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Abstract

A general formulation is given for constructing covariant helicity-coupling
amplitudes involving two-body decays with arbitrary integer spins. The de-
cay amplitudes are given exclusively in terms of both definite orbital an-
gular momentum and total intrinsic spin. A systematic method is de-
veloped for calculating the energy and momentum dependence of daugh-
ter particles in the decay amplitudes, and a general formula for arbitrary
integer spins is given. A number of illustrative examples is worked out,
among which is that of the Higgs boson decay into two gauge bosons.
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I. INTRODUCTION

The purpose of this paper is to present a derivation of covariant helicity-coupling ampli-
tudes for a parent state with an arbitrary integer spin J decaying into two daughter states
with arbitrary integer spins s and o. It was shown in a previous paper by the author [1]
that, if a daughter particle has spin 1 or higher, the helicity-coupling amplitudes depend
in general on the Lorentz factor v = E/m, where m is the mass of the daughter and E
is its energy in the parent rest frame. The paper emphasized a simplification that results
from the exclusive use of spin tensors [2] and momenta defined along the helicity axis for
the daughter states. This technique separates out the angular distribution contained in the
D function from the problem of finding a proper energy and momentum dependence of the
helicity-coupling amplitudes.

The author has recently written an updated preprint on the paper [3], which gives a more
consistent formulation with detailed intermediate steps for calculating the amplitudes involv-
ing decays of practical importance. In this paper a different—and perhaps more efficient—
technique has been developed for constructing the decay amplitudes. For a more basic
exposition of the spin formalisms, the reader may wish to consult the CERN Yellow Report
by the author [4] and also a recent paper by Filippini et al. [5] on covariant spin tensors.

The v dependence is not unique, depending in general on the exact form of the decay
amplitude one uses. It is shown that the functional form of 4 becomes unique and simple,
if the decay amplitudes are given in terms of definite orbital angular momentum £ and total
intrinsic spin S. Therefore, one has systematically and exclusively utilized the projection
operators corresponding to pure S and pure £, with their definitions suitably extended in this
paper to the relativistic case. This method provides, in addition, a means of systematically
handling all the decays which involve photons in the final state on an equal footing.

Section II is devoted to an exposition of the classic decay amplitudes in the helicity
formalism. What is new here is the general formula giving the number of independent

helicity-coupling amplitudes for the decay process J — s + o, where the spins involved are



any arbtrary integers. The results are also given in a tabular form for a few cases of practical
importance. Sections III and IV cover the problem of constructing the decay amplitudes in
the momentum space, the spin-1 wave functions and their projection operators. In particular,
the form of a rank-J tensor is derived corresponding to the general wave function for an
arbitrary integer spin J with a given z component of spin m, i.e., the tensor counterpart to
the familiar ket state |Jm). To the best of the author’s knowledge, such a tensor has been
derived for the first time in a closed form. In section V, a derivation is given of the invariant
£S-coupling amplitudes for the decay J — s + o and, finally, the recoupling coefficient
connecting them to those in the helicity basis is given—which represents the main result of
this paper.

In sections VI through X, a wide-ranging and carefully chosen array of decay problems
is given to illustrate the methods developed in this paper. The first example (Section VI)
is the simplest which requires introduction of the Lorentz factor. A very important conse-
quence is that the distribution resulting from an S-wave decay turns out to be anisotropic,
which nevertheless tends toward an isotropic distribution in the nonrelativistic limit. The
second example (Section VII) deals with a decay in which both the Lorentz factor and the
dependence on the mass of the parent particle appear together in the decay amplitudes. In
the third example (Section VIII), a polynomial dependence on the Lorentz factor appears
for the first time. Moreover, this examples shows how different polynomials of the Lorentz
factor could appear in the helicity-coupling amplitudes, depending on the way the tensors
are used to construct them.

A decay mode in which both decay products have spins greater than one is treated in
the fourth example (Section IX). Specifically, a hypothetical Higgs boson decay into two W
bosons is considered, which includes the possibility of parity violation in the decay. It is
shown in this example that the Lorentz factor is crucial in deducing that the Higgs boson
coupling to two W bosons, in the high-mass limit, tends towards that of a boson decaying
into two bosons (Goldstone bosons). In the final example (Section X), the case of a spin-1

object decaying into a spin-2 and a spin-1 particles is given. As the reader will discover, this



example becomes very convoluted, requiring intrinsic spins 1, 2 and 3 and an orbital angular
momentum of up to 4 in the final state. For such a case—and for more complex cases—it is
very important that one is in posession of a general formula, obviating the need to work out
contractions involving high-rank tensors (see Section V for such a general formula). If the
spin-1 decay product turns out to be a photon, then this example illustrates a case in which
the number of independent parameters in the helicity basis becomes smaller than that in the
¢-S basis. For further examples involving photons, the reader may consult refs. [1] and [3].

Conclusions are given in Section XI.

II. HELICITY-COUPLING AMPLITUDES

Consider a state with spin(parity)=J(n,) decaying into two states with s(n,) and o(n,).

The decay amplitudes are given, in the rest frame of J,

M, (8,03 M) o (9,0, W] JMA)(J Mv| M |JM) (1)

X DXJ*J(SO:'&: O)Fi]u

where M is the invariant operator for the decay, and A and v are the helicities of the two
final-state particles ‘s’ and ‘o’ with § = A — v. The symbol M stands for the z component
of the spin J in a coordinate system fixed by production process. The helicities A and v
are rotational invariants by definition. The direction of the break-up momentum of the
decaying particle s is given by the angles ¥ and ¢ in the J rest frame. Let &, g and 2z be the
coordinate system fixed in the J rest frame. It is important to recognize, for applications to
sequential decays, the exact nature of the body-fixed (helicity) coordinate system implied by
the arguments of the D function given above. Let zj, gn and 2 be the helicity coordinate
system fixed by the s decay. Then by definition 2; describes the direction of the s in the J
rest frame (termed the helicity axis in this paper) and the y axis is given by g, o 2 X 2, and
Tp = Yp X Zn.

The helicity-coupling amplitude F” given by



F o« (JM>Mv| M |JM) (2)
is a rotational invariant. Parity conservation in the decay leads to the relationship

F3, =nmeme(=) "*F7,_, (3)

while, if the decay products ‘s’ and ‘o’ are identical, the following additional relationship

holds
Fi, = (-)'F}, (4)

for both integer and half-integer spins.
The helicity-coupling amplitudes F” are, in the nonrelativistic limit, related to the £S-

coupling amplitudes G via

;o [2U+1)? - .
=Y (M ) (€0S8178)(53 o —155) G (5)

S

where the coupling amplitudes have been given the normalization

> IGEI =2 IR (6)

LS v

and the (£1mq £amy|l3ms) stands for the usual Clebsch-Gordan coefficients. The formula (5)
for the helicity-coupling amplitudes results from the usual scheme of coupling of the angular
momenta but with the z axis chosen along the helicity axis. Note that the orbital angular
momentum £ has zero z component in this case and the particle ‘o’ has z component —v.
The formula (5) was given for the nonrelativistic case by Jacob and Wick [6] in Appendix
B of their pioneering paper on helicity formalism. The main purpose of this paper is to
show how this formula could be modified in the relativistic limit; the new formula is given
in Section V.

It should be useful to give here a general formula for the number of independent ampli-
tudes for Fy. From (1) one sees that the helicities are restricted by |A — v| < J. As there is
a one-to-one correspondence between the number for independent FY ’s and that of G{g’s if

the particles involved are massive, the formula applies to both. It turns out that the formula
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is simpler if it is given as a sum of those for both positive and negative intrinsic parities of

the parent particle. The combined number may be succinctly written
Ny=(a+b+1l)a—s+o+1)+(s+o—a)2J+1) (7)
where

a =min{J,s + o} (8)

b= min{J,s — o}

and one has assumed here that s > . This formula breaks down into three cases as follows:

If J > s+ o, one finds
Ny =(2s+1)(20 +1) (9)
But if s —0 < J < s + 0, one has
Ny=({J+s—0c+1)(J—s+o+1)+(s+0—J)2J+1) (10)
Finally, if J < s — o, one obtains
N;y=(20+1)(2J+1) (11)

The formula (9) is obvious from the form of the amplitude Fj, which has two subcripts
corresponding to spins s and o. The expression (11) shows that Ny is simply 20+ 1 if J = 0.
In the £S-coupling scheme, the number of independent GJg’s is merely given by 20 + 1; this
i1s the number of total intrinsic spin S, and £ must be equal to S if J = 0. Finally, the
number of independent amplitudes for a given intrinsic parity of the parent particle is given
by N_g—l_) = (N + 1)/2 if Fy) is nonzero [see (3)], while the number is N_g_) = (N;—1)/2
for the opposite intrinsic parity for which Fj, = 0. Note that N is always odd. If the two
daughter particles are identical, then there exist additional constraints on the amplitudes

and the resulting number N is smaller than that given above. The number Ny is tabulated



in Table I for a few low values of the spins.

Table I.  Number of Independent Amplitudes

s o J N N N;
0 0 0 0 1 1
10 0 0 1 1
1 0 1 1 2 3
1 0 2 1 2 3
11 0 1 2 3
11 1 3 4 7
11 2 4 5 9
11 3 4 5 9
2 0 0 0 1 1
2 0 1 1 2 3
2 0 2 2 3 5
2 0 3 2 3 5
2 1 0 1 2 3
2 1 1 4 5 9
2 1 2 6 7 13
2 1 3 7 8 15
2 1 4 7 8 15




III. DECAY AMPLITUDES IN MOMENTUM SPACE

The decay amplitude (1) is simply given by the helicity-coupling amplitude itself if one
sets ¥ = ¢ = 0. It is obvious now that the helicity-coupling amplitudes can be derived from
the tensor formalism by restricting to the four-vectors defined along the z axis. Let p, ¢ and

k be the four-momenta for the states ‘J’, ‘s’ and ‘o’ with masses W, m and p

pa = (p07P)7 p2 = WZ) qa = (qﬂaq)a q2 = m27 k* = (kﬂak)a kz = :u’z (]‘2)

and let » = ¢ — k be the break-up four-momentum. Using the Lorentz metric g,g, one has

Pa = G,zP° = (Po,—P) (13)

and similarly for the other four-vectors. In this paper, one has adopted the notations p, g, k
and r to stand for both the four-momenta and the magnitudes of the 3-momenta. One can

then define the following unitless quantities derived from them:

q q k k
Ys = _07 YsBs = —, Yo = = and .0, = — (14)
m m 2 2

One may now write an explicitly covariant expression (Lorentz scalar) for the helicity-

coupling amplitudes

FL, = 3 gaAalv) (15)

where

Aa(Wv) = [p*, 78, w(N),6(—v), ¢ ()] (16)

The square bracket here indicates that a Lorentz invariant amplitude is to be constructed
out of the five variables: p, r, w, € and ¢*. As the momenta involved are all parallel with
the helicity axis, this formula merely gives the energy and momentum dependence of the
helicity-coupling amplitudes but no angular dependence, as this is already contained in the
D function in the expression (1). The variables a stand for the set {£, S}, and the constants

go are the analogue of the G/ in (5).



The covariant function A, depends on p and » as well as the momentum-space wave
functions (or tensors) ¢*(¢), w(A) and e(—v) for the particles ‘J’, ‘s’ and ‘o’, where §, A and
—v are the z components of spin as defined before. Note that the complex conjugate of the
J wave function appears in the above formula: it represents the initial state while those of
‘s’ and ‘o’ correspond to the final states. As shown with examples in later sections, one may
set n = 1 or n = 0 without loss of generality, depending on the intrinsic parities involved. In
other words, the four-vector p is used in the covariant amplitudes at most once, if necessary,
in order to satisfy the requirement of parity conservation. The covariant function A, can
depend on any multiples (up to £) of r, reflecting orbital angular momenta allowed in the
decay.

A summary of notations used in this paper is given in Table II.

Table II. Two-body decay: J — s+ o

Parent |Daughter 1{Daughter 2
Spin J s o
Parity 1, s UL
Helicity A v
Momentum P q k
Energy Po g0 ko
Mass w m 7’
Energy/Mass Vs Yo
Velocity B B,
Wave function|¢*(A — v)|  w(A) e(—v)




IV. WAVE FUNCTIONS AND PROJECTION OPERATORS

The polarization four-vectors or wave functions appropriate for the particles J = 1,

‘s =1’ and ‘o = 1’ are well known. Along with the relevant momenta,

P =( W;0,0, 0)
¢ = ( g0; 0, 0, q)
=( 7m;0,0, ~v8m) (17)
k= ( k0,0, —q)
= Y5 0,0, 7. 851 )
r = (go— ko; 0, 0, 2q )

where W = qo + ko, go = vm? + ¢2, ko = v/p? + ¢?> and r = g — k, the wave functions in the

J rest frame are given by

FE) =T (014, 0)
$*(0) = ( 0;0, 0, 1)
w(+) =L 0;1, &2, 0
() = T35 ) -
wa(o) = ( 7sﬂs; 07 07 Vs )
o) =55 (01, 0)
€a(0) = ( _70ﬁ0; 07 07 Yo )
Note that
Pa®™(A) = qaw™(A) = kae®(A) =0
for any A.

These polarization four-vectors satisfy

Pad®(m) = 0
¢r(m)g*(m') = —bpmms (19)
Y a(m)s(m) = Gas(W)
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where

N _ . Pap
Gap(W) = —Gap + Wf (20)

The last equation of (19) is the usual projection operator for spin-1 states. Note that, in the
J rest frame, §g(W) has a zero time-component and +1 for the space-components. w and €
satisfy similar conditions, but with their own §’s, i.e., g(m) and g(u).

One is now ready to exhibit all the Lorentz invariants involving spin-1 wave functions.
One has adopted, in this paper, exclusive use of the modified Lorentz metric g(W) for all

the Lorentz scalars in the problem:
[a-b] = a® Goug(W) PP = (a - b) (21)

where a and b are arbitrary four-vectors. @ and b are three-vectors defined in the J rest
frame. The rationale for this approach is that pure-spin projection operators should be used
to form Lorentz scalars, since the wave functions for s and o are not those of a pure spin-1
state in the J rest frame (a general formulation of this approach is given in the next section).
Inspection of (19) shows that the modified metric g(W) is in fact equal to a spin-1 projection
operator consisting of a new spin-1 wave function, e.g. x(m), defined to be the same as ¢(m)
[see (18)]. One difference is that ¢(m) is a wave function defined in the initial system and
x(m) is that set up in the final state. Note that
[a-b] =3 a*xj(m) b xu(m) =3 a*xu(m) b x}(m) (22)
If the quantization axis for x(m) is defined along the helicity axis and if @ and/or b are either
the wave functions defined with the same quantization axis or four-vectors with zero z and
y components, then an important simplification occurs: the sum on m disappears in (22).
Using the prescription (21) or (22), it can be shown that all the Lorentz scalars evaluated

in the J rest frame may be written as
['l“ : w(m)] = YsT Omo
[r-e(m)] =757 0mo
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[r - ¢*(m)] =7 dmo
[w(m) - e(m)] = (=1)™ [m? + 7276 (1 — m?)] Gy, (23)
[w(m) - ¢*(m)] = [m? + 7s(1 — m?)] 8pn,
[e(m) - ¢*(m')] = [m? + 7o (1 — m?)] Gy,
There exists a second form of Lorentz invariant involving the totally antisymmetric rank-4

tensor. For any four vectors a, b, ¢ and d, it can be written
[abed] = €apys a®b° 7 d° (24)
Relevant invariants in the problem are
[pw(m)r¢*(m')] = imWr b m
[pe(m)r¢*(m')] = imWr b m (25)
[pw(m)re(m)] = —imWr b _pms

[pw(m)e(m’) ¢ (m”)] = iW [m(1 —m"?) +m"(1 —m")y, — m'(1 = m*)7,| s, mime
The spin-2 wave functions can be written

¢ (m) = D (Imq 1ma|2m)¢®(ma) ¢’ (me) (26)

m1ma

where m = m; + my. This is orthogonal to p, symmetric in the two indices and traceless
under contraction with g or g(W). The spin-2 wave functions for s and o are constructed
in the same way, but they are not traceless with respect to the modified metric §(W). For

example, note that, for s = 2,

- 2
607 ) = | 2002~ Db e
where a colon indicates contraction over two neighboring indices. It becomes traceless in the

limit 4, — 1. The spin-3 wave functions can be constructed in a similar manner, starting

with spin-2 and spin-1 wave functions, as follows:

¢ (m) = 3 (2n1 1ms|3m)¢™ (n1)¢7 (ms) (28)

nimsz

= Y (Imalma|2n)(2n: 1ms|3m)$® (m1)¢% (m2) ¢ (ms)

m1mams

11



where m = m; + my + m3. Note that these are orthogonal to p and are symmetric under
interchange of any pairs in {a, 3,~v}. They are also traceless, i.e., they vanish under contrac-
tion with g or §(W) for any pairs in {a,3,v}. In general, the wave function for a particle

of spin-J is a rank-J tensor

g1 % (m) = Y (Imylma|2ny)(2n11mal3ns) --- (J—1ny_s Im,|Jm)

¢ (m1) @™ (my) - - - $*7 (m,) (29)

with m = my; +my + -+ + m, and normalized by
Py (M) PV (') = (=) Sy (30)

and

[47(m) ® (m)] = Smm: (31)

where the symbol ® stands for contraction of two equal-rank tensors with the modified
metric g(W).
The Clebsch-Gordan coefficients appearing in (29) have the following simple expressions

[7]:

| o Gem-mi]?
Gt Alm) = | o @y +2) ]

. . [G+m)G+m+D)]*
Gm=t LA+ m) = | e )@ +2) ]

Using these formulas, one deduces that the general spin-J wave function (29) can be trans-
formed into
@5 (m) = [ (m)]3 30 2700 30 ¢ (4) - 67 (0) 87 (<) -+ (33)
mo P

where

J +m)l(J — m)!
(2J)!

aJ(m) = ( (34)

12



and the indices {é;---é;} have been broken up into three distinct sets in the second sum-
mation, i.e., {a;} with (s = 1,my), {8} with (z = 1,mo) and {y;} with (z = 1,m_), where

my stands for the numbers of ¢(+)’s and mg for ¢(0)’s. Note that
J=my+mo+m_ and m=my—m_ (35)
and that
2my = J £ m —my (36)

It is apparent that the right-hand side must be always even. The first sum in (33) goes over
the allowed values of mg given J and m. It is clear that the maximum is given by J —m, so
that mo ranges from 0(1), 2(3),- - -, to J —m =even(odd). The second sum in (33) represents

a summation on the permutations

It is seen readily that the number of terms in the summation is

J!

bm,mo) =

Note the following useful relationship:
¢(—m) = (=)"¢"(m) (38)

It is best to illustrate these formulas with examples for J = 1, 2 and 3. For J = 1 one
finds that (33) reduces to identities for ¢(+) and ¢(0). For J = 2, one finds

¢“ﬂ(+2)=¢“( )¢ (+)
$°P(+1) = [qsa( ) °(0) + ¢°(0) ¢° (+)] (39)

3\

¢“ﬂ(0)=%[¢“(+)¢ﬂ( )+ ¢%(— \[ $(0) ¢°(0)

and, for J = 3, the wave functions take on the form

13



¢ (+3) = ( +) ¢°(+) ¢7(+)

[¢a( )87 (+) 67(0) + ¢*(+) 6°(0) 87 (+) + ¢(0) ¢°(+) ¢7(+)]

e~
Q

677 (+2) =

3\

$o(+1) = [¢a( ) () 7(-) + 6%(+) (=) () + 67(-) #°(+) ¢ (+)]
—[$(1) #0) #(0) + $20) (1) $(0) + 0 #0) #7(+)] (40
[¢ (0) ¢ﬂ(+) (=) + 6%(0) #°(=) #7(+) + ¢°(—) #°(+) #(0)

7(0) + ¢*(+) °(0) (=) + ¢*(—) ¢°(0) " (+)]

\[qﬁ“ ) ¢°(0) 47(0)

V. INVARIANT ¢S-COUPLING AMPLITUDES

aT =k

#1(0) =

+§\~

In order to find a connection of the tensor formalism with that of the £S5-coupling scheme,
one needs to develop the concept of total intrinsic spin S formed out of the ‘s’ and ‘o’
polarization four-vectors and that of the pure orbital angular momentum £ built out of .
Consider now a wave function x*(m,) which is to form the basis for constructing the ket
state |Sm,). One demands that this wave function have zero time component in the J rest
frame very similar to ¢ [see (18) and (29)].

Xoasipfe (M) = Y (5Ma omp|SML)X, .0, (Ma)XF, .5, (M0) (41)
mamy

where rank-s tensor x°(m,) and rank-o tensor x°(ms) are the ‘rest-state’—and fictitious—
wave functions, invented for constructing projection operators, and hence exactly equal to
(33) with the index J changed to either s or o. Consequently, x° is a tensor of rank s + o
which acts on rank-s w and rank-o € tensors, which are the ‘correct’ relativistic tensors
corresponding to the decay products s and o. The corresponding projection operator is a

tensor of rank 2(s + o) given by
=2 X7 (ma)x” " (ma) (42)

It is seen that the invariant amplitudes must contain the products

14



X" *(ma) @ w(A)| = F(7) bmar (43)

X (ms) @ e(=v)| = £ (6) Sy

where the symbol ® indicates, once again, a contraction between two tensors of equal rank
with the modified metric g(W). The functions f are normalized to 1 as v — 1 and are given

below. The invariant amplitude corresponding to a state of pure spin S is then
" () = [w(A) & X°7(m.) @ e(—v)]| = (sX IS8 (1) F7 (%) Gomas (44)

where § = A — v. The first ® signifies a contraction of the indices {a; - - - a,} [see (41)] with
the modified Lorentz metric g(W), and the second one of the indices {8;---8,}. A very
important simplification results from using the specialized wave functions defined along the
helicity axis: there is no summation on the index m, in the projection operator P°. The
projection operator is merely given by x°(§) multiplied by (44).

The function f3(y,) for s = 1 is trivially given by, from (23),
&) = A0 = X" e
=1 for A=41 (45)
=9, for A=0

where a dot within the bracket indicates, once again, a contraction of two four-vectors with

the modified Lorentz metric §(W). For s=2, the function f takes on the form

Hlrs) = D0 (I 14]2X)%6(M)és(Xs) (46)

A1)z

so that

f>(‘2)(’ys) =1 for A=42

=7, for A=+£1 (47)
2 1
= g’yf + 3 for A=0

Similarly for s = 3, one finds

15



Rl = D0 (WA 122022a)(2Xa 12s[34)° £ (A1)€.(A2)84(Xa) (48)

A1A2A3

so that

f>(‘3)(’ys) =1 for A=43

=5, for A=42 (49)
4 1

= g’yf 5 for A=+41
2 3

:g’yf’—l—g’ys for A=0

Finally, one may work out the function f for s = 4 as well: from

Rl = >0 (I 1X[2Xa)% (220 1As[3X)* (3% 1A4[43)*E. (M1)&(A2)&:(Aa)€a(As) - (50)

A1Az2A3)

one sees that

f>(‘4)(’ys) =1 for A=+44

=5, for A=43

6 1
:?’yf—l—? for A =42 (51)
4
:?73+378 for A =41

8§ , 24, 3
e B2 0 e A=0

357 T 357 T g5 loF

The general formula for the f-functions can be obtained by inspecting (43) and (33):
Fa(y) = a’(m) 3 b (m,mo) (2y)™ (52)
mo
where j, m and « can stand for s, A and «, or o, v and v,. As in the previous section, mg
ranges from 0(1), 2(3),---, to J — m =even(odd). It is easy to verify that this formula gives
the results (45) for j = 1, (47) for j =2, (49) for j = 3 and (51) for j = 4.
The analogue of the ket state |[#m) may be represented by a rank-£ tensor 7¢(m), defined
to have zero time component in the J rest frame, since the orbital angular momentum is
defined only in this frame. The tensor 7¢(m), which corresponds to the ‘rest-state’—and

fictious—wave function invented for constructing projection operators, is analogous to the

16



tensors x°(m,) and x°(m3) introduced in (41). Therefore, the tensor 7¢(m) is exactly equal
to (33) with the index J changed to £. The corresponding projection operator is a tensor of

rank 2/ given by

Pt = Z Tl(m)Tl*(m) (53)

Again, one can simplify the treatment of orbital angular momentum by defining 7¢(m) along

the helicity axis [see ¢ in (18)]. If £ = 1, one finds
[r(m) - r| = 76mo (54)
This can be easily generalized, so that one finds
[rH(m)@rr-e| =cirt bmo (55)
where
¢ = (1010[20)(2010(30) - -- (£—10 10|£0)
iy [%] : (56)
One is now ready to evaluate the final element of the invariant £S-coupling amplitudes:
", x°(8),7(0), ¢ (8))] (57)

where n = 1 for s + ¢ + £ — J odd and n = 0 otherwise. For example, if ¢ = 0 and

s =£ = J =1, then the invariant amplitude can be written as
[px(8) 7(0) ¢7(8)] o« W (1014[14) (58)

The right-hand side results from evaluating the expression in the J rest frame. It can be
shown that the last expression in (25) with v, = 7, = 1 is equivalent to the result above.
Consider another example: if 0 =0, £ = 2 and s = J = 1, then the invariant amplitude can

be written, from (23) and (26),

(X(8) - 7(0) - *(8)] o (2018]15) (59)

17



One can infer in general that the invariant amplitude of (57) should take on the form, in the

J rest frame,
2", x%(8),7(0), ¢"(8)] o W™ (£0 56| J6) (60)
The left-hand side is in reality proportional to the matrix element
(£0 S8| M| J6) (61)
One can expand the state |J§) in the usual way

|J&) = Z (7101 J262|J 8) 7161 7202) (62)

J1617202

This is reduced to (60), if M is applied from the left first and then followed by the ket states
|€0) and |S4).

The invariant helicity-coupling amplitude may now be written, from (44) and (60),

Fi]u = Z 95 Als()‘y) (63)
I
where
2 +1\?
Ais(Av) = (2J—|—|_- 1) (£0 S8|Jé)(sA o —v|S$é) wn ot (vs) 2 (ve) (64)

where the square-root factor has been introduced so that the formula above has an appear-
ance similar to (5). The coefficient ¢, has been absorbed into g. The complex parameters g
are unknown, to be determined from experiment. Once again, it is to be noted that n = 1
for s+ o0+ £ — J odd and n = 0 otherwise. One could make the right-hand side unitless by
substituting W and and r by W= W /Wy and 7 = r/ry where 7o refers to the r correspond-
ing to the nominal mass values Wy, mq and po. One sees then that (63) reduces to (5), i.e.,
g,s — GJgin the limit W — 1,7 = 1, f{ — 1 and f5 — 1.

The expression (63) is the main result of this paper. The r¢ dependence is familiar, but
the W and ~« dependence are not; the W factor is necessary to insure Lorentz covariance in
four dimensions, and the functional forms on « result from the boosted wave functions one
needs to employ for s and o.

A few examples are given below for illustration.
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VI. 5,(1235) » w + 7

Let ‘J’, ‘s’ and ‘o’ stand for the b;(1235), the w and the 7. The net intrinsic parity is
given by 1,1,m, = +1 and F} = +F’,, and there are two allowed orbital angular momenta,

1.e., £ =0 or £ = 2. The helicity-coupling amplitudes have the following expansion in the

2 1
V2F] = \/;GOJ + \/;Gg
1 2
7=\ hei- 2 (65)

where J = 1. According to the Particle Data Group [8], one has, experimentally,

nonrelativistic limit (see (5)):

Gy
G| = 0:26 £ 0.04 (66)

There are two covariant decay amplitudes corresponding to S- and D-waves in the prob-

lem, before introduction of projection operators,

Ao(A) = [w(A) - 47(A)] (67)
A2(A) = [w(X) - 7®(0) - §*(N)] ez 7’

The form of the A, given above may be more efficient, especially for high values of £, than

that given in the earlier paper [1]:

The helicity-coupling amplitudes are given by
Fy = goAo(A) + g245(}) (68)
where go and g, are arbitrary constants. Evaluating A’s in the J rest frame, one obtains

1
Fj =G0 — 5927“2

2
Fi =1, (90 + ggzrz) (69)
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where J = 1. In the limit v, — 1, the expressions of (69) reduce to those of (65) with the

replacement

2
GoJ = \/?_’907 Gg = —\/;92 r? (70)

When the amplitudes are constructed with the aid of projection operators, the invariant

helicity-coupling amplitudes are simply given by (63):

V2F] = \/7904-\/792'?
Fy = (\/;go - \/;gzrz) Ys (71)

The g¢’s in this expression are of course proportional to the g’s in (69).

It i1s instructive to work out the angular distribution for this decay. Suppose that w
decays into 37 and the orientation of the normal to its decay plane is given by (¢¥',¢’) in
the helicity coordinate system {Zx,yn, 25} as defined in Section III. Then the overall decay

amplitude is
MI (S, 0,9, ¢, M) 2 D35 (e,9,0)F] D3¥(4',9,0) (72)
In terms of the density matrix p defined in the J rest frame, the angular distribution I is

[(19790719'790') X Z pMMIDXl*A(SO:ﬂaO)DXJ’A’(SOJ%O)
MM
AN

F{F57 D35 (#',9',0) D3 (', 9',0) (73)

For the purpose of illustration, it is sufficient to take the special case in which pgo = 1 and

all the other elements are zero. Then, after integrating over ¢ and ¢’, one finds

I(8,9') o 3 [doy(9)]* |F5 [ [d30(9))” (74)

This leads to two very similar distributions
1(9) o |F|? cos®(9) + | F|* sin®(99) (75)
I(¥) o |Fy|? cos®(¢') + || sin® (') (76)
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If one assumes that g;’s are relatively real, one obtains, from (69),

I(9) o< (72 — 1) cos*(9) + 1]
+ Za0g2771(292 4 1) cos?(9) 1]
+ g r (472 — 1) cos™(9) + 1 (77)
I0) o g2 — 1) cos?(9") + 1]
+ Za0g2 771(272 4 1) cos?(#) — 1]

+ 5 r (472 — 1) cos™(#) + 1 (78)

Two noteworthy results of this exercise are: (a)the S-wave term containing the factor g3 is no
longer isotropic in the cosines for v, > 1, and (b)the D-wave term with g2 is a polynomial of
order 2 in the cosines, reflecting the fact that the parent particle has J = 1. It is important to
note, in addition, that the singularities implicit with the presence of cosines in the amplitudes
are cancelled by 72 and ~,.

It is illuminating to work out the angular distribution again within the nonrelativistic
formalism with canonical quantization. Integrating over the variables corresponding to the
w decay and over @, one finds, for pgo = 1,

I9) x Y. G{G{FY. (dm s —m|J0) (' m s —m|J0) Y;™(9,0)Y,"(¥,0) (79)
174 m
With the substitutions (70), it can be shown that this angular distribution reduces to that

of (77) in the limit v, — 1.

VIL pp(3P,) — f2(1270) + =

The net intrinsic parity is 17,1, = —1 and there are two helicity-coupling amplitudes
FZ(Z) and Fl(z) corresponding to £ =1 and £ = 3:
_ 2o 1o (80)
5 V5
1 2
VoFr® — g 4 2 g0
1 Noht 3

V2F{) =

S
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in the nonrelativistic limit.
The covariant amplitudes corresponding to pure orbital angular momenta are, before

projection operators are introduced,

Ai=lprw-¢ (81)
=pw- 7-(3)(0) - ¢*] car®

The amplitudes with A = +2 and A = +1 lead to

1
FZ(Z) =W (gl — ggg rz) T (82)

1
Fl(Z) — W,-ys (_

+ 2 2)
— T T
291 593

for two arbitrary complex constants g; and gz. With the technique of projection operators,

the F’s assume the form, from (63),

2 1
\/§F2(2) =-W (7591 + 7593 7“2) r (83)
\/§F1(2) = Wn, (—Lgl + igg, rz) r
V5 V5

With a proper redefinition of the g’s, it can shown that (82) and (83) are identical.

VIIL. a3(2050) — f»(1270)r

This decay is so far unobserved, but it affords an opportunity to explore new territory

regarding the structure of helicity-coupling amplitudes. There are three F/’s corresponding

fGJ g
f

to £ =1, 3 and b5:

V2F; =

7%
\/; (84)
\/,

in the nonrelativistic limit. The covariant amplitudes are, using w and 7’s,

V2F] =

J _
0

GJ
\/_
3 g7
\/_
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As(A) = [w(A) - 7(0) : ¢*(X) Loy o (85)

for £ =1, £ =3 and £ = 5, respectively. The notation [- -], indicates that the first and the
last free indices within | ] are to be contracted with the modified metric §(WW). The symbol

~. stands for contraction over three neighboring indices. One finds

1 2 2
FZJ = % (91 — ggs'rz + 59544) T

[ 1 10
Fl']: 1—5’)’5 (291+59372—595T4)T (86)
3 2 N 4 /3 1 20 /2 1
T NOT R
0 \/;{gl g7 Tg) T g9 9% ~3)" T3 tg)m ("

where g;, g3 and g5 are arbitrary constants. If one takes the limit v, — 1, then the following

7 2 2
Gf:\/;gl, Gg:—g gz and G'sjzz\/@% (87)

transforms (86) into (84).

substitutions

With the introduction of projection operators, one finds from (63)

2 2 1
2FJ: < < 2 4
\/_ 9 \/;gl + 3931" + ,—21951" ) r

4 1 10
VEF] = | g1 — ——gar® — [ 5og5 | T, 88
R OVE RV TR (%)

7 3 2 2 10 (2 2 1)
= Y —— ——— T - T T - —
c o \vs v TV ar® 3773

One is now confronted with a crucial difference between Fy in (86) and (88): it is seen that
the functional forms for v, can be different for £ = 1, 3 or 5 with the amplitudes constructed
directly out of w, whereas they are the same when the intermediate wave function  is used

instead.
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IX. H > WTW~™

Consider the decay of a Higgs boson particle into two gauge bosons. The total intrinsic
spin S can be 0, 1 or 2, while the orbital angular momentum £ can also be 0, 1 or 2. But since
H is a scalar particle, one must have £ =5 =0,£=5=1or £ =S = 2. For the purpose of
illustration, it is assumed that the Higgs boson decay can be parity nonconserving. In the

nonrelativistic limit, the helicity-coupling amplitudes are given by
1 1 1
Fﬂ':]i = \/;Ggo + EG.{l + \/%G'zjz

1 2
P = -5+ 264 5

where J = 0. Note that (3) is no longer valid, if GY; is nonzero, and that Bose symmetry
for two gauge bosons is automatic in this formulation.

The decay amplitudes may be written

Ago(Av) = [e(—v) - w(A)]
Ai1(Av) = [pe(—v) r w(A)] (90)

Agp(Av) = [e(—v) - T(Z)(O) cw(A)] car?

The amplitudes (90) lead to

1
Fi]i = —goo £ guu Wyr+ 5922 r? (91)
2
Fd{) = ’)’2 (900 + 5922 Tz)

where W, is the Higgs boson mass and one has put vy = 7, = 7, in the H rest frame.

Alternatively, one may use (63) to write

1 1 1
Fi]i = \/;900 + 75911 W,r+ \/%922 r?
1 2
F(S{) = ’)’2 (—\/;900 + \/;922 Tz) (92)

This is of course equivalent to (91) with a redefinition of the g’s. In a phenomenological

approach adopted here, it is seen that the Higgs boson decay into gauge bosons depends
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on three parameters goo, g11 and gra, which can depend in general on the Higgs boson and
gauge-boson masses.

The decay probability is, summed over the helicities,
o [F{L? + [ Fool” + | P2 (93)

since the D function is an identity for J = 0. If the Higgs boson mass W, is very much
larger than the W mass and the parameter g’s depend weakly on the masses, then the
decay probability I is dominated by |F|? only, i.e., both W+ and W~ have zero helicities.
Consider now the decay H — vv. In this case I is given by |F{,|?, i.e., both of the v’s are
restricted to + helicities. Note clear separation of the decay amplitudes for these two cases.

In the Standard Model, the decay amplitude is given by, in the lowest-order tree diagram,
the Lorentz metric gog itself, which is contained in the amplitude Ago in (90). Once again,
within the context of the projection operators used in this paper, the appropriate Lorentz
metric is the modified one, i.e., gog(W,,). It should be pointed out that parity violation can
occur only through the fermion loop in the decay of Higgs boson, and therefore it is expected
to be relatively small. If parity is conserved in the decay, then one must set g;; = 0, and

one has F—I{-I— — F7 in this case.

X. J/v — ay(1320)p

In order to further illustrate the techniques, one treats here a case in which both s and &
have spins greater than zero. This decay involves S = 1, 2 and 3 with £ taking on the values
0, 2 or 4.

The invariant amplitudes may be written, noting that  is a tensor of rank 3,

Aoi(A) = M) XU (8) §°2(W) g% (W) 4%(6)

Ass(Av) = e5(0w) [1@(0) : x5(8) - 67(6)] car? (94)

A(Ww) = eP)0w) [x®(8) - 79(0) - ¢*(6)] car?
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where S can be 1, 2 or 3 and the first subscript of A stands for £. One sees that there are five
distinct amplitudes in the problem. e®(Av) is a function already defined in (44). It should
be noted that the rank-3 tensor y is symmetric and traceless in the first two indices but not
with the third (note the semicolon indicating this distinction).

If one insists on bypassing the projection operators, the amplitudes may be written

Ao (Av) = [e(—v) - w(}) - ¢7(3)]

An(Wv) = [e(=v) - w(A) - 7H(0) - ¢*(8)] a7

An(Wv) = [e(—v) w(A) - 7?)(0) ¢*(8)] 2 (95)

Ans(Av) = [e(—v) - 7?(0) - w(A) - 47(8)] c2 7’

As(W) = [e(—v)w(A) - 7@(0) - ¢*(8)] car
where the square bracket in A, implies a contraction over four free indices with the totally
antisymmetric rank-4 tensor [see (24)]. These lead to F/’s with functional forms on ~, which
are dependent on £ in general. As the above amplitudes are not unique, one may conclude
that the resulting -y, dependence is not unique either.

In a phenomenological approach, therefore, it may be more practical to simply read off

the form of the helicity-coupling amplitudes from (63):

1
\/§F2']1:\/7901+\/7921T -|-\/79227° gaam’ -I-\/3 gazr*
J 2 8
\/§F1o: \/7901 \/ 921 \/7922 \/10 g3 T \/ 9437°)’)’s’)’a (96)

2 /6 /
\/§F1J1 = \/?901 \/;921 r? + 3— 9437° ) Vs
1 1 8 6 2 1
oy  — il = © 2 a 4 (_ 2 _)
V2 0,1 5901-|-\/309 \/7 \/35923T +\/359437° 37 + 3
2 / / 4 (2 9 1)
+ 943 ) 3’)’5 + 3 Yo

4
F(S]o: - Jo1 + 1—217°
If o 1s a photon, then the second and the fifth equations above are absent, and the angular

ot =

—_

15

distribution depends in general on three F/’s. It is seen that there are nevertheless five g’s;

one is in fact confronted with three independent coefficients of 72 for three F'/’s. In principle,
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with sufficient statistics on the parent state with a finite width, one may be able to discern

different 7? dependence for each F”.

XI. CONCLUSIONS

In this paper a general formalism is developed for constructing covariant helicity-coupling
amplitudes F}, in an arbitrary two-body decay J — s+o (the spins are used to designate the
particles as well—see Table II). The decay amplitudes are given as expansions in the total
intrinsic spin S and pure orbital angular momentum £. For the purpose, one has introduced
intermediate wave functions x(m,) and 7(m), which are the tensor analogues of the ket
states |Sm,) and |fm). By requiring that they have vanishing time components in the J
rest frame, the covariant decay amplitudes reduce to those involving three-vectors only in
the J rest frame. This is a general rule without exception: disregard time components of
all the four-vectors p (parent momentum), r (decay relative momentum), w (wave function
for decay product s), € (wave function for decay product o), and ¢* (wave function for
parent particle) in the problem; replace §g(W) by 4;; with 4,7 = 1,2,3 wherever an inner
product appears in the amplitudes; and replace the Lorentz scalar (pabc) by its three-vector
counterpart W(a - b x ¢) (W is the mass of the parent particle). This rule applies even to
an S-wave decay, e.g. for b;(1235) — wm the amplitude is (w - ¢*) in the J rest frame (see
Section VI).

The helicity coupling amplitudes have been shown to depend in general on four variables:
W, » (in this case, magnitude of the three-vector), v, (the Lorentz factor for the decay
product s) and v, (the same for the decay product o), with the latter three evaluated in
the J rest frame. Note that, if the states J, s and o have finite widths, then the masses W,
m and p themselves are all continuous variables nad hence should be treated as variables
in the problem. In addition, it has been shown that the dependence on the Lorentz factors
i1s present only if the spins s and o are greater than zero. Indeed, if s = o = 0, then

the covariant helicity-coupling amplitude Fj is merely given by 7/, identical to the result
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of the nonrelativistic formalism. It should be emphasized that the Zemach formalism [9] is
essentially nonrelativistic, since the v factors have been completely ignored in his formulation.

Energy dependence of the helicity-coupling amplitudes is a necessary consequence of the
fact that the decay products s and o have finite momenta in the J rest frame. Specifically,
if one of the decay product ‘o’ is a spin-0 particle, the helicity-coupling amplitude Fy is
in general a polynomial of order s — |A| in 7,, where A is the helicity of s. The functional
dependence on v, is simple indeed if s = 1: it is a monomial. Thus Fy is simply proportional
to 7,. Likewise, if s = 2, then F} is shown to be proportional to v,, but Fy depends on a
functional form of +,, different in general for each £ (see Section VIII for an example).

One of the main objectives of this paper has been to point out that a more systematic
and appropriate way is to employ the projection operators for both s and &, when their
spins are greater than zero. This formalism naturally leads to overall multiplicative factors
on the v dependence which can be easily calculated. In addition, the formalism gives the
helicity-coupling amplitudes in terms of the £S-coupling amplitudes, closely resembling those
familiar in the nonrelativistic limit. This formula, given in (63) and (64), is the main result of
this paper. The functional forms for v have been shown explicitly for spins up to 4, and the
general formula for arbitrary integer spin is given in (52). One may note that this formula is
derived in a straightforward way from the general expression for a wave function of arbitrary
integer spin, given in (33). To the best knowledge of the author, such a general expression
for the wave function has been worked out for the first time in this paper.

¢ is in practice

In the limit W — oo, the variables r and v’s also go to co. The factor =
always replaced by a Blatt-Weisskopf function (see [1]) which approaches a constant as r —
0o. The Lorentz factors are kinematical in origin and therefore must remain undamped in
the covariant amplitudes. One sees then that the angular distribution, in the limit W — oo,
is determined by only one F} where a = min || and b = min |v| allowed in the problem.
For example, consider the decay of a Higgs boson particle into two gauge bosons. As the

Higgs boson mass tends to infinity, the decay amplitude is essentially determined by a single

helicity-coupling amplitude F3: in other words, the gauge bosons behave as if they were
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scalar particles (Goldstone bosons) [10].

The decays involving a photon in the final state should be treated in the same way: the
decay amplitudes are given an expansion in a state of definite S and £, as if the photon
were a massive vector particle, e.g. p(770) or w(782). One then imposes a condition that
the photon wave function have no zero z component. The intermediate wave functions
and 7, required for this procedure, have nothing to do with the photon; they correspond
to those of unobserved (and massive) spin-1 or higher-spin particles, defined to have zero
time components in the parent rest frame. This approach allows for photons to be treated
in exactly the same way as massive particles—appropriate for helicity-coupling amplitudes.

The unknowns in the decay problem, denoted as g;;’s in this paper throughout (or simply
g:;'s depending on the problem), have been treated as constants. It should be clear, however,
that one has chosen here a model—one which satisfies Lorentz invariance, incorporating the
concept of definite S and £—but a model nonetheless. In general, the g;;’s should be functions
of invariant variables in the problem, but—in the abence of dynamics—the functions are
unkown. It is shown that there exists a one-to-one correspondence between the number of
the Fy’s and g;;’s. This is certainly the case, without exceptions, for the decays involving
massive particles. However, if one of the decay particles is a photon, then the number of the

gi;'s can exceed that of Fy ’s, as shown in the last example in this paper.
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