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Foreword

What Minuit is intended to do.

Minuit is conceived as a tool to find the minimum value of a multi-parameter function and analyze
the shape of the function around the minimum. The principal application is foreseen for statistical
analysis, working on chisquare or log-likelihood functions, to compute the best-fit parameter values and
uncertainties, including correlations between the parameters. It is especially suited to handle difficult
problems, including those which may require guidance in order to find the correct solution.

What Minuit is not intended to do.

Although Minuit will of course solve easy problems faster than complicated ones, it is not intended for
the repeated solution of identically parametrized problems (such as track fitting in a detector) where a
specialized program will in general be much more efficient.

Further remarks.

This manual consists of three parts:

(1) A reference guide explaining the concepts and how to use Minuit for maximum benefit.

(2) A tutorial about function minimization

(3) A tutotial on the interpretation of the error of the parameters given by Minuit

In this manual examples are in monotype face and strings to be input by the user are underlined. In
the index the page where a routine is defined is in bold, page numbers where a routine is referenced are
in normal type. In the description of the routines a � following the name of a parameter indicates that
this is an output parameter. If another � precedes a parameter in the calling sequence, the parameter in
question is both an input and output parameter.

This document has been produced using LATEX[1] with the cernman style file, developed at CERN. A
PostScript file minuit�ps, containing a complete printable version of this manual, can be obtained at
CERN by anonymous ftp as follows (commands to be typed by the user are underlined):

ftp asis���cern�ch

Trying ����������������

Connected to asis���cern�ch�

��� asis�� FTP server SunOS ���� ready�

Name asis���username�� anonymous

Password� your mailaddress

ftp� cd doc�cernlib

ftp� get minuit�ps

ftp� quit
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Chapter 1: Minuit Basic Concepts.

1.1 The Organization of Minuit.

The Minuit package acts on a multiparameter Fortran function to which we give the generic name FCN,
although the actual name may be chosen by the user. This function must be defined and supplied by the
user (or by an intermediate program such as HBOOK[2] or PAW[3], in case Minuit is being used under
the control of such an intermediate program). The value of FCN will in general depend on one or more
variable parameters whose meaning is defined by the user (or by the intermediate program), but whose
trial values are determined by Minuit according to what the user requests should be done to FCN (usually
minimize it).

To take a simple example, suppose the problem is to fit a polynomial through a set of data points. Then
the user would write an FCN which calculates the chisquare between a polynomial and the data; the
variable parameters of FCN would be the coefficients of the polynomials. Using Minuit commands, the
user would request Minuit to minimize FCN with respect to the parameters, that is, find those values of
the coefficients which give the lowest value of chisquare.

The user must therefore supply, in addition to the function to be analyzed, a set of commands to instruct
Minuit what analysis is wanted. The commands may be given in several different forms:

– As a data file, corresponding to the traditional “data cards”, for batch processing;

– Typed in at execution time at a terminal, for interactive running;

– Coded in Fortran in the calling program, which allows looping, conditional execution, and all the
other possibilities of Fortran, but not interactivity, since it must be compiled before execution. This
is sometimes known as running Minuit in “slave mode”. HBOOK and PAW use Minuit in this
way.

It is also possible to mix any of the above forms, for example starting off a fit with a standard command
file, then turning it over to the interactive user for the final command steps.

1.2 Internal and External Parameters.

Each of the parameters to FCN is defined by the user as belonging to one of the following types:

Freely variable: allowed to take on any value.
Variable with limits: allowed to vary only between two limits specified by the user.
Fixed: originally defined as variable, but now taking on only the value the parameter

had at the moment it was fixed, or a value later assigned by the user.
Constant: taking on only one value as specified by the user.
Undefined: never defined by user.

The user, in FCN, must of course be able to “see” all types of defined parameters, and he therefore has
access to what we call the external parameter list, that is, the parameters as he defined them. On the other
hand, the internal Minuit minimizing routines only want to “see” variable parameters without limits, and
so they have access only to the internal parameter list which is created from the external list by the
following transformation:

(1) Squeeze out all parameters that are not variable.

3
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(2) Transform all variable parameters with limits, so that the transformed parameter can vary without
limits. (See the next section for details concerning this transformation.) Because this transformation
is non-linear, it is recommended to avoid putting limits on parameters where they are not needed.

As an example, suppose that the user has defined the following parameters:

– Parameter 1, constant.

– Parameter 3, freely variable.

– Parameter 10, variable with limits.

– Parameter 11, constant.

– Parameter 22, freely variable.

– All others undefined.

Then the internal parameter list would be as follows:

– Internal parameter 1 = external parameter 3.

– Internal parameter 2 = external parameter 10, transformed appropriately.

– Internal parameter 3 = external parameter 22.

In the above example, Minuit considers that the number of external parameters is 22 (the highest external
parameter number defined), and the number of internal parameters is 3. The latter number is passed
as NPAR to FCN. This is the number which determines, for example, the size of the error matrix of the
parameters, since only variable parameters have errors.

An important feature of Minuit is that parameters are allowed to change types during a Minuit run.
Several Minuit commands are available to make variable parameters fixed and vice-versa; to impose,
change, or remove limits from variable parameters; and even to define completely new parameters at any
time during a run. In addition, some Minuit routines (notably the MINOS error analysis) cause one or
more variable parameters to be temporarily fixed during the calculation. Therefore, the correspondence
between external and internal parameter lists is in general a dynamic one, and the value of NPAR is not
necessarily constant.

1.2.1 The transformation for parameters with limits.

For variable parameters with limits, Minuit uses the following transformation:

Pint � arcsin

�
�
Pext � a
b� a

� �

�
Pext � a� b� a

� �sinPint � ��

so that the internal value Pint can take on any value, while the external value Pext can take on values only
between the lower limit a and the upper limit b. Since the transformation is necessarily non-linear, it
would transform a nice linear problem into a nasty non-linear one, which is the reason why limits should
be avoided if not necessary. In addition, the transformation does require some computer time, so it slows
down the computation a little bit, and more importantly, it introduces additional numerical inaccuracy
into the problem in addition to what is introduced in the numerical calculation of the FCN value. The
effects of non-linearity and numerical roundoff both become more important as the external value gets
closer to one of the limits (expressed as the distance to nearest limit divided by distance between limits).
The user must therefore be aware of the fact that, for example, if he puts limits of ��� ����� on a parameter,
then the values ��� and ��� will be indistinguishable to the accuracy of most machines.
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The transformation also affects the parameter error matrix, of course, so Minuit does a transformation
of the error matrix (and the “parabolic” parameter errors) when there are parameter limits. Users
should however realize that the transformation is only a linear approximation, and that it cannot give a
meaningful result if one or more parameters is very close to a limit, where �Pext��Pint � �. Therefore,
it is recommended that:

– Limits on variable parameters should be used only when needed in order to prevent the parameter
from taking on unphysical values.

– When a satisfactory minimum has been found using limits, the limits should then be removed if
possible, in order to perform or re-perform the error analysis without limits.

Further discussion of the effects of parameter limits may be found in the last chapter.

1.3 Minuit Strategy.

At many places in the analysis of the user function, Minuit must decide whether to be “safe” and waste a
few function calls in order to know where it is, or to be “fast” and attempt to get the requested results with
the fewest possible calls at a certain risk of not obtaining the precision desired by the user. In order to
allow the user to influence these decisions, there is an internal Minuit parameter ISTRAT which can be set
by the user through the command SET STRategy. In the current release, this parameter can take on three
integer values (0, 1, 2), and the default value is 1. Value 0 indicates to Minuit that it should economize
function calls; it is intended for cases where there are many variable parameters and/or the function takes
a long time to calculate and/or the user is not interested in very precise values for parameter errors. On
the other hand, the value 2 indicates that Minuit is allowed to waste function calls in order to be sure that
all values are precise; it is intended for cases where the function is evaluated in a very short time and/or
where the parameter errors must be calculated reliably

1.4 Parameter Errors.

Minuit is usually used to find the “best” values of a set of parameters, where “best” is defined as those
values which minimize a given function, FCN. The width of the function minimum, or more generally, the
shape of the function in some neighbourhood of the minimum, gives information about the uncertainty
in the best parameter values, often called by physicists the parameter errors. An important feature of
Minuit is that it offers several tools to analyze the parameter errors.

1.4.1 FCN Normalization and the ERRor definition.

Whatever method is used to calculate the parameter errors, they will depend on the overall (multiplicative)
normalization of FCN, in the sense that if the value of FCN is everywhere multiplied by a constant �, then
the errors will be decreased by a factor

p
�. Additive constants do not change the parameter errors, but

may imply a different goodness-of-fit confidence level.

Assuming that the user knows what the normalization of his FCN means, and also that he is interested in
parameter errors, the SET ERRordef command allows him to define what he means by one “error”, in
terms of the change in FCN value which should be caused by changing one parameter by one “error”. If the
FCN is the usual chisquare function (defined below), then ERRordef should be set to 1.0 (the default value
anyway) if the user wants the usual one-standard-deviation errors. If FCN is a negative-log-likelihood
function, then the one-standard-deviation value for ERRORDEF is 0.5. If FCN is a chisquare, but the user
wants two-standard-deviation errors, then ERRORDEF should be = 4.0, etc.
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Note that in the usual case where Minuit is being used to perform a fit to some experimental data, the
parameter errors will be proportional to the uncertainty in the data, and therefore meaningful parameter
errors cannot be obtained unless the measurement errors of the data are known. In the common case of a
least-squares fit, FCN is usually defined as a chisquare:

����� �
nX
i��

f�xi� ��� ei�
�

��i
(1.1)

where � is the vector of free parameters being fitted, and the �i are the uncertainties in the individual
measurements ei. If these uncertainties are not known, and are simply left out of the calculation, then
the fit may still have meaning, but not the quantitative values of the resulting parameter errors. (Only the
relative errors of different parameters with respect to each other may be meaningful.)

If the �i are all overestimated by a factor �, then the resulting parameter errors from the fit will be
overestimated by the same factor �.

1.4.2 The Error Matrix.

The Minuit processors MIGRAD and HESSE normally produce an error matrix. This matrix is the inverse
of the matrix of second derivatives of FCN, transformed if necessary into external coordinate space�,
and multiplied by the square root of ERRORDEF. Therefore, errors based on the Minuit error matrix take
account of all the parameter correlations, but not the non-linearities. That is, from the error matrix alone,
two-standard-deviation errors are always exactly twice as big as one-standard-deviation errors.

When the error matrix has been calculated (for example by the successful execution of a command
MIGrad or HESse) then the parameter errors printed by Minuit are the square roots of the diagonal
elements of this matrix. The commands SHOw COVariance and SHOw CORrelations allow the user to
see the off-diagonal elements as well. The command SHOw EIGenvalues causes Minuit to calculate and
print out the eigenvalues of the error matrix, which should all be positive if the matrix is positive-definite
(see below on Migrad and positive-definiteness).

The effect of correlations on the individual parameter errors can be seen as follows. When parameter
N is FIXed, Minuit inverts the error matrix, removes the row and column corresponding to parameter
N, and re-inverts the result. The effect on the errors of the other parameters will in general be to make
them smaller, since the component due to the uncertainty in parameter N has now been removed. (In the
limit that a given parameter is uncorrelated with parameter N, its error will not change when parameter
N is fixed.) However the procedure is not reversible, since Minuit forgets the original error matrix, so if
parameter N is then RELeased, the error matrix is considered as unknown and has to be recalculated with
appropriate commands.

1.4.3 MINOS Errors.

The Minuit processor MINOSwas probably the first, and may still be the only, generally available program
to calculate parameter errors taking into account both parameter correlations and non-linearities. The
MINOS error intervals are in general assymmetric, and may be expensive to calculate, especially if there
are a lot of free parameters and the problem is very non-linear.

�The internal error matrix maintained by Minuit is transformed for the user into external coordinates, but the numbering
of rows and columns is of course still according to internal parameter numbering, since one does not want rows and columns
corresponding to parameters which are not variable. The transformation therefore affects only parameters with limits; if there
are no limits, internal and external error matrices are the same.
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MINOS can only operate after a good minimum has already been found, and the error matrix has been
calculated, so the MINOS command will normally follow a MIGRAD command. The MINOS error for a
given parameter is defined as the change in the value of that parameter which causes F � to increase by
the amount UP, where F � is the minimum of FCN with respect to all other free parameters, and UP is the
ERRordef value specified by the user (default = 1.).

The algorithm for finding the positive and negative MINOS errors for parameter N consists of varying
parameter N, each time minimizing FCN with respect to all the other NPAR�� variable parameters, to find
numerically the two values of parameter N for which the minimum of FCN takes on the values FMIN�UP,
where FMIN is the minimum of FCN with respect to all NPAR parameters. In order to make the procedure
as fast as possible, MINOS uses the error matrix to predict the values of all parameters at the various
sub-minima which it will have to find in the course of the calculation, and in the limit that the problem is
nearly linear, the predictions of MINOS will be nearly exact, requiring very few iterations. On the other
hand, when the problem is very non-linear (i.e., FCN is far from a quadratic function of its parameters),
that is precisely the situation when MINOS is needed in order to indicate the correct parameter errors.

1.4.4 Contour Plotting

Minuit currently offers two very different procedures for finding FCN contours. They will be identified
by the corresponding command names: CONtour and MNContour.

1.4.4.1 CONtour

This procedure is designed for a lineprinter or alphanumeric terminal as output device, and gives a static
picture of FCN as function of the two parameters specified by the user, that is, all the other variable
parameters (if any) are considered as temporarily fixed at their current values. First a range is chosen,
by default two current standard deviations on either side of the current best value of each of the two
parameters, and a grid size n is chosen, by default 25 by 25 positions for the full range of each parameter.
Contour zero is defined as the current best function value Fmin (presumably the minimum), and then the
ith contour is defined as where FCN has the value Fmin � i� � UP. The procedure then simply evaluates
FCN at the four corners of each of the n� grid positions (which makes �n� ��� evaluations) to determine
whether the ith contour passes through it. The method, although not very efficient or precise, is very
robust, and capable of revealing unexpected multiple valleys.

1.4.4.2 MNContour

The contour calculated by MNContour is dynamic, in the sense that it represents the minimum of FCN
with respect to all the other NPAR�� parameters (if any). In statistical terms, this means that MNContour
takes account of the correlations between the two parameters being plotted, and all the other variable
parameters, using a procedure analogous to that of MINOS. (If this feature is not wanted, then the other
parameters must be FIXed before calling MNContour.) MNContour provides the actual coordinates of the
points around the contour, suitable for plotting with a graphics routine or by hand. The points are given
in counter-clockwise order around the contour. Only one contour is calculated per command (or Fortran
call), and the level is Fmin � UP. where UP is the ERRordef specified by the user, or 1.0 by default. The
number of points to be calculated is chosen by the user (Default is 20 for the data-driven mode.). As a
by-product, MNContour provides the MINOS errors of the two parameters in question, since these are just
the extreme points of the contour (Use SHOw MINos to see them). In command-driven mode, a rough
(alphanumeric, not graphic) plot of the points is given (if PRIntlevel� �) and the numerical values of
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the coordinates are printed (if PRIntlevel� �). In Fortran-callable mode, the user gets Fortran access
to the vector of point coordinates through SUBROUTINE MNCONT.



Chapter 2: Minuit Installation.

2.1 Minuit Releases.

Minuit has been extensively revised in 1989, but the usage is largely compatible with that of older
versions which have been in use since before 1970. Users familiar with older releases, who have not yet
used releases from 1989 or later, must however read this manual, in order to adapt to the few changes as
well as to discover the new features and easier ways of using old features, such as free-field input.

2.2 Minuit Versions.

The program is entirely in standard portable Fortran 77, and requires no external subroutines except those
defined as part of the Fortran 77 standard and one logical function INTRAC �. The only difference between
versions for different computers, apart from INTRAC, is the floating point precision (see heading below).

As with previous releases, Minuit does not use a memory manager. This makes it easy to install and
independent of other programs, but has the disadvantage that both the memory occupation and the
maximum problem size (number of parameters) are fixed at compilation time. The old solution to this
problem, which consisted of providing “long” and “short” versions, has proved to be somewhat clumsy
and anyway insufficient for really exceptional users, so it has been abandoned in favour of a single
“standard” version.

The currently“standard” version of Minuit will handle functions of up to 100 parameters, of which not
more than 50 can be variable at one time. Because of the use of the PARAMETER statement in the Fortran
source, redimensioning for larger (or smaller) versions is very easy (although it will help to have a
source code manager or a good editor to propagate the modified PARAMETER statement through all the
subroutines, and of course it implies recompilation). The definition of what is “standard” may well
change in the light of experience (it was 35 instead of 50 variable parameters for release 89.05), and it is
likely that different installations will wish to define it differently according to their own applications. In
any case, the dimensions used at compilation time are printed in the program header at execution time,
and the program is of course protected against the user trying to define too many parameters. The user
who finds that the version available to him is too small (or too big) must try to convince his computer
manager to change the installation default or to provide an additional special version, or else he must
obtain the source and recompile his own version.

2.3 Interference with Other Packages

The new Minuit has been designed to interfere as little as possible with other programs or packages which
may be loaded at the same time. Thus it uses no memory manager or other external subroutines (except
LOGICAL FUNCTION INTRAC), all its own subroutine names start with the letters MN (except Minuit and
the user written routines), all COMMON block names start with the characters MN�, and the user should not
need to use explicitly any Minuit COMMON blocks.

In addition, more than one different functions can be minimized in the same execution module, provided
the functions have different names, and provided one minimization and error analysis is completely
finished before the next one begins.

�INTRAC is available from the CERN Program Library for all common computers, and in the worst case can be replaced by
a LOGICAL FUNCTION returning a value of �TRUE� or �FALSE�depending on whether or not Minuit is being used interactively.

9
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2.4 Floating-point Precision

It is recommended for most applications to use 64-bit floating point precision, or the nearest equivalent on
any particular machine. This means that the standard Minuit installed on Vax, IBM and Unix workstations
will normally be theDOUBLE PRECISION version, while on CDC and Cray it will beSINGLE PRECISION.

The arguments of the user’s FCN must of course correspond in type to the declarations compiled into
the Minuit version being used. The same is true of course for all floating-point arguments to any
Minuit routines called directly by the user in Fortran-callable mode. Furthermore, Minuit detects at
execution time the precision with which it was compiled, and expects that the calculations inside FCN

will be performed approximately to the same accuracy. (This accuracy is called EPSMAC and is printed
in the header produced by Minuit when it begins execution.) If the user fools Minuit by using a double
precision version but making internalFCN or FUTIL computations in single precision, Minuit will interpret
roundoff noise as significant and will usually either fail to find a minimum, or give incorrect values for
the parameter errors. It is therefore recommended, when using double precision (REAL��) Minuit, to
make sure all computations in FCN and FUTIL (if used), as well as all subroutines called by FCN and
FUTIL, are REAL��, by including the appropriate IMPLICIT declarations in FCN and all user subroutines
called by FCN. If for some reason the computations cannot be done to a precision comparable with that
expected by Minuit, the user must inform Minuit of this situation with the SET EPS command.

Although 64-bit precision is recommended in general, the new Minuit is so careful to use all available
precision that in many cases, 32 bits will in fact be enough. It is therefore possible now to envisage
in some situations (for example on microcomputers or when memory is severely limited, or if 64-bit
arithmetic is very slow) the use of Minuit with 32- or 36-bit precision. With reduced precision, the user
may find that certain features sensitive to first and second differences (HESse, MINOs, MNContour) do
not work properly, in which case the calculations must be performed in higher precision.
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3.1 The Function FCN.

The user must always supply a Fortran subroutine which calculates the function value to be minimized
or analyzed.

CALL FCN NPAR�GRAD�FVAL�XVAL�IFLAG�FUTIL�

Input parameters
NPAR number of currently variable parameters.
XVAL vector of (constant and variable) parameters.
IFLAG Indicates what is to be calculated (see example below).
FUTIL Name of utilitary routine (if needed, it must be declared EXTERNAL and provided by the user).
Output parameters
FVAL The calculated function value.
GRAD The (optional) vector of first derivatives).

Note that when Minuit is being used through an intermediate package such as HBOOK or PAW, then the
FCN may be supplied by the this package.

Example ofFCN routine

SUBROUTINE FCN�NPAR�GRAD�FVAL�XVAL�IFLAG�FUTIL�

IMPLICIT DOUBLE PRECISION �A�H�O�Z� � for ���bit machines

DIMENSION GRAD����XVAL���

EXTERNAL FUTIL � �if needed and supplied by user�

C�

IF �IFLAG �EQ� 	� THEN

C read input data�

C calculate any necessary constants� etc�

ENDIF

IF �IFLAG �EQ� �� THEN

C calculate GRAD� the first derivatives of FVAL

C �this is optional�

ENDIF

C Always calculate the value of the function� FVAL�

C which is usually a chisquare or log likelihood�

C Optionally� calculation of FVAL may involve

FTHEO 
 FUTIL������

C It is responsability of user to pass

C any parameter values needed by FUTIL�

C either through arguments� or in a COMMON block

IF �IFLAG �EQ� �� THEN

C will come here only after the fit is finished�

C Perform any final calculations� output fitted data� etc�

ENDIF

RETURN

END

The name of the subroutine may be chosen freely (in documentation we give it the generic name FCN)
and must be declared EXTERNAL in the user’s program which calls Minuit (in data-driven mode) or calls

11
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Minuit subroutines (in Fortran-callable mode). The meaning of the parameters XVAL is of course defined
by the user, who uses the values of those parameters to calculate his function value. The starting values
must be specified by the user (either by supplying parameter definitions from a file, or typing them
at the terminal, in data-driven mode; or by calling subroutine MNPARM in Fortran-callable mode), and
later values are determined by Minuit as it searches for the minimum or performs whatever analysis is
requested by the user. FUTIL represents the name of a function or subroutine which may be defined and
supplied by the user and called from FCN. If the user does not use the FUTIL feature, the last argument
may be given as zero, but if used, the name of FUTIL must be declared EXTERNAL and a subprogram of
that name must be supplied at loading time.

It is possible, by giving them different names, to analyze several different FCNs in one job. However, one
analysis must be completed before the next is started. In order to avoid interference between the analyses
of two different FCNs, the user should call Minuit (in data-driven mode) or MNINIT (in Fortran-callable
mode) each time a new FCN is to be studied.

3.2 Running Minuit in Data-driven Mode.

Minuit can be run in two different modes: Data-driven mode means that the user drives Minuit with
data, either typed interactively from a terminal or from a data file in batch; and Fortran-callable mode
means that Minuit is driven directly from Fortran subroutine calls, without data. To some extent, the
two modes may also be mixed. This section describes the first mode, and is valid for both interactive
and batch running. The differences between interactive and batch are described in a separate subsection
below.

In data-driven mode, the user must supply, in addition to the subroutine FCN, a main program which
includes the following statements (the statements in upper case are required, those given in lower case
are optional):

Example of main program when using Minuit in data driven mode

EXTERNAL FCN

external futil

call mintio�ird�iwr�isav�

CALL MINUIT�FCN�futil�

The name of FCN may be chosen freely, and is communicated to Minuit as its first argument. FUTIL is
the generic name of a function or subroutine which the user may optionally call from FCN, and if he does
call such a routine, he must declare it external and communicate its name to Minuit as well. If FUTIL is
not used, then the second argument may be put equal to �, and need not be declared EXTERNAL; if FUTIL
is declared EXTERNAL, it must be supplied in the loading process.
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CALL MINTIO IREAD�IWRITE�ISAVE�

Action: The purpose of MINTIO is to communicate to Minuit the I/O units.

Input parameters
IREAD Fortran unit number for reading (default 5).
IWRITE Fortran unit number for writing (default 6).
Isave Fortran unit number for saving (default 7).

If the default values are acceptable, then it is not necessary to call MINTIO. It is the user’s responsibility
that the I/O units are properly opened for the appropriate operations.

Note

In data-driven mode, that is with CALL MINUIT, you should not call MNINIT, since Minuit takes care of
all initialization. To change unit numbers, call MINTIO before callingMINUIT.

In order that control returns to the user program after CALL MINUIT, the last command in the corre-
sponding Data Block should be RETURN. If the last command is EXIT or STOP, then Minuit will execute a
Fortran STOP, and if the last command is END, Minuit will read a new Data Block from the current input
unit.

3.2.1 Data to drive Minuit

In data-driven mode, either interactively or in batch, Minuit reads the following data provided by the
user:

– Title: (a string of 50 characters or less) which can be chosen freely by the user, to help identify
the job.

– Parameter definitions: for each parameter one record giving:

(1) The parameter number. This is the index in the array XVAL by which the user function FCN
will access the value of the parameter.

(2) The parameter name. A string of ten characters to help the user in reading the Minuit
output.

(3) The starting valueof the parameter.

(4) The starting step size,or expected uncertainty in this parameter, if it is to be a variable
parameter. Otherwise blank or zero if the value is to be constant.

OptionalThe lower bound (limit) below which the parameter value must not vary.

OptionalThe upper bound (limit) above which the parameter value must not vary.

Normally the user should not specify limits on the parameters, that is both should be left blank.
If one limit is specified, then BOTH must be specified. The properties of limits are explained
elsewhere in this document.
The format of the parameter definitions may be either fixed-field (each item in a field of width
ten columns), or in free-field format. In the free-field format, items are separated by blanks or
one comma, and the parameter name must be given between single quotes. The program assumes
free-field format if it finds two single quotes in the line. Parameter names will be blank-padded or
truncated to be ten characters long.
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– A blank record: indicates the end of parameter definitions.

– If the user FCN reads input data from the same input stream as the Minuit data (the default stream
is UNIT 
), then the FCN data should appear here.

– Minuit commands: these specify actions which should be performed by Minuit. Commands must
not contain leading or embedded blanks, but may be truncated to three characters, and may be
given in upper or lower case. Some commands have numerical arguments, and these may be given
in free-field format, separated by blank(s) or one comma�. The list of recognized commands is
given and explained below. The command HELP causes Minuit to write to the output stream a list
of currently recognized commands. The command HELP SHOw lists the available SET and SHOw

commands.

Any or all of the above data read by Minuit can reside on one or more different files, and Minuit can be
instructed to switch to reading a different file with the SET INPUT command. Optionally, the title record
may be preceeded by a record beginning with the characters SET TITLE, and the parameter definitions
may be preceeded by a record beginning with the characters PARAMETERS. It is in fact recommended
always to include these optional records when preparing a data file, since the file can then be read at any
time (not just at the beginning of a Minuit run) and will always be interpreted correctly by Minuit.

Example of a typical Minuit data set

SET TITLE

Fit to time distribution of K decays� Expt NA��

PARAMETERS

	 Real�X� �� �	

� Imag�X� �� �	

� Delta M ���� ��	

	� K Short LT ����

		 K Long LT �	���

fix �

migrad

set print �

minos

restore

migrad

minos

fix �

set param � �����

contour 	 �

stop

3.2.2 Batch and interactive running.

In its initialization phase, Minuit attempts to determine whether or not it is running interactively, by
calling the logical function INTRAC, a routine in the CERN Program Library which can be provided for
all commonly used computers. For our purposes, we define “running interactively” as meaning that input
is coming from a terminal under the control of an intelligent being, able to make decisions based on the

�In older versions of Minuit, there was a special format for the MINOs command, when specifying a list of parameters; the
new Minuit reads the MINOs command with the same free-field format as the other commands, so if parameter numbers are
specified, they must now be separated by a blank or comma.
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output he receives at the terminal. It is not always easy for INTRAC to know whether this is the case, so,
depending on your operating system, Minuit can be fooled in certain cases. When this happens, the user
can always override the beliefs of INTRAC with the commands SET BATch and SET INTeractive. The
command SHOw INTeractive informs the user of the current mode.

According to whether or not it believes it is running interactively, Minuit behaves differently in the
following ways:

– If interactive, the user is prompted before each data record is read.

– If interactive, Minuit recovers from many error conditions and prompts the user to enter correct
data or to specify additional required input. If the same error conditions occur in batch mode,
the program either exits (if no corrective action seems possible) or ignores the incorrect data (for
example, a command it cannot interpret) and continues.

– The default page size for output is a typical terminal dimension (80 by 24) if interactive, and a
typical printed page size (120 by 56) if batch, but these can be overridden with the commands SET
WIDth and SET LINes.

When an interactive user requests Minuit to read further input from an external file (the SET INPut

command), then further input is considered to be temporarily in batch mode, until input reverts to the
primary input stream.

3.3 Running Minuit in Fortran-callable mode.

The following Minuit subroutines are provided in order to allow the user to communicate with Minuit and
perform all Minuit functions (define parameters, execute commands, etc.) directly from Fortran through
subroutine calls. In the following list of subroutines, output arguments are indicated by appending a star
� to its name. It should also be noted that for the Double Precision version of Minuit (recommended
for all 32-bit machines such as IBM, Vax, Unix workstations, etc.), all the REAL arguments given below
must be declared DOUBLE PRECISION.

3.3.1 Initialize Minuit

CALL MNINIT IRD�IWR�ISAV�

Input parameters:
IRD Unit number for input to Minuit.
IWR Unit number for output from Minuit.
ISAV Unit number for use of the SAVE command.

3.3.2 Specify a title for a problem

CALL MNSETI CTITLE�

Input parameter:
CTITLE Character string of up to 50 characters containing an identification text for the present job or

fit.
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3.3.3 Define a parameter

CALL MNPARM NUM�CHNAM�STVAL�STEP�BND��BND��IERFLG��

Input parameters:
NUM Parameter number as referenced by user in FCN.
CHNAM Character string of up to 10 characters containing the name which the user assigned to the

given parameter.
STVAL Starting value
STEP Starting step size or approximate parameter error.
BND� Lower bound (limit) on parameter value, if any (see below).
BND� Upper bound (limit) on parameter value, if any (see below).
Output parameter:
IERFLG Error return code: � if no error, �� if request failed.

If BND��BND����, then the parameter is considered unbounded, which is recommended unless limits are
needed to make things behave well.

3.3.4 Execute a Minuit command

CALL MNEXCM FCN�CHCOM�ARGLIS�NARG�IERFLG�FUTIL�

Input parameters:
FCN Name fo the function being analyzed (to be declared EXTERNAL)
CHCOM Character string containing the name of the Minuit command to be executed (see below).
ARGLIS Array of dimension MAXARG, containing the numeric arguments to the command (if any),
NARG Number of arguments specified (NARG�MAXARG),
FUTIL Name fo a function called by FCN (or �� if not used). If used this function must be declared

EXTERNAL.
Output parameter:
IERFLG Error return code: � if the command was executed normally, �� otherwise.

Executing a command by calling MNEXCM has exactly the same effect as reading the same command in
data-driven mode, except that a few commands would make no sense and are not available in Fortran-
callable mode (e.g. SET INPUT). The other difference is that control always returns to the calling
routine from MNEXCM, even after commands END, EXIT, and STOP.

3.3.5 Get the current value of a parameter

This routine is the inverse of MNPARM and can for instance be used after a fit.

CALL MNPOUT NUM�CHNAM��VAL��ERROR��BND���BND���IVARBL��

Input parameter:
NUM Parameter number as referenced by user in FCN and about which information is required.
Output parameters:
CHNAM Character string of up to 10 characters containing the name which the user assigned to the

given parameter.
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VAL Current parameter value (fitted value if fit has converged),
ERROR Current estimate of parameter uncertainty (or zero if constant)
BND� Lower limit on parameter value, if any (otherwise zero).
BND� Upper limit on parameter value, if any (otherwise zero).
IVARBL Internal parameter number if parameter is variable, or zero if parameter is constant, or negative

if parameter is undefined.

3.3.6 Get the current status of minimization

CALL MNSTAT FMIN��FEDM��ERRDEF��NPARI��NPARX��ISTAT��

Output parameters:
FMIN The best function value found so far
FEDM The estimated vertical distance remaining to minimum
ERRDEF The value of UP defining parameter uncertainties
NPARI The number of currently variable parameters
NPARX The highest (external) parameter number defined by user
ISTAT A status integer indicating how good is the covariance matrix:

� Not calculated at all
� Diagonal approximation only, not accurate
� Full matrix, but forced positive-definite
� Full accurate covariance matrix (After MIGRAD, this is the indication of normal conver-

gence.)

3.3.7 Get the current value of the covariance matrix

CALL MNEMAT EMAT��NDIM�

Input parameter:
NDIM Integer variable specifying the number of rows and columns the suer has reserved in EMAT

to store the matrix elements. NDIM should be at least as large as the number of parameters
variable at the time of the call, otherwise the user will get only part of the full matrix.

Output parameter:
EMAT Array declared as DIMENSION EMATNDIM�NDIM� which is to be filled with the (external)

covariance matrix.

3.3.8 Access current parameter errors

CALL MNERRS NUM�EPLUS��EMINUS��EPARAB��GLOBCC��

Input parameter:
NUM Parameter number. If NUM��, this is taken to be an external parameter number; if NUM��, it is

the negative of an internal parameter number.
Output parameters:
EPLUS The positive MINOS error of parameter NUM.
EMINUS The negative MINOS error (a negative number).
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EPARAB The “parabolic” parameter error, from the error matrix.
GLOBCC The global correlation coefficient for parameter NUM. This is a number between zero and one

which gives the correlation between parameter NUM and that linear combination of all other
parameters which is most strongly correlated with NUM.

Note that this call does not cause the errors to be calculated, it merely returns the current existing values. If
any of the requested values has not been calculated, or has been destroyed (for example, by a redefinition
of parameter values) MNERRS returns a value of zero for that argument. Thus the call to MNERRS will
normally follow the execution of commands MIGRAD, HESSE, MNContour, and/or MINOS.

3.3.9 Find a function contour with the MNContour method

CALL MNCONT FCN�NUM��NUM��NPT�XPT��YPT��NFOUND��FUTIL�

Input parameters:
FCN Name of the function being treated (to be declared EXTERNAL)
NUM��� Parameter numbers with respect to which the contour is to be determined (external).
NPT The number of points required on the contour (��).
FUTIL Name of a function called by FCN (or =0 if not used). If used this function must be declared

EXTERNAL.
Output parameters:
XPT Array of x-coordinates of contour points with values for parameter NUM�. It must be declared

with a DIMENSION XPTNPT�.
YPT Array of y-coordinates of contour points with values for parameter NUM�. It must be declared

with a DIMENSION YPTNPT�.
NFOUND The number of points actually found on the contour. If all goes well, this will be equal to NPT,

but it can be negative (if the input arguments are not valid), or zero if less than four points
have been found, or less than NPT if the program could not find NPT points.

Note that alternativelyMNContour can be calculated by callingMNEXCM to issue theMNContour command,
but then the user does not have Fortran access to the actual point coordinates XPT and YPT.

3.3.10 Switch to command-reading mode

This facility can be useful when one wants to continue interactively.

CALL MNINTR FCN�FUTIL�

Input parameters:
FCN Name of the function being treated (to be declared EXTERNAL)
FUTIL Name of a function called by FCN (or �� if not used). If used this function must be declared

EXTERNAL.

The call toMNINTRwill cause Minuit to read commands from the unitIRD (originally specified by the user
in his call to MNINIT, IRD is usually 5 by default, which in turn is usually the terminal by default). Minuit
then reads and executes commands until it encounters a command END, EXIT, RETurn, or STOP, or an
end-of-file on input (or an unrecoverable error condition while reading or trying to execute a command),
in which case control returns to the program which called MNINTR.
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In data-driven mode, Minuit accepts commands in the following format:

command �arg�� �arg�� etc�

commandOne of the commands listed below,
�argi� Numerical values of required arguments, if any.
�argi� ] Numerical values of optional arguments, if any.

The arguments (if any) are separated from each other and from the command by one or more blanks or
a comma. Commands may be given in upper or lower case, and may be abbreviated, usually to three
characters. The shortest recognized abbreviations are indicated by the capitalized part of the commands
listed below. Examples of valid commands are:

SET INPUT �	

migrad

mig ���

SET LIMITS 	� �	���	��

contours 	 �

MINOS ��� 	������	���

In Fortran-callable mode, all the same commands (with a few obvious exceptions as indicated) can be
executed by passing the command-string and arguments to Minuit in a CALL MNEXCM statement.

List of Minuit commands

CALl �iflag�

Instructs Minuit to call subroutine FCN with the value of IFLAG��iflag�. (The actual name of the
subroutine called is that given by the user in his call to Minuit or MNEXCM; the name given in this
command is not used.) If �iflag� � 
, Minuit assumes that a new problem is being redefined, and it
forgets the previous best value of the function, covariance matrix, etc. This command can be used to
instruct the user function to read new input data, recalculate constants, or otherwise modify the calculation
of the function.

CLEar

Resets all parameter names and values to undefined. Must normally be followed by a PARameters

command or equivalent, in order to define parameter values.

CONtour �par�� �par�� �devs� �ngrid�

Instructs Minuit to trace contour lines of the user function with respect to the two parameters whose
external numbers are �par�� and �par��. Other variable parameters of the function, if any, will have
their values fixed at the current values during the contour tracing. The optional parameter �devs� (default
value 2.) gives the number of standard deviations in each parameter which should lie entirely within the
plotting area. Optional parameter �ngrid� (default value 25 unless page size is too small) determines
the resolution of the plot, i.e. the number of rows and columns of the grid at which the function will be
evaluated. [See also MNContour.]

19
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END

Signals the end of a data block (i.e., the end of a fit), and implies that execution should continue, because
another Data Block follows. A Data Block is a set of Minuit data consisting of (1) A Title, (2) One or
more Parameter Definitions, (3) A blank line, and (4) A set of Minuit Commands. The END command
is used when more than one Data Block is to be used with the same FCN function. CALL FCNThe END

command first causes Minuit to issue a CALL FCN with IFLAG��, in order to allow FCN to perform any
calculations associated with the final fitted parameter values, unless a CALL FCN � command has already
been executed at the current FCN value. The obsolete command END RETurn is the same as the RETURN
command.

EXIT

Signals the end of execution. The EXIT command first causes Minuit to issue a CALL FCN with IFLAG��,
in order to allow FCN to perform any calculations associated with the final fitted parameter values, unless
a CALL FCN � command has already been executed at the current FCN value. Then it executes a Fortran
STOP.

FIX �parno� �parno� ��� �parno�

Causes parameter(s) �parno� to be removed from the list of variable parameters, and their value(s) will
remain constant during subsequent minimizations, etc., until another command changes their value(s) or
status.

HELP �SET� �SHOw�

Causes Minuit to list the available commands. The list of SET and SHOw commands must be requested
separately.

HESse �maxcalls�

Instructs Minuit to calculate, by finite differences, the Hessian or error matrix. That is, it calculates
the full matrix of second derivatives of the function with respect to the currently variable parameters,
and inverts it, printing out the resulting error matrix. The optional argument �maxcalls� specifies the
(approximate) maximum number of function calls after which the calculation will be stopped.

IMProve �maxcalls�

If a previous minimization has converged, and the current values of the parameters therefore correspond
to a local minimum of the function, this command requests a search for additional distinct local minima.
The optional argument �maxcalls� specifies the (approximate) maximum number of function calls after
which the calculation will be stopped.

MIGrad �maxcalls� �tolerance�

Causes minimization of the function by the method of Migrad, the most efficient and complete single
method, recommended for general functions (see also MINImize). The minimization produces as
a by-product the error matrix of the parameters, which is usually reliable unless warning messages are
produced. The optional argument �maxcalls� specifies the (approximate) maximum number of function
calls after which the calculation will be stopped even if it has not yet converged. The optional argument
�tolerance� specifies required tolerance on the function value at the minimum. The default tolerance
is ���, and the minimization will stop when the estimated vertical distance to the minimum (EDM) is less
than �������tolerance��UP (see SET ERR).
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MINImize �maxcalls� �tolerance�

Causes minimization of the function by the method of Migrad, as does theMIGrad command, but switches
to the SIMplex method if Migrad fails to converge. Arguments are as for MIGrad. Note that command
requires four characters to be unambiguous with MINOs.

MINOs �maxcalls� �parno� �parno� ���

Causes a Minos error analysis to be performed on the parameters whose numbers �parno� are specified.
If none are specified, Minos errors are calculated for all variable parameters. Minos errors may be
expensive to calculate, but are very reliable since they take account of non-linearities in the problem
as well as parameter correlations, and are in general asymmetric. The optional argument �maxcalls�
specifies the (approximate) maximum number of function calls per parameter requested, after which
the calculation will be stopped for that parameter.

MNContour �par�� �par�� �npts�

Calculates one function contour of FCN with respect to parameters par� and par�, with FCN minimized
always with respect to all other NPAR�� variable parameters (if any). Minuit will try to find npts points
on the contour (default 20). If only two parameters are variable at the time, it is not necessary to specify
their numbers. To calculate more than one contour, it is necessary to SET ERR to the appropriate value
and issue the MNContour command for each contour desired.

RELease �parno� �parno� ��� �parno�

If �parno� is the number of a previously variable parameter which has been fixed by a command:
FIX �parno�, then that parameter will return to variable status. Otherwise a warning message is printed
and the command is ignored. Note that this command operates only on parameters which were at one
time variable and have been FIXed. It cannot make constant parameters variable; that must be done by
redefining the parameter with a PARameters command.

REStore �code�

If no �code� is specified, this command restores all previously FIXed parameters to variable status. If
�code���, then only the last parameter FIXed is restored to variable status. If code is neither zero nor
one, the command is ignored.

RETurn

Signals the end of a data block, and instructs Minuit to return to the program which called it. The
RETurn command first causes Minuit to CALL FCN with IFLAG��, in order to allow FCN to perform any
calculations associated with the final fitted parameter values, unless a CALL FCN � command has already
been executed at the current FCN value. Then it executes a Fortran RETURN.

SAVe

Causes the current parameter values to be saved on a file in such a format that they can be read in again
as Minuit parameter definitions. If the covariance matrix exists, it is also output in such a format. The
unit number is by default 7, or that specified by the user in his call to MINTIO or MNINIT. The user is
responsible for opening the file previous to issuing the SAVE command (except where this can be done
interactively).
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SCAn �parno� �numpts� �from� �to�

Scans the value of the user function by varying parameter number �parno�, leaving all other parameters
fixed at the current value. If �parno� is not specified, all variable parameters are scanned in sequence.
The number of points �numpts� in the scan is 40 by default, and cannot exceed 100. The range of the
scan is by default 2 standard deviations on each side of the current best value, but can be specified as from
�from� to �to�. After each scan, if a new minimum is found, the best parameter values are retained
as start values for future scans or minimizations. The curve resulting from each scan is plotted on the
output unit in order to show the approximate behaviour of the function. This command is not intended
for minimization, but is sometimes useful for debugging the user function or finding a reasonable starting
point.

SEEk �maxcalls� �devs�

Causes a Monte Carlo minimization of the function,by choosing random values of the variable parameters,
chosen uniformly over a hypercube centered at the current best value. The region size is by default 3
standard deviations on each side, but can be changed by specifying the value of �devs�.

SET BATch

Informs Minuit that it is running in batch mode.

SET EPSmachine �accuracy�

Informs Minuit that the relative floating point arithmetic precision is �accuracy�. Minuit determines the
nominal precision itself, but the SET EPS command can be used to override Minuit’s own determination,
when the user knows that the FCN function value is not calculated to the nominal machine accuracy.
Typical values of �accuracy� are between ���� and �����.

SET ERRordef �up�

Sets the value of UP (default value= 1.), defining parameter errors. Minuit defines parameter errors as
the change in parameter value required to change the function value by UP. Normally, for chisquared fits
UP��, and for negative log likelihood, UP���
.

SET GRAdient �force�

Informs Minuit that the user function is prepared to calculate its own first derivatives and return their
values in the array GRAD when IFLAG�� (see specification of the function FCN). If �force� is not
specified, Minuit will calculate the FCN derivatives by finite differences at the current point and compare
with the user’s calculation at that point, accepting the user’s values only if they agree. If �force���,
Minuit does not do its own derivative calculation, and uses the derivatives calculated in FCN.

SET INPut �unitno� �filename�

Causes Minuit, in data-driven mode only, to read subsequent commands (or parameter definitions or title)
from a different input file. If no �unitno� is specified, reading reverts to the previous input file, assuming
that there was one. If �unitno� is specified, and that unit has not been opened, then Minuit attempts to
open the file �filename� if a name is specified. If running in interactive mode and �filename� is not
specified and �unitno� is not opened, Minuit prompts the user to enter a file name. If the word REWIND
is added to the command (note: no blanks between INPUT and REWIND), the file is rewound before
reading. Note that this command is implemented in standard Fortran 77 and the results may depend on
the operating system; for example, if a filename is given under VM/CMS, it must be preceeded by a slash.
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SET INTeractive

Informs Minuit that it is running interactively.

SET LIMits �parno� �lolim� �uplim�

Allows the user to change the limits on one or all parameters. If no arguments are specified, all limits
are removed from all parameters. If �parno� alone is specified, limits are removed from parameter
�parno�. If all arguments are specified, then parameter �parno� will be bounded between �lolim�

and �uplim�. Limits can be specified in either order, Minuit will take the smaller as �lolim� and the
larger as �uplim�. However, if �lolim� is equal to �uplim�, an error condition results.

SET LINesperpage

Sets the number of lines that Minuit thinks will fit on one page of output. The default value is 24 for
interactive mode and 56 for batch.

SET NOGradient

The inverse of SET GRAdient, instructs Minuit not to use the first derivatives calculated by the user in
FCN.

SET NOWarnings

Supresses Minuit warning messages. SET WARnings is the default.

SET OUTputfile �unitno�

Instructs Minuit to write further output to unit �unitno�.

SET PAGethrow �integer�

Sets the carriage control character for “new page” to �integer�. Thus the value 1 produces a new page,
and 0 produces a blank line, on some output devices (see TOPofpage command).

SET PARameter �parno� �value�

Sets the value of parameter �parno� to �value�. The parameter in question may be variable, fixed, or
constant, but must be defined.

SET PRIntout �level�

Sets the print level, determining how much output Minuit will produce. The allowed values and their
meanings are displayed after a SHOw PRInt command, and are currently �level��:

�� no output except from SHOW commands
� minimum output (no starting values or intermediate results)
� default value, normal output
� additional output giving intermediate results.
� maximum output, showing progress of minimizations.

Note: See also the SET WARnings command.
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SET RANdomgenerator �seed�

Sets the seed of the random number generator used in SEEk. This can be any integer between 10 000 and
900 000 000, for example one which was output from a SHOw RANdom command of a previous run.

SET STRategy �level�

Sets the strategy to be used in calculating first and second derivatives and in certain minimization
methods. In general, low values of �level� mean fewer function calls and high values mean more
reliable minimization. Currently allowed values are 0, 1 (default), and 2.

SET TITle

Informs Minuit that the next input line is to be considered the (new) title for this task or sub-task. This
is for the convenience of the user in reading his output. This command is available only in data-driven
mode; in Fortran-callable mode use CALL MNSETI.

SET WARnings

Instructs Minuit to output warning messages when suspicious conditions arise which may indicate
unreliable results. This is the default.

SET WIDthpage

Informs Minuit of the output page width. Default values are 80 for interactive jobs and 120 for batch.

SHOw XXXX

All SET XXXX commands have a corresponding SHOw XXXX command. In addition, the SHOw commands
listed starting here have no corresponding SET command for obvious reasons. The full list of SHOw
commands is printed in response to the command HELP SHOw.

SHOw CORrelations

Calculates and prints the parameter correlations from the error matrix.

SHOw COVariance

Prints the (external) covariance (error) matrix.

SHOw EIGenvalues

Calculates and prints the eigenvalues of the covariance matrix.

SHOw FCNvalue

Prints the current value of FCN.

SIMplex �maxcalls� �tolerance�

Performs a function minimization using the simplex method of Nelder and Mead. Minimization termi-
nates either when the function has been called (approximately) �maxcalls� times, or when the estimated
vertical distance to minimum (EDM) is less than �tolerance�. The default value of �tolerance� is
����UP (see SET ERR).
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STAndard

Causes Minuit to execute the Fortran instruction CALL STAND where STAND is a subroutine supplied by
the user.

STOP

Same as EXIT.

TOPofpage

Causes Minuit to write the character specified in a SET PAGethrow command (default = 1) to column
1 of the output file, which may or may not position your output medium to the top of a page depending
on the device and system. This command can be expected to work properly only for printed output,
unfortunately it does not solve the IBM terminal problem.



Chapter 5: How to get the right answer from Minuit.

The goal of Minuit — to be able to minimize and analyze parameter errors for all possible user functions
with any number of variable parameters — is of course impossible to realise, even in principle, in a finite
amount of time. In practice, some assumptions must be made about the behaviour of the function in order
to avoid evaluating it at all possible points. In this chapter we give some hints on how the user can help
Minuit to make the right assumptions.

5.1 Which Minimizer to Use.

One of the historically interesting advantages of Minuit is that it was probably the first minimization
program to offer the user a choice of several minimization algorithms. This could be taken as a reflection
of the fact that none of the algorithms known at that time were good enough to be universal, so users were
encouraged to find the one that worked best for them. Since then, algorithms have improved considerably,
but Minuit still offers several, mostly so that old users will not feel cheated, but also to help the occasional
user who does manage to defeat the best algorithms. Minuit currently offers five commands which can
be used to find a smaller function value, in addition to a few others, like MINOS and IMPROVE, which
will retain a smaller function value if they stumble on one unexpectedly (or, in the case of IMPROVE,
hopefully). The commands which can be used to minimize are:

5.1.1 MIGRAD

This is the best minimizer for nearly all functions. It is a variable-metric method with inexact line
search, a stable metric updating scheme, and checks for positive-definiteness. It will run faster if you
SET STRATEGY � and will be more reliable if you SET STRATEGY � (although the latter option may
not help much). Its main weakness is that it depends heavily on knowledge of the first derivatives, and
fails miserably if they are very inaccurate. If first derivatives are a problem, they can be calculated
analytically inside FCN (see elsewhere in this writeup) or if this is not feasible, the user can try to improve
the accuracy of Minuit’s numerical approximation by adjusting values using the SET EPS and/or SET
STRATEGY commands (see Floating Point Precision and SET STRATEGY).

5.1.2 MINIMIZE

This is equivalent to MIGRAD, except that if MIGRAD fails, it reverts to SIMPLEX and then calls MIGRAD
again. This is what the old MIGRAD command used to do, but it was removed from the MIGRAD command
so that users would have a choice, and because it is seldom of any use to call SIMPLEX when MIGRAD has
failed (there are of course exceptions).

5.1.3 SCAN

This is not intended to minimize, and just scans the function, one parameter at a time. It does however
retain the best value after each scan, so it does some sort of highly primitive minimization.

5.1.4 SEEK

We have retained this Monte Carlo search mainly for sentimental reasons, even though the limited
experience with it is less than spectacular. The method now incorporates a Metropolis algorithm which
always moves the search region to be centred at a new minimum, and has probability e��F�Fmin� of
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moving the search region to a higher point with function value F . This gives it the theoretical ability
to jump through function barriers like a multidimensional quantum mechanical tunneler in search of
isolated minima, but it is widely believed by at least half of the authors of Minuit that this is unlikely to
work in practice (counterexamples are welcome) since it seems to depend critically on choosing the right
average step size for the random jumps, and if you knew that, you wouldn’t need Minuit.

5.1.5 SIMPLEX

This genuine multidimensional minimization routine is usually much slower than MIGRAD, but it does
not use first derivatives, so it should not be so sensitive to the precision of the FCN calculations, and is
even rather robust with respect to gross fluctuations in the function value. However, it gives no reliable
information about parameter errors, no information whatsoever about parameter correlations, and worst
of all cannot be expected to converge accurately to the minimum in a finite time. Its estimate of EDM is
largely fantasy, so it would not even know if it did converge.

5.2 Floating point Precision

Minuit figures out at execution time the precision with which it was compiled, and assumes that FCN
provides about the same precision. That means not just the length of the numbers used and returned by
FCN, but the actual mathematical accuracy of the calculations. The section on Floating point Precision in
Chapter One describes what to do if this is not the case.

5.3 Parameter Limits

Putting limits (absolute bounds) on the allowed values for a given parameter, causes Minuit to make a
non-linear transformation of its own internal parameter values to obtain the (external) parameter values
passed to FCN. To understand the adverse effects of limits, see “The Transformation for Parameters with
Limits” in Chapter 1. Basically, the use of limits should be avoided unless needed to keep the parameter
inside a desired range.

If parameter limits are needed, in spite of the effects described in Chapter One, then the user should be
aware of the following techniques to alleviate problems caused by limits:

5.3.1 Getting the Right Minimum with Limits.

If MIGRAD converges normally to a point where no parameter is near one of its limits, then the existence
of limits has probably not prevented Minuit from finding the right minimum. On the other hand, if one
or more parameters is near its limit at the minimum, this may be because the true minimum is indeed at
a limit, or it may be because the minimizer has become “blocked” at a limit. This may normally happen
only if the parameter is so close to a limit (internal value at an odd multiple of � �

� that Minuit prints a
warning to this effect when it prints the parameter values.

The minimizer can become blocked at a limit, because at a limit the derivative seen by the minimizer
�F��Pint is zero no matter what the real derivative �F��Pext is.

�F

�Pint

�
�F

�Pext

�Pext

�Pint

�
�F

�Pext

� �

For a stepping method (like SIMPLEX) this seldom poses any problem, but a method based on derivatives
(MIGRAD) may become blocked at such a value. If this happens, it may be necessary to move the
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value of the parameter in question a significant distance from the limit (with SET PARam) and restart
the minimization, perhaps with that parameter fixed temporarily. We are investigating ways to induce
Minuit to extricate itself from such situations automatically, but it is not so obvious as it seems, and for
the moment must sometimes be done by hand.

5.3.2 Getting the right parameter errors with limits.

In the best case, where the minimum is far from any limits, Minuit will correctly transform the error
matrix, and the parameter errors it reports should be accurate and very close to those you would have
got without limits. In other cases (which should be more common, since otherwise you wouldn’t need
limits), the very meaning of parameter errors becomes problematic. Mathematically, since the limit is
an absolute constraint on the parameter, a parameter at its limit has no error, at least in one direction.
The error matrix, which can assign only symmetric errors, then becomes essentially meaningless. On
the other hand, the MINOS analysis is still meaningful, at least in principle, as long as MIGRAD (which
is called internally by MINOS) does not get blocked at a limit. Unfortunately, the user has no control
over this aspect of the MINOS calculation, although it is possible to get enough printout from the MINOS
command to be able to determine whether the results are reliable or not.

5.4 Fixing and Releasing Parameters

When Minuit needs to be guided to the “right” minimum, often the best way to do this is with the FIX
and RELEASE commands. That is, suppose you have a problem with ten free parameters, and when you
minimize with respect to all at once, Minuit goes to an unphysical solution characterized by an unphysical
or unwanted value of parameter number four. One way to avoid this is to FIX parameter four at a “good”
value (not necessarily the best, since you presumably don’t know that yet), and minimize with respect to
the others. Then RELEASE � and minimize again. If the problem admits a “good” physical solution, you
will normally find it this way. If it doesn’t work, you may see what is wrong by the following sequence
(where xxx is the expected physical value for parameter four):

SET PARAM � xxx

FIX �

MIGRAD

RELEASE �

SCAN �

where the SCAN command gives you a picture of FCN as a function of parameter four alone, the others
being fixed at their current best values. If you suspect the difficulty is due to parameter five, then add the
command

CONTOUR � �

to see a two-dimensional picture.

5.5 Interpretation of Parameter Errors

There are two kinds of problems that can arise: The reliability of Minuit’s error estimates, and their
statistical interpretation , assuming they are accurate.
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5.5.1 Statistical Interpretation.

For discussuion of basic concepts, such as the meaning of the elements of the error matrix, parabolic
versus MINOS errors, the appropriate value for UP (see SET ERRdef), and setting of exact confidence
levels, see (in order of increasing complexity and completeness):

– “Interpretation of the Errors on Parameters”, see Part 3 of this write-up.

– “Determining the Statistical Significance of Experimental Results”[4].

– “Statistical Methods in Experimental Physics”[5].

5.5.2 The Reliability of Minuit Error Estimates.

Minuit always carries around its own current estimates of the parameter errors, which it will print out on
request, no matter how accurate they are at any given point in the execution. For example, at initialization,
these estimates are just the starting step sizes as specified by the user. After a MIGRAD or HESSE step, the
errors are usually quite accurate, unless there has been a problem. Minuit, when it prints out error values,
also gives some indication of how reliable it thinks they are. For example, those marked �CURRENT

GUESS ERROR� are only working values not to be believed, and �APPROXIMATE ERROR� means that
they have been calculated but there is reason to believe that they may not be accurate. If no mitigating
adjective is given, then at least Minuit believes the errors are accurate, although there is always a small
chance that Minuit has been fooled. Some visible signs that Minuit may have been fooled are:

– Warning messages produced during the minimization or error analysis.

– Failure to find new minimum.

– Value of EDM too big. For a “normal” minimization, after MIGRAD, the value of EDM is usually more
than three orders of magnitude smaller than UP (the SET ERRordef), unless a looser tolerance has
been specified.

– Correlation coefficients exactly equal to zero, unless some parameters are known to be uncorrelated
with the others.

– Correlation coefficients very close to one (greater than 0.99). This indicates both an exceptionally
difficult problem, and one which has been badly parametrized so that individual errors are not very
meaningful because they are so highly correlated.

– Parameter at limit. This condition, signalled by a Minuit warning message, may make both the
function minimum and parameter errors unreliable. See section 5.3.2, Getting the right parameter
errors with limits.

The best way to be absolutely sure of the errors, is to use “independent” calculations and compare them,
or compare the calculated errors with a picture of the function if possible. For example, if there is only
one free parameter, the command SCAN allows the user to verify approximately the function curvature.
Similarly, if there are only two free parameters, use CONTOUR. To verify a full error matrix, compare
the results of MIGRAD with those (calculated afterward) by HESSE, which uses a different method. And
of course the most reliable and most expensive technique, which must be used if asymmetric errors are
required, is MINOS.
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5.6 Convergence in MIGRAD, and Positive-definiteness.

MIGRAD uses its current estimate of the covariance matrix of the function to determine the current search
direction, since this is the optimal strategy for quadratic functions and “physical” functions should be
quadratic in the neighbourhood of the minimum at least. The search directions determined by MIGRAD

are guaranteed to be downhill only if the covariance matrix is positive-definite, so in case this is not
true, it makes a positive-definite approximation by adding an appropriate constant along the diagonal
as determined by the eigenvalues of the matrix. Theoretically, the covariance matrix for a “physical”
function must be positive-definite at the minimum, although it may not be so for all points far away from
the minimum, even for a well-determined physical problem. Therefore, if MIGRAD reports that it has
found a non-positive-definite covariance matrix, this may be a sign of one or more of the following:

– A non-physical region. On its way to the minimum, MIGRAD may have traversed a region which
has unphysical behaviour, which is of course not a serious problem as long as it recovers and leaves
such a region.

– An underdetermined problem. If the matrix is not positive-definite even at the minimum, this
may mean that the solution is not well-defined, for example that there are more unknowns than
there are data points, or that the parametrization of the fit contains a linear dependence. If this is
the case, then Minuit (or any other program) cannot solve your problem uniquely, and the error
matrix will necessarily be largely meaningless, so the user must remove the underdeterminedness
by reformulating the parametrization. Minuit cannot do this itself, but it can provide some hints
(contours, global correlation coefficients, eigenvalues) which can help the clever user to find out
what is wrong.

– Numerical inaccuracies. It is possible that the apparent lack of positive-definiteness is in fact
only due to excessive roundoff errors in numerical calculations, either in FCN or in Minuit. This
is unlikely in general, but becomes more likely if the number of free parameters is very large, or
if the parameters are badly scaled (not all of the same order of magnitude), and correlations are
also large. In any case, whether the non-positive-definiteness is real or only numerical is largely
irrelevant, since in both cases the error matrix will be unreliable and the minimum suspicious.

5.7 Additional Trouble-shooting

When Minuit just doesn’t work, some of the more common causes are:

– Precision mismatch. Make sure your FCN has been compiled with the same precision as the
version of Minuit you are using. When using DOUBLE PRECISION, it is safest to use the IMPLICIT
declaration to make sure that everything is DOUBLE PRECISION, not just the arguments of FCN
but also the internal variables. Note that depending on the computer system used, floating-point
constants may be passed as single precision in subroutine arguments, even if there is an IMPLICIT
DOUBLE PRECISION statement (which is strictly speaking correct since the IMPLICIT statement
refers only to variables, not constants). Therefore, if constants are used as arguments in subroutine
calls, they must be explicitly of the right precision (for example, on Apollo, even 0. is not equal to
��D�).
If the problem is only one of precision, and not of word length mismatch, an appropriate SET EPS

command may fix it.

– Trivial bugs in FCN. The possibilities for Fortran bugs are numerous. Probably the most common
among physicists inexperienced in Fortran is the confusion between REAL and INTEGER types,
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which you can sometimes get away with, but not always. [For example, if A and B are REAL

variables, the Fortran statement A � ��B is not good programming, but happens to do what the
user probably intended, whereas the statement A � B � ��� almost certainly will not do what the
user intended.] Minuit can spot some trivial bugs itself, and issues a warning when it detects an
unusual FCN behaviour. Such a warning should be taken seriously.
Minuit also offers some tools (especially SCAN) which can help the user to find trivial bugs.

– Overwriting in a user routine. Overwriting most often occurs when setting the values of a local
array or an array in COMMON, and elements outside the dimensions of the array are addressed. Most
computer systems do not detect this error unless you attempt to write into a protected area of
memory, and of course Minuit is also helpless, especially if Minuit itself is being overwritten. The
symptoms of user overwriting may be almost anything, including unusual behaviour of Minuit
itself. The effects depend critically on where instructions and data are loaded in memory, so
they may change completely if the same program is recompiled with different compiler options or
reloaded in a different sequence, even though the compiler and loader are not at fault.

– Changing the values of input arguments.In subroutine FCN, for example, the arguments NPAR
and IFLAG, as well as the values of the parameters themselves, are only input to FCN and their
values should not be changed inside FCN. Minuit is now protected against this in principle, since
the user only gets a copy of the value, not the actual address of the internal Minuit variable, but
still this is a symptom of misunderstanding by the user.
If you really want to change the number of variable parameters, this must be done with commands
like FIX and RELEASE, by redefining parameters using command PARAMETER or CLEAR.
Similarly, if a parameter takes on an unwanted value, it will do no good to change its value inside
FCN: In the best case, Minuit won’t see your improved value, and in the worst case, it will produce
unpredictable results. To set a parameter to a certain value, use the command SET PARam, and to
keep it within certain bounds, use the command SET LIMits. If the parameter must obey more
complicated constraints, you must find a trick such as adding a penalty value to FCN outside of the
physical region, to force it back to where you want it.

– An ill-posed problem. For questions of parameter dependence, see the discussion above on
postive-definiteness. Other mathematical problems which can arise are: excessive numerical
roundoff — be especially careful of exponential and factorial functions which get big very quickly
and lose accuracy; starting too far from the solution — the function may have unphysical
local minima, especially at infinity in some variables; incorrect normalization — in likelihood
functions, the probability distributions must be normalized or at least have an integral which is
independent of the values of the variable parameters.

– A bug in Minuit. This is extremely unlikely, but it did happen once. If a bug is suspected, and
all other possible causes can be eliminated, please try to save a copy of the input and output files,
listing of FCN, and other information that may be relevant, and send them to JAMES at CERNVM

or VXCERN��JAMES or JAMES�CERNAPO�CERN�CH.
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We give here one full example of a real fit, performed first in batch data-driven mode, then the same fit
performed by Fortran calls.

6.1 A data-driven fit

The example job given here is set up for batch processing. The OPEN statements assign the input and
output files, and are somewhat computer-dependent (those given here are for a Vax). On many systems,
it may be more convenient (or necessary) to perform the file assignments in JCL rather than from the
Fortran, but whatever the user decides, the files must be opened and the unit numbers communicated to
Minuit before the call to MINUIT.

The same job could be run interactively, in which case the input and output files would be assigned to the
terminal, and the “user’s data” listed below, instead of coming from a file, would be typed in directly to
the terminal.

The User’s main program

PROGRAM DSDQ

EXTERNAL FCNK�

OPEN �UNIT
��FILE
DSDQ�DAT�STATUS
OLD�

OPEN �UNIT
��FILE
DSDQ�OUT�STATUS
NEW�FORM
FORMATTED�

CC CALL MINTIO������� � Not needed� default values

CALL MINUIT�FCNK���� � User routine is called FCNK�

STOP

END

The User’s FCN

SUBROUTINE FCNK��NPAR�GIN�F�X�IFLAG�

IMPLICIT DOUBLE PRECISION �A�H�O�Z�

REAL THPLUI� THMINI

DIMENSION X����GIN���

PARAMETER �MXBIN
���

DIMENSION THPLU�MXBIN��THMIN�MXBIN��T�MXBIN��

� EVTP�MXBIN��EVTM�MXBIN�

DATA NBINS�NEVTOT� �������

DATA �EVTP�IGOD��IGOD
	����

� �		�� ��� 	��� 	��� 	��� ��� 	�� ��� ��� ���

� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

� ��� ��� ��� ��� ��� 	�� ��� 	�� ��� ���

DATA �EVTM�IGOD��IGOD
	����

� � ��� ��� ��� ��� ��� ��� ��� ��� 	�� 	��

� ��� ��� 	�� ��� ��� ��� ��� ��� ��� ���

� ��� ��� ��� ��� ��� ��� ��� ��� 	�� ���

C

XRE 
 X�	�

XIM 
 X���

DM 
 X���

GAMS 
 	���X�	��

GAML 
 	���X�		�

GAMLS 
 �����GAML�GAMS�

32
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IF �IFLAG �NE� 	� GO TO ���

C generate random data

STHPLU 
 ��

STHMIN 
 ��

DO ��� I
 	� NBINS

T�I� 
 ��	�REAL�I�

TI 
 T�I�

EHALF 
 EXP��TI�GAMLS�

TH 
 ��	���XRE���� � XIM���� � EXP��TI�GAML�

TH 
 TH � ��	���XRE���� � XIM���� � EXP��TI�GAMS�

TH 
 TH � ����XIM�SIN�DM�TI� � EHALF

STERM 
 �����	���XRE����XIM�����COS�DM�TI� � EHALF

THPLU�I� 
 TH � STERM

THMIN�I� 
 TH � STERM

STHPLU 
 STHPLU � THPLU�I�

STHMIN 
 STHMIN � THMIN�I�

��� CONTINUE

NEVPLU 
 REAL�NEVTOT���STHPLU��STHPLU�STHMIN��

NEVMIN 
 REAL�NEVTOT���STHMIN��STHPLU�STHMIN��

WRITE ����A��  LEPTONIC K ZERO DECAYS

WRITE ����A��I	���  PLUS� MINUS� TOTAL
�NEVPLU�NEVMIN�NEVTOT

WRITE ����A��

� � TIME THEOR� EXPTL� THEOR� EXPTL�

SEVTP 
 ��

SEVTM 
 ��

DO ��� I
 	� NBINS

THPLU�I� 
 THPLU�I��REAL�NEVPLU� � STHPLU

THMIN�I� 
 THMIN�I��REAL�NEVMIN� � STHMIN

THPLUI 
 THPLU�I�

CCCCC remove the CCC to generate random data

CCC CALL POISSN�THPLUI�NP�IERROR�

CCC EVTP�I� 
 NP

SEVTP 
 SEVTP � EVTP�I�

THMINI 
 THMIN�I�

CCC CALL POISSN�THMINI�NM�IERROR�

CCC EVTM�I� 
 NM

SEVTM 
 SEVTM � EVTM�I�

IF �IFLAG �NE� ��

� WRITE ����	X��G	����� T�I��THPLU�I��EVTP�I��THMIN�I��EVTM�I�

��� CONTINUE

WRITE ��� �A��F	�����  DATA EVTS PLUS� MINUS
� SEVTP�SEVTM

C calculate chisquare

��� CONTINUE

CHISQ 
 ��

STHPLU 
 ��

STHMIN 
 ��

DO ��� I
 	� NBINS

TI 
 T�I�

EHALF 
 EXP��TI�GAMLS�

TH 
 ��	���XRE���� � XIM���� � EXP��TI�GAML�

TH 
 TH � ��	���XRE���� � XIM���� � EXP��TI�GAMS�

TH 
 TH � ����XIM�SIN�DM�TI� � EHALF

STERM 
 �����	���XRE����XIM�����COS�DM�TI� � EHALF

THPLU�I� 
 TH � STERM

THMIN�I� 
 TH � STERM

STHPLU 
 STHPLU � THPLU�I�

STHMIN 
 STHMIN � THMIN�I�
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��� CONTINUE

THP 
 ��

THM 
 ��

EVP 
 ��

EVM 
 ��

IF �IFLAG �NE� �� WRITE ����	H��	�X�A���X�A��

� POSITIVE LEPTONS�NEGATIVE LEPTONS

IF �IFLAG �NE� �� WRITE ����A��X�A��

�  TIME THEOR EXPTL CHISQ�

�  TIME THEOR EXPTL CHISQ

C

DO ��� I
 	� NBINS

THPLU�I� 
 THPLU�I��SEVTP � STHPLU

THMIN�I� 
 THMIN�I��SEVTM � STHMIN

THP 
 THP � THPLU�I�

THM 
 THM � THMIN�I�

EVP 
 EVP � EVTP�I�

EVM 
 EVM � EVTM�I�

C Sum over bins until at least four events found

IF �EVP �GT� ��� THEN

CHI	 
 �EVP�THP�����EVP

CHISQ 
 CHISQ � CHI	

IF �IFLAG �NE� ��

� WRITE ����	X��F����� T�I��THP�EVP�CHI	

THP 
 ��

EVP 
 ��

ENDIF

IF �EVM �GT� �� THEN

CHI� 
 �EVM�THM�����EVM

CHISQ 
 CHISQ � CHI�

IF �IFLAG �NE� ��

� WRITE ������X��F����� T�I��THM�EVM�CHI�

THM 
 ��

EVM 
 ��

ENDIF

��� CONTINUE

F 
 CHISQ

RETURN

END

The user’s data to drive Minuit.

set title

FIT DELTA S� DELTA Q RULE TO LEPTONIC K ZERO DECAYS

parameters

	 Real�X� �� �	

� Imag�X� �� �	

� Delta M ���� ��	

	� K Short LT ����

		 K Long LT �	���

fix �

migr

print �

set print �

minos
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restore

migrad

minos

set param � �����

fix �

contour 	 �

stop

6.2 The same example in Fortran-callable mode.

The program below takes the place of the data in the above example.

The User’s main program and subroutine

PROGRAM DSDQ

C Minuit test case� Fortran�callable�

C Fit randomly�generated leptonic K� decays to the

C time distribution expected for interfering K	 and K��

C with free parameters Re�X�� Im�X�� DeltaM� and GammaS�

IMPLICIT DOUBLE PRECISION �A�H�O�Z�

EXTERNAL FCNK�

CC OPEN �UNIT
��FILE
DSDQ�OUT�STATUS
NEW�FORM
FORMATTED�

DIMENSION NPRM����VSTRT����STP����ARGLIS�	��

CHARACTER�	� PNAM���

DATA NPRM � 	 � � � � � 	� � 		 �

DATA PNAM �Re�X�� Im�X�� Delta M�T Kshort�T Klong�

DATA VSTRT� �� � �� � ���� � ���� � �	��� �

DATA STP � ��	 � ��	 � ��	 � �� � �� �

C Initialize Minuit� define I�O unit numbers

CALL MNINIT�������

C Define parameters� set initial values

ZERO 
 ��

DO 		 I
 	� �

CALL MNPARM�NPRM�I��PNAM�I��VSTRT�I��STP�I��ZERO�ZERO�IERFLG�

IF �IERFLG �NE� �� THEN

WRITE ����A�I��  UNABLE TO DEFINE PARAMETER NO��I

STOP

ENDIF

		 CONTINUE

C

CALL MNSETI�Time Distribution of Leptonic K� Decays�

C Request FCN to read in �or generate random� data �IFLAG
	�

ARGLIS�	� 
 	�

CALL MNEXCM�FCNK�� CALL FCN� ARGLIS �	�IERFLG�

C

ARGLIS�	� 
 ��

CALL MNEXCM�FCNK��FIX� ARGLIS �	�IERFLG�

ARGLIS�	� 
 ��

CALL MNEXCM�FCNK��SET PRINT� ARGLIS �	�IERFLG�

CALL MNEXCM�FCNK��MIGRAD� ARGLIS ���IERFLG�

CALL MNEXCM�FCNK��MINOS� ARGLIS ���IERFLG�

CALL PRTERR

ARGLIS�	� 
 ��

CALL MNEXCM�FCNK��RELEASE� ARGLIS �	�IERFLG�

CALL MNEXCM�FCNK��MIGRAD� ARGLIS ���IERFLG�
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CALL MNEXCM�FCNK��MINOS� ARGLIS ���IERFLG�

ARGLIS�	� 
 ��

CALL MNEXCM�FCNK��CALL FCN� ARGLIS � 	�IERFLG�

CALL PRTERR

CALL MNEXCM�FCNK��STOP � ����IERFLG�

STOP

END

SUBROUTINE PRTERR

C a little hand�made routine to print out parameter errors

IMPLICIT DOUBLE PRECISION �A�H�O�Z�

C find out how many variable parameters there are

CALL MNSTAT�FMIN�FEDM�ERRDEF�NPARI�NPARX�ISTAT�

C and their errors

DO �� I
 	� NPARI

CALL MNERRS��I�EPLUS�EMINUS�EPARAB�GLOBCC�

WRITE ������ I�EPLUS�EMINUS�EPARAB�GLOBCC

�� FORMAT ��X�I���F	����

�� CONTINUE

RETURN

END

The FCN is exactly the same in Fortran-callable mode as in data-driven mode.
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Chapter 7: Introduction

7.1 The motivation

A large class of problems in many different fields of research can be reduced to the problem of finding the
smallest value taken on by a function of one or more variable parameters. Examples come from fields as
far apart as industrial processing (minimization of production costs and general relativity (determination
of geodesics by minimizing the path length between two points in curved space-time). But the classic
example which occurs so often in scientific research is the estimation of unknown parameters in a theory
by minimizing the difference (chi-square) between theory and experimental data. In all these examples,
the function to be minimized is of course determined by considerations proper to the particular field being
investigated, which will not concern us in these lectures. Our aim is to study the mathematical problem
of minimization.

7.2 Minimization, maximization, and optimization

Although traditionally one speaks of function minimization, some authors refer to maximization. Of
course the two are entirely equivalent since one can be converted to the other by changing the sign of
the function. Thus the problems of minimizing chi-square, maximizing likelihood, minimizing cost, or
maximizing efficiency can all be considered as minimization (or maximization). To avoid committing
oneself, it is now fashionable to speak of optimization, to cover both cases. This unfortunately causes
confusion with optimization in control theory where the principal techniques are analytical (calculus of
variations) and hence bear little relationship to the numerical methods used in function minimization as
treated here.

To add to the confusion there is the term ‘programming’, which is also used to mean minimization
(usually specified as linear programming, non-linear programming, or mathematical programming), a
historical usage dating from the time when programmers in the modern sense did not exist, and computer
users were not programming but coding.

Other terms used for minimization are extremization and hill-climbing. Since these can also be used
to mean other things, the general conclusion is that in this field you can not tell a book from its title.
While waiting for general agreement as to what the subject should be called, we will stick to function
minimization.

7.3 Definition of the problem

Given a function F �x�, the general problem is to find the value of the variable or variables x for which
the functionF �x� takes on its smallest value. [As pointed out above, this is entirely equivalent to finding
the x for which the function�F �x� takes on its largest value, but for consistency we will always consider
only minimization.] The rules of the game are the following:

i) The function F �x� is assumed not to be known analytically, but is specified by giving its value at any
point x.

ii) The allowed values of the variable or variables xmay be restricted to a certain range, in which case one
speaks of constrained minimization. In these lectures we limit ourselves to the unconstrained problem.

iii) In some cases additional information about the function F may be available, such as the numerical
values of the derivatives �F��x at any point x. Such knowledge cannot in general be assumed, but
should be used when possible.

40
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iv) The function F �x� is repeatedly evaluated at different points x until its minimum value is attained.
The method which finds the minimum (within a given tolerance) after the fewest function evaluations is
the best. Occasionally other considerations may be important, such as the amount of storage required by
the method or the amount of computation required to implement the method, but normally the dominating
factor will be the time spent in evaluating the function.

7.4 Definition of a minimum

The theorems of elementary calculus tell us that the function F �x� must take on its smallest value at a
point where either:

i) all derivatives �F��x � � (a stationary point), or
ii) some derivative �F��x does not exist (a cusp), or
iii) the point x is on the boundary of the allowed region (an edge point).

Although we will sometimes find it useful to consider points satisfying the above properties, this approach
of considering essentially the analytic properties of the function is clearly not well adapted to the rules
of the game as outlined above. Indeed, when one considers that there may be any number of stationary
points, cusps, and edge points, all of which may be arbitrarily hard to find by simply sampling the function
value, the whole problem begins to appear hopeless unless some simplifying assumptions are made.

The usual simplification consists in abandoning the attempt to find the global minimum and being satisfied
with a local minimum. A local minimum may be defined as a point x�, where for all points x in some
neighbourhood around x� we have F �x� 	 F �x��.

Now the situation looks much brighter since the very definition of a local minimum suggests a general
strategy for finding one: we vary x by small steps in a direction which causesF to decrease, and continue
until F increases in all allowed directions from some point x�. This does not yet tell us how to vary x,
but at least it suggests that a solution can be found.

In the lectures we will consider only unconstrained local minimization, unless otherwise stated. The
problem of global minimization will be treated in Section 6.

7.5 The shape of the function – Taylor’s series

With a view to making an intelligent minimizing method, it is of interest to consider what we might
reasonably expect about the behaviour of F . If F represents a physically meaningful function, we
would certainly expect all the derivatives of F to exist everywhere in the region of interest. Under these
conditions we can write down the Taylor’s series expansion for F about some point x �, assuming for the
moment that x represents just one variable:

F �x� � F �x�� �
�F

�x

����
x�

�x � x�� �
�

�

��F

�x�

����
x�

�x � x��
� � � � � �

Although we do not know anything a priori about the domain of convergence of this series, we do know
that as the distance �x� x�� becomes smaller, the higher order terms become less important, so that we
would expect that predictions based on the low-order terms should not be very wrong, at least for small
steps. Before considering these terms in more detail let us generalize the variable x to a vector of n
variables x. Then we have

F �x� � F �x�� � gT �x � x�� �
�

�
�x � x��

T �V �x� x�� � � � � �
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where the matrix �V is defined by Gij � ��F��xi�xj and the gradient vector g is gi � �F��xi, all
derivatives being evaluated at x�. The T denotes transposition which turns a column vector into a row
vector. Note the difference between xi (the ith variable) and xi (the position vector at the point i).

Now the first term of the above series is constant, so it will not tell us much about where to look for a
minimum. The second term is proportional to the gradient g and tells us in which direction the function is
decreasing the fastest, but since it is linear in g, it does not predict a minimum and therefore does not tell
us what step size to take. Moreover, as we approach the minimum g � � (if it exists) so we will have to
go further and consider the next term. The third, or quadratic term describes a parabolic behaviour and is
therefore the lowest term to predict a minimum. Unlike g we can expect �V to be roughly constant over
small regions, since it would be exactly constant if higher-order terms were zero.

We mention, in passing, one class of problems in which the above analysis would not hold at all. This is
in the field known as linear programming, which limits itself to minimizing functions which are linear in
the parameters, subject to constraints which are also linear. A linear function can not have a minimum
in the sense described above (a stationary point) but must take on its minimum at a constraint boundary
(edge point). For such problems the description of the constraints therefore takes on greater importance
than the analysis of the function itself, and will not be considered in these lectures.

7.6 Non-existence of optimum in general

Although we will be studying and comparing different minimization algorithms (recipes), the reader
should be warned at the outset that in the strict sense of the rules of the game as stated in Section 1.3
above, we will not be able to show any algorithm to be superior to any other for all functions. In principle
at least, no matter how bad one algorithm is, or how good another, we can always find a function which
will be minimized faster by the bad method than by the good one. We should keep such essentially
theoretical considerations in mind, but should not be overly discouraged by them. In particular, certain
objective criteria will emerge for comparing methods even though the principal criterion—minimization
speed—depends on the function. In the past there has in my opinion been an overemphasis on such
objective criteria in an attempt to find the ideal universal minimization algorithm. More recently, the
tendency is to adapt the algorithm to the function, even to the point of introducing a super-algorithm
which would choose a sub-algorithm appropriate to the function at hand. Such questions of global
strategy will be considered later.

The reader should also be warned that in presenting particular algorithms I will often omit details which
are unimportant to an understanding of the algorithm although they may be crucial in actually making it
work. The original references should therefore be consulted before programming such algorithms.

7.7 The role of the computer

While our subject is essentially a mathematical one, it has been so profoundly influenced by the existence
of high-speed electronic computers that it would certainly be unfair not to mention them here. Indeed,
real progress in the solving of large-scale practical problems has come only since the 1960’s, although
much of the basic theory dates back to Newton’s time or even earlier. This is, of course, because of the
renewed interest in numerical minimization techniques for use on computers. As it is no longer even
thinkable to use these techniques for hand calculations, it is best to place ourselves immediately in the
computer context and to conceive of our function F �x� rather as a subroutine which returns a value of F
(and perhaps some other information such as numerical values of derivatives) for given input values of
the arguments x.
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One unpleasant consequence of the computer-oriented approach is that we will often have to worry
about rounding-off errors in the function value due to the finite word length of digital computers. In
addition there may be problems of overflow or underflow. In a real program for minimization or analysis
general functions, all numerical operations must be protected against such numerical exceptions, and this
typically represents more than half of the computer code, sometimes nearly all of it.
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8.1 Usefulness inn-dimensional problems

We will first consider functions of just one variable, since some general problems can be seen more
easily in this simplest case and also because some n-variable algorithms contain steps which require
one-dimensional minimization. The one-variable problem is therefore both instructive and useful even
though our prime consideration will be that of more complex problems.

8.2 Grid search

The most elementary search technique consists in choosing k equally spaced points within the range of
the parameter x, evaluating the function at each of the points, and retaining the lowest value found. If
the spacing between points is �x, one of the points is sure to be within �x�� of the true minimum,
although in principle it may not be the point corresponding to the lowest value. Still, if the function does
not vary too wildly over the distances of the order of �x, one generally assumes that this method gives
the minimum within a range of about �x.

Of course the grid search method has some difficulties. It is not directly applicable to the usual case
where the range of x is infinite. But in this case a simple remedy is to choose a reasonable range in the
middle of the allowed range, and later to shift the sampling range if the minimum comes out at an end
point.

The most serious objection to the grid method is its inefficiecy. Given the assumption that F does not
vary too much over a distance of �x, many of the function evaluations are certainly unnecessary, namely
those that are in regions where the function value is known to be large. In other words, the algorithm
takes no account of what it has learned about the function. This inefficiency becomes more striking, in
fact prohibitive, when extended to many variables.

On the other hand, this method has the prized virtues of extreme simplicity and absolute stability. It
always converges within the desired tolerance in a known number of steps and is quite insensitive to the
detailed behaviour of the function.

The efficiency of the grid method may be greatly improved by proceeding in several stages, using a
smaller range and smaller step size in each succeeding stage. In this way each stage takes account of
the least value found in the preceding stage, and the method can be said to converge in the usual sense
of increasing accuracy due to decreasing step size. In the next section we consider optimum ways to
arrange staging in order to obtain the fastest decrease in step size.

8.3 Fibonacci and golden section searches

In order to optimize the grid search, we want to minimize the number of function evaluations per stage,
compatible with maintaining a constant reduction of a factor t in the step sizes at each stage. This will
yield the fastest reduction in step size. One function evalution tells us nothing about the possible location
of a minimum, but as long as we restrict ourselves to local minima in a given range of x, two points
are sufficient as shown in fig. 1. If F �x�� 
 F �x��, then there must be at least one local minimum
somewhere in the range � 
 x 
 x�. Now in this new range, we already have one point �x��, so that a
further reduction in range is possible with only one new function evaluation, and the procedure can now
be continued with only one new evaluation per stage. It remains to be shown that this can be continued
indefinitely with a constant reduction in step size, and to calculate what that reduction will be. Clearly
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we would get the maximum reduction on the first step if x� and x� were very close together, but we must
not forget that x� (or x�� will then be used for the next stage and should therefore be close to the middle
of this new interval as well. The situation is illustrated in the figs. 2 and 3, where the distances indicated
are imposed by the symmetry of the intervals and the condition that the reduction in range must be a
factor of t in each stage. The new range after evaluation of F �x�� will be x� 
 x 
 x� and its length
must be t�.
This will be possible since there is a real root to the equation:

t� � � � t

t �

p
� � �

�
� ��	�	 �

Since this ratio t is known as the golden section, the minimization technique is called a golden section
search. If the number of stages to be taken is known in advance, it is possible to improve very slightly
on this technique by using a Fibonacci search, as described for example in Kowalik and Osborne [1].
Although Fibonacci can be shown to be optimal (in a sense described below), the slight improvement
is probably not worth the added complication. The golden section search is optimal among algorithms
where the stopping point is not decided in advance.
The above techniques are optimal only in the minimax sense, that is they minimize the maximum number
of function evaluations necessary to obtain a given accuracy. It might be called the pessimist’s optimality,
since in game theory it is the best strategy against an intelligent opponent who is trying to make you
lose. It should therefore be effective in minimizing pathological functions, but in more normal cases we
should expect other methods to be better. Such methods are described in the following sections.
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8.4 Quadratic interpolation and extrapolation

A more optimistic approach consists in studying the expected behaviour of the function and then hoping
that the deviations of the real function from this behaviour are not too great. From the Taylor’s series
analysis of Section 1.5, it would be reasonable to proceed by assuming that the function is nearly quadratic.

Since a parabola is determined by three points, this method requires the function to have been evaluated
for three different values x�� x� and x�. It then predicts the minimum to be at the minimum of the parabola
passing through these points. If the three function values are F�� F�� and F�, the predicted minimum is
at x� given by

x� �

�x� � x��F�

�x� � x�� �x� � x��
�

�x� � x��F�

�x� � x�� �x� � x��
�

�x� � x��F�

�x� � x�� �x� � x��

�

�
F�

�x� � x�� �x� � x��
� F�

�x� � x�� �x� � x��
� F�

�x� � x�� �x� � x��

� �

Considerable simplification results when the three points are equally spaced, a distance d apart, in which
case:

x� � x� �
d

�

�F� � F��

�F� � F� � �F��
�

The function is then evaluated at x�, this point replaces one of the first three, and a new point is predicted,
again by quadratic interpolation using the new set of three points. The method terminates when the
predicted function value at some new point agrees with the actual value within a specified tolerance.

This algorithm usually performs quite well when applied to easy (nearly quadratic) functions, but suffers
from a number of instabilities which can be quite serious, as follows:

i) At any step the three points may determine a parabola with a maximum rather than a minimum, in
which case the method diverges.

ii) If the three points lie nearly in a straight line, the algorithm takes an enormous step which may cause
numerical difficulties as well as diverging.

iii) After each step there is a choice of which two of the three previous points to retain for the next
step. It is usually more convenient and logical to retain the most recent points, but this may also lead to
instabilities by throwing away the best points.

iv) Even without any of the above difficulties, the method may oscillate about the minimum instead of
converging toward it.

All the problems can be fixed by including checks and safeguards in the algorithm, but the remedies
always involve abandoning, at least temporarily, the quadratic interpolation step. The best remedy is
probably to reserve the method for well-behaved functions and to abandon it entirely as soon as trouble
arises. It is most often used as the last step in algorithms which depend principally on other methods,
since physical functions are usually quite parabolic in the immediate vicinity of the minimum.

When derivatives of the function are available, variations of quadratic interpolation are possible, using
instead of three points to determine the parabola, either two function values and one first derivative, or the
function value and the first two derivatives at one point. These variations tend to be even more unstable
than the basic method, since they use information from fewer points.

8.5 The success-failure method

A good compromise between the stability of the grid search and the rapid convergence of quadratic
interpolation is found with the success-failure technique of Rosenbrock [2]. A start point x � and initial
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step size d are required, and the function is evaluated at x� and x� � d. The first step is termed a success
if F �x� � d� 
 F �x��, otherwise it is a failure. If it is a failure, d is replaced by ��d, where � is a
contraction factor less than one, and the test is repeated. If it is a success, x� is replaced by x� � d, d is
replaced by �d, where � is an expansion factor greater than one, and the test is repeated. The process
continues in this way until the function values change by less than a specified amount, The numerical
values usually used for the expansion and contraction parameters are � � 
�� and � � ����

An interesting feature of this method is that a local minimum is always bracketed whenever a success
is followed by a failure. When this happens, the middle one of the last three points is always lower
than the outer two, so that one is in a favourable position for trying a quadratic interpolation step. The
success-failure method, with one quadratic interpolation step each time a success is followed by a failure,
is probably the most effective one-dimensional technique for use on general functions although in special
cases other methods may be superior.
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9.1 Grid searches and random searches

An excellent illustration of the enormous increase in complexity in going to spaces of high dimensionality
is afforded by the grid search technique in many variables. In order to localize a minimum to 1% of the
range of one variable by this technique requires 100 function evaluations; in ten variables the number of
points required is ����. Clearly we can forget about this method when more than one or two parameters
are involved.

In fact it is a general rule in function minimization, as in function integration, that one should not expect
good one-dimensional techniques to be good when extended to higher dimensionality. Experience with
integration suggests that a Monte Carlo search is more efficient than a grid search in many dimensions.
The Monte Carlo technique consists in choosing points randomly according to some distribution (usually
uniform or normal).

But even when these methods are refined by using variable search ranges, they prove far too slow for
general use and we must turn to more efficient techniques.

9.2 Single-parameter variation

Since the condition for a minimum which is a stationary point in n variables x i is the vanishing of all n
first derivatives �F��xi, it is natural to try to make each derivative vanish separately, one after the other.
This is the old method of single parameter variation, where one seeks a minimum with respect to one
variable at a time using one of the techniques described earlier. Of course when you have finished

minimizing with respect to x� you may no longer be at a minimum with respect to x�, so you generally
have to start all over again, but the process usually does converge, as illustrated for two variables in fig.
4. Here the curves represent contours of equal function value, and the straight lines show the steps taken
in minimizing F with respect to x�, then x�, then x�, etc. In this case the method converges nicely after
only four single-parameter minimizations.

Consider now the function represented by the contours shown in fig. 5. Here the method proceeds much
more slowly because of the narrow valley. It still converges, but as the valley becomes narrower, the
convergence becomes arbitrarily slow.

Such behaviour in many dimensions causes this method to be generally considered as unacceptably slow.

Two of the more successful improvements aimed at avoiding such behaviour are due to Hooke and Jeeves
[3] and Rosenbrock [2]. We discuss the latter below.

9.3 Rosenorock’s method

Rosenbrock’s algorithm [2] starts by performing single-parameter minimizations as above. Then when
one full cycle of all parameters has been completed, a new set of orthogonal axes is defined with one
axis taken as the vector from the start point to end point of the cycle. This vector points in the direction
of previous over-all improvement and is expected to be a good direction for future improvement. In the
case of the narrow valley seen above, it should point more or less along the valley and avoid the zig-zag
behaviour. The next cycle of single-variable minimizations is performed using multiples of the newly
defined axes as variables.

The Rosenbrock method generally performs well, being quite stable and capable of following narrow
valleys, but as the number of variables increases, the efficiency drops, probably because the new axis
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defined by past improvement is the only ‘intelligent direction’ used in the next cycle. All the other
minimization directions are simply chosen orthogonal to the first one. Also, its terminal convergence is
slow compared with the more ‘quadratic’ methods described in Section 4.

Another technique, that of Davies, Swann, and Campey [4] (unpublished, see Ref. 4) is similar to
Rosenbrock’s and will not be described here.

9.4 The simplex method

One of the most successful stepping methods in many variables is that of Nelder and Mead [5], based on
the simplex. A simplex is an n-dimensional figure specified by giving its n + 1 vertices. It is a triangle
in two dimensions, a tetrahedron in three, etc. The algorithm takes the name simplex because at each
step the information it carries about the function consists of its values at n + 1 points. One can easily
visualize how the method works by considering the two-dimensional case as in fig. 6. The three starting
simplex points are somehow chosen (perhaps randomly) and the function is evaluated at each point. Let
the point PH be that at which the function value is highest (worst) and PL that at which it is lowest. Let
�P be the centre-of-mass of all points in the simplex except PH ; that is:

�P �
�

n

�
n	�X
i��

Pi � PH

�
�

From the original simplex, a new simplex is formed by replacingPH by a better point if possible. The first
attempt to find a better point is made by reflecting PH with respect to �P , producingP � � �P �� �P �PH�.
If F �P �� 
 F �PL�, a new point is tried at P �� � �P � �� �P � PH�. If F �P �� 	 F �PH�, a new point
is tried at P �� � �P � ���� �P � PH�. The best of the new points then replaces PH in the simplex for
the next step, unless none of them is better than PH . In the latter case, a whole new simplex is formed
around PL, with dimensions reduced by a factor of 0.5.

Variations on the method are possible by using different contraction or expansion factors when search-
ing along the line from PH through �P (dotted in diagram). Another interesting possibility is to at-
tempt a quadratic interpolation step along the dotted line whenever three points have been determined
�PH � P

�� P ���. However, one must be careful not to accept a point too close to �P , for then the simplex
collapses into a line (or in general a hyperplane of n� � dimensions) from which it can never recover.

The simplex algorithm, being designed always to take as big steps as possible, is rather insensitive to
shallow local minima or fine structure in the function caused by rounding errors, statistical errors (Monte
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Carlo output), etc. Another of its virtues is that of requiring few function evaluations, usually one or
two per iteration. In addition, each search is in an ‘intelligent’ direction, pointing from the highest value
to the average of the lowest values. Compare this with Rosenbrock’s method, where really only the
principal axis is an ‘intelligent’ direction, and all other searches are for exploring along orthogonal axes
to determine a new principal axis.

A convenient convergence criterion for the simplex method is based on the difference F �PH�� F �PL�.
The iterations are stopped when this difference is less than a preset value. As a final step, the function is
evaluated at �P , which is often slightly better than F �PL�.

In view of the danger mentioned above—of the simplex collapsing into a hyperplane of dimension
n � �—it has been suggested to use n � � or more points rather than n + 1 at each step. I have tested
this idea, which is equivalent to introducing a dummy parameter of which the function is independent,
and have always found the efficiency of the algorithm to decrease under these conditions.

9.5 Conjugate directions method

This method does not require information about the derivatives of the function, but the exploration
requires motivation Chapter 4, so it is discussed in 4.5.
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10.1 Calculating derivatives

I will call a gradient method any technique which uses information from a very small range of the
variables (i.e. essentially derivatives) to predict good trial points relatively far away. This does not
necessarily mean that they follow the gradient, but only that the gradient, and perhaps higher derivatives,
are used or estimated.

It is of course possible in most cases to calculate analytically the numerical values of the derivatives of a
function, just as it is possible to calculate the value of the function itseif. However, it is often inconvenient
and dangerous if the algebra is complicated, so that very often we are faced with minimizing a function
for which no derivatives are provided. Since the most powerful algorithms discussed below require
derivatives, a general minimization program must be able to estimate the derivatives of the function by
finite differences.

A first derivative may be estimated from

�F

�x

����
x�

� F �x� � d� � F �x��

d
�

where d is a ‘small’ displacement. The error will be, to lowest order in the Taylor’s expansion,

� � d

�
	 �

�F

�x�

����
x�

�

It is therefore advantageous to make d as small as possible, but still large enough so that the rounding
error in the computation of F does not become larger than the error introduced by �. Since the second
derivatives may not be known, it may not be possible to find an optimum step-size d, so we may just
have to close our eyes and guess.

A much safer method would be to use points chosen symmetrically on either side of x� giving

�F

�x

����
x�

� F �x� � d� � F �x� � d�

�d
�

for in this case the error � vanishes to second order and the lowest order term is proportional to the third
derivative. A disadvantage of this method is that it requires �n function calls to estimate the n first
derivatives, whereas the asymmetric steps require only n + 1 [or only n if F �x�� has to be evaluated
anyway]. An advantage of the symmetric steps method, however, is that it gives the second derivatives
as a by-product [assuming F �x�� known]:

��F

�x�
� F �x� � d� � F �x� � d� � �F �x��

d�
�

and from the relationship for the error � in the asymmetric method, a conservative upper limit of the
uncertainty in the first derivative results assuming at least that the symmetric formula gives a smaller
error than the asymmetric one. A complete treatment of step sizes is beyond the scope of these lectures
but can be found in a paper by Stewart [6].

The numerical evaluation of second derivatives is facilitated by the fact that they should be approximately
constant over small regions, so that symmetrical steps are usually not necessary. Unfortunately, however,
there are a lot of second derivatives to evaluate; since they form a symmetric n 
 n matrix, there are
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n�n � ���� independent components, requiring at least n�n � ���� points in addition to those required
for the symmetric derivatives. For two parameters, a minimum point pattern is shown fig. 7. The odd
point (for the mixed second derivative) could have been chosen in any corner. The two-dimensional
diagram is somewhat misleading since for large n, the number of ‘odd points’ is n times larger than the
number of ‘symmetric’ points.

10.2 Steepest descent

As soon as the function’s first derivatives are known, it is natural to follow the direction of the negative
gradient vector in seeking a minimum, since this is the direction in which the function is decreasing the
fastest. Such a technique was used by Cauchy more than a century ago, and is the basis of what is now
known as the method of steepest descent.

This method consists of a series of one dimensional minimizations, each one along the direction of
local steepest descent (gradient) at the point where each search begins. Of course the direction of the
gradient is not constant along a line even for a general quadratic function, so we expect many iterations
to be necessary, but the method can be shown to converge for a quadratic function. Let us follow its
progress for a typical function whose contours are shown in fig. 8. We immediately see an unfortunate
property of the successive search directions: if each linear minimization is exact, successive searches
must be in orthogonal directions. In two dimensions, this yields steps which look just like the single
parameter variation method (fig. 5) with the axes rotated to line up with the gradient at the start point.
In many dimensions the situation is not quite so bad, but successive directions are still orthogonal and
the algorithm cannot be considered acceptable. It is in fact easy to draw contours for a reasonably
well-behaved hypothetical function (fig. 9) where the direction to the minimum is just perpendicular to
the gradient.

10.3 Newton’s method

It is clear that since a general quadratic function is determined by specifying its value, first derivatives,
and second derivatives at a point, it can be minimized in one step if and only if all this information (or its
equivalent) is taken into account. Let us write a quadratic function as

F �x� � F �x�� � gT �x � x�� �
�

�
�x � x��

T �G �x � x�� �
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where the gradient g is evaluated at x� and the second derivative matirx �G is a constant. Then the
minimum is given directly by

xm � x� � �G��g � x� � �V g �

where the inverse of the second derivative matrix is the covariance matrix �V .

This is then the many-dimensional equivalent of quadratic interpolation discussed earlier, and it is subject
to the same sort of difficulties when applied as an iterative technique to general non-quadratic functions.
But let us first point out its good features:

i) the step size is no longer arbitrary, but is prescribed precisely by the method;

ii) the step directions are no longer necessarily along the gradient vector but take account of parameter
correlations (narrow valleys or ridges) through the mixed second derivative terms.

In practice, however, the method is unstable, essentially for the reasons given in Section 2.4. In particular,
it diverges whenever the matrix �G (or �V ) is not positive-definite (see next section). In its unmodified
form the method is used only when the minimum is known to be very close or when the function is
known to be positive quadratic (for linear least squares). However, it is clearly a powerful technique and
is worth studying in some detail since all the most successful algorithms are based on Newton-like steps,
as discussed below.

10.4 Positive-definite quadratic forms

We pause here briefly to consider the properties of quadratic forms useful for understanding the more
powerful gradient methods. In one dimension the description is simple; a general quadratic form can be
written

F �x� � a � gx �
�

�
Gx� �

where g � �F��x at x = 0, and G � ��F��x� also at x = 0. This function has a minimum if and
only if G � 0. If G = 0, the minimum is at infinity, The minimum (if it exists) is at x � �g�G. When
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using a quadratic approximation to minimize a general non-linear function, it makes sense to take a step
to x � �g�G only if G 	 � since otherwise we step to a predicted maximum or to infinity. A possible
remedy if G 
 � is to take a step x � �g; that is, to set G arbitrarily equal to unity so that the step will at
least be in the right direction although it will now have arbitrary length. Consideration of fig. 10 shows
that this is the only thing we can do unless more information is available, since the quadratic part of the
function is not convex or positive-definite at the point x�.

These arguments may now be extended to many dimensions where g becomes the gradient vector g, and
G becomes the second derivative matrix �G . Then the Newton step to x � ��G��g makes sense only if

�G (hence�G��� is a positive-definite matrix, since only then does the quadratic form

F �x� � a � gT 	 x �
�

�
xT�V x

have a minimum. If�G is singular, the predicted minimum (or maximum) is not unique.

Unfortunately there is no simple way of telling, in general, if a matrix is positive-definite by inspecting
individual components, but we can at least state some of the many useful properties of such matrices.
Two necessary (but not sufficient) conditions for a (square, symmetric) matrix to be positive-definite are:

i) the diagonal elements must be positive (this is in fact sufficient for a 1 
 1 matrix);

ii) the off-diagonal elements must obey G�
ij 
 GiiGjj �

[Properties (i) and (ii) together are sufficient for a 2 
 2 matrix.] While the above conditions are easy to
check, they are not in general sufficient. Some necessary and sufficient conditions are the following:

iii) All the eigenvalues of the matrix are positive. This is generally a rather difficult calculation and is
usually approximate.

iv) The determinants of all the upper left square submatrices (formed as indicated in the diagram in fig.
11) are positive. This is probably the easiest method.

v) The scalar eT�G e is positive for all vectors e This is usually taken as the definition of a positive-definite
matrix, and explains why a positive-definite matrix yields a quadratic form with a minimum: the function
increases in all directions from e � �.

vi) The inverse �G�� � �V is positive-definite.

Now suppose that �G�� is calculated for a Newton step and turns out to be non-positive-definite. In
analogy to the one dimensional case we would simply take �G � �I , the unit matrix, and the Newton
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step would become a steepest-descent step of arbitrary length, which is probably not so bad an idea and
is in fact often done. But we can do better by trying to make a positive-definite matrix which is as ‘close’
as possible to the unacceptable �G . This is done as follows: The matrix ��G � ��I ��� is used instead
of �G��, where � is greater than the largest negative eigenvalue of �G � This requires a fair amount of
calculation and so is not very convenient, but it is quite appealing since it amounts to taking a step which
is intermediate between a Newton step and a steepest-descent step (for large values of � the step becomes
short and in the direction of the gradient).
If we are willing to calculate eigenvectors as well as eigenvalues, the non-positive-definiteness can
be turned into an advantage, since the eigenvector corresponding to a negative eigenvalue indicates a
direction (or directions) in which the negative first derivative is increasing in magnitude rather than
decreasing. This suggests an especially fruitful direction for a single-parameter-variation step which
should not only lead to a good decrease of the function value but should also lead more quickly to a
region of positive-definiteness.
Minimization methods based on variations of Newton’s method as suggested by the above considerations
are usually called quasi-Newton methods. Many such algorithms have been published and some are quite
successful, but the field is still open for new ideas.
The principal drawback of such techniques is the repeated evaluation and inversion of the second-
derivative matrix. The calculation of the second derivatives usually requires a rather long time, propor-
tional to n�, and the matrix inversion, although usually faster, increases with n like n�.
One of the most interesting results concerning quadratic forms is the basis of a collection of related
techniques described in the next sections, which do not require explicit repeated evaluations of �G .

10.5 Conjugate directions

The vectors di and dj are said to be conjugate with respect to a positive-definite symmetric matrix �A if

dTi �A dj � � for i �� j �

If �A is the unit matrix �I , the conjugate vectors �d would be orthogonal, so conjugacy can be thought of
as a generalization of orthogonality. A set of n conjugate vectors span an n-dimensional space, and any
point in the space can therefore be expressed as a linear combination of n conjugate vectors.
Although the matrix �A does not uniquely define a set of conjugate vectors, such a set can always be
constructed by a procedure similar to the Gram-Schmidt orthogonalization method. Let us start for
example with an arbitrary vector d�. Then the vector

d� � �A d� �
dT��A �A d�

dT��A d�
d�

can be seen to be conjugate to d� since the product dT��A d� vanishes identically. The process can then be
continued in the same way to construct a d� which will be conjugate to both d� and d�, and so forth up
to dn.
Such vectors become interesting for minimization problems when they are conjugate with respect to the
hessian (second derivative) matrix �G . In this case a theorem of Fletcher and Reeves [7] states that a
sequence of linear minimizations in each of the n conjugate directions will minimize a general quadratic
function of n variables. That this is true can be seen quite easily as follows. Let the quadratic function be

F �x� � F ��� � gTx �
�

�
xT�Gx



56 Chapter 10. Gradient Methods

and the n directions di be conjugate with respect to �G :

dTi �G dj � � � i �� j �

Then the vectors x and g can be expressed as linear combinations

x �
X
i

yidi

g �
X
i

cidi �

so that the general quadratic becomes

F �x� � F ��� �

�X
i

cid
T
i

���X
j

yjdj

	
A �

�

�

�X
i

yid
T
i

�
�V

�
�X

j

yjdj

	
A �

Now if the last term above is regrouped as a double sum, the terms with i �� j drop out because of the
conjugacy condition, so that the whole expression can be simplified as

F �x� � F ��� �
X
i

X
j

cid
T
i djyj �

�

�

X
j

y�jd
T
j �G dj

� F ��� �
X
j



bjyj � b�jy

�
j

�

where
bj �

X
i

cid
T
i dj

and
b�j � dTj �G dj

are constants. By expressing the quadratic in terms of y instead of x we have separated it into a sum of
independent one-parameter quadratic functions. A minimization with respect to yi (a linear minimization
along the direction di) will therefore be independent of the minimizations along the other conjugate
directions, which demonstrates the validity of the theorem.

The above theorem tells us what is ‘wrong’ with the single-parameter-variation method: we should
be using conjugate directions rather than simply orthogonal axes. However, since the construction of
conjugate vectors seems to require knowledge of the hessian �G , this does not yet help very much in
practice, for if we knew �G (and g) we could minimize a quadratic immediately by means of Newton’s
method, and would not need to use n linear minimizations.

The usefulness of conjugate directions comes from the fact that there are ways of determining such
directions implicitly, without first evaluating the entire hessian matrix �G . Of course, by the time all
n conjugate directions are determined, by whatever method, information equivalent to the matrix �G
must have been determined. However, by that time considerable minimization may already have been
performed, as in the method implied by the following theorem.

If x� and x� are minimum points in two parallel subspaces, then the direction x� � x� is conjugate to any
vector which lies in either subspace. This can easily be seen in two dimensions as illustrated in fig. 12.
Since x� is a minimum along the direction d� the gradient of F at x� must be orthogonal to d� :

dT� �g � �G x�� � � �
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d1

x1

x0
_

_x1

_

x2

Fig. 12

where g is the gradient at x � �. Similarly at x�:

dT� �g � �G x�� � � �

Subtracting the above equations, the first terms drop out and we have:

dT��G �x� � x�� � � �

showing that �x� � x�� is conjugate to d�.

Unfortunately, extending this algorithm to three dimensions requires three additional minimizations
in order that the third direction be conjugate to both of the first two, so that convergence for a general
quadratic inn variables is obtained only aftern iterations involving in alln�n + 1)/2 linear minimizations.
Since this is just the number of independent elements in the second derivative matrix, we would be better
off for quadratic functions to calculate this matrix directly and avoid the linear searches. On the other
hand, for non-quadratic functions the conjugate directions method should be much more stable since it
proceeds by a series of linear searches in independent directions and still guarantees convergence in a
finite number of steps once a quadratic region is entered. In addition, this method has the advantage of
requiring neither first nor second derivatives of the function. (Strictly speaking, then, it should have been
discussed in Section 3 rather than in this section.)

A disadvantage of the algorithm described above is that for each iteration, nminimizations are performed
in direction d�, whilst only one is performed in direction dn . This undesirable asymmetry is largely
avoided in a variation due to Powell [8].

10.6 Conjugate gradients

When the first derivatives of the function are calculated, a somewhat more elegant method can be used,
known as the method of conjugate gradients [7]. Suppose that the function and its gradient are evaluated
at two points x� and x�, giving differences:

�x � x� � x�

�g � g
�
� g

�
�



58 Chapter 10. Gradient Methods

Then if the function were quadratic with hessian �V we would have

�g � �G �x �

Any vector d� orthogonal to �g would then be conjugate to �x:

dT� �g � dT� �G �x � � �

which immediately suggests a method for obtaining conjugate directions without knowing �G , based on
the change in gradient along a previous direction.

In the method of conjugate gradients, successive one-dimensional minimizations are performed along
conjugate directions with each direction being used only once per iteration. The first direction is taken
as d� � �g

�
, the steepest descent vector at x�. Let the minimum along this direction be at x� where the

gradient is g
�
. Then the next search direction d�, which we want to be conjugate to d� must be a linear

combination of the only vectors we have at hand, namely:

d� � �g
�
� bd� �

The conjugacy condition is
dT��G d� � dT��G �x� � x�� � �

or
��gT

�
� bdT� ��G d� � ��gT

�
� bgT

�
��g

�
� g

�
� � � �

Since x� is a minimum along direction d� � �g
�
, the direction g

�
is orthogonal to the gradient at x� , so

that gT
�
g
�
� �. We are then left with

b �
gT
�
g
�

gT
�
g
�

so that the new conjugate direction is

d� � �g
�
�

�
gT
�
g
�

gT
�
g
�

�
d� �

This process can be continued to generate n directions, each one conjugate to all the others. It turns out
that the same simple formula holds for all the successive conjugate directions

di	� � �g
i	�

�

�
gT
i	�

g
i	�

gT
i
g
i

�
di �

10.7 Variable metric methods (VMM)

In analogy with the methods of differential geometry and general relativity, it is convenient to consider the
properties of the functionF �x� as being in fact properties of the space of the variables x. We have already
made some rudimentary use of this idea when we generalized from the usual orthogonal coordinate axes
to a system defined by axes pointing in conjugate directions. We now wish to go further and be able to
express the properties of the function F geometrically as the properties of the non-Euclidean space of its
variables x.
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The fundamental invariant in a non-Euclidean space is the squared distance element

ds� � dxT�A dx �

where dx is a differential coordinate displacement and�A is the covariant metric tensor which determines
all the properties of the space under consideration. When �A is just the unit matrix �I , the above formula
for ds� just expresses the Pythagorean theorem for ann-dimensional Euclidean space. When off-diagonal
elements of �A are non-zero and when the elements are allowed to vary as functions of x, a generalized
non-Euclidean space is generated.

It is easily verified that the second derivative (hessian) matrix�G behaves under coordinate transformations
like a covariant tensor and we will identify it with the metric tensor of our space. The inverse �V � �G��

is a contravariant tensor and becomes the contravariant metric tensor. (For a discussion of covariant and
contravariant tensors, see for example chapter 10 of Ref. [9].) This immediately enables us to construct
two scalar (invariant under coordinate transformations) quantities:

a� ds� � dxT�G dx

is the square of the generalized distance between the point x and the point x�dx. When F is a chisquare
function which is minimized to determine some best parameters x, then the physical meaning of the
generalized distance ds is just the number of ‘standard deviations’ x � dx is away from x. That is, the
use of the metric tensor �V enables us to scale the distance dx so that it comes out as a physically (or
statistically) meaningful invariant quantity instead of being expressed in arbitrary units (or a mixture of
arbitrary units!).

And b�  � gT�V g

is twice the difference between the function value at the point where �V and the gradient g are calculated
and the minimum of a quadratic form with hessian matrix �G � �V ��. That is, /2 is the expected
(vertical) distance to the minimum if the function F were quadratic. This provides us with an important
scale-free convergence criterion for any method which provides approximations to �V and g.

When the function F is quadratic, �G is constant everywhere and, in the sense outlined above, this is
equivalent to working in a space with a constant metric. For real non-linear functions we expect higher-
order terms to be small but not negligible, so that we can think of working in a space with a slowly-varying
metric tensor. Minimization methods based on this approach are known as variable metric methods. They
differ from the basic Newton-Raphson method in that the matrix �G is not completely re-evaluated at
each iteration, but is assumed to be well approximated by taking the �G of the previous iteration and
applying a correction based on new information from the current iteration. This correction is known as
the matrix updating formula, which in general differs from method to method.

Variable metric methods therefore proceed generally by the following steps:

i) A starting point x� is given, the gradient g
�

at that point is calculated, and some approximation to �G��,
say �V �, is constructed. The starting �V � may be only the unit matrix, or it may actually be the inverse of
the full second derivative matrix.

ii) A step is taken to x� � x���V �g�, which would be the minimum if F were quadratic and if �V � were
the true covariance matrix. Since x� is not the position of the minimum in the general case, it is usual to
perform a linear search along this direction, finding the � which minimizes F �x� � ��V g

�
�. In either

case let the new point be called x� and let the gradient calculated at x� be g
�
.
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iii) The matrix �V is corrected using an updating formula of the form

�V � � �V � � �f ��V �� x�� x�� g�� g�� �

Then g
�

is replaced by g
�
� x� by x�, and �V � by �V �, and steps (ii) and (iii) are repeated until some

convergence criteria are satisfied.
The different methods differ chiefly in the choice of updating function �f , as described in the following
sections, and in the extent to which linear minimizations are necessary. Less important variations involve
the starting approximation �V � and various safeguards against ‘unreasonable’ steps and non-positive-
definiteness as for the Newton techniques.

10.8 Davidon’s rank-two formula

Probably the first—and perhaps still the best—variable metric method was developed in 1959 by Davidon
and later published in simplified form in 1963 by Fletcher and Powell [10]. Davidon’s updating formula
for the covariance matrix is the following:

�V � � �V � �
��T

�T�
� �V ���

T �V �

�T�V ��
�

where the changes in position and gradient on the last step were

� � x� � x�

and
� � g

�
� g

�
�

and �V � was the previous estimate of the covariance matrix. This is called a rank-two formula since the
correction�V ���V � is a matrix of rank two in the space of � and�V �� as can be seen directly by inspection
of the formula.
One fundamental requirement of an updating formula is that the new matrix satisfies the relationship

�V �� � � �

since � � �G � for a quadratic with hessian �G . It is easily seen that Davidon’s formula satisfies this
requirement:

�V �� �

�
�V � �

��T

�T�
� �V ���

T�V �

�T�V ��


�

� �V �� �
��T�

�T�
� �V ���

T�V ��

�T�V ��

� �V �� � � � �V �� � � �

An unfortunate feature of the Davidon algorithm is the need to perform at each iteration a linear
minimization along the direction given by a Newton step, ��V g� This linear search step is, however,
necessary in order to assure convergence for general functions. Fletcher and Powell show [10] that if the
starting approximation to �V is positive-definite, then �V will remain positive-definite after all updatings,
but they have to use the fact that each iteration is a linear minimization, that is

gT
��V �g� � � �

It can be shown that this method is quadratically convergent, at most n iterations (n linear searches and
n gradient calculations) being required for an n-dimensional quadratic form.



10.9. The rank-one formula 61

10.9 The rank-one formula

In an effort to avoid the linear minimizations required by Davidon’s algorithm, several workers have
independently developed an interesting updating formula of rank one. In this case Davidon in 1968 was
the first to publish an algorithm [11] based on the formula, and Powell [12] has summarized the properties
of this formula and of algorithms based on it

The rank-one updating is:

�V � � �V � �
�� � �V ����� � �V ���T

�T �� � �V ���
�

It can be shown [12] that this is the only formula of rank two (or less) for which not only �V �� � � but:

�V ��i � �i �

where �i and �
i
are the step and gradient changes at any previous iteration. This is known as the hereditary

property, since �V � can be said to inherit the fundamental property �V � � � with respect to all previous
iterations (up to n).

The hereditary property assures that after n iterations, �V � will be the true covariance matrix if F is
quadratic, no matter what steps were taken (almost), so that if Newton steps are taken, convergence for
a quadratic function is assured after n iterations, without the need for linear minimizations.

In addition, the rank-one formula is symmetric, in the sense that the expression for �V ��
� in terms of�V��

� is
the same as that for�V � in terms of�V � provided � and � are interchanged. The meaning of this symmetry
property will be discussed in the next section.

But, as nothing is perfect, so the elegance and mathematical beauty of the rank-one formula hide a
number of numerical and practical difficulties which can make it highly unstable when applied to a
general function. In particular, if the vector � happens to be orthogonal to the vector �� � �V ���, the
denominator goes to zero in the updating formula, and an unbounded correction is possible. Since these
vectors may be orthogonal, even for a quadratic function, the problem of numerical instability is a serious
one.

Moreover, the matrices �V � do not really converge to the true covariance matrix in the usual meaning
of the term convergence. Although it is true that �V � will be equal to the true covariance matrix at the
nth step for a quadratic function (barring numerical difficulties), the intermediate matrices �V may vary
wildly from step to step, so that on any particular iteration �V � may be a rather poor approximation.
This is especially dangerous when the function is not quadratic, since the large corrections necessary in
later iterations will generally not compensate properly the fluctuations in early steps. Also, there is no
guarantee that intermediate matrices will remain positive-definite, and hence no guarantee of a reduction
in the value of F at each step, even for a quadratic F .

All these difficulties can, of course, be overcome by programming enough safeguards into the algorithm,
but this can only be done at the expense of efficiency and sometimes only by abandoning temporarily the
updating formula itself, which makes it lose some of its appeal.
Different approaches are possible depending on whether it is considered important to maintain positive
definiteness as in the Davidon algorithm [11], or important not to abandon the exact rank-one formula as
in Powell’s method [12].
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10.10 Fletcher’s unified approach to VMM

The existence of two different updating formulas with very different properties generated a lot of interest
in variable metric methods (VMM) during the years 1967–1971, since it showed VMM to be very
promising and left many questions unanswered, such as:

i) How can it be that the rank-one and rank-two formulas have such different properties? What is the
relationship between them?

ii) Is there a way to combine the best properties of both formulas?

iii) Are there other good formulas? Is it possible to define a class of ‘admissible’ formulas?

A certain understanding of the above problems has recently been made possible by the work of a number
of people. In particular, a paper by Fletcher [13] presents a unified approach to VMM, which will be
given here.

Recall that the rank-one equation is symmetrical (in a sense defined in Section 4.9), but as we shall now
see, the rank-two formula is not. Indeed the asymmetry suggests a way to construct a possible third
formula by taking the ‘mirror image’ of the rank-two formula. The basic idea is that a new formula
should satisfy the fundamental relationship

�V �� � � �

and therefore its inverse should satisfy
� � �V��

� � �

We can indeed write down the updating formula for �V��
� which corresponds to the rank-two formula for

�V �:

�V��
� �

�
�I � ��T

�T�

�
�V ��

�

�
�I � ��T

�T�

�
�

��T

�T�
�

This matrix �V��
� can now be thought of as a mapping from � � � since � � �V��

� �. If we interchange �
and � in the formula, it will then give a mapping from � � �, thereby producing a new updating formula
where �V �� � �. The new dual formula will be just

�V � �

�
�I � ��T

�T�

�
�V �

�
�I � ��T

�T�

�
�

��T

�T�
�

If we try this trick with the rank-one formula, we just get the same rank-one formula back again, since it
is symmetric in this sense, or dual to itself. But with the rank-two formula, the process of inverting and
interchanging yields a new formula, also of rank-two, which is also a valid updating formula in the sense
that it gives rise to a quadratically convergent VMM algorithm.

Now we go further and consider the class of formulas which includes both rank-two and dual formulas
as special cases. Let us introduce the notation

�V � � �T ��V �� for the rank � two formula �

and

�V � � �D ��V �� for the dual formula �

and consider the class of updating expressions as introduced by Fletcher [13]:
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�V � � �� � ���T � ���D � �

where � is some parameter which determines the exact formula. [Broyden [14], using a somewhat
different notation, has also considered the same class of formulas.]

It then turns out that the rank-one formula is also in this class, with

��rank � one� �
�T�

��T� � �T�V ���
�

Having now constructed a wide class of updating formulas, which in fact includes all formulas known to
the author, it will prove interesting to consider their properties as a function of the generating parameter
�. Probably the most important property, and the only one we will consider here, is that of monotonic
convergence of �V toward the true covariance matrix for a quadratic function. [This is called Property
1 in Fletcher’s paper [13] which should be consulted for details of the definition and for theorems
concerning it.] The use of an updating formula with this property will guarantee an improvement in the
approximation �V at each iteration (for a quadratic function).

Any formula �V � with � in the interval [0,1] possesses the monotonic convergence property. Such a
formula is said to belong to the convex class of formulas. For any �V � with outside the range [0,1], there
exists some quadratic function for which �V diverges from the true covariance matrix.

From what we have already seen about the rank-one formula, it is not surprising to find that it does not
belong to the convex class. Since �T� 	 � for any step which is an improvement, and since �T�V �� 	 �
if�V � is positive-definite, it can be seen immediately from inspection of the equation for �(rank-one) that
it must either be less than zero or greater than one.

The above considerations lead Fletcher to propose a new algorithm [13] which is probably the most
elegant and powerful of any VMM algorithm. Basically, he uses the general updating formula �V �, with
the value of � chosen according to the following scheme: If �(rank-one) 
 �, set � = 0, corresponding
to the usual rank-two formula. If �(rank-one) 	 �, set � � �, corresponding to the dual formula. In
this way, one always uses a formula in the convex class, and chooses that one which is ‘closest’ to
the rank-one formula. It seems that the linear searches can then be eliminated and replaced simply by
Newton’s steps, unless the function is highly non-quadratic. The latter condition can easily be detected
by comparing the actual improvement with the expected improvement at each iteration.
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All the methods outlined so far in these lectures are of rather general applicability, the only assumption
being—for some methods—a predominantly quadratic behaviour in the immediate vicinity of the mini-
mum. In order to develop more powerful methods than those already presented, we will have to give up
some of this generality and exploit particular features of the functions to be minimized. In this section
we discuss a few specialized techniques which are still of rather wide applicability in the sense that most
functions of physical interest fall in one or more of these classes.

11.1 Chisquare minimization

Probably the most common application of minimization in scientific research is in least squares fitting,
where the function to be minimized is the sum of squares of deviations, between measured values and
predictions of a model containing variable parameters:

F �x� �
KX
k��

f�k�x� �
KX
k��

�
Yk � Tk�x�

�k

��

�

where Yk and �k are measured values and errors, and Tk�x� are the values predicted by the model,
depending on some parameters x. Minimizing F then yields best values (estimates) of the n parameters
x, based on K measurements Y with random errors �, where K must be greater than or equal to n, and
is usually much greater than n.

Let us now consider the second derivative matrix for F �x�, expressed in terms of the individual fk�x�:

��F

�xi�xj
�

�

�xi

�

�xj

X
k

f�k

�
�

�xi

X
k

�fk
�fk
�xj

�
X
k

�
�fk
�xi

�fk
�xj

�
X
k

�fk
��fk
�xi�xj

�

In the above r.h.s., it is usual to make the approximation that the second sum, involvingsecond derivatives,
is small compared with the first term involving products of first derivatives. This is called linearization.
[Note that it is the model T �x� that is being linearized, not the function F �x��] In the important special
case of linear least squares, the second sum is exactly zero, so that F �x� is quadratic, and the whole
minimization problem reduces to the inversion of the above matrix � �F��xi�xj (i.e. the taking of one
Newton step).

In the more general case of non-linear least squares, the linearization approximation consists in taking

��F

�xi�xj
�
X
k

�
�fk
�xi

�fk
�xj

�

This has the advantage of being easy to calculate and, moreover, it is always positive-definite (under
rather weak conditions such as the existence of the derivatives, and provided it is non-singular). In fact
in many cases the use of the above approximation in computing Newton steps is actually more effective

64
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than using the exact second derivative matrix because of the positive definiteness. Of course it must be
remembered that the covariance matrix obtained by inverting this approximate matrix does not in general
converge to the true covariance matrix even though the minimization based on it may converge to the
true minimum.

11.2 Likelihood maximization

An increasingly important alternative to the least squares method in data fitting is the method of maximum
likelihood. In this case the function to be minimized is of the form

F �x� � �
kX

k��

ln fk�x� �

that is, a sum of logarithms. Here again, an approximation for the second derivative matrix can be found
which involves only products of first derivatives:

��F

�xi�xj
� � �

�xi

�

�xj

X
k

ln fk

� � �

�xi

X
k

�

fk

�fk
�xj

� �
X
k

�

f�k

�fk
�xi

�fk
�xj

�
X
k

�

fk

��fk
�xi�xj

�

As with least squares, we can neglect the second sum, involving second derivatives. In the case of
the likelihood function, the second derivatives of f are never exactly zero over any finite range (exactly
linear maximum likelihood does not exist, essentially because the likelihood function must be normalized
so that its integral over the space of measurements is independent of the parameters x). However, the
approximation

��F

�xi�xj
�
X
k

�

k�
�fk
�xi

�fk
�xj

has the same advantages as in the non-linear least squares case, namely speed of calculation and assured
positive-definiteness.



Chapter 12: Local and global Minima

12.1 The problem of multiple minima

All the methods presented so far have been designed to find a local minimum, without any consideration
of whether or not other local minima exist, or whether the minimum found is actually the global minimum.
If the function has more than one local minimum, there is not even any guarantee that these methods
will find the minimum closest to the starting point, let alone the global minimum. In fact, it is usually
assumed, when using these algorithms, that the function is unimodal (has one minimum) in the region of
interest likely to be explored during the minimization.

Whenever the function may have more than one local minimum, new problems arise in addition to the
problem of local minimization. First of all, the user must decide what he wants to know about the
function. The following four possibilities are the most common and will be discussed here:

i) it is sufficient to know the location of any one local minimum;

ii) only the global minimum is of interest;

iii) only one minimum is of interest (the ‘physical solution’), but it need not be the global minimum; or

iv) all local minima, including the global one, must be found and catalogued.

The first possibility, (i), is quite rare, but is easy to deal with, since any local minimization routine is
sufficient.

Possibility (ii) is much more common, particularly in system optimization where the cost must be the
smallest possible, not just small compared with other near-by solutions. Several methods exist for finding
global minima, of which two will be discussed in the next sections. All such methods suffer from the
absence of a stopping rule: even if the global minimum is found there is no way of recognizing it unless
the function is known to be bounded and has reached its lower bound.

Possibility (iii) often arises in scientific research where the approximate values of some parameters are
known in advance and one seeks a solution not too far from these values, corresponding to ‘the right
valley’ where the function may have several faraway valleys which may be deeper. The usual technique
for making sure of staying in the right valley is first to fix the approximately known parameters at their
assumed values and minimize with respect to all other variables, then starting from this point minimize
in the entire variable space.

Possibility (iv), of having to find and record all local minima, is the most difficult of all. It arises, for
example, in energy-dependent phase-shift analyses where all ‘solutions’ are recorded at each energy, and
a continuous set of solutions is sought, one at each energy, which have a smooth energy dependence.
Although the techniques described below may help in this problem, no exhaustive method is known to the
author except for the prohibitive one of using many starting points equally spaced on an n-dimensional
grid.

12.2 The Gelfand algorithm

Relatively few minimization methods are specifically designed for non-local search in many parameters.
Probably the most successful of the ad hoc stepping methods is that of Gelfand [15]. It is non-local
because it provides a natural way to allow for function increases as well as decreases in any one step,
while tending generally to decrease the function value.

The procedure is as follows. From the starting point x� , a local minimization is begun (for example
along the gradient) until the function differences between steps become small (at the point a� ). Then,
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Fig. 13

going back to the starting point, a ‘long’ random step is taken to the point x� , and another rough local
minimization is performed to reach the point a�(see figure above). Then the so-called ‘precipitous step’
is taken along a line from a� to a�, some distance past a� to x�. Then from x� another rough local
minimization is performed, yielding a�, and another precipitous step is taken from a� past a� to x� and
the search continues in this way.

The choice of the ‘precipitous step’ length is important in determining whether the method will ‘roll
over small ridges, but skirt a high mountain’, as its authors say it should. But no precise way is given,
except that ‘the choice of the length of the precipitous step is carried out experimentally (by trials) and it
constitutes an important charactistic of the function’.

Moreover, there is no stopping rule, since the method is essentially searching rather than converging.
In practice one usually stops after a given length of computer time, but one would also stop if the
program went around in circles repeating itself (which is very possible but not so easy to detect) or if
a predetermined ‘acceptably small’ function value was attained. This problem of stopping seems to be
common to all non-local minimization methods.

12.3 The Goldstein-Price method

Goldstein and Price [16] have proposed an elegant yet simple method for seeking other local minima
after one local minimum has been found It is based on a consideration of the analytic (Taylor series)
properties of the function. Let us assume that the function can be represented as a Taylor series about a
local minimum x�, where the first derivatives vanish:

F �x� � F �x�� �
�

�
�x � x��

T�G �x� x�� � h�t� �

Now the higher terms (h.t.), involving third and higher derivatives, are important since these are the terms
that will give rise to other local minima. In fact, we seek a way of transforming the function so that only
the higher terms remain. Such a transformed function is F� such that:

F��x�� x� �
��F �x� � F �x���

�x� x��T�G �x� x��
� � � h�t� �

By means of this transformation, we have ‘removed’ the minimum at x�, and the way is cleared to
search for other minima generated by the higher terms of the expansion about x�. The method therefore
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consists of seeking a local minimum of the function F� (It is required to know the second derivative
matrix �G at the local minimum x�.) Since the quadratic form �x � x��

T�G �x � x�� is always positive
for positive-definite�G , th efunction F� will become negative as soon as an improvement on x� is found.
Then starting from this improved point, the original function F can be minimized locally to yield a new,
improved local minimum of F .

If the minimum value found for F� is positive, then it may correspond to a new local minimum of F , but
not an improvement over x�.

In this case the procedure may be continued from this new point, forming a new function F�, related to
F� just as F� was related to F . As usual, no stopping rule is given by the theory.

The method seems to work in practice, although experience with it is limited and no conditions are known
under which it is guaranteed to work. It is appealing for reasons of its elegance and simplicity, and could
prove to be an important tool in global minimization.
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Appendix: Some sample Problems for Minimization Routines

We assemble here a collection of test problems found to be useful in verifying and comparing different
minimization routines. Many of these are standard functions upon which it has become conventional to
try all new methods, quoting the performance in the publication of the algorithm.

12.4 Rosenbrock’s curved valley

F �x� y� � ����y � x��� � �� � x��

start point: F ������ ���� � �����

minimum: F ����� ���� � � �

This narrow, parabolic valley is probably the best known of all test cases. The floor of the valley follows
approximately the parabola y � x� + 1/200, indicated by the dashed line in fig. 14. In the cross-hatched
area above the dashed line, the covariance matrix is not positive-definite. On the dashed line it is singular.
Stepping methods tend to perform at least as well as gradient methods for this function.
[Reference: Comput. J. 3, 175 (1960).]

12.5 Wood’s function of four parameters

F �w� x� y� z� � ����x � w��� � �w � ��� � ��z � y���

� �� � y�� � ������x � ��� � �z � ���� � ����x � ���z � ��

start point: F ��
�����
���� � ���

minimum: F ��� �� �� �� � � �

This is a fourth-degree polynomial which is reasonably well-behaved near the minimum, but in order
to get there one must cross a rather flat, four-dimensional ‘plateau’ which often causes minimization
algorithm to get ‘stuck’ far from the minimum. As such it is a particularly good test of convergence
criteria and simulates quite well a feature of many physical problems in many variables where no good
starting approximation is known.
[Reference: Unpublished. See IBM Technical Report No. 320–2949.]

12.6 Powell’s quartic function

F �w� x� y� z� � �w � ��x�� � ��y � Z�� � �x � �y�� � ���w � z��

start point: F �
���� �� �� � ���

minimum: F ��� �� �� �� � � .

This function is difficult because its matrix of second derivatives becomes singular at the minimum. Near
the minimum the function is given by �w � ��x�� � ��y � ��� which does not determine the minimum
uniquely.
[Reference: Comput. J. 5, 147 (1962).]
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Fig. 14

12.7 Fletcher and Powell’s helical valley

F �x� y� z� � ���f�z � ����x� y��� � �
p
x� � y� � ���g � z�

where
����x� y� = arctan �y�x� for x 	0

= � + arctan �y�x� for x 
 �

start point: F ���� �� �� � ����

minimum: F ��� �� �� � � �

F is defined only for ����� 
 � 
 ����.

This is a curved valley problem, similar to Rosenbrock’s, but in three dimensions.
[Reference: Comput. J. 6, 163 (1963).]
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12.8 Goldstein and Price function with four minima

F �x� y� � �� � �x � y � ��� � ��� ��x � 
x� � ��y � 	xy � 
y���

� �
� � ��x � 
y�� � ���� 
�x � ��x� � ��y � 
	xy � ��y���

local minima: F (1.2, 0.8) = 840
F (1.8,0.2) = 84
F ����	������ = 30

global minimum: F �������� = 3 .

This is an eighth-order polynomial in two variables which is well behaved near each minimum, but has
four local minima and is of course non-positive-definite in many regions. The saddle point between the
two lowest minima occurs at F ���������	� = 35, making this an interesting start point.
[Reference: Math. Comp. 25, 571 (1971).]

12.9 Goldstein and Price function with many minima

F �x� y� � exp

�
�

�
�x� � y� � ����

�
� sin���x � 
y� �

�

�
��x � y � ����

global minimum: F �
� �� � � �

This function has ‘many’ local minima.
[Reference: Math. Comp. 25, 571 (1971).]

12.10 Quadratic function in four parameters

F �x� y� z� w� �
�

��
���x� � ��y� � �z� � ��xz � ��yz� � w�

minimum: F ��� �� �� �� � �

covariance matrix:
�
BBBB�

� � � �

� � 
 �

� 
 	 �

� � � �

	
CCCCA

Except for the reasonably strong parameter correlations, this function poses no special problem to any
minimization routine. But the author has found it useful in debugging programs based on quadratically
convergent methods, since these programs should minimize the function exactly in one iteration. It is
also used to check the calculation of the covariance matrix.

A variation consists of adding jxj� � � whenever jxj 	 1, and similarly with the other variables. This
introduces in a reasonably smooth way terms which alter the quadratic behaviour far from the minimum
while leaving it unchanged inside the unit cube, thus providing a test for those methods which are
supposed to converge to the correct covariance matrix by updating.
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12.11 Chebyquad

F ��x� �
nX
i��

��
�
Z �

�
Ti�x

�� dx� � �

n

nX
j��

Ti�xj�

��
�

�

where Ti�x� are shifted Chebyshev polynomials of degree i;

start point: xj � j��n� �� �

This function is designed to have a variable and possibly large number of parameters, and to resemble
functions encountered in actual practice rather than being contrived to be especially difficult. Each term
of F represents the squared difference between the true integral of a polynomial of degree i and the
integral estimated by Chebyshev (equal-weight) quadrature on n points:

Z �

�
P �x� dx � �

n

nX
j��

P �xj� �

The starting values correspond to equally spaced points x j which is not too far away from the solution.
Fletcher gives a complete Algol-coded, procedure for this function in the reference quoted below.
[Reference: Comput. J. 8, 33 (1965).]

12.12 Trigonometric functions of Fletcher and Powell

F ��x� �
nX
i��

��
�Ei �

nX
j��

�Aij sin xj � Bij cos xj�

��
�

�

�

where

Ei �
nX
j��

�Aij sin x�j � Bij cos x�j� �

Bij and Aij are random matrices composed of integers between -100 and 100; for j = 1, ..., n: x�j are
any random numbers, �� 
 x�j 
 ��

start point: xj � x�j � ����j��� 
 �j 
 �

minimum: F ��x � �x�� � � �

This is a set of functions of any number of variables n, where the minimum is always known in advance,
but where the problem can be changed by choosing different (random) values of the constants Aij � Bij,
and x�j. The difficulty can be varied by choosing larger starting deviations �j . In practice, most methods
find the ‘right’ minimum, corresponding to �x � �x�, but there are usually many subsidiary minima.
[Reference: Comput. J. 6 163 (1963).]
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Chapter 13: Interpretation of the errors on parameters as given by Minuit

It often happens that the solution of a minimization problem using Minuit is itself straightforward, but the
calculation or interpretation of the resulting parameter uncertainties is considerably more complicated.
The purpose of this chapter is to clarify the most commonly encountered difficulties in parameter error
determination. These difficulties may arise in connection with any fitting program, are discussed here
with Minuit terminology.

The most common causes of misinterpretation may be grouped into three categories:

(1) Proper normalization of the user-supplied chi-square or likelihood function, and appropriate ERROR
DEF.

(2) Non-linearities in the problem formulation, leading to different errors being calculated by different
techniques, such as MIGRAD, HESSE and MINOS.

(3) Multiparameter error definition and interpretation.

All these topics are discussed in some detail in Eadie et al.[5], which may be consulted for further details.

13.1 Function normalization andERROR DEF

In order to provide for full generality in the user-defined function value, the user is allowed to define a
normalization factor known internally as UP and defined by the Minuit user on an ERROR DEF command
card. The default value is one. The Minuit error on a parameter is defined as the change of parameter
which would produce a change of the function value equal to UP. This is the most general way to define
the error, although in statistics it is more usual to define it in terms of the second derivative of the � �

function – with respect to the parameter in question. In the simplest linear case (when the function is
exactly parabolic at the minimum), the value UP���� corresponds to defining the error as the inverse of
the second derivative at the minimum. The fact that Minuit defines the error in terms of a function change
does not mean that it always calculates such a function change. Indeed it sometimes (HESSE) calculates
the second derivative matrix and inverts it, assuming a parabolic behaviour. This distinction is discussed
in section 13.2.

The purpose of defining errors by function changes is threefold:

(1) to preserve its meaning in the non-parabolic case (see section 13.2);

(2) to allow generality when the user-defined function is not a chi- square or likelihood, but has some
other origin;

(3) to allow calculation not only of “one-standard deviation” errors, but also two or more standard
deviations, or more general ’confidence regions’, especially in the multiparameter case (see section
13.3).

13.1.1 Chi-square normalization

If the user’s function value F is supposed to be a chisquare, it must of course be properly normalized.
That is, the “weights” must in fact correspond to the one-standard-deviation errors on the observations.
The most general expression for the chi-square � is of the form (see [5], p.163):

�� �
X
i�j

�xi � yi�a��Vij�xj � yj�a��
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where x is the vector of observations, y�a� is the vector of fitted values (or theoretical expressions for
them) containing the variable fit parameters a, and V is the inverse of the error matrix of the observations
x, also known as the covariance matrix of the observations.

Fortunately, in most real cases the observations x are statistically independent of each other (e.g., the
contents of the bins of a histogram, or measurements of points on a trajectory), so the matrixV is diagonal
only. The expression for �� then simplifies to the more familiar form:

�� �
X
i

�xi � yi�a��
�

e�i

where e� is the inverse of the diagonal element of V , the square of the error on the corresponding
observation x. In the case where the x are integer numbers of events in an unweighted histogram, for
example, the e� are just equal to the x (or to the y, see [5], pp.170-171).

The minimization of �� above is sometimes called weighted least squaresin which case the inverse
quantities ��e� are called the weights. Clearly this is simply a different word for the same thing, but
in practice the use of these words sometimes means that the interpretation of e� as variances or squared
errors is not straightforward. The word weight often implies that only the relative weights are known
(“point two is twice as important as point one”) in which case there is apparently an unknown overall
normalization factor. Unfortunately the parameter errors coming out of such a fit will be proportional to
this factor, and the user must be aware of this in the formulation of his problem.

The e� may also be functions of the fit parameters a (see [5], pp.170-171). Normally this results in
somewhat slower convergence of the fit since it usually increases the nonlinearity of the fit. (In the
simplest case it turns a linear problem into a non-linear one.) However, the effect on the fitted parameter
values and errors should be small.

If the user’s chi-square function is correctly normalized, he should use UP���� (the default value) to get
the usual one standard-deviation errors for the parameters one by one. To get two-standard-dev.eviation
errors, use ERROR DEF ���, etc., since the chisquare dependance on parameters is quadratic. For more
general confidence regions involving more than one parameter, see section 13.2.

13.1.2 Likelihood normalization

If the user function is a negative log-likelihood function, it must again be correctly normalized, but the
reasons and ensuing problems in this case are quite different from the chisquare case. The likelihood
function takes the form (see [5], p. 155):

F � �
X
i

ln f�xi� a�

where each x represents in general a vector of observations, the a are the free parameters of the fit, and
the function f represents the hypothesis to be fitted. This function f must be normalized:

Z
f�xi� a�dx�dx� � � �dxn � constant

that is, the integral of f over all observation space x must be independent of the fit parameters a.

The consequence of not normalizing f properly is usually that the fit simply will not converge, some
parameters running away to infinity. Strangely enough, the value of the normalization constant does
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not affect the fitted parameter values or errors, as can be seen by the fact that the logarithm makes a
multiplicative constant into an additive one, which simply shifts the whole log-likelihood curve and
affects its value, but not the fitted parameter values or errors. In fact, the actual value of the likelihood at
the minimum is quite meaningless (unlike the chi-square value) and even depends on the units in which
the observation space x is expressed. The meaningful quantity is the difference in log-likelihood between
two points in parameter-space, which is dimensionless.

For likelihood fits, the value UP���
 corresponds to one-standard-deviation errors. Or, alternatively, F
may be defined as �� log�likelihood�, in which case differences in F have the same meaning as for
chi-square and UP���� is appropriate. The two different ways of introducing the factor of 2 are quite
equivalent in Minuit, and although most people seem to use UP���
, it is perhaps more logical to put the
factor 2 directly into FCN.

13.2 Non-linearities:MIGRAD versusHESSE versusMINOS

In the theory of statistics, one can show that in the asymptotic llmit, any of several methods of determining
parameter errors are equivalent and will give the same result. Let us for the moment call these methods
MIGRAD, HESSE, and MINOS (SIMPLEX is a special case). It turns out that the conditlons under which
these methods yield exactly the same errors are either of the following:

(1) The model to be fitted (y or f ) is exactly a linear function of the fit parameters a, or

(2) The amount of observed data is infinite.

It may happen that (1) is satisfied, in whlch case you don’t really need Minuit, a smaller, simpler, and
faster program would do, since a linear problem can be solved directly without iterations (see [5], p.
163-165), for example with CERN library program LSQQR. Nevertheless, it may be convenient to use
Minuit slnce non-linear terms can then be added later if desired, without major changes to the method.
Condition (2) is of course never satisfied, although in practice it often happens that there is enough data
to make the problem “almost linear”, that is there is so much data that the range of parameters allowed
by the data becomes very small, and any physical function behaves linearly over a small enough region.

The following sections explain the dirrerences between the various parameter errors given by Minuit.

13.2.1 Errors printed by Minuit

The errors printed by Minuit at any given stage represent the best symmetric error estimates available at
that stage, which may not be very good. For example, at the first entry to FCN, the user’s step slzes are
given, and these may bear no resemblance at all to proper parameter errors, although they are supposed to
be order-of-magnltude estimates. After crude minimizers like SEEK or SIMPLEX, a revised error estimate
may be given, but this too is only meant to be an order-or-magnitude estimate, and must certainly not be
taken seriously as a physical result. Such numbers are mainly for the internal use of Minuit, which must
after all assume a step size for future minimizations and derivative calculations, and uses these “errors”
as a first guess to be modified on the basis of experience.

13.2.2 Errors after MIGRAD (or MINIMIZE)

The minimizing technique currently implemented inMIGRAD is a stable variation (the “switching” method)
of the Davidon-Fletcher-Powell algorithm, described, as are all Minuit minimization algorithms, in
chapter ??. This algorithm converges to the correct error matrix as it converges to the function minimum.
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In practice, MIGRAD usually yields good estimates of the error matrix, but it is not absolutely reliable for
two reasons:

(1) Convergence to the minimum may occur “too fast” for MIGRAD to have a good estimate of the error
matrix. In the most flagrant of such cases, MIGRAD realizes this and automatically introduces an
additional call to HESSE (described below), informing the user that the covariance matrix is being
recalculated. Since, for n variable parameters, there are n�n � ���� elements in the error matrix,
the number of FCN calls from MIGRAD must be large compared with n� in order for the MIGRAD

error matrix calculation to be reliable.

(2) MIGRAD gathers information about the error matrix as it proceeds, based on function values calcu-
lated away from the minimum and assuming that the error matrix is nearly constant as a function of
the parameters, as it would be if the problem were nearly linear. If the problem is highly non-linear,
the error matrix will depend strongly on the parameters, MIGRAD will converge more slowly, and
the resulting error matrix will at best represent some average over the last part of the trajectory in
parameter-space traversed by MIGRAD.

If MIGRAD errors are wrong because of (1), HESSE should be commanded after MIGRAD and will give
the correct errors. If MIGRAD errors are wrong because of (2), HESSE will help, but only in an academic
sense, since in this case the error matrix is not the whole story and for proper error calculation MINOS

must be used.

As a general rule, anyone seriously interested in the parameter errors should always put at least a HESSE
command after each MIGRAD (or MINIMIZE) command.

13.2.3 Errors after HESSE

HESSE simply calculates the full second-derivative matrix by finite differences and inverts it. It therefore
calculates the error matrix at the point where it happens to be when it is called. If the error matrix is not
positive-definite, diagnostics are printed,and an attempt is made to form a positive-definite approximation.
The error matrix must be positive-definite at the solution (minimum) for any real physical problem. It
may well not be positive away from the minimum, but most algorithms including the MIGRAD algorithm
require a positive-definite “working matrix”.

The error matrix produced by HESSE is used to calculate what Minuit prints as the parameter errors, which
therefore contain the effects due to parameter correlations. The extent of the two-by-two correlations
can be seen from the correlation coefficients printed by Minuit, and the global correlations (see [5], p.
23) are also printed. All of these correlation coefficients must be less than one in absolute value. If any
of them are very close to one or minus one, this indicates an illposed problem with more free parameters
than can be determined by the model and the data.

13.2.4 Errors byMINOS

MINOS is designed to calculate the correct errors in all cases, especially when there are non-linearities as
described above. The theory behind the method is described in [5], pp. 204-205 (where “non-parabolic
likelihood” should of course read “non-parabolic log-likelihood”, which is equivalent to “nonparabolic
chi-square”).

MINOS actually follows the function out from the minimum to find where it crosses the function value
(minimum + UP), instead of using the curvature at the minimum and assuming a parabolic shape. This
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method not only yields errors which may be different from those of HESSE, but in general also different
positive and negative errors (asymmetric error interval). Indeed the most frequent result for most physical
problems is that the (symmetric) HESSE error lies between the positive and negative errors of MINOS. The
difference between these three numbers is one measure of the non-linearity of the problem (or rather of
its formulation).

In practice, MINOS errors usually turn out to be close to, or somewhat larger than errors derived from the
error matrix, although in cases of very bad behaviour (very little data or ill-posed model) anything can
happen. In particular, it is often not true in MINOS that two-standard-deviation errors (UP��) and three-
standard-deviation errors (UP�	) are respectively two and three times as big as one-standard-deviation
errors, as is true by definition for errors derived from the error matrix (MIGRAD or HESSE).

13.3 Multiparameter errors

In addition to the difficulties described above, a special class of problems arise in interpreting errors when
there is more than one free parameter. These problems are quite separate from those described above and
are really much simpler in principle, although in practice confusion often arises.

13.3.1 The Error Matrix

The error matrix, also called the covariance matrix, is the inverse of the second derivative matrix of the
(log-likelihood or chisquare) function with respect to its free parameters, usually assumed to be evaluated
at the best parameter values (the function minimum). The diagonal elements of the error matrix are
the squares of the individual parameter errors, including the effects of correlationswith the other
parameters.

The inverse of the error matrix, the second derivative matrix, has as diagonal elements the second partial
derivatives with respect to one parameter at a time. These diagonal elements are not therefore coupled
to any other parameters, but when the matrix is inverted, the diagonal elements of the inverse contain
contributions from all the elements of the second derivative matrix, which is “where the correlations
come from”.

Although a parameter may be either positively or negatively correlated with another, the effect of
correlations is always to increase the errors on the other parameters in the sense that if a given free
parameter suddenly became exactly known (fixed), that would always decrease (or at least not change)
the errors on the other parameters. In order to see this effect quantitatively, the following procedure can
be used to “delete” one parameter from the error matrix, including its effects on the other parameters:

(1) Invert the error matrix, to yield the second-derivative matrix.

(2) Remove the row and column of the inverse corresponding to the given parameter.

(3) Re-invert the resulting (smaller) matrix.

This reduced error matrix will have its diagonal elements smaller or equal to the corresponding elements
in the original error matrix, the difference representing the effect of knowing or not knowing the true
value of the parameter that was removed at step two. This procedure is exactly that performed by Minuit
when a FIX command is executed. Note that it is not reversible, since information has been lost in the
deletion. The Minuit commands RESTORE and RELEASE therefore cause the error matrix to be considered
lost and it must be recalculated entirely.
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13.3.2 MINOS with several free Parameters

TheMINOS algorithm is described in some detail in part 1 of this manual. Here we add some supplementary
“geometrical interpretation” for the multidimensional case.
Let us consider that there are just two free parameters, and draw the contour line connecting all points
where the function takes on the value Fmin � UP. (The CONTOUR command will do this for you from
Minuit). For a linear problem, this contour line would be an exact ellipse, the shape and orientation of
which are described in [5], p.196 (fig. 9.4). For our problem let the contour be as in figure 13.1. If
MINOS is requested to find the errors in parameter one (the x-axis), it will find the extreme contour points
A and B, whose x-coordinates, relative to the x-coordinate at the minimum (X), will be respectively the
negative and positive MINOS errors of parameter one.

Parameter 1

B

A

Figure 13.1: MINOS errors for parameter 1

13.3.3 Probability content of confidence regions

For an n-parameter problem MINOS performs minimizations in �n � �� dimensions in order to find the
extreme points of the hypercontour of which a two-dimensional example is given in figure 13.1, and in
this way takes account of all the correlations with the other n� � parameters. However, the errors which
it calculates are still only single-parameter errors, in the sense that each parameter error is a statement
only about the value of that parameter. This is represented geometrically by saying that the confidence
region expressed by the MINOS error in parameter one is the grey area of figure 13.2, extending to infinity
at both the top and bottom of the figure.
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Parameter 1

B

A

Figure 13.2: MINOS error confidence region for parameter 1

If UP is set to the appropriate one-standard-deviation value, then the precise meaning of the confidence
region of figure 13.2 is: “The probability that the true value of parameter one lies between A and B
is 68.3%” (the probability of a normally-distributed parameter lying within one std.-dev. of its mean).
That is, the probability content of the grey area in figure 13.2 is 68.3%. No statement is made about
the simultaneous values of the other parameter(s), since the grey area covers all values of the other
parameter(s).
If it is desired to make simultaneously statements about the values of two or more parameters, the
situation becomes considerably more complicated and the probabilities get much smaller. The first
problem is that of choosing the shape of the confidence region, since it is no longer simply an interval on
an axis, but a hypervolume. The easiest shape to express is the hyperrectangle given by:

A � param � � B

C � param � � D

E � param � � F � etc.
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Parameter 1

B

A

C

Parameter 2 

D

Figure 13.3: Rectangular confidence region for parameters 1 and 2

This confidence region for our two-parameter example is the grey area in figure 13.3. However, there are
two good reasons not to use such a shape:

(1) Some regions inside the hyperrectangle (namely the corners) have low likelihoods, lower than
some regions just outside the rectangle, so the hyperrectangle is not the optimal shape (does not
contain the most likely points).

(2) One does not know an easy way to calculate the probability content of these hyperrectangles
(see [5], p.196-197, especially fig. 9.5a).

For these reasons one usually chooses regions delimited by contours of equal likelihood (hyperellipsoids
in the linear case). For our two-parameter example, such a confidence region would be the grey region
in figure 13.4, and the corresponding probability statement is: “The probability that parameter one and
parameter two simultaneously take on values within the one-standard-deviation likelihood contour is
39.3%”.
The probability content of confidence regions like those shaded in figure 13.4 becomes very small as
the number of parameters NPAR increases, for a given value of UP. Such probability contents are in
fact the probabilities of exceeding the value UP for a chisquare function of NPAR degrees of freedom,
and can therefore be read off from tables of chisquare. Table 13.1 gives the values of UP which yield
hypercontours enclosing given probability contents for given number of parameters.
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Parameter 1

B

A

Parameter 2 

Figure 13.4: Optimal confidence region for parameters 1 and 2

Confidence level (probability contents desired inside

Number of hypercontour of �� � ��min � UP)

Parameters 50% 70% 90% 95% 99%

1 0.46 1.07 2.70 3.84 6.63

2 1.39 2.41 4.61 5.99 9.21

3 2.37 3.67 6.25 7.82 11.36

4 3.36 4.88 7.78 9.49 13.28

5 4.35 6.06 9.24 11.07 15.09

6 5.35 7.23 10.65 12.59 16.81

7 6.35 8.38 12.02 14.07 18.49

8 7.34 9.52 13.36 15.51 20.09

9 8.34 10.66 14.68 16.92 21.67

10 9.34 11.78 15.99 18.31 23.21

11 10.34 12.88 17.29 19.68 24.71

If FCN is � log�likelihood� instead of ��, all values of UP

should be divided by 2.



86 Chapter 13. Interpretation of the errors on parameters as given by Minuit

Table 13.1: Table of UP for multi-parameter confidence regions
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