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Abstract

A description is given of the K�matrix formalism� The formalism� which is
normally applied to two�body scattering processes� is generalized to production
of two�body channels with �nal�state interactions� A multi�channel treatment of
production of resonances has been worked out in the P �vector approach of Aitchi�
son� An alternative approach� derived from the P �vector� gives the production
amplitude as a product of the T �matrix for a two�body system and a vector Q
specifying its production� This formulation� called Q�vector approach here� has
also been worked out� Examples of practical importance are given�

�



� INTRODUCTION �

� Introduction

The K�matrix formalism provides an elegant way of expressing the unitarity of the
S�matrix for the processes of the type ab � cd� It has been originally introduced by
Wigner��� and Wigner and Eisenbud��� for study of resonances in nuclear reactions�
The �rst use in particle physics goes back to an analysis of resonance production in
Kp scattering by Dalitz and Tuan ���� A comprehensive review is found in �	�� In this
paper we give a concise description of the K�matrix formalism for ease of reference� Its
generalizations to arbitrary production processes are covered in some detail�

The reader is referred to the text book by Martin and Spearman �
� for some of the
material covered in this note� However� one must note that the de�nitions given in this
paper are di�erent from those used by Martin and Spearman� Cahn and Landsho� �
�
and Au� Morgan and Pennington ��� have used the same de�nitions as those adopted
by us�

The unitary relationship involves a bilinear product� and one must exercise care with
constant factors� as there is essentially no freedom with the coe�cients� The derivation
for the cross section from unitarity follows a well�de�ned prescription and� once de�ned�
one must again adhere to it rigorously�

This paper is intended to be useful for experimental physicists working on meson
spectroscopy� For this purpose a reasonably self�contained and elementary account has
been made of the K�matrix formalism appropriate for a study of overlapping and many
channel resonances�

� S�Matrix and Unitarity

Consider a two�body scattering of the type ab � cd� The di�erential cross section is
given in terms of the invariant amplitudeM and the �scattering amplitude� f through

d�fi
d�

�
�

����� s

�
qf
qi

�
jMfij� � jffi���j� ���
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where �i� and �f � stand for the initial and �nal states� � � ��� �� denotes the usual
spherical coordinate system� and s � m� is the square of the center�of�mass �CM�
energy� The qi�qf� is the breakup momentum in the initial��nal� system� �The observed
cross section is in reality the average of the initial spin states and the sum over all �nal
spin states� this is suppressed here for simplicity�� The scattering amplitude can be
expanded in terms of the partial�wave amplitudes

ffi��� �
�

qi

X
J

��J � ��T J
fi�s�D

J �
�� ��� �� �� ���

where � � �a � �b and � � �c � �d in terms of the helicities of the particles involved
in the scattering ab � cd� Note that this �scattering amplitude� is a factor of two
bigger than that with a more common de�nition �for example� see Section 
��� Chung
����� One may in addition note that the argument of the D�function is frequently given
as ��� ����� �see Jacob and Wick ��� and Martin and Spearman �
��� Integrating the
di�erential cross section over the angles� one �nds� for the cross section in the partial
wave J �

�Jfi �

�
	�

q�i

�
��J � ��jT J

fi�s�j� ���

Note that T J has no unit� the unit for the cross section is being carried by q�i � It is
necessary to de�ne more precisely the initial and the �nal states

jii � jab� JM�a�bi
jfi � jcd� JM�c�di �	�

where M is the z�component of total spin J in a coordinate system �xed in the overall
CM frame and the notations fabg and fcdg designate additional informations needed
to fully specify the initial and the �nal states� Because of conservation of angular
momentum� an initial state in jJMi remains the same in the scattering process� Note
the normalization �see Section 	��� Chung ����

hf jii � �ij �
�

In the remainder of this section and in subsequent sections� it is be understood that
the ket states mentioned always refer to those of �	�� In particular� explicit references
to the total angular momentum J will be suppressed� Note that� with this convention�
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one has eliminated the necessity of specifying continuum variables such as angles and
momenta�

In general� the amplitude that an initial state jii will be found in the �nal state jfi
is

Sfi � hf jSjii �
�

where S is called the scattering operator� One may remove the probability that the
initial and �nal states do not interact at all� by de�ning the transition operator T
through

S � I � �i T ���

where I is the identity operator� The factors � and i have been introduced for conve�
nience� From conservation of probability� one deduces that the scattering operator S is
unitary� i�e�

S Sy � SyS � I ���

From the unitarity of the S� one gets

T � T y � �i T yT � �i TT y ���

In terms of the inverse operators� ��� can be rewritten

�T y��� � T�� � �iI ����

One may further transform this expression into

�T�� � iI�y � T�� � iI ����

One is now ready to introduce the K operator via

K�� � T�� � iI ����

From ���� one �nds that the K operator is Hermitian� i�e�

K � Ky ����
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From time reversal invariance of S and T it follows� that the K operator must be
symmetric� i�e� the K�matrix may be chosen to be real and symmetric�

One can eliminate the inverse operators in ���� by multiplying by K and T from
left and right and vice versa� to obtain

T � K � iTK � K � iKT ��	�

This shows that K and T operators commute� i�e�

�K�T � � � ��
�

and that� solving for T � one gets

T � K�I � iK��� � �I � iK���K ��
�

and
S � �I � iK��I � iK��� � �I � iK����I � iK� ����

Note that the T �matrix is complex only through the i that appears in this formula� i�e�
T�� has been explicitly broken up into its real and imaginary parts� see equation �����

It is also useful to split T into its real and imaginary part� From ��	� one �nds�
noting that K is a real matrix�

Re T � �I �K����K � K�I �K���� ����

Im T � �I �K����K� � K��I �K����

Combining this result with ���� one �nds that the unitarity takes on the simple form

Im T � T �T � TT � ����

Or� from ����� one gets
Im T�� � �I ����

Consider now an isoscalar �� scattering in S�wave below
p
s � �GeV� This is a

single�channel problem and unitarity is rigorously maintained� From ���� one may set

S � e�i� ����
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where � is the familiar phase shift� The transition amplitude T is given� from ����

T � ei� sin � ����

Note that the factors � and i in ��� make the T attain the simple� familiar form� This
formula shows that the trajectory of T in the complex plane �Argand diagram� is a
circle of a unit diameter with its center at ��� i���� This is the so�called unitarity circle
and the physically allowed T should remain at or within this circle� The S�wave cross
section is� from ����

� �

�
	�

q�i

�
sin� � ����

The K�matrix for this case is simply

K � tan � ��	�

A pole in K is therefore associated with � � ����

Consider next a two�channel problem in which the S�matrix may be expressed as
� � � matrices� Let Sij be symmetric� then it would take six parameters to represent
three complex variables� S��� S��� and S��� The unitarity relationship

SikS
�

jk � �ij ��
�

imposes three independent equations� This shows that the S�matrix depends on just
three parameters� It can be shown readily that the matrix elements are

S�� � 	 e�i��

S�� � 	 e�i�� ��
�

S�� � i
q
�� 	� ei���� ��� � �� � ��

where �i is the phase shift for channel i and 	 is the inelasticity �	 � ��� Note that
there exists only one inelasticity in the two�channel case�

Turning to the K�matrix representation of the T �matrix� let

K �

�
K�� K��

K�� K��

�
����
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where K�� � K�� and Kij � real� Then� from ����� one �nds

T �
�

� �D � i�K�� �K���

�
K�� � iD K��

K�� K�� � iD

�
����

where
D � K��K�� �K�

�� ����

� Lorentz�Invariant T �Matrix

The transition amplitudes T as de�ned in ��� is not Lorentz invariant� The invariant
amplitude is de�ned through two�body wave functions for the initial and the �nal state�
and the process of the derivation involves proper normalizations for the two�particle
states �see Section 
��� Chung ����� The resulting invariant amplitude contains the
inverse square�root of the two�body phase space elements in the initial and the �nal
states� The Lorentz�invariant amplitude� denoted bT � is thus given by

Tij � f
ig �� bTij f
jg �� ����

In matrix notation� one may write

T � f
g �� bT f
g �� ����

and
S � I � �i f
g �� bT f
g �� ����

where the phase�space �matrix� is diagonal by de�nition� i�e�


 �

�

� �
� 
�

�
����

and


� �
�q�
m

and 
� �
�q�
m

��	�

The qi is the breakup momentum in channel i� �Here one considers a two�channel
problem for simplicity without loss of generality�� The unitarity demands that� from
���� and �����

Im bT � bT �
 bT � bT
 bT � ��
�
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and
Im bT�� � �
 ��
�

It is in this form one encounters most frequently the unitary conditions of the transition
matrix in the literature�

The cross section in the Jth partial wave is given by� from ����

�Jfi �
�
�
�

s

��

f

i

�
��J � ��j bT J

fi�s�j� ����

Note that this formula embodies the familiar presence of the �ux factor of the initial
system and the phase�space factor of the �nal system in the process ab � cd� In the
K�matrix formalism� one allows for 
 to become imaginary below a given threshold�
however� the cross section above has no meaning below a threshold� and one could then
modify the expression above by multiplying it with two step functions� ��
�i � and ��
�f ��

One may recapitulate the expressions for the di�erential cross section and its partial�
wave expansion in terms of the invariant amplitudes bT J

fi�s�� For the purpose� one de�nes
the �invariant scattering amplitude�

bTfi��� �X
J

��J � �� bT J
fi�s�D

J �
�� ��� �� �� ����

and the di�erential cross section is given by

d�fi
d�

�
�
	

s

��

f

i

�
j bTfi���j� ����

The initial and �nal density of states are� with s � m��


i �

vuut�� � �
ma �mb

m

��� �
��

�
ma �mb

m

���


f �

vuut�� � �
mc �md

m

��� �
� �

�
mc �md

m

���
�	��

in terms of the particle masses involved in the scattering ab � cd� Note that these
phase�space factors are normalized such that


i � � as m� �� �	��
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The invariant amplitude bTfi��� is unitless� and has a partial�wave expansion ����� The

partial�wave amplitude bT J
fi�s� is related to the cK�matrix via �	
�� and unitarity is

preserved if the cK�matrix is taken to be real and symmetric� It should be noted that
the formula for the di�erential cross section ���� has no �arbitrary� numerical factors�
The �conventional� invariant amplitude� introduced in ���� is given by

Mfi � �
� bTfi��� �	��

One may consider again the isoscalar �� scattering in S�wave below ��� GeV� In
terms of the phase�shift �� the invariant amplitude is given by� from �����

bT �
�



ei� sin � �	��

and when substituted into ���� the cross section ���� results� These expressions are
very familiar� and they demonstrate clearly the interplay between the phase shifts� the
invariant amplitudes and the cross sections�

One can similarly de�ne the invariant analogue of the K�matrix through

K � f
g �� cK f
g �� �		�

From ���� one sees that cK�� � bT�� � i
 �	
�

which leads to bT � cK � icK
 bT � cK � i bT
cK �	
�

and bT
cK � cK
 bT �	��

Solving for bT � one obtains

bT � cK�I � i
cK��� � �I � icK
���cK �	��

and� from �����

S � �I � if
g �� cKf
g �� ��I � if
g �� cKf
g �� ���
� �I � if
g �� cKf
g �� ����I � if
g �� cKf
g �� � �	��
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Note that cK and 
 do not commute� The Lorentz�invariant T �matrix is then given by

bT �
�

�� 
�
�cD � i�
�cK�� � 
�cK���

� cK�� � i
�cD cK��cK��
cK�� � i
�cD

�
�
��

where cD � cK��
cK�� � cK�

�� �
��

� Momentum�Space Representation of S�Matrix

It is possible to express the S�matrix elements directly as ratios of certain functions
in momentum space� This technique is sometimes referred to as the Jost function
representation���� of the S�matrix� We follow here the derivation as given by Kato�����

For the sake of simplicity we deal here only with a � � � S�matrix� Practical and
important examples are the coupled channel problems dealing with the isoscalar S�wave
�� and K �K states and the isovector S�wave �	 and K �K states� Let q� and q� be the
momenta for the two channels under consideration� The transition matrix bT should be
a hermitean analytic function� i�e� in the energy variable s �
�

bT ��s� � bT �s�� �
��

but� when expressed as a function of qi� one must have

bT ��q�� q�� � bT ��q����q��� �
��

in order to preserve the unitary condition ��
�� It is convenient to introduce a new
notation A�q�� q�� � bT��� Evidently� A�q�� q�� obeys the same relationship �
��� so that
one may write� using �	
��

A��q����q��� � A�q�� q�� � �i
 �
	�

This is the fundamental equation� from which various special formulae can be derived
and the results analytically continued� Remember that there is only one variable s in
the problem� and analytic continuation implies that one is dealing with a study of
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structures in the complex s�plane� The unitarity condition imposes branch points� and
di�erent paths through the cuts give rise to di�erent Riemann sheets �see the section
on the Flatt e formula for an example�� The transformations qi � �qi where i � �� � or
both� introduced in the following� are in fact those that generate four Riemann sheets
in the two�channel problem treated here�

In the physical region in which both q� and q� are real and positive� it is convenient
to rewrite the unitarity condition as follows�

A��q���q�� � A�q�� q�� � �i
 �

�

Consider� for the moment� a physical region for s below Channel � but above Channel
�� i�e� q� is real but q� is purely imaginary� In this case there is only one open channel�
namely Channel �� More generally one must imagine that each 
i is accompanied by a
step function at its threshold i� One then �nds� from �
	��

A��q�� q�� � A�q�� q�� � �i
��� �

�

where the superscript �������� signi�es that the diagonal element ������ is zero� By
analytic continuation this relationship should be true also in the physical region for s
above Channel �� Now let q� � �q� in �

� and add the resulting equation to �

�� to
obtain

A�q���q�� � A�q�� q�� � �i
��� �
��

If we put bT � ND�� or A � DN�� where D depends on qi while N does not� then
one gets� from �

��

D��q���q�� � D�q�� q�� � �i
N �
��

and� from �

� and �
���

D��q�� q�� � D�q�� q�� � �i
���N �
��

D�q���q�� � D�q�� q�� � �i
���N

Note that
f
g �� S f
g� �

� � I � �i
 bT � �D � �i
N�D�� �
��

so that one �nds

det S � det f�D � �i
N�D��g � det D��q���q���det D�q�� q�� �
��
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and

S�� � det f�D � �i
���N�D��g � det D��q�� q���det D�q�� q�� �
��

S�� � det f�D � �i
���N�D��g � det D�q���q���det D�q�� q��

One may de�ne a function d through

d�q�� q�� � det D�q�� q�� �
��

which is hermitean analytic except for the branch points at qi and satis�es

d��q�� q�� � d��q����q��� �
	�

In terms of this function the elements of the S�matrix are given by

S�� �
d��q�� q��
d�q�� q��

S�� �
d�q���q��
d�q�� q��

�

�

S��S�� � S�
�� �

d��q���q��
d�q�� q��

One notes that the singularity structure of the S�matrix is clearly delineated in this
approach� the poles of the S�matrix derive from the zeroes in d�q�� q��� In fact Morgan
and Pennington���� used this form to explore the nature of the f����
��

Martin et al����� point out that a requirement of the unitarity condition ��
� in the
physical region is that the following inequality holds�

jd��q�� q��j � jd�q�� q��j �

�

This leads to the following explicit expression for the o��diagonal S�matrix element�

S�� �
i
q
jd�q�� q��j� � jd�q���q��j�

�d�q�� q����
�
��

where �a�� � ��a��� One has adopted here a de�nition such that �iS�� is real and
positive if d�q�� q�� is real� One can easily show that the unitarity conditions ��
� are
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satis�ed in the physical region� It is instructive to express A � bT�� directly in terms
of d�q�� q��� From ����� �

� and �
�� one �nds

A�� �
�i
��d�q���q��� d�q�� q���

d�q�� q�� � d��q���q��� d�q���q��� d��q�� q��
A�� �

�i
��d��q�� q��� d�q�� q���

d�q�� q�� � d��q���q��� d�q���q��� d��q�� q�� �
��

A�� �
�
q

�
�fjd�q�� q��j� � jd�q���q��j�g

�d�q�� q�� � d��q���q��� d�q���q��� d��q�� q����
Note that the denominators are real and A�� is real and positive in the physical region�
It is seen that these satisfy the properties �

�� �

� and �
���

The function d�q�� q�� can be derived from �	�� and �	�� in terms of cK�

d�q�� q�� � ��s���� i�
�cK�� � 
�cK���� 
�
� detcK� �
��

where ��s� and cK are real functions of s� Equivalently� they are real functions of q�� or
q��� Note that this formula satis�es the condition �
	�� Another simple example of the
function d�q�� q�� is given later in the section on the Flatt e formula�

� Resonances in K�matrix Formalism

Resonances should appear as a sum of poles in the K�matrix� In the approximation of
resonance domination for the amplitudes� one has therefore

Kij �
X
�

g�i�m�g�j�m�

m�
� �m�

����

and cKij �
X
�

g�i�m�g�j�m�

�m�
� �m��

p

i
j

����

where the sum on � goes over the number of resonances with masses m�� and the
residue functions �expressed in units of energy� are given by

g��i�m� � m�!�i�m� ����
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where g�i�m� is real �but it could be negative� above the threshold for channel i� The
width !��m� is

!��m� �
X
i

!�i�m� ����

for each resonance ��

Consider now a resonance � coupling to n open two�body channels� i�e� the mass
m� is above the threshold of all the two�body channels� The partial widths may be
given an expression

!�i�m� �
g��i�m�

m�

� ���i!
�
�

h
Bl
�i�q� q��

i�

i ��	�

and the residue function by

g�i�m� � ��i
q
m�!�

� Bl
�i�q� q��

p

i ��
�

The B�m��s are ratios of the usual Blatt�Weisskopf barrier factors ��	� in terms of the
breakup momentum in channel i and the resonance breakup momentum q� for the
orbital angular momentum l�

Bl
�i�q� q�� �

Fl�q�

Fl�q��
��
�

where� with the normalization Fl��� � �� one has

F��q� � �

F��q� �

s
�z

z � �

F��q� �

vuut ��z�

�z � ��� � �z
����

F��q� �

vuut ���z�

z�z � �
�� � ���z � 
�

F��q� �

vuut ���	
z�

�z� � 	
z � ��
�� � �
z��z � ����
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Here z � �q�qR�� and qR � �
����GeV"c corresponding to � fermi� The ��s are real
constants �but they can be negative� and may be given the normalizationX

i

���i � � ����

In practice� it is probably better to avoid this normalization condition by using the
parameters

g��i � ��i
q
m�!�

� ����

as variables in the �t� The residue function is then given by

g�i�m� � g��iB
l
�i�q� q��

p

i ����

We de�ne a K�matrix total width #!� and the K�matrix partial widths #!�i by

#!� �
X
i

#!�i � !��m�� � !�
�

X
i

���i 
i�m�� ����

From these one �nds

!�
� �

X
i

#!�i


i�m��

���i �
#!�i

!�
�
i�m��

����

g��i �

vuutm�
#!�i


i�m��

Note that the K�matrix width do not need to be identical with the width which is
observed in an experimental mass distribution nor with the width of the bT �matrix pole
in the complex energy plane� We will will refer the former as !obs� the latter as !pole In
the limit in which the masses of the decay particles can be neglected compared to m��
one has !��m�� � !�

�� In terms of the ��s and g��s� the invariant K�matrix now has a
simpler form

cKij �
X
�

��i��jm�!
�
�B

l
�i�q� q��B

l
�j�q� q��

m�
� �m�

����

�
X
�

g��ig
�
�jB

l
�i�q� q��B

l
�j�q� q��

m�
� �m�
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Here one allows for the possibility that ��s and g��s can be negative�

It is possible to parametrize a non�resonant background in each K�matrix element
by adding a real unitless constant to the sum of pole terms ����� i�e�

cKij � cKij � cij ��	�

Note that unitarity is preserved in this process�

Consider now an isovector P�wave �� scattering at or near the � mass� Then the
elastic scattering amplitude at the ���mass m is given by

K �
m�!�m�

m�
� �m�

� tan � ��
�

where m� is the mass of the � and � is the usual phase shift� The mass�dependent width
is given by

!�m� � #!�

�




�

� h
B��q� q��

i�
��
�

where #!� is the K�matrix width and q �q�� is the �� break�up momentum for the ��
mass m �m��� Neglecting the angular dependence of the amplitude� one obtains

T � ei� sin � �

�
m�

#!�

m�
� �m� � im�!�m�

�
�B��q� q���

�

�




�

�
����

The �rst bracket in ���� contains the usual Breit�Wigner form and the last bracket
expresses the two�body phase�space factor� In this simple case� the K�matrix width
and the observed width are identical� Note that the phase�space factor is absent in
the Lorentz�invariant amplitude bT given by ����� The q� dependence of the amplitude
�in �B��q� q���

�� re�ects the fact that both the initial and the �nal �� systems are in
P�wave� The normalization for the transition amplitude has been chosen such that

T � �i and bT �
�i



at m � m� ����

It is seen that the invariant amplitude bT is not normalized to � but to 
��� It is for
this reason that the Argand diagram is usually plotted with T and not bT �
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Figure ��
Argand�plot and de�nition of the pa�
rameters � and � in case of a ratio of
K�matrix widths ������� � ���	�

In the next example we investigate the in�uence of coupling of a resonance to a
second open channel at the T �matrix parameters �phase�shift � and inelasticity 	� as
de�ned in �gure �� Consider a S�wave resonance at �
�� MeV decaying into �� and
K �K with a total width of ��� MeV� In the �rst example we haven choosen the K�
matrix widths to be #!�� � �� MeV and #!K 	K � �� MeV�in the second one we choose
#!�� � �� MeV and #!K 	K � �� MeV� The change of the coupling to the channnel K �K
has no in�uence on the inelaticity 	 and on the line shape of jT j�� The only visible
di�erence is the behaviour of the phase motion � �see �gure ��� In the case of a strong
coupling to the K �K channnel �#!K 	K � �� MeV � one cannot decide whether there is
a resonance or not by measuring the �rst channel only �here ���� if the errors of the
phase�shift are large�

Consider again a �� scattering at mass m� But suppose there exist two resonances
with masses ma and mb coupling to the isoscalar D�wave channel� The prescription for
the K�matrix in this case is that

K �
ma!a�m�

m�
a �m�

�
mb!b�m�

m�
b �m�

����

i�e� the resonances are summed in the K�matrix� The mass�dependent widths are
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given by

!��m� � #!�
�

�
ma

m

��
q

q�

�
�B��q� q���

� ����

where � � a or � � b� q� is the �� breakup momentum at m � m��

Figure �� Phase�shift � and inelasticity � for a m � 
	�� MeV �� � 
�� MeV I � J � �
resonance� ���� � �� MeV and ��K 	K � �� MeV �top� and vice versa �bottom��
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Figure �� Left 
 transition amplitude derived from equation ����� Note that it shows one full
turn for each resonance� Right 
 transition amplitude according to ��
�� The parameters are
ma � 
���	 GeV����a � ��
� GeV� mb � 
�	�	 GeV����b � ��
� GeV� the big dots illustrate the
resonance positions�

If ma and mb are far apart relative to the widths� then K is dominated either by the
�rst or the second resonance depending on whether m is near ma or mb� The transition
amplitude is then given merely by the sum

T �
�

ma
#!�
a

m�
a �m� � ima!a�m�

� ��
ma

m

��
q

qa

��
�B��q� qa��

�

�

�
mb

#!�
b

m�
b �m� � imb!b�m�

� ��
mb

m

��
q

qb

��
�B��q� qb��

� ����

In the limit in which the two states have the same mass� i�e� mc � ma � mb� then
the transition amplitude becomes

T �
mc�!a�m� � !b�m��

m�
c �m� � imc�!a�m� � !b�m��

����

This shows that the result is a single Breit�Wigner form but its total width is now
the sum of the two individual widths� In case of two nearby resonances ���� is not
strictly valid� For a speci�c example Figure � shows the transition amplitude T from
the correct equation ���� and from the approximate ����� Note that ���� exceeds the
unitary circle�
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� Production of Resonances in P � and Q�vector

approach

So far one has considered s�channel resonances� or �formation� of resonances� observed
in the two�body scattering of the type ab � cd� The K�matrix formalism can be
generalized to cover the case of �production� of resonances in more complex reactions�
The key assumption is that the two�body system in the �nal state is an isolated one
and that the two particles do not simultaneously interact with the rest of the �nal state
in the production process�

According to Aitchison ��
�� the production amplitude P should be transformed into
F in the presence of two�body �nal state interactions� as follows�

F � �I � iK���P � TK��P ����

Or� taking the invariant form� it may be written

bF � �I � icK
��� bP � bTcK�� bP ��	�

where bP characterizes production of a resonance and bF is the resulting invariant am�
plitude� Note the following relationships�

F � f
g �� bF and P � f
g �� bP ��
�

Consider �rst a single�channel problem� e�g� the isoscalar �� system in S�wave below
� GeV� Then� the K is simply given by ��	� and one �nds

bF � ei� cos � bP ��
�

The �nal�state interaction brings in a factor ei��this is the familiar Watson�s theorem
��
�� It is emphasized that bP must have the same poles as those of the K�matrix�
otherwise bF would vanish at the pole position �� � �����

In general� bP and bF are both column vectors� n�dimensional for an n�channel prob�
lem� If the K�matrix is given as a sum of the poles as in ����� then the corresponding
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P �vector is

Pi �
X
�

��
� g�i�m�

m�
� �m�

����

and bPi �
X
�

��
� g�i�m�

�m�
� �m��

p

i

����

where ��
� �expressed in units of energy�� carries the production information of the

resonance �� The constant ��
� is in general complex� but it can be set to be real under

certain assumptions�this point will be addressed at the end of this section�

The P �vectors should contain the same set of poles as those found in the K�matrix�
However� according to Aitchison� one may add a constant term �or a polynomial in
energy� to P

Pi � Pi � di ����

where the constant di is in general complex�

In ���� the production process �pp � �� �� �� was described by a production
amplitude for the �� and f������� � intermediate states� The data required introduction
of an additional constant amplitude which was interpreted as that for direct three�pion
production� This direct production amplitude can be described in our formalism with
the additional constant in the F �vector�

It is often more convenient to rescale ���s

��
� � ��

q
m�!�

� �����

so that ��s are unitless� Then the bP �vectors read� from �����

bPi �
X
�

����im�!�
�B

l
�i�q� q��

m�
� �m�

�����

where� once again� ��s are real but ��s could be complex� If the production process has
some known dependance on momentumor angular momentum� the production strength
� should be modi�ed accordingly�

It is instructive to work out the above formula in the case of a single resonance in
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a single channel� Then one has

bP �
�m�!�

m�
� �m�

Bl�q� q��

so that� with cK
 given by ��
��

bF �m� � �
m�!�

m�
� �m� � im�!�m�

Bl�q� q�� �����

This is exactly what one writes down for a Breit�Wigner form� except that one has
multiplied by an arbitrary constant � and the centrifugal damping factor Bl�q� q���
This provides a K�matrix justi�cation of the traditional �isobar� model� Note that the
numerator is a constant �independent of m��

The di�erence of the Breit�Wigner description and the parametrization via the uni�
tarity conserving K�matrix can be demonstrated in the case of two resonances in the
same single channel� The formula for the K�matrix is given by equation ����� For
example� we consider a production of two nearby resonances in the �� D�wave� with
a production strengh of ���� The K�matrix masses and widths are shown in the �rst
column in table �� The j bF �m�j��distribution is �tted with two Breit�Wigner amplitudes
with free masses� widths and production strengths �non�unitarily added�� In addition�
a phase for the second Breit�Wigner amplitude is left free in the �t� The result is
visualized in �gure 	� Obviuosly� there are no striking di�erences between simulation
and �t� The parameters of the Breit�Wigner amplitudes are shown in the second col�
umn of table �� Mass and width of the �rst Breit�Wigner amplitudes are shifted
to higher values� the parameters of the second resonance are lowered� So even though
the mass distributions are decribed accurately� the masses are reproduced only rather
poorly� This di�erence will be less pronounced in the case of two well separated res�
onances� This is demonstrated in the second example �see �gure 
�� The K�matrix
parameters are given in the third column of table � and the parameters of the Breit�
Wigner amplitudes� obtained by �tting the mass distribution� in the fourth column�
For well separated resonances in case of a single channel the Breit�Wigner description
is obviously an appropriate approximation�

Cahn and Landsho� �
� state that in some approximations the column vector

Q � K��P and f
g ��Q � bQ and bQ � cK�� bP �����
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Figure 	�
Two nearby resonances �tted with two
Breit�Wigner amplitudes� The shaded
area corresponds to the mass distribution
generated according to the K�matrix for�
malism �see ������ The solid line repre�
sents a �t to the distribution with two
Breit�Wigner amplitudes �see �
�����

may be considered a constant in a given limited energy range� Then� one has

F � TQ and bF � bT bQ ���	�

i�e� the two�body �nal�state interaction may be expressed as a product of the bT �matrix
and a constant column vector� The bQ�vector is devoid of the threshold singularities
�i�e�� no dependence on 
� and does not contain pole terms� It therefore depends in
general on s � m� only� In a single�channel problem� e�g� the isoscalar �� system in
S�wave below � GeV� we now obtain� instead of ��
� derived for the P vector approach�

bF �
�



ei� sin � bQ ���
�

This amplitude contains the familiar scattering amplitude ei� sin ��

The P � and Q�vector approaches� even though both being approximations for pro�
duction of multiparticle �nal states� correspond to di�erent interpretations of the phys�
ical processes� For clarity we consider a speci�c reaction� e�g� �pp � ��	 and �pp �
K �K	 from which we want to extract information on ���� interactions� In the Q�vector
approach� the amplitude is given by F� � T��Q� � T��Q�� the �� system is produced
with an amplitude Q��s�� The two�pion interactions are then taken into account by the
scattering amplitude T��� Alternatively� a K and a �K are produced with amplitudes
Q� which scatter via T�� into the outgoing pions� This picture has to be contrasted to
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Parameter K�matrix Breit�Wigner K�matrix Breit�Wigner
m�� GeV�c�� ����� ����	 ��� ����

!�� GeV�c�� ����
 ����� ����� �����
m�� GeV�c�� ��
�� ��	�� ��

� ��

	
!�� GeV�c�� ����� ����� ����� �����

�� ����� ��	�� ����� ����
�� 
��� 
��	 ����� �����

phase �rad� ��� ���	�	 ��� ������

Table �� Table of generated and �tted parameters

that which one may have in mind in applying the P vector approach� F � �I� iK���P �
A particle is produced with an amplitude P� the term �I � iK��� may be considered as
propagator for this particle which then decays�

As an example� one may take the Bowler method ���� for extracting resonance pa�
rameters in the presence of the �Deck� e�ect� Bowler describes the di�ractive production
of 
� �or K�� and 
K� with two amplitudes� He proposed to modify the bare Deck
amplitude by a factor ei� cos � which we have seen in ��
�� i�e� the P �vector approach�
Since the Deck amplitude is non�resonant� this part contains no pole� He adds to this
Deck amplitude a 
� scattering amplitude� ei� sin �� see ���
��i�e� the Q�vector ap�
proach� Hence the Bowler method contains both P � and Q�vector approaches in one
amplitude�

We now turn to a discussion of the contraints one may impose on the P � and Q�
vectors� following the argument as outlined by T� L� Trueman �private communication��
Consider for this purpose a production of hadrons in the reaction

�� � hadrons ���
�

and let Fi be the production amplitude� where the subscript i denotes a particular �nal
hadronic state in the reaction above� i�e�

Fi � �
hij�i

�
�����
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Figure 
�
Two separated resonances �tted with two
Breit�Wigner amplitudes� The shaded
area corresponds to the mass distribution
generated according to the K�matrix for�
malism �see ������ The solid line repre�
sents a �t to the distribution with two
Breit�Wigner amplitudes �see �
�����

The subscripts � and � here stand for the outgoing and the incoming waves� The ket
state j�i stands for the �� initial state� It is to be understood that both j�i and jii
refer to the ket states of a de�nite spin�parity state �see �	���

The S�matrix of ���� can be used to connect the incoming and outgoing waves�

jii
�
�
X
k

Sikjki� �����

from which it follows that

�
hijji

�
�

�
hijSjji

�
� Sij �����

or� equivalently�

�
hijji

�
�

�
hijSyjji

�
� Sy

ij �����

Note that the elements of the S�matrix are de�ned in terms of a complete set of outgoing
waves�

Observe that� with the aid of the anti�unitary time�reversal operator A�

F �
i �

�
hij�i�

�

�
�
hijAyAj�i�

�
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� �
�
hijAy��Aj�i

�
� �����

�
�
hij�i

�

where one has used the relation AyA � �I� It should be noted that the time reversal�
operator changes the incoming into outgoing wave and vice versa� Applying the closure
relationship� one gets

F �
i �

X
k

�
hijki

� �
hkj�i

�
�����

�
X
k

Sy
ik �

hkj�i
�

�
X
k

Sy
ikFk

The last step above involves one crucial step� The ket state j�i contains two ��s and
therefore does not undergo strong interaction�as a consequence� one may write

j�i
�
� j�i

�
�����

In another words� the incoming and outgoing waves do not give rise to �phase shifts��
From ���� one �nds readily that

Im F � T yF and Im bF � bT y
 bF ���	�

which may be compared to ���� and ��
��

The above relationship leads to an important result that the Q�vector in F �
TQ is real� This fact is readily seen from the following exercise �D� Morgan� private
communication�� Since both T and T�� are symmetric matrices� one �nds

�i Im Q � T��F � �T����F � ���
�

� �T�� � �T���y�F � �T���y�F � F ��

� �T�� � �T y����F � �T y����F � F ��

� �

Here one has used both ���� and ���	�� Since Q � K��P � one concludes that the
P �vector must be real as well�

It should be emphasized that the reality condition on the P � and Q�vectors requires
three ingredients� ��� the initial state is non�strongly interacting� ��� all available chan�



� PRODUCTION OF RESONANCES IN P � AND Q�VECTOR APPROACH �


nels are included in T �the closure relationship�� i�e� the dimensionality of the T �matrix
should be maximal� and ��� the T �matrix is unitary �see ������

Consider now an n�particle system produced in an arbitrary production process�
One wishes to apply �nal�state interaction to a given two�body channel out of the n�
body system� According to Cahn and Landsho� �
�� the P � and Q�vectors should be
free of the thresholds in that two�body subenergy under consideration� If one makes a
simplifying assumption that these vectors are� in addition� independent of the thresholds
of all the other possible combinations of subenergy� then they are real� This �reality
condition� is violated� for example� if one of the particles in the two�body channel
under consideration happens to simultaneously interact �via rescattering� with another
particle in the n�body system� Finally� one must keep in mind that the reality condition
depends on the assumption that the initial system� which could include time�reversed
�nal particles� does not undergo strong interactions�

This �approximation� has been used by Au� Morgan and Pennington ���� and also
in recent works by Morgan and Pennington ����� but in a limited mass range� m
� �
�GeV"c�� The authors argue ������ that the isobar model ensures that the two�
body unitarity can be applied to the subsystem� and that the Q should remain real�
Donnachie and Clegg ���� have used the same assumption in their Breit�Wigner de�
scription for the 
� and �� analyses� However� Bowler� Game� Aitchison and Dainton
���� used the P �vector given by

Pi � Di �
X
k

�ik�ik
m�

k �m�
���
�

and allow the Deck term Di to have an arbitrary phase� while keeping the ��s and ��s
real� Note that this prescription necessarily makes the Q�vector complex� Finally� it
should be pointed out that Longacre ���� has consistently used complex ��s to char�
acterize the production of resonances� This approach� however� has been criticized by
Morgan and Pennington�����

To the extent that the reality assumption is just that�an approximation� one must
regard it as an experimental question and allow complex ��s�and explore if the data
could accomodate non�zero phases�
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� Simple Examples

As a concrete example one may consider two resonances coupling to two di�erent chan�
nels� Consider then two isoscalar JPC � ��� resonances ma and mb� with both masses
around ��� GeV� coupling to �� �channel �� and K �K �channel ��� The elements of thecK�matrix are� assuming factorization for the residues�

cK�� � ��a�
b�a�m�Bl

a��q� qa� � ��b�
b�b�m�Bl

b��q� qb�cK�� � ��a�
b�a�m�Bl

a��q� qa� � ��b�
b�b�m�Bl

b��q� qb� �����cK�� � cK�� � �a��a� b�a�m�Bl
a��q� qa�B

l
a��q� qa� � �b��b� b�b�m�Bl

b��q� qa�B
l
b��q� qa�

where b�a�m� �
ma!�

a

m�
a �m�

� b�b�m� �
mb!�

b

m�
b �m�

�����

We kept the index l for further use of these relations� Note that !�
a and !�

b are constants
for scalar resonances coupling to two spinless particles� The normalizations are given
by

��a� � ��a� � � �����

��b� � ��b� � �

The bP �vector can be written

bP �

�
�a�a� b�a�m�B�

a��q� qa� � �b�b� b�b�m�B�
b��q� qb�

�a�a� b�a�m�B�
a��q� qa� � �b�b� b�b�m�B�

b��q� qb�

�
�����

where �a and �b are unitless constants specifying production of the resonances ma and
mb�

The production amplitudes for two resonances in a two�channel problem are obtained
by substituting ����� to ����� into

bF� �
bP� � i
��cK��

bP� � cK��
bP��

� � 
�
�cD � i�
�cK�� � 
�cK���
�����
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bF� �
bP� � i
��cK��

bP� � cK��
bP��

� � 
�
�cD � i�
�cK�� � 
�cK���
�����

where cD is as given in �
��� See Longacre ���� examples of the use of the bP �vector
approach�

For a two�channel problem� one obtains

bF� �
�cK�� � i
�cD� bQ� � cK��

bQ�

� � 
�
�cD � i�
�cK�� � 
�cK���
�����

bF� �
�cK�� � i
�cD� bQ� � cK��

bQ�

� � 
�
�cD � i�
�cK�� � 
�cK���
���	�

In the bQ�vector approach we may assume

bQi �
nX

j
k

�ij s
j ���
�

In a linear approximation we will get

bQ� � ��� � ���sbQ� � ��� � ���s ���
�

and the amplitudes bFi can be cast into the form

bF� � bT�� ���� � ���m
�
�
� bT�� ���� � ���m

�
�

bF� � bT�� ���� � ���m
�
�
� bT�� ���� � ���m

�
�

�����

Au� Morgan and Pennington ��� used this method with the bQ�vector expanded as poly�
nomials in s � 	m�

K in their analysis of the �� S�wave from double�Pomeron data� in
combination with a complicate K�matrix parametrization�
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� Flatt	e Formula

As a next example we take the isovector S�wave scattering with the a������ coupling to
the �	 �channel �� and K �K �channel �� �nal states� Then the elements of the invariant
K�matrix are

cK�� �
���m�!�

m�
� �m�

cK�� �
���m�!�

m�
� �m�

�����

cK�� � cK�� �
����m�!�

m�
� �m�

The �reduced� widths are denoted by ��� and ��� � which are both unitless and satisfy

��� � ��� � � �����

Then the bT �matrix �
�� is given as

bT �
m�!�

m�
� �m� � im�!��
���� � 
�����

�
��� ����
���� ���

�
�����

If one sets
gi � �i

q
m�!� �����

so that
g�� � g�� � m�!� �����

then

bT �

�
g�� g�g�
g�g� g��

�
m�

� �m� � i�
�g�� � 
�g
�
��

�����

This is the Flatt e formula�

The a������ appears as a �regular� resonance in the �	 system �channel ��� The
comparable Breit�Wigner denominator� for m near mc� is

m�
c �m� � imc!c
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in the resonance approximation� One �nds� therefore�

m�
� � m�

c �

�
��
��

�� � j
��mc�j

��mc�

�
mc!c

!� �
mc!c

m�
��mc����
���	�

in terms of the mass mc and width !c� Note that 
i�s have been evaluated at m � mc

where bT is expected to attain its maximum value� The above formulas give merely a
good starting point� in practice one must vary m� and !� to �t the �	 spectrum� The
ratio �������

� is an unknown �commonly �xed at the SU��� value of ��
�� but the shape
of the square of the amplitudes depends only weakly on this value� Once the ratio is
�xed� then ��� and ��� are �xed through the normalization condition ������

Assuming mc � ��
 MeV� !c � �� MeV and �������� � ��
 one can calculate from
���	� a K�matrix mass m� � ����� MeV and width !� � ����	 MeV� These values yield
the K�matrix partial widths #!�� � �� MeV and #!K 	K � ���� MeV� Figure 
 shows the
mass projection derived from ����� �j
��m� bT��j�� by inserting the K�matrix parameters
�m��!���

Figure 
�
Simulated mass distribution in the a� re�
gion using Flatt�e formula �
���� The
dashed lines correspond to di�erent ratios
of � � �����

�
�� The increase of FWHM

is associated with decreasing values of the
ratio ��

The FWHM of this spectrum is approximately 	� MeV� The dashed lines show �ts
to that mass spectrum but with di�erent �xed ratios �������� � increasing FWHM
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corresponds to ratios lower than ��
 ����
 and ���� decreasing FWHM corresponds to
ratios higher than ��
 ����
� ���� In �g� � the Argand�plot for 
� bT�� and

p

�
� bT�� is

shown for the a�� Fig� � on the left shows its phase�shift �� together with ���� On the
right side of �g� � the elasticity 	� is displayed�

NO FILE� a���eps

Figure ��
Argand plot �� bT�� for the simulated a��
The small loop corresponds to

p
���� bT���

The unitary circle is represented by the
dashed line�

It is illuminating to explore the pole structure in the Flatt e formula� as were done
by Morgan and Pennington����� Let q� and q� be the breakup momenta for the �	 and
the K �K channels� The sheet structure in the complex

p
s � m plane is de�ned by

the signs of �Imq�� Imq��� by convention the sheets I through IV are �xed by ������
������ ������ and ������ Consider the energy plane m near �mK � Then one may set
approximately 
� � � and q� � mK� Under this approximation one �nds

�mK q� � �m�
K � q�� ���
�

If one sets q� � r ei�� then one has

Imq� �
�

r�

�mK

�
sin �� ���
�

From this it follows that the sheets for this case may be de�ned through�
�Re q�� Im q�� � ����� for sheet I� ����� for sheet II� ����� for sheet III� and �����
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for sheet IV�

The denominator of the Flatt e formula ����� is now quadratic in q� and the two
complex roots qa and qb may given the expressions� following Morgan and Pennington�

qa � �� � i� �����

qb � �� � i�

Solving for the roots� one obtains

g�� � 	��� � ��

g�� � 	mK�� � �� �����

m� � �mK �
�� � ��

mK

and !� is given through ������ This shows that �� �� and � are all positive and
furthermore � � �� Note that the Flatt e formula necessarily entails two poles� in sheet
II �for qa� and sheet III �for qb��

Two roots of q� give rise to two poles in m�plane as follows�

ma � �mK �
�� � ��

mK

�����

mb � �mK �
�� � ��

mK

and

!a � 	��

mK

and !b � 	��

mK

��	��

The average mass and width of the two poles are related to m� and !� via

m� � ma �mb

�
�

�� � ���

�mK

��	��

!� �
�
�mK

m�

��
!a � !b

�
� ��� � ��
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where one has used the equations ����� and ������ Note that� if ��� is small compared
to the widths which are themselves small compared to the masses� then m� and !� are
approximately equal to the average mass and width�

With the values of the previous example one obtains for the parameters � �
���
	 MeV� � � ��

 MeV and � � �
�
� MeV � From eqn� ��� one calculates
ma � ���� MeV and mb � ��� MeV� from eqn� �	� !� � �� MeV and !b � �

 MeV�

The Flatt e formula provides a simple example of the Jost function representation
of the S�matrix����� Following Martin et al������ one may introduce a �real analytic�
function of q� and q� with square�root branch points at q� � � and q� � �� This
function must be real on the real axis of s below the lowest threshold�one way to
guarantee this is to require that the function be real in the variables z� � iq� and
z� � iq�� Note that the denomenator of the Flatt e formula satis�es this condition�

d�q�� q�� � m�
� �m� � i�
�g

�
� � 
�g

�
�� ��	��

with m� expressed as a function of q�� as an example� The above formula can be derived
from �
�� with the substitution

��s� � m�
� �m� ��	��

and by using ����� and ������ In the physical region� both q� and q� are real and
positive� so that the function ��	�� satis�es the �reality condition�

d ��q�� q�� � d��q���q�� ��		�

It is instructive to re�derive the Flatt e formula ����� from the S�matrix elements given
by �

� and �
���by simply inserting ��	�� into ���� and solving for bT �

 Extraction of resonance parameters from the T

matrix

One should remember that resonance parameters normally quoted are determined from
the T matrix de�ned in the complex energy plane and not from the K matrix� The
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T matrix corresponding to a given K matrix is constructed using Equation ��
�� In
general di�erent types of poles may occur� and a complete classi�cation of Riemann
poles on all Riemann sheet is beyond the scope of this paper�we refer the reader to
the reference �	�� for example� Su�ce it to state � that in the special case of meson
resonances in two channels � resonances show up as poles in �I� iK���K on the second
and third Riemann sheet�

Using the T matrix formula ����� withK matrix parameters as given in the previous
example �i�e� m� � ���
� MeV� !� � ����	 MeV and �����

�
� � ��
 �� the following

resonance poles ESheet � mp � i!p�� in the complex energy plane are found �

EII � ��
� � i
��MeV ��	
�

EIII � ����
 � i
��MeV ��	
�

Fits to the amplitude squared of our example �see also �g� 
� with di�erent �xed
couplings �����

�
� are tried� The corresponding pole positions in the complex energy

plane are shown in �g� �� Note that states below the K �K threshold have their pole on
the second sheet� states above this threshold on the third sheet�

As a second example �	 S�wave scattering in one single channel was considered� The
existence of two resonances is assumed and parametrized with a two pole K matrix�
The K matrix masses and widths are m� � ���� MeV � m� � �	�� MeV and #!� �
�� MeV and #!� � ��� MeV respectively� The scattering amplitude squared displayed
in �g� �� shows a strong small dip in the region between the two K matrix poles� The
two poles of the corresponding T matrix are found in the unphysical energy plane at
EII
� � ������ i�	� MeV and EII

� � ������ i��
� MeV �see �g����� The position of K�
and T�matrix poles are marked by lines in �g� ���

�� Summary

We have presented a description of the K�matrix formalism� The K�matrix is derived
from the S�matrix� and hence unitarity in the two�body subsystem is strictly main�
tained� Relations between S� T and K matrices are given� and scrupulous attention
has been given to the precise form of these relations� The Lorentz invariant amplitudes
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bT and cK � derived from T and K are also given�

The K�matrix formalism is generalized to arbitrary production processes� Two
alternative approaches are presented� In the P vector approach of Aitchinson� the pro�
duction amplitude is given by bF � �I� icK��� bP � This may be considered as production
of a resonance �a pole in bP � in the primary interaction� and propagation of the res�
onance before its decay into one of the allowed channels� The second approach was
suggested by Cahn and Landsho�� Here� the production amplitude is written in the
form bF � bT bQ with bQ being a polynomial in s� It corresponds to production �with a
spectral amplitude bQ� of two particles which rescatter as a �nal�state interaction repre�
sented by bT � Practical examples are given to demonstrate the meaning and signi�cance
of these formulae�
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NO FILE� a���eps

Figure �� The left box displays the phase�shift �� together with ���� The phases are identical
up to the K �K threshold� Above the threshold ��� falls quickly before rising again while ��
continuous its movement up to ���o� In the right box the elasticity �� is shown� It drastically
drops at the K �K threshold�
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Figure ��
Pole positions of �ts to a simulated a� am�
plitude squared� where di�erent couplings
�����

�
� are used� Sheet II and sheet III

are shown simultaneously� where the line
marks the K �K threshold�

Figure ���
The amplitude squared of a simula�
tion with two K matrix poles cou�
pling to the �� channel only� The
two inner lines mark the T �matrix
mass�pole positions� the outer lines
at 
��� MeV and 
��� MeV corre�
spond to the masses used in the K�
matrix�
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Figure ���
T�matrix pole positions in the un�
physical energy plane for the sim�
ulation using K�matrix parameters
m� � 
��� MeV� m� � 
��� MeV�
��� � �� MeV and ��� � ��� MeV�
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