
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ART AND SCIENCE

XML AND DATABASE S

By

JUNGKEE KIM

A Survey Paper submitted to the
Department of Computer Science

In partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Survey Paper Defended in Spring Semester, 2002

ii

 The members of the Committee approve the survey paper of Jungkee Kim defended on

April, 2002.

Gregory Riccardi
Professor Directing Dissertation

Geoffrey C. Fox
Committee Member

Gordon Erlebacher
Committee Member

David Whalley
Committee Member

Larry Dennis
Outside Committee Member

iv

TABLE OF CONTENTS

List of Figures...vi
Abstract...vii

1. INTRODUCTION...1

2. XML ..4

3. DTD AND XML SCHEMA ...7

DTD...8

XML Schema..9

4. METADATA SUPPORT..13

 RDF...13

XLink, XPointer, and XPath...17

XPath... 17

XPointer..18

XLink ..18

5. XML and Databases...22

Relational Database...23

Oracle Database System..23

IBM DB2 System..27

Microsoft SQL Server...28

STORED...30

v

Relational Mapping Technology from University of Wisconsin......32

Semistructured Database...34

REFERENCES..37

 vi

LIST OF FIGURES

Figure Page

1. A car description in XML...5

2. DTD for a car document..8

3. XML Schema for a car document...10

4. An example of RDF graph..14

5. An example for the XML document with XLink expressions............................19

6. An example for the XML document with mapping to Oracle database..............26

7. An example of DAD side table...28

8. An example of an XML document and graph...31

9. A data graph and two DataGuides...36

 vii

ABSTRACT

 XML is rapidly becoming a key technology for information representation and

exchange on the Internet, where it increases the opportunity for the integration of the

various data formats. The World Wide Web Consortium proposes several standards to

define the structure of XML and extend the XML for addressing and linking. To adopt

such benefits of XML, many academic institutions and business companies have made

XML enabled databases on the current or new architectures. In this paper, I will present

the XML standards and compare various technologies used for storing XML data in a

repository. By highlighting their strengths and weaknesses, I seek ideas for combining

those technologies with a collaborating system to leverage the integration of metadata.

 viii

 1

CHAPTER 1

Introduction

 Since the Extensible Markup Language (XML) was introduced as a standard document

form, the usage of XML for the data exchange format between applications has

dramatically increased. Before the appearance of XML, application dependent data

formats were used for data exchange. However, the World Wide Web environment is so

huge that application dependent data formats require a lot of coding effort for

synchronizing data between different applications, due to the many different data format

on the Web. Though Hyper Text Markup Language (HTML) protocol is used on the

Web, it only describes how the data are shown through Web browsers with the fixed tag

format. XML provides user-defined tags and it is simple to produce and flexible. With

nested tags, XML can represent not only hierarchical tree structure, but also a graph

structure using special attributes. Some applications may need an agreement on the XML

document format, because such standardization would reduce the errors and increase the

efficiency in exchanging data. Document Type Definition (DTD) and XML Schema are

used for forcing the production of XML documents satisfying particular rules.

 To extract key information through the Web, metadata can be used to designate the

desired information. The Resource Description Framework (RDF) provides a description

of metadata mainly relating to data on the Web. Through RDF, the semantic meaning of

 2

the Web resources can be revealed to machine-oriented systems, for example, search

engines. The RDF Schema is defined to constrain the vocabulary of RDF documents.

From the extensions of RDF and RDF Schema, a semantic markup language can be

generated for the intelligent semantic descriptions of the Web documents. To support

linking for XML documents, XLink, XPointer, and XPath were introduced by the World

Wide Web Consortium.

 A novel point of this paper is to survey technologies for storing XML documents in a

repository. Many commercial database system companies have tried to integrate XML

enabling functionalities on their existing architectures or devise new architectures for

XML document storage. I focus on three typical relational database companies’ support

for XML repositories, and on other academic approaches with mapping XML documents

to a relational database system or a semistructured repository. The commercial database

systems provide some internal or external procedures and packages to shred XML

documents into relational columns or objects. The data in the relational columns can

generate XML documents through procedures and packages in the database system.

Another way of storing the XML documents is using Large Object types in relational

columns. Each Large Object type record keeps the whole XML document in the object

column, without shredding. However, the functionalities on those types have not yet met

the demand of XML users. Furthermore, those mappings are programmed manually, and

some academic researches approach mapping on top of those XML enabling relational

database systems. STORED [14] from AT&T Labs combined the relational mapping and

semistructured techniques to generate mappings from XML documents to relational

tables. The technology from University of Wisconsin-Madison [15] used the DTDs to

 3

produce the relational schemas with several different Inlining methods. Another XML

storage technology is the semistructured data repository. Semistructured data research

started before the emergence of XML, but the similarity of semistructured data and XML

documents naturally allow the technology to apply to XML data. Lore from Stanford

University [2] is a semistructured database system supporting an XML repository.

DataGuide [18] is the core part for the description of the structure of the semistructured

data.

 4

CHAPTER 2

XML

 The Extensible Markup Language (XML) is a standard document specification, a

subset of Standard Generalized Markup Language (SGML) format [1]. Though SGML is

powerful enough to have been used by the U.S. government and publishing companies

for making documents, its implementation is considered to be difficult and complex. The

Hypertext Markup Language (HTML) is another application of SGML, but HTML only

presents the shape of the documents on the Web. The tags of HTML are fixed and the

HTML has no mechanism for the data validation. Those features limit HTML to Web

information manipulation and led to the advent of the XML.

 XML consists of a well-formed structure, rooted in a prolog, one or more elements

including balanced start- and end-tags with attributes, and miscellaneous optional

features including comments, processing instructions, and white space. A typical

example of the prolog as follow:

 <?xml version=”1.0” encoding=”UTF - 8” standalone=”yes”?>

This shows that this is an XML document and the version number is “1.0.” The other

attributes, “encoding” and “standalone,” are optional. The encoding denotes that this

document used Unicode Transformation Format 8-bit (UTF-8) encoding. As XML is

designed to support the International code, the encoding names can be any the parser

 5

supports, but the name is recommended to be registered with Internet Assigned Numbers

Authority. The standalone document declaration is also an optional attribute and it

indicates whether the XML document is affected by an external markup declaration like

DTD and XML schema.

 An element forms a root of a hierarchical tree structure for an XML document. Other

elements can be added and should be nested within each other. If there is no content in

an element, the empty-element tag, “<tag-name/>,” can be used instead of a pair of tags.

Those tags are user-defined and that feature makes XML big different from HTML.

Attributes are used to attach additional information of an element. They are located in

start-tags or empty-element tags. Using attributes of type ID, IDREF or IDREFS [2],

XML elements can be uniquely identified and form links. This linking mechanism

allows XML to represent graph-structured information as well as tree-structured. In

special CDATA sections, any markup data are interpreted as text data.

Figure 1. A car description in XML.

 Figure 1 shows an example of the XML document. The first line stands for the prolog.

The version attribute should be declared and currently the value should be “1.0.” The

<?xml version=”1.0” encoding=”UTF - 8” standalone=”yes”?>

<! -- This is an example car. -- >
<car id=”J544XD” state=”NY”>
 <company> Toyota </company>
 <model> Corolla </model>
 <type> DX </type>
 <year> 1996 </year>
 <color> white </color>
</car>

 6

optional attributes encoding and standalone show that the code for this XML document is

“UTF-8” without any schema (“standalone” is “yes”). The second line is empty - XML

allows empty line for the good formatting. The third line is encoded as a comment,

which does not present any meaning in the XML structure. The comment only provides

optional information to readers. There is only one root element named “car” in the

document and other elements are nested in the root element. The car element has two

attributes. The id attribute identifies a specific car and the state attribute means the

registered state of the car. The each element opens with start-tag “<TAG-NAME>” and

closes with end-tag “</TAG-NAME>” and there is no overlapped tags. So, this XML

example said to be well-formed.

 7

CHAPTER 3

DTD and XML Schema

 Document Type Definition (DTD) and XML Schema are ways to define the structure

of XML documents. DTD has been used in SGML for over twenty years and XML is

specified newly by the World Wide Web Consortium (W3C) [3]. The goal is to make

rules to construct XML documents. For many purposes, user-defined tags alone don’t

provide a sufficiently rigorous structure for the XML information exchanges. By

requiring the same DTD or XML Schema, two different applications can agree on a

particular structure for an XML document. If a well-formed XML document satisfies a

DTD or XML Schema, the document said to be valid.

 The XML Schema specification reflects the demands of users, who have found DTD

too limited. The schema has many improved features over DTD. Before defining XML

Schema, there were several attempts to improve the functionality of the schema language

for XML documents; some examples are Document Definition Markup Language

(DDML), Document Content Description (DCD), Schema for Object-Oriented XML

(SOX), and Microsoft’s XML-Data for BizTalk. The W3C consortium activity for the

new schema, XML Schema, considered those schemas in producing their design. The

main differences between DTD and XML Schema will be presented in the XML Schema

section.

 8

DTD

 DTD format is very different from XML. A DTD is usually included in the prolog part

of an XML document using the “!DOCTYPE” tag. The DTD can be defined externally

in a separate file, designated with a file name or a Uniform Resource Identifier (URI).

The typical blocks of a DTD are elements and attributes. BNF syntax can be shown as

follow:

 <!ELEMENT> <element - name> <element - type>
 <!ATTLIST> <attribute - name> <attribute - type> <attribute - option>

 Figure 2 shows an example DTD for the car document of Figure 1. In the example, the

“car” element is non-terminal and the other elements are terminal. The non-terminal

element, “car,” has five sub-elements: company, model, type, year, and color in that

order. It is called a sequence, which restricts the order of sub-elements present. Choice

is another group option for the sub-elements and it gives a list of alternatives for them.

The vertical bar (“|”) is used as the delimiter for choices, and the comma for sequences.

Figure 2. DTD for a car document

 In the sequence of the example, all but type element will appear exactly once. The

type element can be included optionally. This is indicated by the suffix, “?.” Other

<!ELEMENT car(company, model, type?, year, color)>
<!ATTLIST car
 id CDATA #REQUIRED
 state CDATA #IMPLIED>
<!ELEMENT company (#PCDATA)>
<!ELEMENT model (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT color (#PCDATA)>

 9

allowed suffixes include “+,” which means one or more elements can appear, and “*,”

which means zero or more can appear.

 “#PCDATA” in terminal elements stands for parsed character data, which denotes text

that has no markup. That is the only way to represent text in DTD, and this was one of

motivations for the invention of XML Schema. The element content can also be empty or

any. The empty element has no content but may have attributes. The any element has no

restriction for that element.

 The “car” element in the example has two attributes, which are declared in the DTD.

The order of the attributes is not constrained. Both of the attributes have the same data

type, character data (CDATA). Other attribute types like ID, IDREF, and IDREFS are

also very useful and have key roles in representing a graph structures in XML format.

The final term is an attribute description specifies whether this attribute is optional or

required. The option for the attribute “id” is “#REQUIRED,” and this attribute must be

appeared in the every defined element. “#IMPLIED” in “state” means the attribute can

be optional. Other option is “#FIXED” and this type attribute should have a default

value. The fixed value cannot be changeable by the user.

XML Schema

 While DTD is written in the syntax of Extended Backus Naur Form (EBNF), XML

Schema uses XML document syntax. By supporting namespaces, XML Schema allows

several sources of document definitions to be used in a single document. In DTD, a new

DTD is needed to combine multiple DTDs. The XML Schema supports 44 datatypes

 10

including string, decimal, time and date, whereas DTD only provides 9 XML-related

primitive types. Inheritance is another major feature of XML Schema, which is not

present in DTD. This allows reusing existing structures by extending or restricting the

base types.

 Figure 3 includes an example of XML Schema, which reproduces the schema

presented in Figure 2 in DTD format.

Figure 3. XML Schema for a car document

 The car schema has one schema element with sub-elements element and complexType.

In the schema element, a namespace has been declared. The prefix “xsd:” associated with

the namespace is used on each of the elements. The prefix name of a namespace can be

an arbitrary value and different namespaces from different sources can be used. In the

multiple namespaces, the different prefix names specify the meanings of elements and

attributes, which are followed by the prefix. In this example, the association forces the

elements and simple types to be identified with the XML Schema language. In XML

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:elem ent name=”car” type=”CarType”/>

<xsd:complexType name=”CarType”>
 <xsd:sequence>
 <xsd:element name=”company” type=”xsd:string”/>
 <xsd:element name=”model” type=”xsd:string”/>
 <xsd:element name=”type” type=”xsd:string”
 minOccurs=”0” maxO ccurs=”1”/>
 <xsd:element name=”year” type=”xsd:decimal”/>
 <xsd:element name=”color” type=”xsd:string”/>
 </xsd:sequence>
 <xsd:attribute name=”id” type=”xsd:string” use=”required”/>
 <xsd:attribute name=”state” type=”xsd:string”/>
</xsd:complexT ype>

</xsd:schema>

 11

Schema, elements may have simple types or complex types. A simple type does not

include elements. Many simple types, such as “xsd:string,” are defined in the XML

Schema. A complex type may have nested elements and carry attributes optionally. The

type of the car element is defined as a complex type, CarType, in the example. As in the

DTD example, the elements of a complex type can be ordered with sequence tag. All the

nested elements except the year element have a string type. This is declared in the type

attribute. The decimal type in the year element is a number. If the year needs to be

restricted to four-digit numbers for example, another simple type, gYear, already defined

in XML Schema, and the declaration can be used instead as follows:

 <xsd:element name=”year” type=”xsd:gYear”/>

If the state attribute has to be two capital letters, a new simple type can be defined as

follows:

 <xsd:simpleType name=”StateType”>
 <xsd:restriction base= ”xsd:string”>
 <xsd:pattern value=”[A - Z]{2}”/>
 </xsd:restriction>
 </xsd:simpleType>

The equivalent of optional elements in DTD can be expressed in XML Schema using

“minOccur” and “maxOccurs” attributes. Additionally to the three restrictions of DTD

(*, +, and ?), XML Schema can designate any number of minimum and maximum

occurrences – for example, between 15 and 30. Any given attribute, the attribute may

appear at most once. The “use” attribute designates the attribute usage - one of required,

optional, and prohibited.

 The fixed attribute is used when the allowed value of an element or attribute is unique.

For example, I may add another attribute country in the “car” element. The state name

 12

used in the attribute from United States and the fixed value the country could be “US.”

The definition of the attribute as follows:

 <xsd:attribute name=”country” type=”xsd:string” fixed=”US”/>

 13

CHAPTER 4

Metadata Support

 There have been many efforts to extract useful information through the Web.

Especially, the search engines devised various technologies to find the exact location of

the desired information, but in practice many of them also show useless information.

Moreover, they only reach less than one percent of the whole Web. That is because the

scale of the Web is so huge, and keyword spamming is very widespread. Though some

Web directory sites categorize the information manually, this is not for the machine-

oriented system.

 Metadata is “structured data about data.” This could include catalogs of libraries,

author lists of books, ranking of Web pages by frequency of reference, or the relations

between indexes. Both human and machine generated information can be metadata.

RDF

 The Resource Description Framework (RDF) is a W3C recommendation for a standard

representation of metadata [5]. This framework is described in XML format. RDF has

an innate function for machine-oriented data exchanging between applications because of

its XML features. XML and RDF provide semantic interoperability in the current Web

 14

domain, but XML only describes the document structure. RDF emphasizes semantic

meaning on the Web resources by adding a capability as a data model for knowledge

representation.

 The basic block of RDF consists of three object types - resources, properties, and

statements. A resource is anything that can be written as a Uniform Resource Identifier

(URI) in the RDF expression. It can be not only a Web page but also an XML element.

Anything written in URI could be a resource. A property is a specific characteristic,

attribute, or relation of the resource - for example, “owner.” Each property has a specific

meaning, which can be classified by a schema related to the name of the property. A

statement is a combination of a resource, a property, and a value. Each part of a

statement is also known as the subject, the predicate, and the object. The object can be

another resource or a literal, which might be any string or XML. Figure 4 presents an

example of RDF graph for the Web page of the University.

Figure 4. An example of RDF graph

 In the figure, the oval shape node denotes a subject, the arc denotes a named property,

and the rectangular shape is a node, which represents a literal. The graph represents the

following statement:

 “Florida State University is the owner of the resource
http://www.fsu.edu/.”

It also can be read as:

http: //www.fsu.edu/

Florida State

University

Owner

 15

 “http://www.fsu .edu/ has owner Florida State University.”

The statement can be written in the XML format:

 <?xml version=”1.0”>
 <rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22 - rdf - synfax - ns#”
 xmlns:s=”http://description.org/schema/”>
 <rdf:Descri ption about=”http://www.fsu.edu/”>
 <s:owner>Florida State University</s:owner>
 </rdf:Description>
 </rdf:RDF>

The RDF XML syntax has a root element, <RDF>, but this element is optional when the

description is known to be RDF from the application content. In RDF element, the

namespace attributes designate the location of the declarations of the RDF elements with

the prefix “rdf:”, and the location of the schema declaration associating with the prefix

“s:”. The namespace declaration can alternatively appear in a specific description

element, or even in property elements. The description element has the subject; the child

elements describe the properties and the objects. In this example, “<s:owner>” and

“</s:owner>” - a pair of tags - show the property. The object is “Florida State

University.”

 As in XML Schema for XML document, RDF Schema provides a vocabulary

constraint facility for RDF document. In RDF Schema, the classes of the resources are

defined. The classes have the same role as in the object-oriented programming models.

The classes have hierarchical structures and they are extended with subclass refinement.

The terms such as “Class,” “ subPropertyOf,” and “subClassOf” are used for the basic

type system for RDF to define such classes. By using class concepts, the reusability of

metadata can be increased because sharing schemas and adding subclasses to the existing

schemas will produce sufficient mechanisms in many schema specifications.

 16

 Ontologies play a crucial role in the “Semantic Web” – a machine-understandable Web

with intelligent services. They provide shared and precisely defined terms in a particular

domain for communications between human users and application systems. DAML+OIL

– combined terminology from old versions, DARPA Agent Markup Language (DAML)

and Ontology Inference Layer (OIL) - is an ontology language submitted to W3C as a

semantic markup language for Web resources [19]. It extends RDF and RDF schema.

The object-oriented structure of domains in DAML +OIL consists of the terms “Class”

and “Property.” The usage of the term class is similar to that of RDF schema, but the

classes of DAML+OIL are less restricted. For example, “subClassOf” class elements of

DAML+OIL allow cyclic subclass-relations. A property is a binary relation, which

defines the relation between two items. All expressions of description logic can be

written in DAML+OIL terms. The DAML+OIL properties are of two types:

“objectProperty” for object relations and “datatypeProperty” for datatype values. Those

properties are ranged and multiple ranges can apply to a property conjunctively. For

example, positive integer range and greater than 1 range will produce a property that has

positive integers greater than 1. The restriction of domains in DAML+OIL is global,

while the RDF Schema only has a single range and a local scope on domains. However,

efficient tools for reasoning about Web resources and complete algorithms for the full

DAML+OIL language are not provided yet [20].

 From the viewpoint of semantic interoperability, RDF is better than plain XML. RDF

vocabularies are simple enough to manipulate huge numbers of data. Meanwhile, XML

often regards ordered elements as important and has complex structure. Those features

make it difficult for XML to handle large amount of data. Additional data conversion is

 17

not necessary in RDF because RDF presents domain models naturally with defining

objects and relations. Another benefit of RDF is independency of the XML. In an XML

document, a schema change may cause invalidity for the query based on the old structure

of the XML document. RDF presents a semantic tree that is parsed with only usable set

of triples, and the data not to be interpreted are ignored [6].

XLink, XPointer, and XPath

 As in hyperlinks of HTML documents, XML documents can be linked to other XML

documents by using XML Linking Language (XLink) [7], XML Pointer Language

(XPointer) [8], and XML Path Language (XPath) [9]. The XLink describes links

between resources. The XPointer points the reference through URI. The XPath presents

the location of specific parts of an XML document. Last version of the XPointer

(September 2001) is a Candidate Recommendation of the World Wide Web Consortium.

The XLink and the XPath is recommended by the W3C.

XPath

 The main purpose of XPath is to designate parts of an XML document. XPath

provides an extended addressing syntax that defines a compact notation for node location

in the XML document tree. XPath does not use XML syntax but it is a string-based

language. The Extensible Stylesheet Language Transformations (XSLT) and the

XPointer use the functionality of the XPath.

 18

XPointer

 XPointer is used to identify specific fragments in XML documents via a URI.

XPointer may select on the basis of XML ID attributes, or nodes in the hierarchical

structure of an XML document related using XPath. An XPointer can also reference an

arbitrary user designation on a specific point or range – doesn’t have to be an XML node.

The range can be specified with two points, as:

 xpointer(id(“start”)/range - to(id(“end”)))

That XPointer locates the range between the start point for the element with ID “start”

and the end point for the element with ID “end”. The XPointer is complex enough to

present most usages.

XLink

 XLink is able to link not only documents but also resources, which include documents,

audio, video, database data, and any addressable information or services. While HTML

links need to edit the resource for additional links, XLink don’t require any write

permission to edit the source. The XLink can simply set the URI with the starting and

ending point for the linking. The XLink also provides multidirectional links (extended

links) as well as the unidirectional link (simple link) – the traditional link on the Web.

The links can be stored externally (extended link) of the documents, they address with

URI, and they can be inline. Traversal of “A” link usually replaces the document

currently viewed. Traversal means “using or following a link for any purpose” [7]. The

user may initiate traversal with clicking on the links, or the retrieving document may

initiate it.

 19

Figure 5. An example for the XML document with XLink expressions.

<?xml version=”1.0”?>

<doc xmlns:xlink=”http://www.w3.org/1999/xlink”>

<head>
<title> Animals </title>
<extendedlink xlink:type=”extended”>
 <loc xlink:type=”locator”
 xlink:label=”seaplace”
 xlink:href=”#xpointer(//body/animal[1]/sentence[2]/place[1])”/>
 <loc xlink:type=”locator”
 xlink:label=”seareference”
 xlink:href=”#sea”/>
 <arc xlink:type=”arc”
 xlink:from=”seaplace”
 xlink:to=”seareference”
 xlink:show= ”new”
 xlink:actuate=”onRequest”/>
</extendedlink>
</head>

<body>

<animal name=”whale”>
<sentence>Whales are mammals.</sentence>
<sentence>Whales live in the
 <place>sea</place>.</sentence>
</animal>

<animal name=”horse”>
<sentence>Horses are mam mals.</sentence>
<sentence>Horses live in the
 <place>land</place>.</sentence>
</animal>

</body>

<tail>
<reference>
<places id=”sea”>
 Sea is the continuous body of salt water covering the earth.
</places>
<places id=”land”>
 Land is the part of the e arth not covered by water.
</places>
</reference>
</tail>

</doc>

 20

 Figure 5 shows an example, which includes the features of XLink and XPointer. In the

example, “<doc xmlns:xlink = “h ttp://www.w3.org/1999/xlink”> ” denotes the

XLink namespace definition with the URI. The extendedlink element is a kind of

extended link, which has full XLink functionality such as arcs (inbound and third-party)

and links with arbitrary resources. The other type for the link is the simple link, which

has only two participating resources.

 In the extendedlink element, three sub-elements are embedded: they are two locator

elements (XLink type) and an arc element (XLink type). The locator type element

designates remote resources, whose location is denoted with the locator attribute, “href”.

The arc type elements represent the link traversal, which is usually a pair of start (from)

and end (to) resources. The locator labeled “seaplace” has the XPointer and the

expression in the parentheses of this XPointer is also the XPath expression. This

XPointer points to the first place element of the second sentence in the first animal

element of the body element. The “seareference” locator links to the first “places”

element, which has the attribute id named “sea.”

 The arc element in the example has two remote resources for the traverse and it is

called a third-party arc. If the arc from local resource to remote resource, it is the

outbound arc. Or, the inbound arc traverses from remote resource to local resource. The

traversal attributes, “from” and “to,” are for the start and the end points of the link. The

show and actuate attributes represent the behavior of the link. They designate the

behavior of the ending resource of the arc. In the figure, the “new” value for the show

attribute will open a new window when the traversal event has been requested. The

actuate attribute sets “onRequest,” and it constraints the traversal event. If the value of

 21

the actuate attribute changed to “onLoad,” the new window would be shown immediately

on loading the starting resource.

 22

CHAPTER 5

XML and Databases

 An XML document is a text document used for information exchange between

application programs, typically through the Web. XML does not force any internal

structure on the computer. However, it is important how to store and process the XML

document from the viewpoint of efficiency of data manipulation. XML logically has a

tree structure with elements and attributes, and is used both in the role of a data transport

format and as a document markup language. Bourret [10] classifies the XML documents

as data-centric documents and document-centric documents. Data-centric documents are

highly structured and have relatively small sized text elements. Document-centric

documents have free-format text with some words marked-up. The performance of the

XML document processing depends on the kind of XML document presentation: data-

centric and document-centric documents have pros and cons relative to the different types

of database.

 Many attempts were made to leverage the current database technologies to represent

XML documents. Mapping XML to relational database was one of first methods used to

store XML documents in existing databases. Many XML repositories have proposed

ways to map XML to relational databases, because the relational database dominates the

current database market and many applications are already developed on relational

 23

databases. Not only legacy applications, but also data-centric XML documents obtain

benefits from using the relational database. Object-relational storage is a natural fit for

XML storage, because its logical structure is similar to that of XML documents. Another

approach for the XML storage is from semi-structured data. Semi-structured data had

been developed before XML standard emerged. The XML format unsurprisingly applied

to the semi-structured database, because XML is a semi-structured data format. Lore [2]

is a well-known example of semi-structured data system to present XML documents as

semi-structure data.

Relational Database

Oracle Database System

 Currently the relational database dominates the database market. Since XML has

emerged as a new standard for the information exchange, many relational databases have

been tried to combine their databases and XML technologies. One of initial answers

from the commercial databases is the XML-enabled Oracle 8i from Oracle, which has the

biggest market share in the current database business.

 Mapping an XML document to a table or several tables is a primitive way of storing

XML documents on the relational database. The elements, attributes, and names are

mapped to the columns of tables in ways depending on the functionalities of data usage

and mapping design. This method is useful in transferring data between relational

databases, but it is not applicable to sophisticated XML formats.

 24

 Oracle [11] provides a natural manner using object-relational support. The elements

with attributes define object types that encapsulate data. Sets of object types and

references to object types can form a model of classes. A class maps into a table. In

Figure 6, CAR_TYPE is defined as an object and a single object maps to a table in this

example.

create table CAR S
(
ID VARCHAR2(7),
STATE VARCHAR2(2),
COMPANY VARCHAR2(16),
MODEL VARCHAR2(16),
TYPE VARCHAR2(3),
YEAR NUMBER(4),
COLOR VARCHAR2(16)
)
/

create or replace view NEWCARS as
select SYS.XMLTYPE.CREATEXML(‘<CAR/>’) “CAR”
from CARS;

create or replace trigger CAREXPLOSION
instead of insert on NEWCARS
for each row
declare
 CARID VARCHAR2(7);
 STATE VARCHAR(2);
 COMPANY VARCHAR2(16);
 MOD EL VARCHAR2(16);
 CARTYPE VARCHAR2(3);
 CARYEAR NUMBER(4);
 COLOR VARCHAR2(16);

 DOCUMENT sys.XMLTYPE;
 ELEMENT sys.XMLTYPE;

 NOT_A_CAR exception;

 I binary_integer;

begin

 DOCUMENT := :new.CAR;

 if (DO CUMENT.existsNode('/car') = 0) then
 raise NOT_A_CAR;
 end if;

 CARID := DOCUMENT.extract('/car/@id').getStringVal();

 25

 STATE := DOCUMENT.extract('/car/@state').getStringVal();

 ELEMENT := DOCUMENT.extract('/car/company/text()');
 if (ELEMENT is n ot null) then
 COMPANY := ELEMENT.getStringVal();
 end if;

 ELEMENT := DOCUMENT.extract('/car/model/text()');
 if (ELEMENT is not null) then
 MODEL := ELEMENT.getStringVal();
 end if;

 ELEMENT := DOCUMENT.extract('/car/type/text()');
 if (ELE MENT is not null) then
 CARTYPE := ELEMENT.getStringVal();
 end if;

 ELEMENT := DOCUMENT.extract('/car/year/text()');
 if (ELEMENT is not null) then
 CARYEAR := ELEMENT.getNumberVal();
 end if;

 ELEMENT := DOCUMENT.extract('/car/color/text()') ;
 if (ELEMENT is not null) then
 COLOR := ELEMENT.getStringVal();
 end if;

 insert into CARS values (CARID, STATE, COMPANY, MODEL, CARTYPE,
CARYEAR, COLOR);

 exception

 when NOT_A_CAR then
 raise_application_error(- 20000, 'Only car docum ents can be
stored in this column.');

end CAREXPLOSION;
/

create or replace type CAR_TYPE as object
(
“@id” VARCHAR2(7),
“@state” VARCHAR2(2),
“company” VARCHAR2(16),
“model” VARCHAR2(16),
“type” VARCHAR2(3),
“year” NUMBER(4),
“color” VARCHAR2(16)
)
/

create or replace view CARDOCUMENTS as
select
sys_xmlgen(
CAR_TYPE(

 26

Figure 6. An example for the XML document with mapping to Oracle database.

Another approach for XML document storage is Large Object (LOB). A LOB column

holds an XML instance and this type of storage is useful for document-centric

documents. The XML instance in LOB columns can be indexed as in other texts. The

New version of the Oracle database, Oracle 9i database system provides XMLType - an

object data type on a character large object (CLOB) column storage. XMLType

supports XPath in SQL queries to extract elements and attributes of XML instances as

follow:

 SELECT c.car.extract(‘/car/model/text()’).getStringVal() FROM car s c;

 To improve performance, a key element of the XML document can be stored in

another column and be indexed. Without separate column indexing, extracting query

 C.ID,
 C.STATE,
 C.COMPANY,
 C.MODEL,
 C.TYPE,
 C.YEAR,
 C.COLOR
),
sys.xmlgenformattype.createformat('car')
) car
from CARS C;

SQL> select C.car.getClobVal() "car" from CARDOCUMENTS C;

car

<?xml version="1.0"?>
<car id="J544XD" state="NY">
 <company>Toyota </company>
 <model>Corolla </model>
 <type>DX </type>
 <year>1996</year>
 <color>white </color>
</car>

 27

performance is not acceptable in the case of large number of rows. Updating elements or

attributes in LOB is not possible. Only the entire XML documents update is allowed.

There are additional packages and functions integrated in SQL which can be used in

queries to wrap the data in columns and produce XML documents.

 Figure 6 shows an example that maps between an XML document and a relational

table using Oracle 9i. The first half of the code represents the mapping from an XML

document to a relational table. The last half shows how to get an XML instance from a

relational table. The CARS table stores the elements and the attributes of the XML

example from chapter one. The NEWCARS view shows XML instances from a relational

table, CARS. When an XML document inserts into a relational table, each element and

attribute needs to be shredded. The CAREXPLOSION trigger substitutes the insert query

to map the XML document into proper types of columns. From the relational table, an

XML instance can be produced. The CARDOCUMENT view generates an XML instance

from a table using SYS_XMLGEN function in the SQL query.

IBM DB2 Database System

 IBM’s DB2 database system [12] also supports XML documents for storage and query.

To store XML documents in IBM DB2 XML Extender, an XML repository, XML column

and XML collection options are available.

 In the XML column option, the XML document is saved as XMLCLOB,

XMLVARCHAR or XMLFILE type without shredding. Some elements and attributes can

be stored in side tables and indexed for performance improvement. The side tables and

index must be in a Data Access Definition (DAD). An example DAD for side tables is

given in Figure 7.

 28

 In the XML collection option, an XML document maps into a set of relational tables

and the mapping mechanisms between DTD and tables are described in a DAD. This

option is useful for frequent updates to part of data, extraction of only some part of data,

and relating to other relational data.

Figure 7. An example of DAD side table definition

 To publish XML documents from database tables, SQL queries with macros of a script

language and stored procedures are used.

Microsoft SQL Server

 Microsoft SQL Server [13] is another relational database system that generates and

stores XML documents through relational data. XML enabling features are executed in

middle tier applications, for example, templates and XML views. Templates are XML

documents which include SQL queries executed against the database. XPath is supported

in templates. An XML view of the relational data can be created by annotated schema

using XML Data Reduced (XDR) schema. These annotations are used to specify a

mapping between XML and relational tables.

 To publish an XML document from a relational database, SQL Server includes SQL

extensions to produce query results as XML documents. There are three different ways

…
<dad>

<dtdid>dxx_install/dtd/ge tstart.dtd</dtdid>
<validation>YES</validation>
<Xcolumn>
 <table name=”car_table”> </table>
 <column name=”year” type=”decimal(4,0)”
 path=”/car/year”/>
 </table>
</Xcolumn>

</dad>

 29

to serialize SQL query results into XML: RAW, AUTO, and EXPLICIT modes. In RAW

mode, each row of the query result maps into a name of an XML element, row, and each

non-NULL column of the query result maps to an XML attribute. The example query

may produce as follow:

SELECT CarID, CarState FROM Cars FOR XML raw

<row CarID=”J544XD” CarState=”NY”/>

To produce query results with nested XML elements, SQL server provides AUTO mode.

Each row maps to an XML element and each table alias is used for the element name.

The order of the table names in the SELECT clause determines the nesting according to

their appearance from left to right. The columns of the query results map to the XML

attributes as in RAW mode. The example of an auto mode query may return the result as

follow:

SELECT Dealer s.Dealer ID , Dealers.DealerName , Customers.CustomerName
FROM Dealer s, Customer s
WHERE Dealers.DealerID = Customer.DealerID
FOR XML auto

<Dealers DealerID=”ROMANOTOYO TA” DealerName=”Peter Dan”>
 <Customers CustomerName=”Jungkee Kim” / >
 <Customers CustomerName=”Bryan Carpenter” / >
 …
</Dealers>

The EXPLICIT mode can produce any XML document from the relational database

tables. The EXPLICIT mode query, which specifies the structure of the XML tree,

produces a universal table which consists of tag and parent, column names, and row

ordering. For, example the query may produce the universal table and an XML instance

as follows:

SELECT 1 as Tag, NULL as Parent, Dealers.DealerID AS
[Dealers!1!DelaerID],
 NULL as [Customers!2!name!element]
FROM Dealers
UNION ALL

 30

SELECT 2, 1, Dealers.DealerID, Customers.CustomerName
FROM Dealers INNER JOIN Customers ON Dealers.DealerID =
Customers. DealerID
ORDER BY [Dealers!1!DealerID]
For XML explicit

Tag Parent Dealers!1!DealerID Customers!2! name!element
1 0 ROMANOTOYOTA NULL
2 1 ROMANOTOYOTA Jungkee Kim
1 0 SYRACUSEFORD NULL
2 1 SYRACUSEFORD Br yan Carpenter

<Dealers DealerID=”ROMANOTOYO TA”>

<Customers ><name>Jungkee Kim </name ></Customers>
</Dealers>
<Dealers DealerID=”SYRACUSEFORD”>
 <Customers ><name>Bryan Carpenter </ name></Customers>
</Dealers>

 To produce a convenient relational view from an XML document, OpenXML rowset

provider is provided, similar to the extract function of Oracle 9i.

STORED

 STORED (Semistructured TO Relational Data) [14] is one of several initial proposals

for storing and querying XML documents mapped to relational database system.

STORED utilizes a combination of relational and semistructured techniques to manage

XML documents. It tries to discover the most frequently occurring sub-trees from XML

documents and maps the extracted sub-trees to relational tables. The remaining part of

XML documents is stored in a semistructured overflow graph. For example, the XML

document and the graph in Figure 8 will produce a relational table car with attributes,

plate and driver. The second driver, Mary, might be stored in the overflow repository.

 A declarative query language is defined and this language expresses the structure in

both input and output of a query. Because the language is non-recursive, the elements

cannot have arbitrary number of sub-elements in the same format. If a DTD is available,

the overflow queries are expected to be executed faster than they would be without a

DTD.

 31

Figure 8. An Example of an XML document and a graph

 When STORED generates a mapping, it requires various parameters: the maximum

number of tables, the maximum number of attributes per table, the maximum disk space,

the collection size threshold, and minimum support. The collection size threshold

designates the boundary between small sets and collections. The minimum support

parameter is required for the mining algorithm. The mining algorithm determines which

elements of the XML document should be stored in relational tables and which elements

should be saved in overflow. The mining processes measure which path prefixes and

bodies are frequently occurring in XML documents and queries. From those numbers,

the best relational mapping will be selected taking into account the number of matching

values and the maximum disk space.

<ca rs>
 <car>

 <plate>J544XD</plate>
 <driver>Jake</driver>
</car>
<car>
 <plate>S7RDG</plate>
 <driver>Tom</driver>
 <driver>Mar y</driver>
</car>
<car>
 <plate>53G123</plate>
 <driver>Bryan</driver>
</car>

</cars>

cars

car

car
car

plate plate

plate

driver driver driv er

driver

J544XD Jake S7RDG Tom Mary 53G123 Bryan

 32

 Since the queries and update are performed against the original XML documents rather

than mapped tables or overflow, STORED should rewrite them into queries and updates

over relational tables and overflow storage. The rewrite algorithm of the STORED

system, inversion rules, converts the queries over XML documents to take table columns

and add tree structure to the data layout.

Relational Mapping Technology from University of Wisconsin-Madison

 Shanmugasundaram and others [15] suggested a different approach for mapping XML

documents to relational database systems. They use a DTD to generate a relational

schema unlike STORED, where using a DTD is optional. There is no consideration of

the query workload. XML documents are parsed, matched to DTDs, and loaded to

relational database tables. They used an IBM DB2 database for the relational tables. For

querying the data, semistructured queries are translated to SQL queries and the results are

converted to XML.

 When generating relational schemas from DTDs, DTDs are simplified with a set of

transformations that is more restricted than that of STORED. Transformations are

performed for flattening, simplification, and grouping as in the following examples:

Flattening: (e 1, e 2)* - > e 1*, e 2*
Simplification: e 1** - > e 1*
Grouping: …, a*, …, a*, … - > a*, …

Because of the simplification, the order of elements of the original XML document may

be lost though additional fields for some elements were suggested for keeping the order.

A DTD can be expressed as a graph. The simplified DTD graphs can be converted to

relational schemas using one of three proposed methods: the Basic Inlining Technique,

the Shared Inlining Technique, or the Hybrids Inlining Technique.

 33

 The Basic Inlining Technique creates separated relations for each elements of an XML

document, because all elements of a DTD can be a root of an XML document. Each

relation has an ID that acts as the key field. All sub-elements and attributes of the

element in the relation are inlined, but there are two exceptions. Multiply occurring sub-

elements – the nodes below “*” – and recursive referenced elements are not inlined.

They have separate relations. The recursive element will also have the parent reference.

The XML fragment in Figure 8 may produce the relations as following:

cars (carsID: integer)
cars. car (cars.car. carID: integer, cars. car.parentID: integer ,
cars.car.plate: string)
cars.car. plate (cars.car.plate. plateID: integer,
cars.car.plate.parentID: integer, cars.car. plate: string)
cars.car.driver (cars.car. driver.driverID: integer,
cars.car.driver.parentID:integer, cars.car.driver: string)

 The Shared Inlining Technique expresses each element as a relation and avoids the

redundancy of the Basic Inlining Technique. The multiple relations for elements with

several parents in Basic Inlining are stored in each relation in Shared Inlining. A new

relation for those elements is created and shared. All the nodes with in-degree of one will

be inlined into columns of the tables for their parent elements. The Shared Inlining for

Figure 8 may produce the following relations:

cars (carsID: integer , cars.isRoot: boolean)
car (cars.car.carID: integer, cars.car.parentID: integer,
cars.car.parent CODE: integer, cars.car.plate: string , cars.car.plate:
string)
driver (driverI D: integer, parentID:integer, cars.car.driver: string)

However, the Shared Inlining can require more join operations on some particular

elements comparing to the Basic Inlining.

 The Hybrid Inlining Technique is similar to the Shared Inlining Technique, but it has

additional inlining which is not included in the Shared Inlining. The extra inlining

elements in this technique are not for recursive or cyclic.

 34

 The performance for the Basic Inlining Technique is very poor. There are trade-offs for

the Shared Inlining Technique and the Hybrid Inlining Technique.

Semistructured Database

 Research on semistructured data initially looks for an efficient way to describe data

with no fixed schema, for example, the information on the World-Wide Web. The

relational or object-oriented database systems have schema, and all the instances in the

systems should be created under the rules of the schema. Semistructured data have no

explicit explanation of the structure, but they include direct descriptions of the data with a

simple syntax. The Object Exchange Model (OEM) is a typical semistructured data

model. It was designed for exchanging data between heterogeneous systems and

originates from the Tsimmis [16] data integration project. An OEM object has four

components: label, oid, type, and value. Label is a character string and oid is the

identifier of the object. Type can be an atomic type or a complex type. If the object type

is complex, the value is a set of oids. The value of an atomic type is one of base types –

integer, string, image, sound, etc. Therefore OEM data form a graph in which the nodes

are the objects and the labels are generally attached to edges, though the initial system

was labeled on nodes.

 Abiteboul and others [17] announced three approaches to develop a database

management system for semistructured data: building an application on top of existing

relational or object database systems, using a low-level object server, and building the

system from scratch. The Lore (Lightweight Object Repository) system from Stanford

 35

University [2] took the last approach and is a typical database system for semistructured

data. The Lore system consists of the API, query processors, and data managers. A

graphical user interfaces provides queries and views of data by the users. Lorel is the

query language of Lore. The queries presented with Lorel are parsed, preprocessed,

transformed, and optimized in query processors. There are several managers and tools

for data handling. The OEM objects can be saved to or fetched from files though an

object manager. The XML documents are mapped and kept in OEM forms internally.

To describe the structures of the stored semistructured data, DataGuides [18] were

introduced in Lore.

 A DataGuide is a concise and accurate summary of the structure of a specified data

graph. It describes every unique path of the original data graph only once. Every label

path appearing in the DataGuide exists in the original graph to reserve the accuracy. The

logical structure of a DataGuide is a directed acyclic graph. A target set is the set of all

objects that a given label path in a graph reaches. A node in the input graph may appear

more than once in the target set, because the node can be reached from several different

edges. The target sets containing IDs are the annotations of the label paths that designate

the nodes of the DataGuide. Goldman and Widom [18] assert that generating DataGuides

over the input graphs is similar to the conversion from a non-deterministic finite

automation (NFA) to a deterministic finite automation (DFA). They expect that the

conversion would be finished within a reasonable time and they did not see any

exponential time or space problem during their experiments. However, those annotations

mean that multiple label paths may exist to reach the same object. In Figure 9, a data

graph and two DataGuides of the graph are shown.

 36

Figure 9. A data graph and two DataGuides

We can reach the node 2 with path A from the data graph and DataGuide 1, but the same

node attains through both A and B paths in DataGuide 2. To avoid the confusion as in

DataGuide 2, a class of DataGuides is defined and named Strong DataGuide. The main

aspect of strong DataGuides is that each set of label paths that share the same (singleton)

target set in the DataGuides is the set of label paths that shares the same target set in the

data graph.

2 3 4

1 1

2 3,4

1

2,3,4

A A
A B

B B
B

Data Graph Data Guide 1 Data Guide 2

 37

REFERENCES

[1] Extensible Markup Language (XML) 1.0 (Second Edition).
http://www.w3.org/TR/2000/REC-xml-20001006, World Wide Consortium (W3C)
Working Draft.

[2] Goldman, R., McHugh, J., & Widom, J. From Semistructured Data to XML:
Migrating the Lore Data Model and Query Language, In Proceedings of the Workshop on
the Web and Databases, June 1999.

[3] XML Schema. http://www.w3.org/XML/Schema, World Wide Consortium (W3C).

[4] Radiya, A. & Dixit, V. The basics of using XML Schema to define elements: Get
started using XML Schema instead of DTDs for defining the structure of XML
documents. http://www-106.ibm.com/developerworks/library/xml-schema/, August 2000.

[5] Lassila, O., Swick, R.R., Resource Description Framework (RDF) Model and Syntax
Specification, http://www.w3.org/TR/REC-rdf-syntax/, February 1999.

[6] Berners-Lee, T., Why RDF model is different from the XML model,
http://www.w3.org/DesignIssues/RDF-XML.html, September 1998.

[7] XML Linking Language (XLink), Version 1.0, W3C recommendation,
http://www.w3.org/TR/xlink/, 20 December 2000.

[8] XML Pointer Language (XPointer), W3C Working Draft,
http://www.w3.org/TR/xptr, 8 January 2001.

[9] XML Path Language (XPath), Version 1.0, W3C recommendation,
http://www.w3.org/TR/xpath, 16 November 1999.

[10] Bourret, R., XML and Databases, http://www.rpbourret.com/xml/, February 2002.

[11] Banerjee, S., Krishnamurthy, V., Krishnaprasad, M., and Murthy, R., Oracle8i – The
XML Enabled Data Management System, In International Conference on Data
Engineering, February 2000.

[12] Cheng, J. & Xu, J., XML and DB2, In International Conference on Data
Engineering, February 2000.

 38

[13] Rys, M., State-of-the-Art XML Support in RDBMS: Microsoft SQL Server’s XML
Features, Bulletin of the Technical Committee on Data Engineering, June 2001.

[14] Deutsch, A., Fernandez, M., & Suciu, D., Storing Semistructured Data with
STORED, In SIGMOD Conference, June 1999.

[15] Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., & Naughton, J.,
Relational Databases for Querying XML Documents: Limitations and Opportunities, In
International Conference on Very Large Data Bases, September 1999.

[16] Papakonstantinou, Y., Garcia-Molina, H., & Widom, J., Object Exchange Across
Heterogeneous Information Sources, In International Conference on Very Large Data
Bases, September 1997.

[17] Abiteboul, S., Buneman, P., & Suciu, D., Data on the Web: From Relations to
Semistructured Data and XML, Morgan Kaufmann, 2000.

[18] Goldman, R. & Widom, J., DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases, In International Conference on Very Large
Data Bases, September 1997.

[19] DAML+OIL Web Ontology Language, Submission request to W3C,
http://www.w3.org/Submission/2001/12/, December 2001.

[20] Horrocks, I., DAML+OIL: a Reason-able Web Ontology Language, In Proceedings
of EDBT, March 2002.

