it is used to check
for compliance with TFWeb architecture in a more thorough fashion than is possible in
the beta testing environment. If necessary to evaluate an application’s readiness for
migration, this review is completed and any discrepancies resolved prior to permission
for beta testing. The AMCS is the final arbiter of whom discrepancies are required to be
resolved prior to beta testing, though review of an AMCS decision may be requested
from the TFWeb Executive Steering Group.

5.8.12 Configuration Verification

Verify configuration of any local application servers or local remote module servers are
documented. The ability of local infrastructure to support numbers of users intended
should be documented as well as ability to scale to additional users. Any known
scalability issues should be documented.

5.8.13 Ensure application is logged in the DON CIO Data Management and
Interoperability Repository.

DMIR is currently in the beta testing stage. This is an optional requirement until full
functionality in the second quarter of 2002.

5.8.14 Verify all application data structures and data interfaces are
documented.

Databases should be accessible independently of application if underlying database
engine and security supports. Data interfaces should also be accessible independently.

5.8.15 Verify AMCS OIC has approved migration p lan for application/data
overlap.

Migration plan should address duplicative applications and data sources and their planned
resolution. Migration plan is not due until final review of application after beta testing.

5.8.16 Documentation of Developer Requirements.

Ensure developer requirements for future capability upgrades of the WEN architecture
and implementation of the architecture are documented. This should consist solely of
architecture or cross-application services, not those useful only to a single application.
This helps prioritize additional requirements based on the ability of the developer

DRAFT

125

community to capitalize upon the new features. This should only include functionality
developers are currently able to utilize.

5.9 Application/Service Delivery Phase
5.9.1 Application Acceptance

Only applications that have completed the migration request process with TFWeb are
submitted (e.g., application components, links/icons, datafill, DTDs/Schemas) for
integration in Enterprise Portal. All applications need to ensure compliance with required
DoN/DoD policies in addition to those required by TFWeb. The TFWeb process does not
supercede individual program, application, or content manager processes. It is expected
that the Enterprise Portal will receive applications that have gone through internal system
engineering and logistics processes (e.g., CCB, internal testing, CM).

5.9.2 Application Delivery

Each application is expected to deliver system and administration documentation that
conforms to Enterprise Portal documentation guidelines (e.g. XML or HTML). This
includes software operation and concise loading instructions to enable
users/administrators to load and administer the applications with minimum intervention.
The instructions should also include load verification and load back-out procedures.

Once the application is successfully loaded into the TFWeb developmental portal
environment, the developer will then continue with the remainder of the self-certification
procedure, moving into the performance criteria.

5.9.3 Application Integration

The developer is encouraged to notify TFWeb of an impending application release no
later than 30 days prior to portal integration. This gives the TFWeb team time to arbitrate
schedule conflicts with other application developers.

The application integration process differs depending upon the type of application to be
integrated, and the level of integration the application is achieving. In all cases the goal
is to provide the developer a process and supporting infrastructure by which they can
develop, test, and certify their application(s) for use in the Enterprise Portal environment
with a minimum involvement by a core TFWeb team or other external agencies.

DRAFT

126

6.0 Information Assurance

6.1 Strategic Overview

Within the military community, Information Assurance (IA) and Computer Network
Defense (CND) are the two defensive areas that have been incorporated under the greater
Information Operations (IO) umbrella. In this broad threat environment, where every
connection to a network must be regarded as a potential avenue of attack, IO must defend
not only our own information and information systems, but also affect adversary
information and information systems to deny their capability to be utilized against us. To
do this, IA supports the full-dimensional protection aspect of Joint Vision 2020 and
comprises actions at the tactical, operational, and strategic levels that protect and defend
information and information systems by ensuring availability, integrity, authentication,
confidentiality, and non-repudiation. In addition, Joint Pub 3-13 Information
Operations, stresses the importance of IA in the overall success of Defensive Information
Operations (D-IO) based on four interrelated processes: attack protection, attack
detection, restoration and response, as well as by coordinating interoperability among the
services and coalition partners, as well as government and non-government organizations.

IA seeks to insure the security of information in its myriad of forms, not just information
transferred using telecommunications or stored computers. Thus there is a close,
synergistic relationship between counterintelligence, operations security, communications
security, information security and information systems secur ity all of which seek to
protect information from hostile access and exploitation. This concept is much more
expansive in scope though than classic information systems security which many people
normally tend to relate to. It encompasses those communications and computer network
management functions that seek to provide for continued operations in the event of
accident, natural disaster, deliberate act, and adverse operational environment.

One can readily understand how information security considerations are critical to all
DoN information systems, including the new Navy Enterprise Portal. The open nature of
modern information systems provides hackers with many avenues of attack; therefore all
C4I systems must employ a “defense in depth” strategy to protect mission critical data
and services. The application portal being designed by Task Force Web is thus expected
to play an important role in the enforcement of the WEN (Web Enabled Navy) security
policy and therefore must be capable of reliably delivering fundamental information
security services.

6.2 TFW IA Overview

The Navy Enterprise Portal will service the needs of the Navy’s business and operational
user communities. In order to accomplish this goal, IA as described above must therefore

DRAFT

127

be incorporated throughout the entire architecture of the system. Separate instances of
the portal will be implemented on the Non-Classified Internet Protocol Router Network
(NIPRNET) and on the Secret Internet Protocol Router Network (SIPRNET) in order to
support both unclassified and classified processing requirements. The portal must meet
the minimum criteria specified for connection to these networks. A single solution is
required for both unclassified and classified environments. The components of the portal
will be located in facilities with appropriate physical protection controls based on the
classification level of the data being processed. Portal implementation requirements at
the TOP SECRET level are currently To Be Determined (TBD).

The portal is required to operate in an environment where all portal users are approved
(cleared) for access to all data served by the portal; however, all users will not have a
legitimate reason (need to know) to access all information served by the portal. The
portal will operate in the “systems high” security mode of operation, enforcing a
discretionary access control security policy using mechanisms equivalent to Class C2:
Controlled Access Protection (as currently defined by DoD 5200.28-STD.) As the portal
product market matures, products that have been evaluated based on the Common
Criteria will become available with the adoption of DoDI 8500. When this occurs,
preference will be given to products that have achieved a minimum of EAL 3.

All DoD information systems are required to be formally Certified and Accredited
(C&A) prior to being placed in operation. The Navy Enterprise Portal is currently being
certified and accredited in accordance with the DoD Information Technology Security
Certification and Accreditation Process (DITSCAP) as defined by DoDI 5200.40. A
formal certification and accreditation plan has been developed that addresses both the
accreditation of the portal infrastructure and the applications served by the portal.
Application providers/developers will be required to provide proof of independent
accreditation before submitting an application for incorporation in the portal.

DRAFT

128

This diagram shows how crucial IA is to the success of NMCI. Through layers of
technical protections and procedures, NMCI enables its users to access information and
services with the trust necessary to do their jobs. Defense- in-depth protection
mechanisms are deployed in a layered fashion forming boundaries at multiple levels
within the security architecture. This process ensures resistance to attacks and minimizes
the possibility of a security breach due to a weakness (known or unknown) at any single
security component. The defense-in-depth protection strategy provides security features
to NMCI systems and data. These features are confidentiality, integrity, availability,
accountability, and non-repudiation as mentioned earlier, and the TFW portal will allow
NMCI to truly comprehend it’s potential. However the actual realization of the Navy
Enterprise Portal’s full potential is dependent on the availability of infrastructure services
that are outside the scope of this document. Among these is the availability of the DoD
Public Key Infrastructure (PKI). The objective portal system must fully support the
DoD PKI when it becomes available.

The portal shall, as a minimum, support the following fundamental information security
services:

Architecture Management ServicesArchitecture Management Services

Information
Assurance
Information
Assurance

ManagementManagementApplications

Security
Mechanisms

Security
Services

Security
Objects

Security
Management

Network
Management

Systems
Management

Service
Management

Application
Management

Site Configuration
Management

Site Content
Management

Servers

File/Print
Svcs

Search
Engines

and
Agents

Legacy
Systems
Access

Directory
Services

Messaging
and

Collab-
oration

Standard
Internet
Services

Information Access and System Services

Platforms

Networks (WAN, BAN, & LAN)

Authoring Development

Web Sites Custom
Applications Off the Shelf

Security
Mechanisms

E-business Support

StorageClients

WAN BAN LAN Voice

Video

Architecture Management ServicesArchitecture Management Services

Information
Assurance
Information
Assurance

ManagementManagementApplications

Security
Mechanisms

Security
Services

Security
Objects

Security
Management

Network
Management

Systems
Management

Service
Management

Application
Management

Site Configuration
Management

Site Content
Management

Servers

File/Print
Svcs

Search
Engines

and
Agents

Legacy
Systems
Access

Directory
Services

Messaging
and

Collab-
oration

Standard
Internet
Services

Information Access and System Services

Platforms

Networks (WAN, BAN, & LAN)

Authoring Development

Web Sites Custom
Applications Off the Shelf

Security
Mechanisms

E-business Support

StorageClients

Architecture Management ServicesArchitecture Management Services

Information
Assurance
Information
Assurance

ManagementManagementApplications

Security
Mechanisms

Security
Services

Security
Objects

Security
Management

Network
Management

Systems
Management

Service
Management

Application
Management

Site Configuration
Management

Site Content
Management

Servers

File/Print
Svcs

Search
Engines

and
Agents

Legacy
Systems
Access

Directory
Services

Messaging
and

Collab-
oration

Standard
Internet
Services

Information Access and System Services

Platforms

Networks (WAN, BAN, & LAN)

Authoring Development

Web Sites Custom
Applications Off the Shelf

Security
Mechanisms

E-business Support

StorageClients

WAN BAN LAN Voice

Video

DRAFT

129

Authentication - a means to establish the validity of a claimed identity. The user’s
identity can be verified as part of the certificate- issuing process (literally, the user is
authenticated).
Confidentiality - is assurance that information is not disclosed to unauthorized
persons, processes, or devices. The process of assigning rights, which includes the
granting of access, is based on specific access rights. The authorization policy is a
control policy by which access by subjects to objects is granted or denied. An
authorization policy will be defined in terms of access controls lists, capabilities, or
attributes assigned to sub jects, objects, or both.
Integrity - is a security service that protects information from undetected
modification.
Availability - the state when information services and/or data are in the place needed
by the user, at the time the user needs them, and in the form needed by the user
Non-Repudiation - provides undeniable proof of a party’s participation in a
communication.

The functional requirements in the following subparagraphs have been organized based
on these five fundamental information security services. The functional requirements
described in this document must be interpreted within the framework of existing DoD
and Navy security policies. Current DoD/DoN policies such as the Mobile Code policy
and Fleet Firewall policy will evolve as web technology continues to change.

6.2.1 Authentication

The portal shall identify and verify the identity of an eligible user (not just a person, this
could be any device capable of using a PKI certificate). Authentication to the portal shall
require presentation of a valid Class 3 or Class 4 PKI Digital certificate, along with a pass
phrase or equivalent “something I know” validation; or of a password associated with a
unique user ID as outlined in the Web Server Protection Profile, National Security
Agency, draft January 2000. The requirements are as follows:

Strong authentication shall be required for any user access to the portal, and all such
accesses shall be audited.

Error feedback for user authentication shall contain no information regarding which part
of the authentication information is incorrect.

The portal shall limit the number of unsuccessful login attempts. The number of
unsuccessful logons shall be configurable by an administrator.

The portal shall have the capability to limit the number of concurrent logons. The
number of simultaneous logons shall be configurable by an administrator.

The portal security architecture shall eventually support the use of “single sign-on”
(SSO).

DRAFT

130

6.2.2 Confidentiality

The portal shall support confidentiality. The portal shall provide a centralized mechanism
to enforce access control at or above the object level (i.e., functions, data) based on a
subject’s (user, applications) valid identification, authentication, roles, and permissions.
The portal shall provide one or more mechanisms to permit applications to ensure
confidentiality of sensitive transmitted data via data encryption using government-
approved means in accordance with appropriate PKI policy. Approved Secure Sockets
Layer (SSL) methods shall be used to provide confidentiality of the data in transit. The
portal shall provide a capability for centralized user account creation in a heterogeneous
environment with the capability to define a unique user identifier and login name (within
administrative domain). The capability to define user profiles shall be capable of
supporting central storage and central management of user profiles. The capability to
define user profiles shall support the definition of which system functions, systems,
applications, and files a user with a given profile shall be authorized to access.

6.2.3 Integrity

The integrity of the portal shall be maintained in accordance with standard industry IA
practices. The data shall be protected to ensure that the information while in transmission
and in storage has not been altered. The use of SSL shall be used to preserve the integrity
of the information while in transition between the client and the server. Web servers
shall be securely configured as outlined in the Web Server Protection Profile, National
Security Agency, draft January 2000. The secure server configuration shall include the
ability for all web servers within the portal to use PKI certificates and certificate services
that are part of the DoD PKI. Web servers shall be securely administered as specified in
the Department of Defense Web Administration Policies and Procedures, 25 Nov 1998,
published under ODSD memo 7 Dec 1998. Restricted access web servers shall
implement secure Web technology (e.g., SSL/PKI) as mandated in the DoD PKI
Memorandum, 12 Aug 2000. Restricted access servers shall employ Class 3 or 4 digital
certificates issued by the DoD-PKI to perform authentication. The use of Mobile Code
will comply with relevant Mobile Code policy, of which the most current is the Fleet
Firewall Policy, DTG 30 November 2001. See the reference section for more details.

6.2.4 Availability

The portal shall be available in a timely and reliable manner in accordance with proper
confidentiality and integrity requirements outlined in the security policy section of this
document. Availability may be demonstrated in several ways including but not limited
to; replication of critical portal system components, redundancy, load balancing,
performing system backups, and having a demonstrable disaster recovery plan. Denial of
Service (DoS) or Distributed Denial of Service (DDoS) to the portal is a serious and

DRAFT

131

likely threat. The portal must demonstrate mitigation techniques to minimize the
unauthorized destruction, modification, or delay of service resulting from these or any
other type of attacks.

6.2.5 Non-Repudiation

The portal shall ensure non-repudiation using digital signatures based on DoD

PKI Class 3 or Class 4 certificates and keys. SSL/PKI shall be used for non-repudiation
as assurance that the sender of data is provided with proof of delivery and the recipient is
provided with proof of the sender’s identity, so neither can later deny having processed
the data.

6.2.6 Accountability

Accountability is the result of provid ing documentation on system and/or user activities
via secure audit logs within a reasonable amount of time. The ability to log and report
security events, such as system access or the execution if a portal resource, shall be made
available to the system administrator. Auditing shall be made available for each of the
components within the portal. Audit reduction tools and audit-reporting capabilities
should be available for review. The requirements are as follows:

The portal shall provide a mechanism to capture audit logs for selected actions deemed
necessary by the system administrator, in order to provide him/her the ability to
reconstruct events and determine individual responsibility for security related issues.

The audit mechanism shall be capable of automatically collecting, processing, and
identifying security-relevant events that meet security audit requirements. Minimum
auditing requirements will include: user logon, user logoff, user actions to open, close,
create, delete, modify, execute programs or files, and the attempts to access protected
objects (e.g. configuration files, audit files, password files, etc.).

For each audit event the audit mechanism shall record the following information: date
and time of the event, the unique subject identifier (user- id) on whose behalf the subject
program generating the event was operating, type of event, success or failure of the event,
origin of the request (e.g., terminal ID) for identification and authentication events, name
of program or file introduced, accessed, or deleted from a user’s address space.

The system shall provide end-to-end system and user accountability for all relevant
events so that the system administrator will be able to reconstruct the cause of an event
and identify the user or system component responsible for the event.
The access and transmission audit logs shall be strictly controlled to maintain integrity.

DRAFT

132

6.3 Certification and Accreditation

The portal security solution shall ensure that the portal can be operated at “an acceptable
level of risk” based on the minimum clearance of the user and the maximum
classification of the data processed when subjected to the DITSCAP process. The
Designated Approving Authority (DAA) appointed for the portal shall determine the
“acceptable level of risk”. In accordance with OPNAVINST 5239-13, all US Navy
information systems will be certified and accredited using the DOD DITSCAP policy.
For the TFW portal, all applications will route their IATOs to the TFW ISSM..

6.4 Security Policies

The portal will be used to access sensitive information therefore; it must be designed to
guarantee the correct and accurate interpretation of all relevant security policies. The
portal will provide assurance that all relevant security policies have been followed by
demonstrating derived security compliance in the system architecture via security testing,
configuration management, design documentation and user guides. All portal
implementations for these critical elements must comply with these fundamental
Information Assurance policies and practices documents, listed in the Reference Section.

The TFWeb architecture will follow an 'Allow then Deny' approach to security for the
Portal and backend Applications, i.e., all of the services in the Portal are visible to
(nearly) all of the users. A minimum number of Portal workgroups will be created to
define which Portal connectors certain user groups will be able to see. Each group will
define a large number of connectors that the users will be able to see. Based on DoN
policy, there may be a very few exceptions (in case of very high security applications),
where the Portal connectors will only be visible to a few authorized users. Thus, the
majority of the portal connectors will be visible to all the workgroups in the Portal.

Portal users can arrange the Portal connectors on their workspace of choice by dragging
and dropping them into their display. At this point in time, the Portal connector will try
to connect to the underlying Application by sending an HTTPS request to the
Application’s URI on the EMS server. The SSO web server agent on the EMS server
will then either allow or deny access based on the user’s rights to the Application as
defined in the Entitlements Database. Thus, in some cases, even though the Portal
connector is visible to the end user, the actual contents of the Application may not be
available. The user will need to request access to the Application from its owner.

In case of an Application’s Portal connector, access control is achieved through the
security policies set in the SSO server. The SSO web server agent installed on the EMS
server will challenge any requests for Applications and allow or deny access based on the
security policies set for the Application. It is the Application owner's responsibility to

DRAFT

133

provide the necessary information to the directory and SSO administrators to set the
Access Control List (ACL) policy for the Application. This information will consist of
the Application’s name, and the definition of all users that require access to the
Application. This definition of users will be based on user’s names. Once the authorized
users are defined, the directory administrator will create an Active Directory group that,
in conjunction with the SSO product, will allow access to the Application.

The entire TFWeb architecture, from the Portal user’s browser, to the back-end
Application web server, shall utilize encrypted communications over 128-bit SSL. For
HTTP communications, this will be by means of HTTP over SSL, port 443. SSL shall be
implemented by means of DoD PKI Class 3 certificates on both the NIPRNET and
SIPRNET architectures. DoD PKI Local Registration Agents (LRA) are currently readily
available to issue PKI server certificates on the NIPRNET. Application
developers/owners who need assistance in acquiring a DoD PKI certificate on the
SIPRNET should contact their TFWeb AMCS representative or the TFW ISSM. Of
particular importance to Application owners in the interface between the EMS and their
Application web server. For all levels of integration, this interface must support at least
one-way (server-side authenticated) SSL communications. Based on the needs of the
Application, the developer may choose to implement a two-way SSL (client and server
authenticated) communications path between the EMS and the Application web server.
Client-authenticated HTTPS communications will be required by all shore users to enter
the NMCI TFWeb enclave and access the TFWeb Portal. This will require that all shore
Portal users have a DoD PKI issued identity certificate from the Class 3 PKI. Therefore
all Users should contact their command’s LRA or their TFWeb AMCS representative for
assistance in getting the required PKI certificates.

6.4.1 Single Sign-On Security Architecture

The SSO solution for the TFWeb architecture:

Acts as a central point of authentication for Enterprise Portal users,

Provides a framework for authenticating users which will enable a Navy-wide web SSO

 implementation by Application owners,

Authorizes the use of Portal services and Applications based on dynamic security policies

 configurable by Application owners,

Utilizes the enterprise Active Directory architecture by replicating users, user attributes,

DRAFT

134

 and security groups to establish Portal security policies.

The SSO solution provides a single, unified mechanism and interface for controlling
access and security across platforms, applications, and Web servers. More specifically,
SSO authentication and authorization solution provides centralized management across
platforms and vendors, delegated user management, rules-based access control, and
support for multiple forms of authentication. Single Sign On is defined as the process of
a user logging in to a system only one time, and thereby having access to all resources for
which they have rights, without having to log on to those resources individually.

The ultimate goal therefore of the SSO solution is to provide a framework to allow Navy
Portal users to move seamlessly across the Portal web servers and Applications without
having to re-authenticate each time they click a new link. Their authentication
information is passed on to other SSO components via an encrypted temporary session
cookie. SSO depends on the storage of authentication information in the encrypted
temporary session cookies. At runtime the SSO web server agent communicates with the
SSO Server, which can encrypt and decrypt the temporary session cookies. Therefore, a
SSO web server agent can always decrypt a cookie generated by itself or any other Web
Server Plug- in in the system, and can authenticate using stored information rather than re-
prompting the user for credentials.

Navy Common Strategy

FIPS 140
Web Server
(or Portal

Presentation of
Certificate

Cert based
Authentication

Extraction of Unique
Identifier

Directory
Service

OCSP
Responder

(Maybe)

Certificate Validation
To Directory Service

Session Open
Based on

Presence/Absence

CRLs (6-8)

CRL Pull

Middleware

Middleware

ACL

Includes
“wrapped”
Username

And
Password

For Legacy
Systems

.

DRAFT

135

6.4.1.1 Role of the Directory in SSO

The enterprise-wide TFWeb Active Directory architecture is the basis for all Navy Portal
SSO operations. The TFWeb directory architecture will be replicated/synchronized
across the Navy enterprise, and will be collocated with the Portal architecture
components. This directory architecture will also extend to include Navy afloat ship
platforms. The primary function of the TFWeb Active Directory architecture is to
provide a centralized location for the authentication and authorization of all Navy and
United States Marine Corps (USMC) users to the TFWeb Portal architecture. In order to
be the centralized source for all user authentication, the TFWeb directory will establish
global unique user identifiers for all registered Navy and USMC TFWeb users, both
afloat and ashore. These user identities will be based on the flat SMTP name space being
fielded by the NMCI (e.g., joesph.user@navy.mil, joesph.q.user@navy.mil,
jane.user@usmc.mil, jane.j.user12@usmc.mil). Every user will be assigned a new
unique ID in the flat name space that will remain theirs, regardless of their location
within the Navy or USMC organizations. TFWeb will use a temporary flat name space
for non-NMCI users (@tfw.navy.mil and @tfw.usmc.mil) in combination with the NMCI
flat name space. Authentication of users to the TFWeb Portal and its Applications will be
based on the flat name space userID. The SSO server will perform authentication of a
user’s identity directly against the TFWeb Active Directory. The TFWeb Active
Directory will also be the centralized source for authorizing user access to TFWeb
Applications. Active Directory groups will be defined determining a user’s ability (or
inability) to use a particular Portal Application. The SSO server will utilize these groups
in allowing or denying users access to the Portal and its Applications. The TFWeb
directory service is the initial implementation of an enterprise-wide directory to support
Navy and USMC applications, such as the WEN. The TFWeb directory is the basis for,
and will eventually evolve to become, the larger Naval Global Directory Service
(NGDS). The NGDS will provide enterprise-wide services such as TFWeb
authentication, location of Navy and USMC personnel (Navy/Marine Corps White
Pages), and convergence of NMCI and IT-21 directory services into a logical global
directory

6.4.1.2 Current SSO Issues

DoD is in the process of issuing Class 3 (medium assurance) PKI certificates to servers
and individuals. TFW intends to utilize these certificates to provide the full range of PKI
Security Services, one of which is stronger authentication. In addition, the following
questions are also being addressed in order to develop a long term SSO architecture:

Also need assurances and specifics on certificate validation (e.g. OCSP/CRLDP
validation of DoD PKI Certificates).

Relevant to the function of the key server, what specific cryptographic functions are
being performed by the key server, and are they currently using FIPS certified products to

DRAFT

136

perform these functions (e.g. BSAFE or other FIPS certified). If DoD PKI certificates are
used and all backend and front-end servers have DoD PKI certificates, what is the role of
the key server?

Is server-to-server two-way authentication used between front end and back end?
Relevant to the function of the PKE Agent, are proprietary protocols utilized for agent-to-
agent (front end to backend) communications? If so, why does the vendor consider that
they are necessary?

What standards are being applied in front-end to back-end connectivity and information
transfer (e.g. CORBA, RMI, other)?

What specific information is contained in the session cookie/http header?

What is their strategy for capturing legacy non-web applications, and do they provide any
toolkits for doing this?

Relevant to firewall friendliness: What specific ports are required to be open? Can the
implementer modify this? Has the vendor requirement for opening ports been minimized?

In the event that certificate based authentication is implemented, is there any means to
manage access (authorization) based upon the strength of credentials presented at the
authentication server (e.g. a hard token is a stronger means of authentication than
username/password - can authorization for a single user be applied to reflect the strength
of the authentication token, or is this a one-size-fits-all?).

What parts of the architecture have gone through FIPS certification? What is the current
strategy for FIPS (NIST) certification? Same question for Common Criteria.

While the theory of how SSO can benefit TFW is good, the reality is that technology to
support this architecture is still being developed. There are essentially two means to
overcome this shortfall.

Accept the current product limitations and continue to execute the necessary “work-
arounds” in order to make the product work, based upon the assumption that promised
vendor product improvements will eventually achieve compliance and interoperability.

Pursue a different solution that meets the immediate requirements for compliance and
interoperability.

6.4.1.3 LSSO Introduction

As an interim solution to the single sign on architecture, Lightweight Single Sign On
(LSSO) describes a simple method to transfer the flat name UserID to the application or
service by using the existing XML PRI interface to provide UserID and SessionID

DRAFT

137

directly to the service or application. This solution may provide enough user
identification for most application/service developers, while pushing the developers to
use the Navy Global Directory Service (NGDS) flat name space. The Lightweight Single
Sign On is based on the following assumptions:

1-way SSL between EMS and Service host. (allowed by Section 6.4.1 of TFW
Developer’s Guide)

Consistent passing of PRI from the portal to the service.
Application/Service is at a minimum of Level 2 integration.
Understanding the risk associated with trusting the PRI header via 1-way or 2-way
SSL as appropriate.

The Portal product has validated the UserID through the standard login procedure, i.e.
validated by the existing SSO product and Active Directory.

6.4.1.4 LSSO Details

The Portal Connector will pass the PRI header to the Level 2 service module when called
from the portal. Upon parsing the XML PRI in the header, the application will be able to
retrieve the following information as defined in this guide: Reference the table vice
putting copy of table here.

Data Elements Description
UserID Portal user’s ID based on NGDS flat name space

schema
RoleAssignments Group from directory service
PortalLocation Determines if ashore or afloat
Client For the pilot, set to “browser”
CheckBandwidth For module to determine if there is bandwidth

availability.
SessionID A session identifier for the portal’s browser session.
ClientStyle Reference to portal style sheet, so that service can

maintain the current portal look and feel.

For LSSO, the passed UserID along with stated assumptions should be sufficient for user
identification for most services/applications. It does not offer strong authentication, like
commercial SSO products such as RSA ClearTrust, Baltimore SelectAccess or Oblix
Netpoint; however, it will provide a simple means to a service to use the UserID. The
service developer will then use the flat name as the unique identifier for the users of the
service, which will make the transition to full SSO services. The service developer
assumes the PRI passed from the Portal is accurate and valid and has not been spoofed.
While this assumption carries significantly more risk than a full SSO implementation,
many existing web applications do not require high-end authentication. Even though
trusting the UserID in the PRI header is not always recommended, the use of LSSO

DRAFT

138

implies the developer has weighed benefits and risks opening data access associated with
this method. For added trust, the UserID passed could be verified against Active
Directory to verify the user exists in the NGDS and/or the SessionID could also be
validated to be a possible portal SessionID. This SessionID validation would be similar
to a CRC, and will not verify back to the portal that the SessionID currently exists. Also
the UserID verification and SessionID validation services currently do not exist and are
not required implement LSSO. Furthermore, 2-way SSL can be used to greatly lessen the
risks with this proposed LSSO solution.

TFW will provide guidance to organize and ensure the minimal amount of effort for the
developer to transition to full SSO when available. The benefits and risks of LSSO are
summarized in the following table. To implement LSSO, the developer must do the
following.

Move the members on the application’s Access Control List (ACL) to use the unique
name provided by the NGDS flat name schema (preferred) or provide a mapping between
an existing ACL and the flat name space (alternative).

Modify the application to be level 2 integration, so that it can parse the PRI XML header
information.

Trust the information passed via the PRI to be accurate and valid and understand the risks
(with 1-way SSL and 2-way SSL).

Benefits Risks
Migrate to NGDS flat name space. Potential rework upon availability of full

SSO implementation.
Access control to the service remains with
the service/data owner

PRI can be spoofed in 1-way SSL solution.
2-way SSL ameliorates this risk.

Encourages the development of directory
query services.

Modification of existing
applications/services, may require re-
certification of application or service.

6.4.2 Public Key Infrastructure

Access is a huge issue with respect to computer security and IA. The Department of
Defense (DoD) has opted to use Public Key Encryption as a preferred method of
authentication. Therefore all DoD Public Key (PK) Enabled applications shall support
the use of the DoD Class 3 PKI certificates and keys to provide non-repudiation,
integrity, confidentiality and strong authentication as specified in Assistant Secretary of
Defense (C3I) Memorandum, Department of Defense (DoD) Public Key Infrastructure
(PKI), 12 August 2000. The current direction from both Navy and DoD is that the
Common Access Card (CAC) is the principal container for all certificates and keys
associated with DoD PKI. In reality, however, due to identified difficulties with
deploying the CAC to Navy afloat/tactical forces, there will continue to be a requirement

DRAFT

139

to sustain the capability to issue software certificates if current DoD mandates for signed
electronic mail are to be met.

With respect to TFW, a significant portion of the WENPP is to test the access of the non-
NMCI User to applications via the portal. This required users to obtain and use PKI
Class 3 software certificates, which requires the installation and use of the Netscape
browser and Personal Security Manager (PSM). To date, TFW staff and many users have
experienced
significant difficulties downloading and installing these software certificates, however it
is still a requirement for all TFW users to possess and utilize a PKI Certificate.

The PK enabled applications shall provide the capability to verify that a digital certificate
presented by a user or system entity was issued by one of the Certificate Servers whose
certificates are loaded onto the portal applications. To date, the assistance of OPNAV
N614 and LRAs across the country was instrumental in arranging for rapid issuance of
PKI Certs to TFW Beta users, and eventually the portal and all PK enabled applications
will migrate to use Class 4 PKI certificates (i.e. smart cards or equivalent) to supplement
or replace Class 3 certificates. In addition, the portal and all PK enabled applications
shall have the capability of validating client and server certificates as outlined in the
SPAWAR PMW 161, (May 2001), Navy Tactical PKI End-to-End Certificate Validation
Concept of Operations DRAFT.

DRAFT

140

6.4.3 Non-NMCI User Access

One of the major hurdles so far for TFW from an IA viewpoint has been the
incorporation of the non-NMCI user into the NMCI portal. The ISF team has come up
with a solution, that uses a DMZ with two proxy servers and an IDS. The current title for
Non-NMCI User Access is called the Secure Web Access (SWA). This solution will be
tested in the pilot architecture to determine if there are any performance and latency
issues before it is deployed across the enterprise portal.

6.4.4 TFW Mobile Code Use Policies

The UNCLASSIFIED information is documented in the Navy-Marine Corps NIPRNET
Enclave Protection Policy, dated 30 Nov 2001. Please refer to the full CONFIDENTIAL
policy statement posted at http://www.infosec.navy.smil.mil under Fleet Documents and
Information. The UNCLASSIFIED policy can be found at https://www.infosec.navy.mil
under Fleet Documents and Information.

DRAFT

141

6.4.5 Legacy Application Access Control Mechanisms

As stated above, SSO will provide enterprise-level security, including authentication and
authorization to access the URL on the EMS server that defines the ‘home page’ for a
portal Application. However, it is the responsibility of the Application owner/developer
to provide local security, at the Application level. This security includes determining the
process by which users are authenticated and authorized to the legacy Application. To
participate in the overall SSO solution for TFWeb, Application developers must:

Determine the means by which users will be authenticated to the legacy Application through the
Portal

Map TFWeb userIDs to the Application’s internal user rights database (for legacy
Applications) or develop a user rights database using the TFWeb userIDs (for new
Application development)

Provide TFWeb SSO administrators with a list of users authorized to use the Application
(see section 6.7.1). Authorize user’s rights to internal Application processes or databases
based on the authenticated userID provided by SSO.

In particular, the Application must assign all rights that are necessary internal to the
Application. Examples of these user’s rights include: allowing users to modify data,
providing access to portions of internal databases, and administering other user’s rights.

Application developers must also continue to provide sound local security for their web
servers and Applications. This local security may include mechanisms such as applying
all appropriate patches for the operating system and web server software, providing full
support for encrypted web communications (i.e., HTTPS) using DoD PKI server
certificates, and protecting the web server and Application from common hacker attacks
such as IP spoofing and denial of service. The Application must also provide local
auditing and logging of access attempts and invocations of user rights.

Security certification and accreditation of the Application as a stand-alone service
(following all pertinent Navy guidelines and policies) remains a responsibility of the
Application developer. Applications that are not accredited will not be allowed to take
part in the TFWeb architecture.

Refer to Appendix A: DoD Authority References for a complete list of Navy and DoD
security policies to be followed.

Legacy Application Authentication Options

To implement SSO, the SSO server relies on encrypted temporary session cookies to
securely pass authenticated user IDs between web applications. SSO also provides a

DRAFT

142

means to pass authenticated user IDs through the HTTP request header fields. However,
TFWeb recommends that Application developers do not use this data as a means to
automatically authenticate users to their Application. Because this data may possibly be
spoofed, it should not be trusted as an authentication means, but may be used to provision
“familiarity” services, such as a persona lized splash page, etc. This leaves Application
owners with a few options to authenticate users to the Application, as described below.

During the TFWeb Pilot timeframe, the Application owner may choose to re-authenticate
users accessing their Application through the Portal. As this solution does not lead to the
goal of end-to-end SSO for the Portal, the Application owner will be asked to migrate to
the fully integrated SSO solution once it is determined. Application developers may be
required to change the interface through which users authenticate, even if the backend
authentication process remains the same.

In-Line HTML Form: The Application should present the user with an HTML form
requesting credentials. This form should be designed in- line with the rest of the
Application’s interface, and should not be a new pop-up browser window. Level 3
integrated Applications are required to implement HTTP BASIC authentication over
SSL, or better.

Dialog Boxes/Child Browser Windows: This is the less preferred, but acceptable
authentication interface. The Application may present the user with a system-generated
dialog box requesting credentials. However, this dialog box MUST uniquely identify the
Application that is asking for credentials to differentiate it from other dialog boxes in use.

Implement SSO Web Server Agent: Application owners may choose to implement a SSO
web server agent on the legacy Application’s web server. Using the SSO web server
agent will tightly integrate the Application with the Portal SSO solution, which is the
long-term goal. There are no licensing issues related to using the SSO web server agent,
but there are some technical limitations.

Regardless of the authentication solution chosen for the Application, Application owners
are still required to provide a list of all users authorized to access the Application to allow
proper operation of the enterprise SSO solution. It must also be noted that any change to
the Application’s authentication process should result in a re-evaluation of the
Application’s security posture by the System Security Approval Authority (SSAA).

6.5 TFW IA Conclusion

The attempt to build a single portal and to web-enable the Navy is a huge undertaking.
The IA efforts by both the SPAWAR and ISF engineers are crucial to the successful
implementation of this project on a timely basis. Therefore it is imperative that IA be
included in all phases of portal development and testing, on both teams , to ensure that
security is never an afterthought. The TFW effort is the single unified web portal for
both NMCI and IT-21, and therefore it needs to be secure enough to meet needs of both

DRAFT

143

communities. To be truly effective, all personnel associated with operation including
developers, web architects, managers as well as staff officers, must understand what the
Navy is trying to do in a WEN, and how TFW fits into that overall picture. That is the
point, at which the entire security ramifications of the portal are understood, and IA
becomes crucial to the overall success of the project.

DRAFT

144

Reference Section

All portal implementations for these critical elements must comply with these
fundamental Information Assurance policies and practices documents.

Department of Defense Web Administration Policies and Procedures, 25 Nov 1998, published under

ODSD memo (Hamre) 7 Dec 1998
National Policy Governing the Acquisition of Information Assurance (IA) and IA-Enabled

Information technology Products,” published by the National Security Telecommunications and
Information Systems Security (NSTISSC No. 11), March 1, 2000, available from
http://www.nstissc.gov.

DoDD 5200.28 Security Requirements for Automated Information Systems (AISs) 21 March 1988.
Navy-Marine Corps NIPRNET Firewall Configuration Baseline, 01 Feb 2001.

Navy-Marine Corp NIPRNET Firewall Policy, CNO R 011646Z, Feb 2001.
Navy-Marine Corps NIPRNET Firewall Policy Addendum, CNO R 021933Z, Feb 2001.
DoDD 5200.39; Security, Intelligence, and Counterintelligence Support to Acquisition Program

Protection; 10 September 1997
DoDD 5200.40; DoD Information Technology Security Certification and Accreditation Process

(DITSCAP); 30 December 1997

NSTISSP 200; National Policy on Controlled Access Protection; 15 July 87

Office of Management and Budg et Circular No. A-130, "Management of Federal Information
Resources," February 8, 1996

SECNAVINST 5239.3; Department of the Navy Information Systems Security (INFOSEC) Program; 14
July 1995

Chief of Naval Operations (N6) Message NAVADMIN 110/00, Navy Public Key Infrastructure (PKI)
Implementation, 011504Z MAY 00

Information Assurance Technical Framework (IATF), Version 3, Sept. 2000
Web Server Protection Profile, National Security Agency, draft January 2000. This profile specifies

the minimum-security requirements for a web server used in environments where the web server
hosts information that must be restricted from public access. As such, information access from
the server must be protected from disclosure, must have sufficiently strong mechanisms for
access control by web users. Malicious web users must be prevented from modifying or deleting
content.

Web Browser Protection Profile, National Security Agency, draft January 2000. This Protection
Profile specifies the minimal security requirements for a web browser used in environments
where access to information in the host system (including the browser itself) and to the content of
web pages must be controlled. The host system must be protected from compromise because of
the use of the web browser, either by the transferring of host information to unauthorized users,
or by making unauthorized changes to host processes or configuration. Access to web page
information must be constrained to the web server from which the page was loaded.

The portal must comply with these relevant guidance documents:
National Security Agency, Guide to Securing Microsoft Windows NT Networks, Report Number: C4-

001R-00, February 3, 2000
Trusted Systems Services, Windows NT Security Guidelines a study for NSA Research which is

available at: http://www.trustedsystems.com/NSAGuide.htm

National Security Agency, Router Configuration Guide DRAFT, 2001.

DRAFT

145

National Security Agency, Guide to Using DoD PKI Certificates in Outlook 2000 DRAFT, 2001.
National Security Agency, Guide to Windows 2000 Kerberos Settings DRAFT, 2001.
National Security Agency, Guide to Securing Microsoft Windows 2000 DRAFT, 2001.
National Security Agency, Terminal Services DRAFT, 2001.

National Security Agency, Guide to Windows 2000 Schema DRAFT, 2001.
CSPP - Guidance for COTS Security Protection Profiles, Version 1.0, NISTIR 6462, January 2000,

available at http://csrc.nist.gov/cc/pp/pplist.htm
Common Criteria Project, Common Criteria for Information Technology Security Evaluation, Version

2.1., 1999. Available from either: http://csrc.nist.gov/cc/ccv20/ccv2list.htm#DOWNLOAD or
http://www.radium.ncsc.mil/tpep/library/ccitse/ccitse.html. Equivalent to ISO FDIS 15408,
Parts 1-2-3 (SC27 N2161-2-3).

NSA Certified Protection Profiles, available at
http://www.radium.ncsc.mil/tpep/library/protection_profiles/index.html

The portal must comply with these commercial standards:

Netscape Secure Sockets Layer (SSL) ver 3, Transport Layer Security (TLS, IETF RFC -2246), or
Secure Hypertext Transfer Protocol (S-HTTP, IETF RFC -2660) requiring dual certification
exchange access control.

ISO 8879, Information Processing Systems – Text and Office Systems – Standard Generalized
Markup Language and World Wide Web Consortium standard XHTML 1.0, “The Extensible
Hypertext Markup Language,” which is a reformulation of HTML 4 in XML 1.0, Jan 2000.

Where applicable, use Signed Document Markup Language (SDML) in MSS web-based apps
matching the W3C SDML business model targets, using DoD PKI X.509v3 certificates.

Currently, cryptographic APIs are only used for encryption of unclassified information.
But applications using these functions are deployed on unclassified and classified DOD
networks, such as Medium Grade Messaging and private web servers. These applications
use CAPI to provide the important e-mail digital signature functions mandated by DOD
PKI policy.

Cryptographic APIs must be certified as FIPS 140-1, level 1, compliant.

The current Mobile Code policy are expanded below:

Prohibit the use of category 1 mobile code technologies.

Use of Java category 2 mobile code will include the COTS security model for (1) Sun Java 2.0
(Security Code Guidelines Feb 2000) or (2) Microsoft J++ (Trust-Based Security for Java April
2000). All Java applets will be signed using Javakey, Signkey, or Authenticode technologies.

Scripting languages will comply with EMCA-262/ISO-16262 standard scripting language or Netscape
JavaScript version 1.5.

Scripting services will comply with World Wide Web Consortium standard XHTML 1.0, “The
Extensible Hypertext Markup Language,” which is a reformulation of HTML 4 in XML 1.0,
January 2000.

DRAFT

146

7.0 Development Tools and Resources

This section seeks to summarize the myriad of development tools, references and sites
that are simply too numerous to include in developer guide. These are the basic tools and
resources we have found that may help a developer in the process of creating NAVY
Enterprise friendly and compliant applications. Details omitted in the guide may be found
here…

Tool /
Resource

Description URL

W3C
HTML
Validator

Checks html
code for
W3C
standards
compliance

http://validator.w3.org/

W3C CSS
Validator

Checks CSS
code for
W3C
standards
compliance

http://jigsaw.w3.org/css-validator/

W3C Link
Checker

Customizable
web tool to
check for
broken links
etc

http://validator.w3.org/checklink

MS
Developer
Network

Microsoft’s
developer
support web
site for MS
Technologies.

http://msdn.microsoft.com

MSDN
Win2k
Certification

Desktop &
Server App
certification
& test tool
resources

http://msdn.microsoft.com/certification/download.asp

UDDI Universal
Discription
Discovery
and
Integration

http://www.uddi.org

MS UDDI Microsoft
Interfaces to
UDDI and

http://uddi.microsoft.com

DRAFT

147

SDK etc.
WSDL Intro to Web

Services
Description
Language

http://www.learnxmlws.com/tutors/wsdl/wsdl.aspx

ISF TOOLS
DB

Legacy Apps
certification
status

https://usplswebh0ab.plano.webhost.eds.net/isftool/Login.jsp

EDS ISF
Website

Official site
of CLINS,
tools and
resources for
NMCI

http://eds.com/nmci

DoN CIO
Website

Information
Management,
IT web,
resources

http://www.don- imit.navy.mil/

DoN
Smartcard
Office

Guidence on
use of DoN /
DOD CAC
cards

http://www.donsmartcard.com/Links.asp

Source
Forge

Open source
repository

http://sourceforge.net/

Webopedia Online
Technology
Encyclopedia

http://www.webopedia.com

More to follow…

DRAFT

Appendix A Checklist

Web Enablement Yes No N/A

Complete Review of Navy Web Enablement documents

Complete review of Navy Web Enablement Standards

Decompression of application into Web Service

Service Module Creation Standards met

Is the web server file directory listing disabled?

Portal Integration Standards Met

Module Server Package for TFWeb

Documentation of application data structures and data interfaces

Configuration of local application servers or remote module servers

Registration Package for TFWeb

Migration Package for TFWeb

Test Plan for TFWeb Compliance

NMCI Certification and Accreditation Phase Yes No N/A

Software License and Version collected

RFS Completed

Media information collected

Certification Phase Engineering Review Questionnaire

Participation in PIAB Testing

NMCI A&RMP, System Level ERQ

SSAA Completion

IATO Or ATO

DRAFT

DOD PKI Certification for SSL installe

Completion of Pop-In-The-Box Process

128-bit SSL encryption is used when traversing any firewall.

Reviewed and met all DoN Security Policies and Procedures

Reviewed and met all DoN Firewall Policies and Procedures

DRAFT

Appendix B Taxonomy

Enterprise Portal Taxonomy
Navy web enablement is the implementation of interoperable web technologies across the Naval
infrastructure allowing subscribers and publishers (users and providers) of content to pull or push
services as required to perform operational or business transactions. A Navy web transaction is
the execution of a web-service. The service centric access for the Navy is depicted in Figure 5-1.

Databases and Repositories and Applications

Operations

C2
Chat

Weather
ATO

Calendar
Logistics

RMP/COP

Business

Purchasing
Education

Telecommunications
Personnel
Medical
MWR

Finance

NAVY PORTALNAVY PORTAL

Figure 5-1: Service-Centric Access

This section will discuss guidance and structure for the TFWeb Portal taxonomy. This will
provide developers with the appropriate background to plan their application migration efforts.

At the highest level, the taxonomy represents the basic set of categories for Navy information
sources. The information involved may be core to the function being performed, or to some other
functional area. The TFWeb Portal System facilitates the sharing of information between
commands and across functional areas. The Department of Navy Chief Information Officer (DoN
CIO) has identified broad information content categories that reside within the enterprise. Table
5-2 identifies the initial, high-level set of categories.

Table 5-2: Initial TFWeb Portal Taxonomy

Functional/Resource Area Program/Resource Sponsor

Acquisition SECNAV RDA/ MARCORSYSCOM

Finance SECNAV FM&C/ HQMC P&R

Civilian Personnel SECNAV CP/ HQMC AR

Administration OPNAV N09B/ HQMC AR

DRAFT

Functional/Resource Area Program/Resource Sponsor

Manpower and Personnel OPNAV N1/ HQMC MR&A

Intelligence and Cryptology OPNAV N2/ HQMC I

Logistics OPNAV N4/ HQMC I&L

Readiness OPNAV N4/ HQMC PP&O

Command, Control and Communications OPNAV N6/ HQMC C4

Information Warfare OPNAV N6/ HQMC PP&O

Allies OPNAV N6/ HQMC PP&O

Modeling and Simulation OPNAV N6/ MCSC SE&I

Weapons OPNAV N7/ MARCORSYSCOM

Training OPNAV N7/ TECOM

Resources, Requirements, and Assessments OPNAV N8/ HQMC P&R

Scientific and Technical OPNAV N091/MCCDC

Test and Evaluation OPNAV N091/ MCOTEA

Medical OPNAV N093

Naval Reserve OPNAV N095

Meteorology, Oceanography, MC&G OPNAV N096

Religious Ministries OPNAV N097

Naval Nuclear Propulsion OPNAV N00N

i Information Management & Information Technology Strategic Plan, FY 2000-2001, Department of Navy
Chief Information Officer, page 4.

ii Ibid, page 12.

iii This definition of Web Services is adapted from The Web services (r)evolution, Part 1 by Graham Glass,
published in IBM developerWorks XML Zone, November 2000.

iv Graham Glass, “The Web Services (r)Evolution, Part 1”, November 2000, http://www-
106.ibm.com/developerworks/webservices/library/ws-peer1.html

