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1 Introduction

A complete treatment is given here of the problem of constructing I¢ eigenstates of the
K K7 systems. This note relies on the results of a previous note by the author[1]. The
reader is referred to this work for a thorough discussion of the I, G and C operators acting
on elementary particles, quarks and the composite systems. It may be worth emphasizing
that the I and C operators do not commute, and so the wave functions for anti-particles

with non-zero hypercharges, such as those of K’s and K*, should be defined with care.

Section 2 is devoted to the classification of all the possible I¢ eigenstates for (K K)°
and (K K)~ resulting from an interchange of the K with a K. One may find the complete
decay amplitudes for (K K7)~ in Sections 3 and 4, and those for (K K7)° in Section 5. A
comment on notation is in order; the wave functions and the corresponding parameters,
whenever necessary, are specified with superscripts &+ for the G-parity and with subscripts

0 or 1 for the isotopic spin [.

An important conclusion of this note is that K™K 7~ and K~ K _n" are fundamentally
different and that the two data sets cannot be combined in general. One notable exception
is the pp annihilation at rest leading to the final states K* K 7F. The decay amplitudes for
this process as well as that in flight are dealt with in Section 6. Conclusions are given in

Section 7.

Although the final state (K Km) can come in I = 0, I = 1 or I = 2, this note deals
mainly with 7 = 0 or I = 1 only, but it should be borne in mind that the I = 2 states—
however small in magnitude—may nevertheless play a significant role through interference
effects. In the Appendix, the states wao(980) are expanded in all possible eigenstates of
I, and it is shown that the states 7*ag (980) and 7~ ag (980) do have different interference
effects between I=even and /=odd states. It is demonstrated, finally, that the states of two

_|_

charged pions, i.e. 777~ and 7~ 7", are indistinguishable—as expected.

Finally, a comment on the symbols is in order: 1%, G, C, J? and PP are used to indicate
the operators for the isospin squared, the G-parity, the C-parity, total spin squared and the
parity, with the corresponding eigenvalues denoted by I(I + 1), G (mostly written as g), C,
J(J+1) and P.



2 Classification of K K7 systems

Consider production of a non-strange meson state X in
mTp—=>XTp

7 p — X

which then decay into
X~ = (KKm)~
_ (2)
X% - (KKm)°

The purpose of this note is to give a complete list of all possible decay modes and exhibit
the interplay of I, C- and G-parities for each distinct final state.

For ease of reference, the actions of C and G operators|1] are collectively given here. For

m’s, one has

T - T —nt

0 _ 0 0 _ 0
Cln = | +=7 , G| 7 =| —7 (3)

T —nt T -

For K’s, one has
?

and

where C?2 = 1 and G? = (—)ZI.

One assumes that the state X is in an eigenstate of /¢ JFC. If these quantum numbers
are conserved in the decay, then the final state K K7 must also be in the same eigenstate. In
terms of the orbital angular momentum £ for the K K system, one finds readily the results

given in Tables 1 and 2.



Table 1. Possible Decay Modes with a K™

I G C | X | Decay Mode | £*
01| + |+,—|X° | KK n~ even
01| — |—+|X° | KK n~ odd
01|+,—| + |X° | KtK«n° even
01| —+]| — | X° | KK =° odd

1 |+, — |-+ | X |KTK 7~ even

1 |+,—|—+ | X |KtK n~ odd

* Orbital angular momentum for the K K system

The decay modes are listed with K instead of K° or K°, as a neutral K is detected mainly
through its decay K, — 7t7~. An exotic X can come with I = 2, but it is not considered
in this note. It is worth noting that neither the G nor the C is definite for the final state

K+*K~n~, since the K™ K~ isospin is not known (it can be either 0 or 1).

Table 2. Possible Decay Modes with no K+

I G C | X | Decay Mode | £*

0,1|+,—-| + | X° | K,K.n° even
L |+, — | =+ | X | KK~ even
01| + |+,—|X° | KK nt even
01| — |—+|X° | K,K =t odd
1 + — | X" | K,K=° even
1 — + | X | K, K n° odd

* Orbital angular momentum for the K K system

It should be understood that the quantum number £ applies even when the isobars do not

involve the K K systems. For example, if the decay amplitude containing an isobar K* or a

K* is even (odd) under the interchange of K and K, then one should have £{=even (odd).

When one searches for an exotic meson, it is critical that one determines unambiguously



its C-parity (along with its J¥). In this regard, there are four decay modes at our disposal

X 5 KTK #°
— KSKSWO

(6)
X - K, K.~
— KSK_T('O

Note, however, that the decay modes involving two K_’s suffer a visibility factor of 1/9 and

that it must necessarily have £=even.

3 K* Isobar in the decay of X~

In this section, a treatment is given of a state X~ decaying into a K K7 system via K*

intermediate states.

Once again, one uses a convention in which ordering of particles signifies different mo-

menta, so that one must keep track of it with care. A K* decays into a 7K. For K*’s with

3 3
1 2
3 3

positive strangeness, one has

and for negative strangeness

_ 2 1 _
oo i Lo
3 3
1 2
K~ = \/jﬂ'OK_ - \/jﬂ'_KO
3 3

It is seen that the C and G operators act on K*’s in the following way:

C - _ ) C = =, (9)
K*O _I_K*O K*— _K*-l—



and ~ ~
K*-l— _I_K*O K*O _K*-l—
G = ) G = (10)
K*O _I_K*— K*— _K*O
A state X~ decaying into a K K7 system via K* intermediate states can be represented by

an amplitude

A(K") = 5 (KK~ + g K* KY) "

— ﬁ [(7°K°). K~ + g(n°K ™). K°] ~ @ (7" K*)u K™ +g(n™ K°). K°]

where g = +1 is the G-parity eigenvalue for the K K7 system and the subscripts * signify

the K™ isobars. It is easy to see that, as expected,

GA(K") = g A(K") (12)

using (5) and (10).

It should be noted that the amplitude A does not possess symmetry under the inter-
change of a K with a K, since neither 7~ K~ nor 7~ K° can form a K*. Therefore, one
cannot apply—indiscriminately—the classification scheme of the previous section for the
KKr system in which the final states are divided into those with either {=even or with
{=0dd. An examination of (11) shows that the decay channel K K~ 7° can be either {=even
or {=o0dd depending on whether g = +1 or g = —1.

4 Complete Decay Amplitudes for X~

In order to write down a complete decay amplitude, one has first to specify the G-parity

for X~. Denoting the eigenvalue via a superscript, one finds, for the complete amplitude,®

A=A+ + A” (13)

& The state X~ could in principle be in the I = 2 state, but this possibility is ignored in this note. It is
assumed that X~ is an I = 1 state.



where

AT = af A*(K*) + 4} Ala)
A™ = a7 A(K*) + 47 A(f)

(14)

where A(K*) is the amplitude given in the previous section for g = +1, and 2t and yT are

arbitrary complex constants in general ( the subscripts refer to I.) The arguments a’s refer
to ao(980), a2(1320) and other /¢ = 1~ objects, and f’s stand for either f,(980), f2(1270)

or other I¢ = 0% states.” The corresponding amplitudes for X~ are given by

Ala) =4/ = [7‘('0(1,_ — 7'('_(1,0] (15)

The a’s have the following expansion:

a’ = % [K*K~ + K°K°+ K°K°+ K K]
a” = % [K°K™ + K~ K°] (16)
ot =[5 [K*RO 4 KK

Note that these amplitudes have the correct G-parity, i.e.

Ga® = —a°, Ga™ = —a", Gat = —a” (17)

The C operator acts on a in exactly the same way as on =, see (3). Substituting (16) into

(15), one finds for the amplitude
1
Ale) = L [ (KOK )+ 2 (K KO,
_ _ (18)
- % (KK ) + 7 (K°K)a + 7 (ROK®), + 7~ (K K*)]

where the subscripts a have been added to indicate that the isovector isobars a are being
treated. As expected, one finds
G A(a) = +A(a) (19)

b Only even spins for the isobars a and f are treated here. The states p(1450) and p3(1690) have very little
decay modes into KK. The #(1020) should be handled separately as if it were a stable particle because
of its narrow width. The ¢3(1850) is omitted from the list of potential K K isobars, because of its high
spin and its high mass.



for a decay of X~ into 7 + a.

By applying the same technique, one first writes down the wave function for f in an

eigenstate of positive G-parity

1 o
f=5 K" K™~ K°K® — K°K° + K~ K] (20)

so that Gf = +f and Cf = +f. One then finds

A(f) = 3 [r (KT ), — 7 (KOKO); — (KPR, + 2~ (KKT)] (21)

which obeys

as required for a decay of X~ into 7~ + f.

One is now ready to examine the complete decay amplitudes for all the decay modes of
X~ — (KKm)~. For example, the appropriate amplitude for the final state 7°K K~ should

read

Y %{ 2t [(x°K,) K~ + (r°K ). Ks]l + =7 [(WOKS)* K~ —(7°K™). Ks] 1 } (23)

. (%) yi [PO(K K)o+ mO(K K,

where the subscripts at the square bracket indicate isotopic spin. For the final state 7= KT K,

one has
A=—3 ot KN KT rer [ K. KT )
1 + (KK (- Kt
‘(ﬁ) gt [ (KK ot mo (K K*)), (24)
+(3) v TR 4 (KK,

where the superscript at the square bracket indicates the G-parity. [Note that the final state
(m~K*). K~ is not an eigenstate of G-parity.] In table 3 are listed several sample decay

modes corresponding to the parameters zf and y7.



Table 3. Possible Decay Modes for X~ — (K Km)~

I¢ | JFC X~ Decay Mode | L of decay® | coeffs.
1t | 177 | p(1700) | K*(892)K P-wave zf
17 | 27+ | m(1670) | K*(892)K P-wave Ty

1+t | 377 | p3(1690) | a3(1320)7® D-wave yy
17 | 271 | mp(1670) | fo(1270)7 D-wave y;

® Orbital angular momentum between the isobar and
the bachelor particle

> Hypothetical decay mode

Finally, one finds, for the final state 7" K_K_,

a=[Hat [ KR o ()KL

(25)

The final state (7~ K, ). K requires a comment. Since there are two identical particles K,
the orbital angular momentum £ between them has to be even always. But the state K K
is a superposition of [ = 0 and I = 1, so that the state (7~ K ). K is in turn a superposition

of two G-parity eigenstates.

The above formulas show that one can combine the data samples, 7°K K~, n" KTK~
and 7~ K_K_ at the stage of the partial-wave analysis. One has to be scrupulous about
keeping track of the Clebsch-Gordan coefficients, as well as the visibility factor of 1/3 for
K, — mtr~. In addition, one must remember that the experimental acceptances are differ-
ent for each data sample. The partial waves are to be classified according to J¥ and G = —C

(I =1 in this case), and for each wave one must determine the parameters zt and yi.



5 Complete Decay Amplitudes for X°

Much of the work on the neutral K K7 system has been given in a previous note[1]. Here
one has reproduced some of the work, with emphasis on writing down the complete decay

amplitudes for a neutral K Km system.®

One treats first the problem of introducing the K* isobars. From (42) of the previous
note[1], one sees that an amplitude for X° in a given eigenstate of I (I is equal to 1 or 0.)

is given by

AYK*)= - [(K*"K™ + g K*K®) — (-)" (K*K° + g K* " K*)] (26)

N | —

where g is the eigenvalue of the G-parity for the neutral K K system, i.e.

GAI(K*) = g AS(K"),  CANK") = g(~) A(K") (27)

Using (7) and (8), one finds

450 = H{ [ K. K+ g (). K]

+ () [ K*) KO+ g (K. K]

- (28)
_ E{ [(r°K*), K~ + g (r°K°), K°]
+ () [(=°K®). R + g (x°K ). K] |
or, equivalently,
e =\/%{ (" K°), K~ + g(=)" (x~K°), K*]
+ (=) (K R+ g(-) (n* K ). K] )
g (K Y). K=+ g(-) (). K

(=) [(\°K®). B+ g(—=)T (°K°). K°] |

¢ The state X° is in general an admixture of I = 0, I = 1 and I = 2 eigenstates, but the I = 2 state is
ignored in this note.



Note that the two wave functions above have been classified according to their G-parity eigen-
values given by g or to their C-parity eigenvalues given by g(—)f. It should be emphasized
that (28) is different from (44) of the previous note[l], which explored the consequence of
interchanging K and K; the resulting wave function there breaks up into two parts, the one
an eigenstate of G and the other of C, whereas (28) is is constructed to be in an eigenstate

of G only.

One may introduce next the isobars a and f, so that the complete amplitude may now

be written

A=Al + Af + Ay + A] (30)

where

(31)

where the superscripts + once again specifies g = £1 and the subscripts 0 or 1 stand for
I. Note that an isoscalar X° cannot couple to 7° + f, so that one must set y, = 0. The

amplitudes with a and f isobars are

Ao(a) = %(7# o —n°a® 47 a’)

- % (7T (KK )a+ 7t (K~ K®)atm (KYK®)y + 77 (K°KT)a)

- %[w"(lﬁK‘)a 4 rKOR) 4 m(ROK®), + (K~ K*)a] (32)
Ay(a) = %( ta~ — 7 at)

= St (KOK a4t (K K®)amr (K K)o — 7 (KOK),]

and

A(f) = § [ K)p — w(KKY), — n(K°K); + 72K K*),]  (33)

One sees that CAg(a) = +Ao(a), CAi(a) = —A;(a) and CA(f) = +A:(f).

10



Consider, as an example, a sample of 7 K™K~ events. The appropriate amplitude is

A=y {ed (6K K+ (0K ) K]+ o7 [(R0K) K-+ (1K) K],

+xg [(r°KY), K™ — (n°K7). K]+ =f [(W°K+)*K_—(”°K_)*K+]1}
_\/gy(;r [WO(KJFK_)a—I-WO(K‘KJ’)a]o"‘(%) yr 7KK ") +7°(K-K*)4],
(34)

where the subscripts at the square brackets indicate isotopic spin. Sample decay modes for
the isovector states are already given in Table 3; those for the isoscalar states are listed in

Table 4.

Table 4. Possible Decay Modes for X° — (K K)°

I¢ | JFC X° Decay Mode | L of decay® | coeffs.

0F | 17 | f1(1420) | K*(892)K S, D-wave z,

0 | 17— | #(1680) | K*(892)K P-wave T,
0t | 07F | n(1440) ao(980)w S-wave Yo

® Orbital angular momentum between the isobar and
the bachelor particle

One sees that the first and the second lines above have been grouped together corresponding
to the C-parity eigenstates. If the K K intermediate states happen to be a(980) and f,(980),

then the last two terms, both of which have a positive C-parity, assume the same form and

hence could not be distinguished.

11



Counsider next the amplitude corresponding to 7~ K K ™. The complete amplitude is

A= \/g{ zg [(W_K"')* K.+ (" K,). K+]0 —z} [(W_K+)* K, +(rK,). K+]1

tag [(r K0 Ky — (7K ). K¥]y —af |(rK*) K~ (rK,) K*] |

I L A S N R N ANES TN
(35)
Similarly one finds, for the 7t K K~ amplitude,
A=y fe{od [ B K+ K Kyt (K K+ (K K],
tzy [(7TK ) K™ — (" K7) K], + 27 [(W+KS)* K~ —(x"K"™), Ks] . }
T I e R S R L ARE RSN
(36)

or, equivalently,

A= \/g{ zg (7K ) Ko+ (77 K) K™ ] i [(n"K7) K + (77 K). K]

1

—zy [(77+K_)* K, — (7T+Ks)* K_]o — T [(W-l—K_)* KS_(W-I—KS)* K_] 1 }

+ (%){ gyo+ [TH (KK o+ 7 (KK o], + i [r*(K‘KS)a-|-7r+(KSK—)a]1 }
(37)

The final states 7~ K K* and 7t K K~ are fundamentally different, if the initial state
consists of an arbitrary admixture of I and C eigenstates. One must bear in mind, therefore,
that even the cross sections for the two final states could be different. An examination of
both (35) and (36) shows that the two data sets, 7" K K and 7t K_ K, could be combined
at the analysis stage, if the final states consist entirely of I = 0 or I = 1 but not both.¢
But one should be careful to combine them according to their strangeness; in a Dalitz plot
analysis, one must match the variables M?(m~ K*) with M?(x*K_) and M?*(n~K_) with
M*(ntK™).

d It turns out that a short discussion on this topic in Ref. 1 did not properly spell out the necessary
assumptions. The new note with this correction is now called Version III.

12



Note that (36) and (37) differ only in the sign of the second line, but this leads to a
profound change in the interpretation of the two data sets. More specifically, the signs of
z], ©; and y] have changed from (35) to (37)—note that all these coefficients correspond
to the C = —1 eigenstates, while the coefficients zJ, 2] and y;, which does not change sign,
all belong to C = +1 eigenstates. Once again, the two data sets, 7" K K+ and nT K K,
could be combined for analysis, if it consisted entirely of C = +1 or C = —1 states but not
both; or, if the two C eigenstates do not interfere, as given in an example in the next section.
It should be emphasized that the two data sets are to be combined in accordance with the
C conjugation; in a Dalitz plot analysis, one must therefore match the variables M?(n~ Kt)

with M?(xTK~) and M?(r~ K,) with M?*(zT K).

s

Finally, the amplitude for the all-neutral channel 7°K_K_ is given by

A=-— % {af (K. K]y —er [(*°K.) K], |

_\/gyo+ [P(K K)ol —yr [7°(KK)4],

The final state (7°K ), K, needs to be treated with care. The orbital angular momentum

between the two K_’s must be even, so that the state (7°K,), K, is in an eigenstate of

s
C = +1. But the system is a superposition of I = 0 and I = 1 states, resulting in two
different eigenstates of G-parity. Once again, one gains extra information by combining,
at the analysis stage, the events of the type 7°K+ K~ with those of the type n*K K7
or m°K K, but then one must keep careful track of the coefficients. It is noted that the

visibility factor of 1/3 for each K, — mn~ is not included in the above formulas.

One of the most important result of this note is that one can in fact determine I of the
neutral K K system, if one performs a combined analysis of the data of the type 7° K+ K,
7t K K-, 7K _K* and n°K_K_. For each partial wave with a given set of I¢ JFC  there
are in general seven parameters to be determined, i.e. mf and y? for I =0and I =1 (note

that y, = 0).

13



6 pp Annihilation into 7rqEKSKjE

The pp Annihilation processes at rest and in flight into 77K _K* are treated in this

section.

Assume that the annihilation at rest takes place in the S wave only. Then the initial
states consists of 1Sy (JF¢ = 07F) and 35; (JFY = 177), and they do not interfere, i.e. the
states with ¢ = +1 and ' = —1 add incoherently. In Table 5 are listed possible decay

modes for this process.

Table 5. Possible Decay Modes for pp — 7T K K=

I¢ | JFC pp Decay Mode | L of decay* | coeffs.
0t | 0=+ | »(2000) | K*(892)K P-wave zg
1= | 0-F | #(2000) | K*(892)K P-wave z]
0t | 0=* | 5(2000) ao(980)m S-wave ye
0~ | 17~ | w(2000) | K*(892)K P-wave Ty
1+ | 177 | p(2000) | K*(892)K P-wave zf
1T | 177 | p(2000) | a2(1320)w D-wave yy

* Orbital angular momentum between the isobar and
the bachelor particle

Denoting the C eigenstates by superscripts () in A, one finds that the amplitudes

corresponding to 7~ K K™ are, from (35),

1
4 = \[5 of (v K*) K, + (n K,). K],

_\/gml_ [(W_K-I—)* Ks - (ﬂ-_KS)* K+]1

S R (K

14




and

o [(7TK*) K+ (7K ) K]
zy [(nK*) K, — (n7K,). K*], (40)

_ (%) yi [P (KK )a+ 71 (K K1),

The differential cross section is proportional to

do
x| WAze 142
o< [TPAIF+ VA 41
dM?z, dM2, (41)
where the effective masses M7, and M2, are the Dalitz-plot variables. Similarly, the ampli-

tudes for 7t K K~ are given by, from (36),

(HA= \/gmg (7 TK7) K, + (7K ) K],

e (KK - R K, (42
1

+ gy(-)l— [ﬂ-—l—(K_Ks)a—l_ﬂ-—l—(KsK_)a]o

and

o [(n*K°). K (43)

s

- (7T+Ks)* K_]

0

1 _ _
+(3) ot [P Kot (KL,
This shows that the absolute value of the C eigenstates for 7~ K K+ and n* K K~ are the
same, leading to identical cross sections. One must remember, however, that the two data

sets could be combined in a Dalitz plot analysis, by matching the variables related by the C
conjugation, i.e. M?(xm~ K1) with M?(#*K~) and M?(r~ K ) with M*(z* K ).

In the previous section, it was noted that the final states 7K KT and #* K K~ are
not the same in general. However, the pp annihilation process at rest is a special case; if

C-parity is conserved and the two different C eigenstates do not interfere, then the two final

15



states become indistinguishable. It is clear that the same conclusion must hold for the final
state (K K7)° (nm)° as well. Because of the limited phase space in the pp annihilation at
rest, the (77)° has a very limited mass range and so it becomes predominantly the vacuum
state I = 07 and J¥¢ = 01, indicating that the results of this section could be applied to

this final state without modification.

However, the same argument cannot be applied to the pp annihilation in flight, where
the initial state in general can consist of different /¢ eigenstates. Let S and L be the total
intrinsic spin and the orbital angular momentum of the pp states in its CM system. Then the

pp helicity-coupling amplitude F/ can be expressed in terms of the LS-coupling amplitudes

GiS:
2L +1
Ff/]luz = %S: A/ 57+ 1(LO Sv|Jv)(s1n 52—1/2|51/)G£5 (44)

where v; and v, are nucleon helicities (v = v; — vy), with the normalization given by

SIFL 1P =Y 6250 (45)
LS

viv2

It is more appropriate to parameterize the process in terms of the F/’s, as the transition
amplitude depends directly on the helicities of the initial pp system and different helicity

states do not interfere.

From parity conservation in the process |[JM) — pp, one has

F? (- F] (46)

-1 —vy 771 %R )

where 77, is the intrinsic parity of the pp system given by (—)L*1. Note also that C = (—)L*%.
From (44), one sees that

Fl_=0 if S=0

and

Fl,=0 if L+S—J= odd

16



As an example, if the pp annihilations involve all possible JFC states up to J = 2, one

finds that

App =) Fl =07 (180) + 177 (*R) + 277 (" Do)
JLS
+177(381) + 177(°Dy) + 277 (PRy) + 21 (°Fy)

=Y F!_ =17(*P) + 277 (°Dy)
JLS

(47)

+ 1__(351) + 1__(3D1) + 2++(3P2) + 2++(3F2)

where each state given above stands for its amplitude and is given by G in (44). Note
that the state 071 (3F,) does not contribute to a three-pseudoscalar final state. It should be
emphasized that each pp state consists, in addition, of two coherent sums of 1% eigenstates for
I'=0o0r I =1(Gis fixed, once I and C are given), and there should be complex parameters

‘x’ and/or ‘y’ for each I¢ {J, L, S} depending on the isobars under consideration.

The differential cross section is given by

do

A P+ AL
dcos@dMlzsz223O(| w4l + [A] (48)

where © specifies the angle of the beam with respect to the K Km plane in the overall CM
system. Consider now the case in which the beam direction is integrated over and analysis
is limited to the Dalitz plot. Because of the orthonormality of the D-functions, the states
F—I{-I— and F_I'{_ with different J’s break up and do not interfere but the states of different P’s
and C’s remain. One must conclude, therefore, that the final states 7" K KT and #t K K~

should be different in general.

Finally, one must point out that the pp states listed in (47) appear in general with
different coefficients in A, and A,_. It is best to work out a simple example, to illustrate
this point. Consider the two amplitudes, 2S; and 3D;, in the J¥¢ = 17~ state. Suppressing
the indices J and S, both of which are equal to 1, one finds

V2F,, = \/%(Go —V2G,)
\/§F_|__ - \/g(ﬂGo ‘|‘ GZ)

17



where Gy and G, correspond to the amplitudes for 2S; and 3D, respectively. This shows that
the state of a given set {J, L, S} appears in general with different strengths and signs in A, |
and A, _. Note how the normalization condition of (45) is satisfied by the equations given
above. Each of the G1’s given above can be expanded in terms of the G-parity eigenstates

of (35) or (36) depending on the final state being considered.

7 Conclusions

In this note is given a complete treatment of the problem of decomposing the final states

(KK7)~ and (K K7)° into I¢ eigenstates.

It is noted that the two neutral states K* K 7~ and K~ K 7" (and, equivalently, those
in which K is replaced by K,) do have fundamentally different physics because of the
difference in sign of the interference terms between I=even and I=odd terms. If, however,
the (K K7)° system at a given mass region contains a single resonance with fixed I¢ J¥¢,
then it is clear that the final states K™K m~ and K~ K 7t are identical, and one may
combine the two data sets together by pairing the K7 states according to their strangeness,
i.e. K* vs. K*. One notable exception is the pp annihilation at rest into (K K7)°, where
there exist two non-interfering C = 41 and C = —1 eigenstates. Because of this, the final
states K* K n~ and K~ K 7 are again equivalent. Since one of the two amplitudes could
be obtained by applying a C operator on the other, one should combine the two data sets
together by pairing the K states according to those related by the C conjugation, i.e.

K*(charged) vs. K*(neutral).

Appendix

It might be instructive to work out an example of a neutral system X° coupling to the
final state consisting a ‘wr’ and an ‘a.” Here the symbol ‘a’ is a shorthand notation for, e.g.

a0(980) — KK.

Assume that X° is produced in reaction (1). One follows the technique of the preceding
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sections and display the I eigenstates of the (7 + a) system

1
Ao = 5( ta™ —7%° + 7r_a+)
1 _ _
A = 5(7r+a — 7" ah) (50)

1
Ay = \/g(r"'a_ +27%° + 7r_a+)

The complete amplitude may be written

A=yd Aoty A +ys A (51)

where y, yi and y, are complex parameters fixed by the production process (1). The

amplitude for each final state can now be read off from the general formula above

1 . 1 . 1 .
A, = \/;y(‘)" (mTa™)o + \/;yf (m"a): + \/gyi (mFa™)s
. 1 + /(.00 E + (.00 (52)
3y0(7TG)0‘|' 3 Y2 (m"a”)2
1 1 1
A= ety — ot ([ (e,

where the two subscripts in A specify the charge states of # and a. The amplitudes for a

2
I

given I, denoted by (wa), above, are superpositions of partial waves £, if the state X° itself

I

is a superposition of many neutral states. It is clear that the amplitudes A, _, Ago and A_,
are all different in general, and one needs to measure all of them in order to determine the

parameters y_ , y;{” and y; .

It is instructive to re-derive (52) by a different approach. For the purpose, one may resort

to the ket notation and write

7ta™) = \/§|(7ra)00> + \/g|(7ra)10> + \/g|(7ra)20>
|w°a®) = —\/§|(7ra)00> + \/?(m)zm (53)
|7"a™) = \/§|(7ra)00> — \/g|(7ra)10> + \/g|(7ra)20>
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where the ket states on the right-hand side stand for |II,). The transition amplitudes for
reaction (1) may be written

4, = (x*a nlTirp)

Ago = (7%a° n|T |7 p) (54)

A ={(r"a" n|T|x p)

suppressing the nucleon helicities. Similarly, the amplitude for production and decay of a

definite isotopic spin with a positive G-parity is

y; (ma), = {(wa)10, n|T|7"p) (55)

and the decay amplitude of the (mwa) system in |/I,) = |I0) could be written

(ra); = ) & (tm) Y™(Q) (56)

im

where c¢,(fm) is the coefficient in an expansion in the spherical harmonics Y;*({2). It is clear
that, by substituting (53) and (55) into (54), one obtains the desired result given in (52).
Note that the charges appearing in (wa), in (52) are superfluous. For example, all three

expressions (77a™)o, (7%°%)o and (7~ a™), are given by a single equation (56) with I = 0.

Suppose now that a is replaced by another w. Then, from the Bose symmetrization of a
system of two pions|[1], one must have I + £=even, so that {=even for both / = 0 and [ = 2,
while £=odd for / = 1. Now switch 7™ and 7~ in A, _ or in A_, ; each of the amplitudes
(ma), acquire a phase factor (—)%, and the term with I = 1 picks up a negative sign and

those with I = 0 or I = 2 do not, so that the amplitude A, _ turns into A_, and wvice versa,

i.e. the final states 777~ and 7 -« are indistinguishable—a familiar result.
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