BNL PREPRINT

BNL-QGS-97-091

A Critical Examination of

nw~ Partial-Wave Analysis

—Version II—

S. U. Chung

Physics Department
Brookhaven National Laboratory, Upton, Long Island, NY 11973*

October 7, 1997

Abstract

A critical analysis is given of the assumptions necessary for a partial-wave analysis
of the nm~ system in the reaction #~p — 7~ p.

& under contract number DE-AC02-76CH00016 with the U.S. Department of Energy



1 Introduction

This note concerns the assumptions necessary for a partial-wave analysis of the n7~

system in the reaction

TP T NP (1)

As pointed out in a previous note,[1] one needs to make two assumptions—to carry out an
amplitude analysis of the p7~ system. The first assumption is that a state |{m) for which
|m| > 2 is absent among the partial waves to be fitted. This is true, of course, in the limit
of —t = 0, as the nucleon helicities give rise to the states with m = 0 or m = +1 only.
But this assumption can be dealt with—experimentally—since the moments H(LM) with
M = 3 or M = 4 could be checked, to see how important the states [{m) are in the data
with [m| > 2.2 The second assumption needed for a partial-wave analysis is that the density
matrix has rank 1, i.e. the spin amplitudes do not depend on the nucleon helicities. Our
justification, so far, has been that the fitted partial waves are very reasonable, that it can be
fitted with a very simple mass-dependent formula, that Pomeron-exchange amplitudes are
in genral independent of nucleon helicities, and so on...

The purpose of this note is to point out that, under a simple model for mass dependence
of the partial waves, it is possible to prove that the spin density matrix has rank 1. Suppose
that one has found a satisfactory fit under a rank-1 assumption. One can then show that,
even if the problem involves both spin-nonflip and spin-flip at the nucleon vertex—i.e. it
appears to be a rank-2 problem—the spin density matrix in reality has a rank of 1. Although
this note is based on the results of our n7~ analysis, the derivation does not depend on the
decay channels; the conclusions apply equally well to any decay channel, e.g. the 17" state
at 1.6 GeV coupling to mp (a further discussion on this point is given at the end of Section
3).

This note relies on some technicalities generally well known, and so they have been
presented without attribution. The reader may wish to consult a number of preprints and/or

papers, which deal with them in some detail[2, 3, 4, 5, 6].

b A. Ostrovidov checked this out in our E852 data; the moments H(33), H(43) and H(44) are all small in
the a2(1320) region, and a fit including |22) shows a very small amount of this wave and is very broad.
In particular, it does not affect our P, wave!



2 Partial Waves Produced via Natural-parity Exchange

Consider our nm~ system produced via natural-parity exchange. It consists of just two
waves D, and Py in the a5(1320) region. Without loss of generality, the decay amplitudes|1]

can be considered real, i.e.

A (Q) = \/%ﬂdio(ﬂ) sin ¢ = —“%\/gsinﬂ cos 0 sin ¢

A (Q) = \/g\/idio(e) sin ¢ = —\/g sin 6 sin ¢

Since one deals with the partial waves natural-parity exchange only, one can drop the sub-

(2)

script ‘+’ from the waves, and the angular distribution resulting from the natural-parity

exchange only is simply given by
I(Q) o< [D AL (Q) + P A (Q)?
x (i) ‘\/51) cos 0 + P‘Z sin? 6 sin? 1) (3)
i

x (43) {5|D|2 cos? f + 2v/5 R{D* P} cos b + |P|2} sin § sin® ¢
T

The integration over the angles can be carried out easily, to obtain

/I(Q)onc ID]? + PP (4)

as expected.

The spin density matrix is given by

I(Q) o [DAL(Q) + P A () =D pr Ar A (5)

Bk

where {k, k'} = {1,2} and ‘1’ (‘2’) corresponds to D (P). From this definition, one sees that

(|D|2 DP*) ©)
P~\pp |Pp

One can work out the eigenvalues of this 2 x 2 matrix:
A={|D]* + PP, 0} (7)
One of the two allowed eigenvalues is zero, i.e. the rank of this matrix is 1. This is the

‘rank-1’ assumption one makes to carry out the partial-wave analysis and is valid for a given

mass bin.



Suppose now that the rank is 2, i.e.

1(9) o | Dy A,(9) + PLAL(Q)P + D2 Ay (Q) + Py A, ()P (®)

where subscripts 1 and 2 stand for spin-nonflip and spin-flip amplitudes at the nucleon vertex

for reaction (1). Comparing (3) and (8), one finds immediately
|D? = |Dy[* + | Dy |?
|P|* = |PLJ* + | P (9)
R{P*D} =R{P; D,} + R{P; D,}

Let w be the effective mass of the nm~ system. If the mass dependence is included
explicitly in the formula, one should write, in the case of rank 1,

do(w, Q)

todg 1P A, (Q) + Pw) 4, (Q)1° pq (10)

where p is the breakup momentum of the n7w~ system in the overall CM system and gq is
the breakup momentum of 7 in the n7~ rest frame. Note that both p and g depend on w.
Note also that the w dependence of the partial waves D and P are given in the formula.
Obviously, a similar expression could be written down for the case of rank 2.

One is now ready to make the one crucial assumption for a mass-dependent analysis of
the D and P waves: one assumes that two resonances—in D and P waves, respectively—are
produced in both spin-nonflip and spin-flip amplitudes. One may then write, for the rank-1

case,
D(w) = ae®etd gin §,
. (11)
P(w) = be'® sin §,
where a, b and the production phase a are all real and independent of the nm~ mass. In
addition, one can set a > 0 and b > 0 without loss of generality. 4, and & are the phase-

shifts corresponding to the resonances and highly mass dependent. In its generic form, the

Breit-Wigner formula is given the usual expression

2 2
cot d = % (12)
ol

where wg and I'y are the standard resonance parameters. In this note, the width is considered

independent of w. Likewise, the barrier factor dependence for D and P is ignored. ¢




The formulas (11) are generalized to the case of rank 2, as follows:

= a,e'* e'% gin 4,

)
)=b e'% sin &,

o (13)
) = axe’™ e'de gin 4,
)

= by e'® sin g

Once again, a;, b; and o; are real, a; > 0 and b; > 0, and independent of w. One finds, using

(9),

2 _ 2 2
a” = aj + ay

b = b2 + b2 (14)
abcos(a + 8, — &) = a1by cos(ay + 8, — ) + azbs cos(an + 8, — &)

A plot of cos(a + 8, — &) as a function of w is shown in Fig. 1 for three values of a, i.e.
0°, 45° and 90°. The resonance parameters for a and b (see Table) have been taken from
our E852 paper[7],¢ and the normalized absolute squares of the Breit-Wigner forms are
given in Fig. 2, as well as the ‘normalized’ interference term. The same quantities, as they
appear in our paper, are shown in Fig. 3. This figure shows how important the interference
term is compared to the P-wave term. Note also how rapidly the interference term varies
as a function of w in the a3(1320) region. This term, of course, is intimately related to the
asymmetry in the Jackson angle and vanishes when integrated over the angle, 1.e. it does
not contribute to the mass spectrum [see (3) and (4)]. Fig. 4 shows the contour plot of the

intensity distribution in w vs. cos #; note variation of the asymmetry as a function w.

¢ Although simplified formulas are used in this note, the results given in this note do not change even when
correct formulas are used. Note that, to go over to a correct formulation for each wave, one needs to
substitute the absolute value of the Breit-Wigner formula as follows:

sin §(w) — B(q) [%] sin §(w)

where B(gq) is the barrier factor and I'(w) is the mass-dependent width. It should be noted that the
correction factors are all real, by definition.

The value of a as given in this paper is 37.46°; for the purpose of illustration, one may consider a = 45°
close enough.



Parameters* taken from our E852 paper[7]:

Table 1.
Partial Wave | Mass (GeV) Width (GeV) Production Phase Magnitude
D 1.317 0.127 a = 37.46° a=1.0
P 1.370 0.385 a=10° b=0.151

* Refer to (11) for the notations.
The waves are normalized such that D(w) =1 at w = 1.317 GeV.

For the last equation in (14) to be true for any mass, the coeflicient of cos(d, — &) or

sin(d, — &) on the left-hand side must be equal to that on the right-hand side, so that

abcosa = a1b; cos a; + asby cos as
(15)

absin o = a;b; sin oy + asbs sin ay

Take a sum of the squares of the two formulas above and introduce the first two equations

of (14):
2a1biasby cos oy cos oy + 2a1biasbs sin o sin as
282 4 22 (16)
=a?b2 (cos® a; + sin® ay) + a2b? (cos® ay + sin® ay)
which is recast into
(17)

0 = (a1by cosa; — asb; cos ay)® + (a1by sin oy — ayb; sin ay)

It is clear that each term must be set to zero, so that
() o= (51)
— ) cosay = [ — ) cos ay
by by (18)

(&) ines = (52)
b, sin o = by sin g

Next, plow these back into (15), to deduce that

— ] CcCosa = — ) COSt¥1 = — ] COS &

b b, ! by 2 (19)
— ]sina = — ) Sin &1 = — ] sSln &

b b, ! b, ?



One takes—alternately—a sum of the squares of the two formulas above, or a division of
the second over the first, and obtains, remembering that a’s and b’s are non-negative real

quantites,
a ay as

bbb (20)

tana = tana; = tan as

The last equation above demands that a; and a, are determined up to £, but they have
to satisfy (19). It is clear that one must set @ = a; = ay. Next, one introduces two new real

variables z > 0 and y > 0, given by

..
" a b
_ @b (21)
y_a_b

with the constraint z% + y2 = 1.

Now one can prove that the case of rank 2 is reduced to that of rank 1. Indeed, one sees

G w () e

and (8) becomes identical to (3).

immediately that

3 Discussions

It is shown in this note that the problem of two resonances in D, and P, in the nmw~
system in (1) is—effectively—a rank-1 problem. For this to be true, the following conditions

have to be met:

(a) There exist two distinct resonances with different masses and/or widths. Note that
the crucial step, from (14) to (15), depends on that fact that §, — & is non-zero and is

mass dependent.

(b) There exists a satisfactory rank-1 fit with two resonances in a given mass region, in

which each amplitude for D, or P, has the following general form

Mi(w, Q) = rpeto &%) £ (w) Ax(Q) (23)



where k£ = {1,2} and ‘1’ (‘2’) corresponds to Dy (Py). 8g(w) is the Breit-Wigner
phase and highly mass dependent, while r, and aj are mass independent in the fit.
Of course, one of the two a’s can be set to zero without loss of generality, so that
there are three independent parameters, e.g. r1, 75 and oy (these were denoted a, b
and a, respectively, in the previous section). fi(w) contains the absolute value of the
Breit-Wigner form, plus any other mass-dependent factors introduced in the model.

Ar(f) carries the information on the rotational property of a partial wave k.

(c) Same two resonances in D, and P, are produced in both spin-nonflip and spin-flip
amplitudes, with the same general form as given above—but with arbitrary r’s and
ay’s for each spin-nonflip and spin-flip amplitudes. In this note, it is shown that only
one set of r;’s and ag’s, i.e. 71, 7y and ay, is required for both spin-nonflip and spin-flip
amplitudes. (This is indeed a remarkable result; the rank-2 problem entails a set of
six parameters, but it has been shown that the set is reduced to that consisting of just
three.) Therefore, the distribution function in both w and €2 is given by

do(w, Q)

2
Todn & |2k: M (w,Q)[* pq (24)

independent of the nucleon helicities.

In another words, the spin density matrix has rank 1. The key ingredients for this
remarkable result are that both spin-nonflip and spin-flip amplitudes harbor two resonances
in D, and P, and that the production phase is mass-independent. It should be emphasized
that the derivation given in this note does not depend on the existence of a good mass fit; it
merely states that any fit with a mass-independent production phase is necessarily a rank-1
fit. Of course, the point is moot, if there exists no satisfactory fit in this model.

In the Introduction, it was pointed out that the results presented here can be applied
equally well to the 17 state at 1.6 GeV coupling to (wp)~. One recalls that, because of the
Bose symmetrization resulting from two identical particles (7~ ’s) in the isobar model, the

imaginary part of the density matrix can be determined as well as the real part, i.e.

S{P* D} = ${P! D,} + ${P; D,} (25)

using the notation of Section 2. This implies that
absin(a + 6, — &) = a1by sin(oy + 8, — &) + azby sin(az + 8o — &) (26)

7



Once again, one must realize that the formula above is true for any mass w, and therefore
there must exist relationships in the coefficients of cos(d, — &) and of sin(8, — &). It is
remarkable indeed that the resulting formulas are identical to (15), and one comes to the

conclusion that the rank condition derived for nw~ applies to (mp)~ as well.
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Figure 1: cos(a + 8, — &) as a function of w from 1.2 to 1.6 GeV for a = 0°(0), a = 45°(+) and
a = 90°(n).
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Figure 2: sin?§, (o), sin?d, (+) and sind, sin & cos(a + 8, — ) (o) as a function of w from 1.2 to
1.6 GeV, using o = 45°.
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Figure 3: a? sin?§, (o), b? sin?é, (+) and 2a b siné, sindy cos(a + &, — &) (o) as a function of w
from 1.2 to 1.6 GeV, where one has assumed that ¢ = 1.0, b = 0.20 and o = 45°.
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Figure 4: Angular distribution in cos@ as a function of w from 1.2 to 1.6 GeV, where one has
assumed that ¢ = 1.0, b = 0.151 and o = 37.46°.
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