Coupled-channel analysis of a $J^{PC} = 1^{-+}$ exotic meson

Ron Longacre and Suh-Urk Chung

Physics Department Brookhaven National Laboratory Upton, NY

- Introduction to *K*-matrix formalism
- Our model
- Results

This work was done by R. Longacre using his own formalism.

S. U. Chung pursuaded him to recast his results into a form known as '*P*-vector approach with *K*-matrix formalism.'

See the following references for a discussion on the P-vector approach:

The *K*-matrix Formalism for overlapping resonances

I. J. R. Aitchison, NP **A189**, 417 (1972)

Partial-wave analysis in *K*-matrix formalism

S. U. Chung *et al.*, Annalen der Physik, **4**, 404 (1995)

*P***-vector approach**

Consider a process in which a resonance is coupled to two channels:

Channel 1 = $\eta\pi$ Channel 2 = $f_1(1285)\pi$

so that

$$P = \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$$
 for production—complex
$$F = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}$$
 after final-state interaction

Assume a real 2×2 K-matrix, i.e.

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$$

where T_{ij} are real and symmetric. Then,

$$F = (I - iK)^{-1}P$$

$J^{PC} = 1^{-+}$ Exotic Hybrid

Assume that there exists a $J^{PC} = 1^{-+}$ state with mass 1.90 GeV and width 550 MeV, coupling to $\eta\pi$ and $f_1(1285)\pi$ with branching ratios 5% and 95%, respectively. Then,

 $w_{\scriptscriptstyle H} = 1.90 \,\, {
m GeV}$ $\Gamma_{\scriptscriptstyle H} = 550 \,\, {
m MeV}$

and $\Gamma_{_{H}} = \Gamma_1 + \Gamma_2$ where

 $\begin{array}{rcl} \Gamma_1 &=& 25 & \text{MeV} & \text{for} & \eta \pi \\ \Gamma_2 &=& 525 & \text{MeV} & \text{for} & f_1(1285)\pi \end{array}$

Let w be the effective mass, and

$$\Gamma_{1} = \gamma_{1}^{2} \Gamma_{H} B^{2}(q_{1}) \rho(q_{1})$$

$$\Gamma_{2} = \gamma_{2}^{2} \Gamma_{H} \rho(q_{2})$$

where q_i is the breakup momentum in channel i, and

$$\rho(q_i) = \frac{2q_i}{w}$$

is the phase-space factor for channel i. B(q) is the *P*-wave angular-momentum barrier factor given by

$$B(q) = \left[\frac{(q/q_r)^2}{1 + (q/q_r)^2}\right]^{1/2}$$

where $q_r = 0.1973 \text{ GeV}/c$.

The elements of the *K*-matrix are

$$K_{11} = \frac{w_{H} \Gamma_{1}}{w_{H}^{2} - w^{2}} + \frac{w_{H} \Gamma_{b}}{D_{b}}$$
$$K_{22} = \frac{w_{H} \Gamma_{2}}{w_{H}^{2} - w^{2}}$$
$$K_{12} = K_{21} = \frac{w_{H} \sqrt{\Gamma_{1} \Gamma_{2}}}{w_{H}^{2} - w^{2}}$$

where D_b gives the strength of the background term and Γ_b its mass dependence

$$\Gamma_b = \gamma_b^2 \, \Gamma_{_{\scriptscriptstyle H}} B^2(q_1) \, \rho(q_1)$$

for the $\eta\pi$ channel (channel 1). The production amplitudes are given by

$$P_{1} = \left[\gamma_{1}\left(\frac{w_{H} \Gamma_{H}}{w_{H}^{2} - w^{2}}\right) V_{H} + \gamma_{b}\left(\frac{w_{H} \Gamma_{H}}{D_{b}}\right) V_{b}\right] B(q_{1})$$

$$P_{2} = \gamma_{2}\left(\frac{w_{H} \Gamma_{H}}{w_{H}^{2} - w^{2}}\right) V_{H}$$

where the complex parameters $V_{_{H}}$ and V_{b} govern production of the hybrid meson and its background.

Results of fit

From the assumed values of the partial widths,

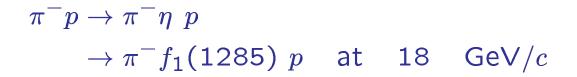
$$\gamma_1 = 1.051$$
 and $\gamma_2 = 0.293$

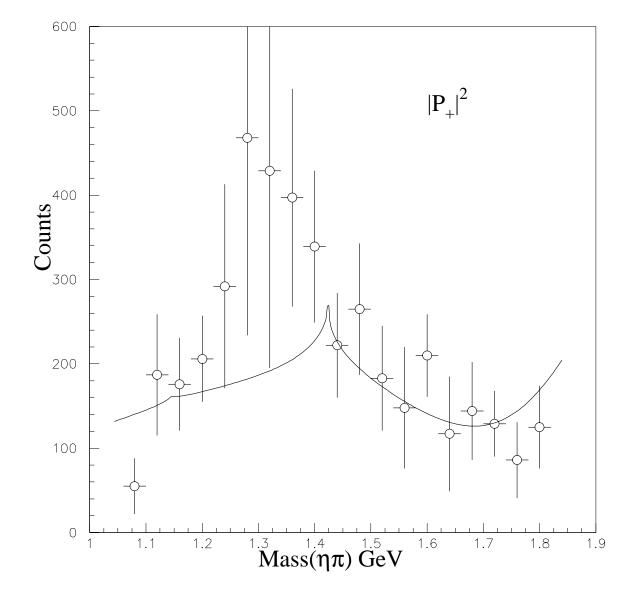
Fit to the observed P-wave $\eta\pi^-$ and its phase^{*a*} relative to the $a_2(1320)$ (assumed to behave as a standard Dwave Breit-Wigner resonance) gives

> $V_{\scriptscriptstyle H} = (-173.0, 66.61)$ $\gamma_b = 0.042$ $D_b = 0.645 \text{ GeV}^2$ $V_b = (298.7, 234.6)$

^a D. R. Thompson *et al.*, Phys. Rev. Lett. **79**, 1630 (1997)

Two-channel *K*-matrix fit





Two-channel *K*-matrix fit

