Portal Web Services:

Support of DOE SciDAC Collaboratories

Proposal in response to the DOE SciDAC Solicitation 01-06

Lead PI: Mary Thomas, University of Texas at Austin

Date: 14 December 2001

Principal Investigators

	Mary Thomas

Texas Advanced Computing Center

Campus Mail Code: R8700

University of Texas

Austin, TX 78712

Tel: (512) 475-9411

Fax: (512) 475-9445

Email: mthomas@tacc.utexas.edu

	Geoffrey Fox

Community Grid Computing laboratory

Indiana University

501 N. Morton, Suite 224

Bloomington, IN 47404

Tel: (812) 856-7977

Fax: (812) 856-7972

Email: gcf@indiana.edu

Co- Investigators

	Reagan Moore
	University of California at San Diego
	moore@sdsc.edu

	Dennis Gannon

Dave Schissel
	Indiana University

General Atomics
	gannon@cs.indiana.edu

schissel@fusion.gat.com

	
	
	

Table of Contents

Error! Bookmark not defined.Cover Page

Error! Bookmark not defined.Budget

iiTable of Contents

iiiAbstract

1Project Description

11.
Introduction

11.1.
The DOE Grid and Portals

21.2.
Project Goals

22.
Application Motivation

32.1.
National Fusion Collaboratory

32.2.
Benefits of this Proposal to SciDAC Collaboratories

42.3.
Application Portal Web Services Usage Scenario

43.
Research Background

53.1.
Computational Grid Technologies

53.1.1.
Architectural Principles

63.1.2.
Portals

63.1.3.
Software Component Models

73.1.4.
Web Services

83.1.5.
Collection Management

93.2.
GridPort Toolkit

93.2.1.
GridPort Architecture

93.2.2.
Services Supported

103.3.
Gateway and Collaborative Portals

113.4.
Data Collection Management – Storage Resource Broker

114.
Research Plan and Approach

124.1.
Task 1: Portal Systems

124.1.1.
Implementation of Production Portal Services

124.1.2.
Portal Research Activities

134.2.
TASK 2: Data Collection Management

134.2.1.
SRB on top of MDSplus

134.3.
TASK 3: Web Services

144.3.1.
Object Based Metadata

144.3.2.
Portal View of Job

144.3.3.
Application Factory

154.3.4.
Grid Messages and Events

154.3.5.
Performance

164.3.6.
Accounts/Allocations

164.3.7.
Scheduling

164.3.8.
Security

164.3.9.
Grid Application Workflow

174.4.
TASK 4: Fusion Applications

174.5.
Technologies Employed

175.
Synergistic Activities

185.1.
DOE SciDAC Collaboratories

185.2.
Other Synergies:

186.
Management Plan

196.1.
Technology Transfer Activities

196.2.
Tasks, Milestones and Deliverables

Error! Bookmark not defined.Biographical Sketches

21Facilities and Resources

23Bibliography

Error! Bookmark not defined.Statement of Current and Pending Support

Error! Bookmark not defined.Assurances and Certificates

Error! Bookmark not defined.Letters of Support

Abstract

The recently funded Scientific Discovery Through Advanced Computing (SciDAC) program promotes the advancement of scientific and computational problem solving capabilities for the Office of Science (SC). Collaboratory projects will build a uniform support environment in which SC/DOE users will be able to run jobs, experiments and manipulate data on the Grid. Grid portals provide the scientific community with familiar and simplified interfaces to the Grid and Grid services, and it is important to deploy grid portals onto the SciDAC grids and collaboratories. The software used to build these portals has been converted to generalized application portal development toolkits that simplify the application developers’ task of accessing the complex grid technologies used for grid services. The emergence of web service technologies has provided the grid and portal community with an opportunity to develop interoperable protocols and standards that can be used for grid services and portals. This will simplify the use of grids and grid technologies and will encourage the use and deployment of scientific applications and experiments on the grid.

The overall goal of this proposal is the development and deployment of interoperable portal and web services that can be used by a large number of independent users across the entire SciDAC grid. Our efforts will concentrate on research, development and deployment activities within four primary tasks: the development of portal systems, management of data collections, migration of technologies from the DOE sponsored CCA project, and the development of web services in support of the above activities. Initial deployment of these technologies will be on the National Fusion Collaboratory, with plans to explore deployment onto the DOE Sciences Collaboratory and the Multiscale Chemical Science collaboratory, and other collaboratories in the later phases of the project, if time and budget permit.

We will accomplish this by focusing on 4 key tasks: Research and review the state of grid portal technologies and grid web services, and match them to DOE application requirements; Produce a plan for an integrated portal and web services environment that operates within the DOE grid environment that can be used by a large number of DOE SciDAC users; Develop and deploy these portal and web services toolkits on several of the SciDAC collaboratories; Develop and deploy portal and web services toolkits that can be used by a large number of DOE SciDAC users.

Project Description

1. Introduction

The recently funded Scientific Discovery Through Advanced Computing (SciDAC) program promotes the advancement of scientific and computational problem solving capabilities for the Office of Science (SC). Within this program, three areas are defined: Scientific Challenge Codes, Computing Systems and Mathematical Software, and Collaboratory Software and Infrastructure [45]. The collaboratory projects will build a uniform support environment in which SC/DOE users will be able to run jobs, experiments and manipulate data. The common operational environment is based on emerging grid technologies that will integrate the distributed DOE facilities. This environment will include common/shared logins across the multiple DOE resources and services, access to common/shared data collections, and community applications and scientific computing codes, models, and libraries.

The Grid [1-10] is a term applied to the infrastructure used to interconnect highly distributed compute, archival, instrumentation, and other resources into a large, parallel, computational resource. Grid portals have been established as highly convenient mechanisms for providing the scientific community with a familiar and simplified interface to the Grid and Grid services, and are now being used frequently on production grids for large organizations such as the NSF/Partnership for Advanced Computational Infrastructure, NASA/Information Power Grid, and NIH Biomedical Informatics Research Network. The software used to build these portals has been converted to generalized application portal development toolkits [31,32,2,3,18-24,60-66]. The toolkits simplify the application developers’ task of accessing the complex grid technologies used for grid services. With the advent of web services, interoperable protocols and standards will be developed for grid services. This in turn will simplify the use of grids and grid technologies and will encourage the use and deployment of scientific applications and experiments on the grid.

There are currently several large collaboratory projects funded by the DOE SciDac program, supporting research and development in areas including the DOE Science Grid (NERSC), fusion, chemistry, and particle physics. Details of these programs can be found on the SciDAC website [44] and are summarized in section 5.1. In addition, there are other previously funded DOE projects such as the Particle Physics Data Grid. A short survey of these projects reveals that nearly all of them contain strong grid computing components based on common grid infrastructure such as Globus [5], and SRB [27,28], which will support an interoperable grid at the core services layer. While many of these projects include portals or web based access components, there is no current plan for an interoperable portal infrastructure. Furthermore, few (if any) have plans for implementation of web services.

Based on the experiences gained by members of the proposed team, we see that in the future, after the DOE grid has been built and these collaboratories are operational, there will be a need for interoperability at the web services and portals layers in order for DOE users to share and exchange data, applications and job execution environments. Thus, there is a driving need for the collaboratories to have integrated, common, simple portal technologies and web services, streamlined to run on DOE Grids. The development of interoperable web service based portal infrastructure is the focus of this proposal.
Members of the proposed research team have experience in implementing computational science Grid portals for the PACI (NPACI, Alliance), NASA/IPG, and NIH programs [18,21,30]. Each project has based its portal development on software toolkits that facilitate the building of multiple portals using common code. Furthermore, this software can be reused and repurposed in a straightforward manner. This is an important concept when considering the design requirements of portals being deployed on the large SciDAC grid. Portal software can be developed that is portable, interoperable and can be repurposed.

A concrete example of this concept was recently demonstrated with the development of the UCSD Telescience portal, which was first deployed on the NPACI Grid [30] using the GridPort Toolkit. When a user from the NASA/IPG community needed to use the Telescience resources at UCSD, but through the compute and storage resources on the IPG Grid, the interoperable design of the GridPort Toolkit [31,32] and the collection management software (SRB) [27,29] made this project feasible and easy to accomplish. This is a design goal of our proposal: the development and deployment of interoperable portal and web services that can be used by a large number of independent users across the entire SciDAC grid.

1.1. The DOE Grid and Portals

One of the unique aspects of the tools developed for portals is that the software must integrate a variety of other systems. Thus, portals represent an integration environment, which is served primarily by a web browser user interface to the grid software middleware layers. Furthermore, projects such as the GridPort Toolkit [32] and the CCA [35-38] have demonstrated that integrated toolsets can be developed that meet the generalized needs of both portal developers and application requirements. This is part of the unique role that portals play at the grid middleware layer: portals use and enforce integration of other toolkits.

An additional role that is played by portals and accounts for their success and demand is that portals make the complex compute and data grid environments more accessible to users and scientists. Portals can provide explicit links to discipline specific data collections, support automated execution of discipline specific applications, integrate data flow between applications, and even automate the creation of collections of application output files. Portals can also provide a window into the execution environment, reporting the availability of resources, the status of executing jobs, and the current load on the grid resources.

A key task of this proposal will be to research and review the state of grid portal technologies and match them to DOE application requirements, produce a plan for an integrated portal environment that operates within the DOE grid environment, and to develop and deploy toolkits that can be used by a large number of DOE SciDAC users. Web services will greatly enhance this capability by encapsulating specific implementations of the grid services within a common WSDL interface [11-13]. A specific example of this will be in the area of data mangement. The Particle Physics Data Grid uses the SDSC Storage Resource Broker for Babar data collection services while the Fusion Collaboratory will be using the MDSPlus data base system [26]. A web service that provides a common interface to each of these systems will allow a user from the DOE Science grid to incorporate data from the other grids without needing to have detailed knowledge of the data storage systems or needing to install any other software other than the system needed to operate or access web services. As part of our efforts, PI’s from several of the SciDAC collaboratory projects have expressed an interest in using these the portal and web services technologies that will be developed as part of our research. These projects include the Fusion Collaboratory [25], the LBL led DOE Science Grid, the PNNL led EMSL Collaboratory, and the Particle Physics Data Grid (see letters of support).

1.2. Project Goals

The overall goal of this proposal is the development and deployment of interoperable portal and web services that can be used by a large number of independent users across the entire SciDAC grid. We will accomplish this by focusing on the following:

· Research and review the state of grid portal technologies and grid web services, and match them to DOE application requirements.

· Produce a plan for an integrated portal and web services environment that operates within the DOE grid environment that can be used by a large number of DOE SciDAC users.

· Develop and deploy these portal and web services toolkits on several of the SciDAC collaboratories.
· Develop and deploy portal and web services toolkits that can be used by a large number of DOE SciDAC users.
· Technology transfer of the toolkits and experiences to the DOE user community.
2. Application Motivation

Grid portals and portal toolkits are emerging as discipline specific integrators of middleware technologies that are used to simplify access to grids for users of community codes. At a minimum, the SciDAC collaboratory projects should have simple portal interfaces that provide users with access to information and community models. While there will always be a need for singular, specialized portal systems for large projects, it will be effective and efficient to also develop a common portal infrastructure that meets the needs of most of the SciDAC grid users and projects. This has the potential to provide users with a common framework, allowing them to share efforts across other collaboratory systems. The feasibility of this concept has been demonstrated by the “User Portal Collaboration” project, which resulted in several useful outcomes: The PACI HotPage Portal that provides interactive access to resources spanning the NPACI, Alliance and NASA/IPG grids, all based on the same software (GridPort); the development of the Myproxy credential services [19]; the successful sharing of certificate authorities between 3 organizations.

As a result of meetings and discussions held with colleagues working on the SciDAC DOE Science Grid Project [46] and the National Fusion Collaboratory Project [25], a pressing need was identified for portal and web based access to grids across the collaboratories. This team has initially targeted the “National Fusion Collaboratory Project” as the deployment testbed for the technologies proposed in this proposal. The Fusion grid is a natural choice for the initial efforts, since the lead PI (Thomas) and co-Investigator (Moore) on this proposal have over 15 years experience in Fusion research and have a deep understanding and appreciation of the technical requirements and challenges faced by this community. Additionally, the DOE Science Grid collaboratory led by Keith Jackson at LBL will serve as the associated deployment project for our proposal. As part of our research, we will establish combined technical team leads for these technologies among other DOE lab projects, and we will ensure that these projects work synergistically through collaborations and interactions within the Global Grid Forum (See management plan below).

2.1. National Fusion Collaboratory

The SciDAC funded National Fusion Collaboratory was created to advance scientific understanding and innovation in magnetic fusion research by enabling more efficient use of existing experimental facilities and more effective integration of experiment, theory, and modeling. The project is creating and deploying collaborative software tools throughout the US magnetic fusion research community. Built on a foundation of established computer science toolkits, successful deployment of the Collaboratory is requiring significant computer science research to extend the toolkits beyond their present capabilities by enabling secure network real-time data analysis and instantaneous communication amongst geographically dispersed teams of experimentalists and theoreticians.

The long-term goal of fusion research has been the development of a reliable energy system that is environmentally and economically sustainable. Nuclear fusion, the power source of the stars, has been the subject of international research for over four decades. Experimental magnetic fusion research in the US is centered at three large facilities (Alcator C-Mod, DIII-D, NSTX) with a present day replacement value of over $1B. Magnetic fusion experiments operate in a pulsed mode producing plasmas of up to 10 seconds duration every 10 to 20 minutes, with 25-35 pulses per day. This mode of operation places a large premium on rapid data analysis that can be assimilated in near real time by a geographically dispersed research team. Teaming with this experimental community is a theoretical and simulation community that concentrates on the creation of realistic non-linear 3D plasma models. Working together to advance scientific understanding and innovation, these two groups represent over one thousand scientists from over forty institutions.
The goal of the National Fusion Collaboratory is to advance scientific understanding and innovation in fusion research. The National Fusion Collaboratory will increase physics productivity by: 1) enabling efficient utilization of experimental time on fusion facilities by providing between pulse data analysis, 2) allowing secure, transparent access to analysis and simulation codes, data, and visualization tools resulting in more researchers having access to more resources, 3) facilitating the comparison of theory and experiment, 4) facilitating multi-institution collaborations, and 5) creating a standard tool set for remote data access, security, and visualization allowing more researchers to build these services into their own tools.

 To accomplish these goals, fusion scientists with expertise in large experiments and simulation code development have joined computer scientists with expertise in security, distributed computing and information management, and visualization to form a closely coordinated team. This team is leveraging existing computer science technology where possible. For requirements not met by current capabilities, new technologies are being developed.

The computer science research necessary to create the Collaboratory is currently centered on three main activities: security, remote and distributed computing and information management, and scientific visualization. The security, authentication, authorization, and encryption technologies are based on the Globus Security Infrastructure and the Akenti authorization services. Existing fusion community codes are being modified to use this infrastructure for remote execution and data access. For distributed computing, the Collaboratory is utilizing Globus facilities including remote job scheduling, monitoring, exception handling, and accounting. The components of the Globus toolkit that will be immediately deployed include the Grid Information Services, Grid Security Infrastructure, and Globus Resource Allocation Manager. New functionality for Globus include managing batch versus preemptive job priorities, providing status display and accountability to users, monitoring the adherence of resources to policies, and providing advance reservations. For distributed information management, SRB and Extensible Metadata Catalog will be used to create data collections. Distributed data collections will be used to facilitate organization and access to data within the Collaboratory. The visualization component of the Collaboratory is focusing on the development of a collaborative control room, collaborative meeting room, and enhanced visualization tools. The collaborative visualization requirements will utilize the Access Grid that enables distributed meetings and collaborative teamwork sessions. New software will include the ability to quantitatively compare theory to experiment with uncertainties.

2.2. Benefits of this Proposal to SciDAC Collaboratories

The activities outlined in this proposal will develop the infrastructure needed to build an integrated portal and web services system for the National Fusion Collaboratory. This software will provide a system that supports an advanced command line environment for scientific computing and data management. For the DOE Science Grid we will demonstrate the ability to automate the formation of simulation output files into queriable collections, build a web services access system to the DOE archives, and integrate the data information management systems with the Fusion MDSplus system [26].

 We believe that the areas of research contained within this proposal will provide additional components that will greatly enhance and strengthen the existing collaboratory while providing a deployment testbed for software to be deployed on other Collaboratories and grids within the DOE. Our Portal Web Service environment will be an exemplar of a new modular integrated computational environment, which could be broadly useable within DOE. Planned synergistic activities with currently funded SciDAC projects and grids will help to guarantee that the software developed by this project will provide a foundation for interoperability with both other grid activities and with the major DOE CCA initiative. In addition, as part of this proposal we will include application portal development and deployment that will be led by fusion scientists.

2.3. Application Portal Web Services Usage Scenario

Consider the problem of a DOE Scientist that must run several hundred data analysis tasks on a set of output streams coming from an experiment. Assume that the output data are stored in files located on a remote archive and that each is described by metadata located in another location. The metadata for each output file describes the experiment and parameters that were used in creating it. The DOE scientist must set up an application that does the following

1. Search the appropriate collection for experiment output that have some specified range of parameter values.

2. For each metadata object selected, retrieve the pointer to the archived data file;

3. For each data file schedule the execution of the analysis task. This requires the allocation of computational resources and a verification that the user is authorized to use the resource;

4. For each output file from each analysis execution, generate the metadata object that describes its history and content, and register the metadata into the appropriate collection;

5. Move each file into the data archive;

6. Run an analysis program that looks at each generated output file and generate the summary information needed.

The traditional way of solving this problem is to write a large and complex set of shell scripts that must interact with each specific resource and file object on its own terms. The result is a package of software that is seldom re-usable, very brittle, non-portable, not fault tolerant and extremely hard to use because it often requires human intervention at many stages. As a result this approach does not scale to complex scenarios and it does not scale to large-scale grid environments.
The solution we are investigating in work described here is based on our experience with building Grid Application Portals and our experience with emerging technologies in the area of Web Services. The key to grid application scalability is to reduce complexity by providing simple, fault-tolerant interfaces to “services” that are uniform in their structure and behavior across the entire Grid.

In the example above, there is a central agent process that must “execute” the planned workflow of this application. This workflow agent acts on behalf of the user and is capable of authenticating and communicating over the Grid with each of the services required in this application. The application itself can be programmed as a workflow XML document based on one of several emerging standards. In our example, the first service the agent must contact is a metadata catalog (in our case MCAT) and a storage resource broker (SRB). The Web Services model we propose allows each service to be described by an XML document that describes the interface to that service and the protocol needed to contact it.

Consequently, the workflow document does not have to specify how to talk to SRB or MCAT, rather it only describes the questions that must be posed to this service. The middleware is responsible for working out the low level details based on the service description document. Once the workflow agent has completed this step, it must schedule the work to be done in the analysis phase. Rather than specifying directly how to invoke the analysis application, the workflow agent contacts an application factory service, which, in turn, contacts resource broker services and authorization services to locate the correct resource to run the application (see Section 4.3.3 for details). The advantage of this separation of the workflow agent from the task of invoking the application is twofold. First, changes/upgrades to the analysis application are transparent to the workflow engine. Second, by factoring resource brokering and authorization out of the application we have reduced the complexity of that task: once these sub-processes interactions have been debugged in the factory service they no longer need to be considered by the higher level agent.
Another interesting part of this approach is the way messaging and events can be incorporated into this picture. Unlike a normal script execution, our hypothetical workflow agent can respond to messages and error conditions generated by the each service. By adopting a standard, XML based messaging system it is possible for a single agent to process errors and plan the workflow around them. This becomes possible only when the each of the web services involved “speak” the same messaging language and their ways of dealing with exceptions follow a consistent set of rules. In the sections that follow we describe the specific details for how such a grid of web services can be layered on top of existing DOE grid infrastructure.

3. Research Background

The scope of the proposal is based on the expertise of the PI’s involved and includes experts in computational Grid Portals (Thomas, Fox, Gannon), data grid technologies (Rajasekar, Moore), and Fusion research (Schissel, Thomas). Emerging research conducted by the investigators on this team includes the proposed web services environment. Overall, this team has strong experience in research, development, and deployment of useful grid technologies, including deployment onto production grids. These technologies are discussed below.

In this section, we present a discussion on technologies used to build grids, portals and the grid web services. In addition, we summarize the relevant research experiences and expertise of the co-PI’s on this proposal. In particular, although many of the investigators have portal experience, part of the research plan will be an initial deployment of the GridPort toolkit and the SRB/MCAT systems onto the collaboratory grids, which will be used as a baseline/framework to integrate portal technologies from research conducted on this projects and other related SciDAC/DOE projects.

3.1. Computational Grid Technologies

3.1.1. Architectural Principles

[image: image3.emf]Resource

Data

base

Resource

Soft

ware

Soft

ware

XML

Skin

XML

Skin

Message

Or Event

Based

Inter

Connection

f

In this section we review a few general trends and concepts that underlie our approach. Following the W3C, we define a resource to be any identified electronic entity. For this proposal, computers, programs,

data (from sensors to this presentation to email to databases) and users are all resources. Resources are labeled by XML in several different aspects: they have one or more URI including URL (location) and URN; they have XML Metadata using perhaps RDF [47] with personal information as just one example. Web services are built on use of XML to define software interfaces.

XML specifications enjoy universality but can be clumsy or inefficient. Thus as shown in fig. 1, the XML interface may be “virtual” and replaced by a different optimized form at runtime. We can expect the development of new compilation techniques to enhance performance or functionality from a system specified in XML. Web services share with most electronic resources, the natural browser user interface which allows convenient universal access to all resources. The increasing use of XML implies that all resources are at least in principles objects with complex structure as can be defined by XML Schema. This affects the natural interfaces to resources as we need to be able to store, search and retrieve such complex objects. Many technology and applications are defining XML standards – Web services (WSDL) are key to this proposal [11] but XML standards will soon cover diverse resources from earthquake fault locations to scientific visualizations (see SVG [48]) and spacecraft control commands.

As shown in Figure 1, essentially all resources communicate with messages [14, 43], which must also have a possibly virtual XML specification. This communicating object model includes resources (such as functions) running in the same memory space as well as the more obvious coarser grain web applications.

This model of communicating resources has only recently clearly emerged. It raises several profound research issues – some of which we will directly or indirectly address in this proposal. One can ask what happens to programming languages when data structures are defined in XML – technologies like Castor [49] are instructive as they define a model where data structures are automatically mapped between Java classes and XML Schema. We need to develop ways of managing this implied sea of XML nuggets – this is a new key task of distributed operating systems. UDDI is an approach to some aspects of this in the web service arena [15].

In our SRB work in this proposal, we will contribute to a central problem – what is the right model for databases when everything is an object defined in XML and transformed by middle-tier software (Java)? Again the concept of virtual XML with the needed compilation techniques seems important – as an example, we need to learn how to convert slow XML message to fast method calls on the stack. We need to understand the aggregation capabilities provided by XML for manipulating collection attributes when information is exchanged over wide area networks. We need to use Web Service and related technology for resources of large and small sizes and to coalesce multiple small Web services into larger ones. This exhibits a good component model but implies a middleware environment that is new and challenging. We need to learn how to implement existing Grid Services in far more dynamic situations. P2P (peer to peer) network concepts [16,17] are compatible with the above trends and offer critical capabilities but their design and integration into Grid environments is unclear. As well as transport and design issues of the inter resource messaging, the W3C Semantic web initiative suggests a new concept. As the resource metadata increases, objects will link together forming digital brilliance – a phase transition in information space. This is related to the small world ideas [50,51] popularized recently – random connections will often lead to robust efficient interconnections with logarithmic (in system size) connection distance. The ideas in this proposal will not directly address digital brilliance but by defining new component models and developing XML specified web services and data collections we are helping to build the metadata rich environment that can lead to the Semantic Grid.

[image: image1.png]
Figure 2: Grid Portal Architecture. 1. User makes secure connection from web browser to portal server. 2. Portal server obtains certificate from a proxy certificate server (Myproxy) and uses that to authenticate user to the Grid. 3. When the user completes defining the parameters of the computation the web server launches an application manager. The web server delegates the users’ proxy credential to the application manager, so that the application manger may act on the users behalf. 4. In some systems, the application manager publishes an event/message stream to a persistent event channel-archive. This event stream describes the state of the Grid application execution and can be monitored by the user through the browser.

3.1.2. Portals

We argue that there are three types of Grid application developers and users. The most numerous group is end users who program pre-packaged grid applications by using a simple graphical or Web interface to supply application specific parameters and simple execution configuration data. In an ideal world this group of people need know little about actual Grid protocols or services. The second group of Grid programmers is comprised of those that know how to build a Grid application by composing them from existing application "components" and Grid services. The third group consists of the researchers that build the individual components of a distributed application, such as simulation programs or data analysis modules that make up the basic sub-computations of a wide-area Grid application. Often, this group has little or no experience with building distributed applications. While some users have skills that span all three categories, Grid application development systems should allow programmers to work in one without becoming expert in the others. It is our experience that the first group of users is best served by "Grid Portals", which are web servers that allow the user to configure or run a class of applications. The server is then given the task of authenticating the user with the Grid and invoking the needed grid services required to launch the user's application. Grid portals in current use include the XCAT Science Portal [33-35], Gateway [39-42], Mississippi Computational Web Portal [23], Discover [22], NPACI Grid Port [30-32], Nimrod-G [24], NASA IPG Launchpad [18], Cactus [20] and many others. A recent journal special issue [3] collected together 27 portal papers as part of the Grid Computing Environment working group activities led by Thomas, Fox and Gannon. The basic architecture of a Grid Application Portal is illustrated in Figure 2 below. While no two portal designs are the same, they all share characteristics of this model.

In some cases the application manager is just the remote grid application itself. However, in many other cases it is a "wrapper" around a legacy application. In the case of applications that involve concurrent computations on multiple resources, the application manager is an agent that is responsible for launching and coordinating these remote computations. Often the application manager is simply a script, which drives the workflow of a complex set of tasks that the Grid application must accomplish. The design of the application manager script/workflow for a particular Grid application and its web interface is the task of our second level of Grid programmers. In the paragraphs that follow we shall describe how a software component architecture can be used in the task of building distributed Grid applications and suggest that this is just a special case of a more general web services framework for Grid systems.

3.1.3. Software Component Models

Software component technology is not new. It is now a standard part of many software design practices. Microsoft COM and much of .NET [53] is based on component concepts. Enterprise Java Beans [52] is another very important technology for building the business end of large-scale, e-commerce applications.

The basic concepts behind a software component architecture are not difficult to understand. A software component model is a system for assembling applications from smaller units called components. The system defines a set of rules that specify the precise execution environment provided to each component and the rules of behavior and special design features that components must have in order to be considered true "components". A component is then nothing more than an object (or collection of objects) that obey the rules of the component architecture. A component framework is the software environment that provides the mechanisms to instantiate components, compose them, and use them to build applications. The execution environment the component architecture provides a component instance is often called the component’s "container."

The DOE Common Component Architecture (CCA) [34,36-38] is one such component architecture designed for use in large scale scientific and engineering applications. It is the work of the SCIDAC Center for Component Technology for Terascale Software and Systems (CCTTSS), which consists of two US universities (Indiana and Utah), and five US national laboratories (Sandia, Livermore, Argonne, Oak Ridge, Los Alamos). The basic ideas are drawn from early versions of the OMG Common Component Model (CCM) [54]. CCA components are characterized by their external interfaces, called ports, which each take one of two different forms. Provides Ports are component access points that provide an interface of functions that the component will evaluate on behalf of its client. A provides port can be thought of as a "service" provided by the component. A component may have zero or more provides ports. Uses Ports are component features that represent a reference to an external object from within the component. It can be thought of as a call-site within a component where it may use a service provided by some other component. A component may have zero or more uses ports. CCA Components can be composed by connecting a uses port of one component to a provides port of same type on another component. .

A Grid based version of the CCA architecture called XCAT has been developed at Indiana University [35]. This implementation allows a CCA component executing on any grid resource to be dynamically connected to another component running on a remote resources. This provides a simple framework for building distributed Grid applications from well tested and tuned application components. The basic technology used to implement XCAT is highly compatible with the emerging Web Service ideas and can be considered as adding to the Web Service ideas the environment rules to allow components to interoperate with high performance. We will use our existing CCA collaborations to ensure that we develop web services synergistic with this DOE effort.

3.1.4. Web Services

In 2001 several large software companies began to consider what could be done to make the concept of business-to-business distributed applications work. The early attempts in 1999-2000 by several B2B initiatives were based on linking together html based web sites that provide services to businesses. This approach failed because HTML descriptions of web sites did not carry enough semantic information for one site to invoke the services of another.

[image: image4.emf]Grid Layers

Resource layer

1000s of PCs ->massive supercomputers

Information/

Naming

Services

Information/

Naming

Services

(co-)scheduling

Service

(co-)scheduling

Service

Accounting

Service

Accounting

Service

Security

Service

Security

Service

Event/Mesg

Service

Event/Mesg

Service

Discovery

service

Discovery

service

User Help

Services

User Help

Services

Monitoring

Service

Monitoring

Service

Peer Creation

& resolution

Services

Peer Creation

& resolution

Services

Information

Routing

Information

Routing

P2P / Grid Services Layer

Grid Web Services Layer

User Portals/ Science Portals

Distributed Grid Application

Launch, configure

And control

By developing a precise XML description of the services provided by a site, along with a specification of the protocols needed to invoke the service, one would have a standard framework for B2B operations. This framework would allow businesses to provide services that other client businesses could invoke remotely and reliably directly from their own software. Furthermore, it would be possible to build automated service brokers that would give users a choice of implementations of similar services to solve a particular problem. In 2000 and 2001 this consortium of companies, working with W3C released a set of standards which defined web services. These standards include The Web Services Description Language WSDL [11] that defines the XML Schema used to describe a web service. Each Web Service is an entity, which is defined by ports that are service "endpoints" capable of receiving (and replying to) a set of messages defined by that port’s type. Each port is, in fact a binding of a port type and an access protocol that tells how the messages should be encoded and sent to the port. A service may have several different access points and protocols for each port type. They also include The Universal Description, Discovery and Integration (UDDI [15]) and the Web Services Inspection Language (WSIL) [55] provide the mechanism needed to discover WSDL documents. UDDI is a specification for a registry that can be used by a service provider as a place to publish WSDL documents. Clients can search the registry looking for services and then fetch the WSDL documents needed to access them. However, not all services will be listed on UDDI registries. WSIL provides a simple way to find WSDL documents on a web site. These discovery mechanisms correspond to the Grid Information Service [58] in Globus terms.

In addition several other standards have been proposed that provide additional features. For example, IBM has proposed the Web Services Flow Language WSFL [56,57], which is a mechanism for scripting the workflow for integrating multiple services together to accomplish a complex task. A workflow engine acts as the agent that follows the WSFL specification document and contacts each of the services required by the specification following the order (a directed graph) specified. This workflow engine and WSFL document plays the same role for web services as the Jython script engine and script used to connect and manage XCAT components.

In many ways, the Web Services framework that is emerging is no more powerful than any other distributed object system. For example, CORBA [59] has many of the features WS support and many more. So why are Web Services interesting? The answer is that the WS standards are simple, they are based on standard web technologies, and they are focused on making interoperability possible and easy. WSDL documents allow multiple protocols to be associated with a given service and WSFL provides a very high level mechanism for describing the way services can be combined together to accomplish a task.

There are several obvious ways that the web services model can be used in Grid systems. The first is to redefine many of the standard grid services as web services. For example, some interesting and useful Grid-Web services would be

· Grid Authorization Service: This service would provide a place where policy questions such as "Is John authorized to access resource X?" can be evaluated.

· Grid Application Resource Broker. This service would select the best compute resource from all those available on the grid for a particular application to run on.

· Grid co-Scheduling Service. Many resource schedulers are now incorporating advance reservation features. In Grid applications where more than one resource is required this service would negotiate a time when both are available and notify the client.

· Grid File Object Metadata Directory. Being able to fetch metadata associated with a Grid file object handle is very important for many applications. For example, File Object Metadata can direct me to any special file reader I may need to access the object. Searching Grid metadata for files with specified metadata attributes is also very important.

Many more of the standard Grid Services can, and will, be given WS interfaces. This will greatly simplify the task of making Grid Services available to applications that need them and to the portal tools users will use to access them.

As can be seen from the definition of a web service, it is not substantially different from a XCAT Grid component. In fact, the standard "default" access protocol for web services is the same (SOAP [14]) as we use for our default XCAT communication protocol. Furthermore, the port interface types supported by XCAT are easily described by a subset of the XML Schemas used by WSDL. Hence an XCAT component instance is web service. But not every aspect of XCAT components can be described by the current web services standards. For example, CCA components also have "uses" ports that represent the call points in a component to an external "provided" port on some other component. It is by connecting uses ports to provides ports that give CCA its programming-by-composition nature. It is our feeling that this would be a useful addition to the web services standard.

3.1.5. Collection Management

The major challenge to the management of data within distributed environments is the need to support access to data lying within different administration domains, under different authentication systems, under different naming conventions, and on different types of storage systems. Data Grids solve these interoperability problems by constructing a logical name space that can be managed independently of the storage systems on which the data resides. The logical name space consists of sets of attributes that are used to characterize the digital objects that are registered into the name space. The attributes are organized as a collection that can be implemented in a database. This approach is now taken by all major DOE data grids.

The logical name space can be used to manage arbitrary types of digital objects, including files in file systems, files in archives, blobs in databases, databases, web URLs, web services, user IDs, resource IDs, etc. The capabilities provided on the logical name space are determined by the semantics and operations supported on the logical name space attributes. The SDSC Storage Resource Broker supports full Unix file system operations on the logical name space, including both file open/close/read/write/seek/stat and I-node operations on directories. Depending upon the type of digital object that is registered into the name space, explicit services can then be supported. Examples are:

· Replication of files between MDS+ and archives

· Creation of persistent URLs

· Support for access control by user and group across data within web sites

· Organization of output files into collections

· Information discovery across collections

The choice of services depends upon the set of attributes used in the logical name space. The SRB system currently supports full Unix file system semantics (owner, creation date, update data, file size, etc.), Dublin core provenance attributes (tracking file system creation), SRB system attributes (audit trails, extended access control semantics, version numbers, replicas, containers, etc.), and discipline specific attributes (user-defined attributes for both objects and collections, annotations, comments, etc.). By integrating the collection management capabilities of the Extended Metadata CATalog (EMCAT) with the data handling capabilities of the SRB into the grid portal technology, researchers will be able to automate all aspects of data management. This includes collection creation, data discovery, data archiving, web-based collection management through the mySRB.html interface, and data manipulation. The technology is currently in use to support data grids for NSF/NPACI, NASA/IPG, DOE/PPDG, NLM/Visible Embryo, and is being planned for use in NSF/National Virtual Observatory, NIH/BIRN, and NARA persistent archive.

3.2. GridPort Toolkit

The GridPort software provides GIS based security, and supports a broad range of grid service interfaces. The toolkit has been designed to support multiple application portals that can share and access the same instance of the GridPort toolkit library. As a result, the portals all share the same web space and account management history, and inherit single login environments and session persistence. With this toolkit, portals can be connected to the computational Grid, including interactive services, which allows them access to remote compute and archival resources, and data, file and collection systems. GridPort is written in Perl, which makes porting the software to other websites straightforward. We have demonstrated that toolkits such as GridPort can be used in production application portal environments, and that the software can be configured to extend to resources beyond NPACI and SDSC (Alliance, PSC, and NASA/IPG). Additionally, we have shown that GridPort software can be extended to support the web-services architecture [12,13] that is being developed for commercial purposes and is being explored by the Grid Computing Environments research area of the Global Grid Forum [1].

[image: image5.emf]Resource

Data

base

Resource

Soft

ware

Soft

ware

XML

Skin

XML

Skin

Message

Or Event

Based

Inter

Connection

f

3.2.1. GridPort Architecture

The current GridPort portal system [32] is shown in Figure 4. In this schematic, we represent different parts of the portal system as layers. Each layer represents a logical part of the portal where data and service requests flow back and forth, and handles some specific aspect or function of the GridPort portal system. These layers are:
· Clients: These are typically web browsers. However, we have included other portals as clients, based on the web-services software that we are developing. This is discussed in detail in Section 4.3.1.

· NPACI Portals: Currently, NPACI application portals exist on the same machine and are served to clients by separate virtual web servers, and they all use the same instance of the GridPort libraries. This allows them to share data, libraries, filespace, and other services on the webserver machine. The bottom portal is a web-service portal, and is intended to be used by other applications and clients (see Section 4).

· Portal Services. In addition to mediating between client requests and Grid services, the GridPort software also performs services for the portals and users such as managing session state and portal accounts and file collections, and monitoring the GIS system. These are services that are portal specific, and are not typically addressed by Grid or web developers.

· Grid Services. These layers are the standard middle and backend tiers of the Grid, and represent the layer where Grid services such as Globus, Legion, SRB, NWS, Apples and Metaschedulers are available.

· Compute Resources. This is the backend layer of the grid, where resources such as compute and archival systems are located at multiple institutions.

3.2.2. Services Supported

Portals using the GridPort system provide two categories of services to the application portals running on the system: informational and interactive. Interactive services require user authentication, while informational services are open to any users without logging in to the portal. GridPort functions are used primarily by interactive services at this time.

Informational services are provided by either the Globus MDS GIS/GIIS systems, or by specialized data collection scripts. Interactive services are the secure transactions that provide users with direct access to HPC compute resources and allow the webserver to perform tasks for the user on those resources. To access interactive services, the user needs to log on and authenticate via web pages. For this, we use the Grid Security Infrastructure (GSI) provided by the Globus Toolkit. Each interactive portal user needs a unique portal account, the creation of which requires valid accounts on the resources supported by the portal. The portal manages the user’s portal account and keeps track of sessions, user preferences, and portal filespace. GridPort provides a single login environment for multiple portals (though there are certain constraints on portal setup, discussed below in the section on security issues). Once a user is logged into an NPACI portal, the user has access to any NPACI-hosted portal that is part of the single login environment. Currently, GridPort supports the following interactive functions:

Portal Accounts: The portal manages the user’s account and keeps track of sessions, user preferences, and portal filespace. All portal users must create a portal account, and they must have a valid PKI/GSI certificate. Currently, the NPACI portals accept certificates from several sites (such as NPACI, Alliance, NASA/IPG, Cactus, and Globus). For Fusion users, we will explore using the on-line certificate creation system created by SDSC for the NPACI Grid based on Globus GSI technologies, so this will be compatible with the planned Fusion CA.

Authentication: Users will be able to log on to Fusion portals using security mechanisms proposed for the Fusion grid (GSI). Typical portal users do not care to manage and handle certificates, and many of them are mobile, making it even more complex to handle these certificates. For example, if a user is logging into a portal on a public browser at the airport, he will most likely not have access to his certificate. Until the use of secure ID cards (or a similar mechanism) is universally supported, other solutions are needed. The NPACI solution has been to implement a secure repository for their users, so we will explore the use of a secure certificate repository compatible with GSI-based security model with the Fusion grid.

Job, Batch, and Command execution: All remote tasks are currently executed via the Globus/GRAM gatekeeper, which will be compatible with proposed technologies used on the Fusion Grid. Extensions will be needed to adapt the execution environment to include the MDSPlus capabilities, but there is a framework within the toolkit for this activity. GridPort supports compiling and running programs, performing job and batchscript submission and deletion, and viewing of job status and history.

File Management: By providing file and directory access to compute and archival resources and portal file space, GridPort enables file transfer between the local workstation and the HPC resources. Users can also perform common file management operations on remote files, such as tar/untar, gzip/gunzip, and movement to archival storage. The current version GridPort access SRB collections, and because of the framework provided.

3.3. Gateway and Collaborative Portals

We will use two related technologies developed by the Community Grids laboratory (led by Fox) at Indiana University. The Gateway portal was developed by the PET program of the DoD High Performance Computing Modernization Program [39-42] and provides web-based support of job submittal and management of jobs like ANSYS on HPCC facilities. Gateway uses a mix of Java and Corba technologies and features:

· Secure login, access control and authorization; security is implementation using Kerberos and has been successfully reviewed by DoD for production use. We can support the conventional PKI security model of the Grid and will allow both Kerberos and PKI mechanisms.

· Information services describing available host computers, applications, and users;

· Job submission and monitoring;

· File transfer and remote file access and manipulation;

· Session archiving and editing;

· Basic general purpose visualization.

Gateway is a mature portal technology and current activity is focused on integration of new applications and reformulating the implementations to use Web Services with an Enterprise JavaBean core. This includes active participation in the Global Grid Forum and in particular the Web Services test bed where we expect to take lessons from the different portals we have developed and use this to design Web Services of general applicability. Gateway already defines all interfaces in XML and so we are finding it straightforward to reformulate this in WSDL for Web Services.

The Community Grids laboratory has developed a novel collaborative environment Garnet building on lessons from a system Tango built by Fox at Syracuse [42]. Garnet uses an XML based message bus built around the publish/subscribe model. We have successfully used JMS (the Java Message Service) in our initial implementations but are exploring generalizations of this to get more scalable robust performance. Pallickara in a recent thesis has prototyped a multi-server network of brokers which is the natural infrastructure to support the dynamic XML messages implied by the Web Service model. We are also exploring Peer to Peer technology, especially JXTA [16], for Grid infrastructure. Service advertisements and pipes in JXTA are interesting architectural features that we are exploring as candidates for publishing/discovery and messaging on the Grid. The shared event model in Garnet can be naturally generalized to shared web services where the state of the service is exposed through WSDL ports.

3.4. Data Collection Management – Storage Resource Broker

Data collection management requires the ability to manipulate both digital objects and attributes used to characterize the objects. The former is done by data handling systems; the latter is done by collection management systems.

The Storage Resource Broker [27-29] implements data handling capabilities on top of the logical name space managed in a Metadata CATalog (MCAT). By choosing appropriate attributes to characterize the operations within the data grid, the SRB makes it possible to automate all aspects of data handling. Applications can query data stored in a SRB collection, identify relevant data sets, retrieve or manipulate the data, and store results back into the collection. The ability to support both discovery of old data sets and registration of new data sets into the same collection is the critical capability needed to automate data management.

Data manipulation capabilities are strongly driven by the types of latency management needed for efficient access to data stored at multiple sites. The SRB system provides mechanisms for all standard latency management practices:

· Streaming. Data is transported in large buffers, with APIs using double buffering to maintain continuous streams of data. Static network tuning is used to provide reasonable TCP/IP window and buffer sizes for the amount of data sent on a network. Parallel I/O streams are used to maximize sustainable network bandwidths.

· Caching. Local copies of the data can be created on local disk.

· Prefetch. Partial file transfer can be used by direct reads of the remote data.

· Staging. Files can be moved from low latency devices (tape) onto disk caches. The SRB supports both staging and status checking for the LBNL Storage Resource Manager.

· Replication. The source for a data transfer can be selected between multiple copies, with automatic fail over if one source is not available.

· Containers. For storing large numbers of small files into archives, the SRB can aggregate data into containers. The user still references each individual file, but the archive only has to manage the container. On reference, the SRB automatically caches the container onto disk, off-loading I/O transactions from the archive.

· Proxies. Multiple I/O commands can be aggregated into a single request sent to a remote proxy for execution. A standard example is data subsetting at the remote storage system.

The SRB provides collection management support. It is possible to create a collection, assign attributes, and create sub-collections through dynamic operations. The system supports user defined attributes, supports metadata extraction through automated application of templates to data sets, and supports export of attributes as XML files and import of metadata from XML files. By doing bulk manipulation of attributes, file registration rates into the MCAT catalog have been measured at 250 files per second. Each subcollection can have a new set of attributes, either based upon the attribute set of the parent collection, or any other defined attribute set. This capability makes it possible to integrate multiple collections. Knowledge technology under development in the SciDAC project for the “Management of the Development of Logic-based Data Federation Software” will be used to support queries across the independent collections.

4. Research Plan and Approach

While the need for portals and web services on SciDAC and DOE resources is clear, we will take a more pragmatic approach to our efforts. This project will center its focus on strong collaborations and interactions with currently funded SciDAC projects and by targeting our research towards the successful development and deployment of technologies onto the Fusion Collaboratory Grid. As stated above, we have held several conversations with colleagues who are working on many SciDAC projects, and in particular with researchers at the Lawrence Berkeley and Argonne National Labs, who will be submitting a complimentary web services based proposal that is focused on low level, core web services while our proposal is focused on higher level web services and portal technologies. While each team will be capable of accomplishing our tasks independently, our combined expertise will provide the DOE with an integrated solution from the core/resources level up to the portal/user interface levels. In addition, we will work with members of the Global Grid Forum to ensure that where possible, our R&D efforts operate within and contribute to acceptable standards.

This research project will focus on the research, development and deployment within four primary tasks: the development of portal systems, management of data collections, migration of technologies from the DOE sponsored CCA project, and the development of web services in support of the above activities. Initial deployment of these technologies will be on the National Fusion Collaboratory, with plans to explore deployment onto the DOE Sciences Collaboratory, and other collaboratories in the later phases of the project if time and budget permit. We summarize our efforts briefly below:

Task 1: Portals. Initial portal efforts will include the migration of the NPACI HotPage and Perl based GridPort Toolkit and Perl CoG onto to the fusion collaboratory, which will allow for a rapid deployment of a portal environment. This will be followed by a research phase to determine what are the best languages and software systems that should be used to develop the next generation of this portal toolkit, which will be a comprehensive DOE based toolkit. Development and deployment of this technology onto the fusion grid will follow.

Task 2: Data Collection Management: Initial deployment efforts will include the installation of SRB/MCAT services onto the fusion grid onto relevant fusion systems and at the LBL site. This will be followed by a research phase in which we will determine the requirements of Fusion researchers for collection management and how the SRB/MCAT and MDSPlus systems will interoperate. In addition, we will develop web services interfaces to the collection management system.

Task 3: Web Services: We propose to develop web services that interoperate with existing grid services and emerging grid web services, such as those proposed by our LBL colleagues in their complementary proposal.

Task 4: Application Integration: We will explore development of grid applications that will run on SciDAC grids. In particular, we will address the migration of Fusion applications onto the Fusion grid, and examine which ones can be developed as community model portals.

Details and plans for each of the task listed above are presented in the sections below.

4.1. Task 1: Portal Systems

Initially, we will deploy the NPACI GridPort and HotPage technologies onto the Fusion Grid. This will provide fusion with a rapid portal development environment, and will allow us to gain experience with working on the fusion grid: we will then use this information as a feedback system to the DOE science portal toolkit that we propose to develop. Plans for this toolkit include evaluation of technologies such as Java or Python, incorporating grid toolkits such as the Java CoG [60] and pieces of servlet technologies from Indiana work [33-35], LBL work [61,65], and ASC [62], and Jefferson Labs [63]. In parallel with this effort, we will be integrating web services for accomplishing many of the current services. This effort will be highly synchronized with toolkits that we will be developing for other large grid systems including the NSF NPACI and DTF grids [31] and the NASA/IPG grid [18]. As part of this effort, we will be merging capabilities of Gateway and GridPort in terms of Web Services (Task 3) and these capabilities will be made available to Fusion Grid through this task. In addition, we will work on integration of portal software being developed on the SciDAC grid in order to develop a generalized portal toolkit.

4.1.1. Implementation of Production Portal Services

By initially deploying the existing NPACI GridPort system onto the Fusion Grid, a portal system will be installed that will inherit all the functionality provided by the GridPort toolkit (see section 3.2 above). Experience at other centers has shown that this process can be concluded within a few months. We will also work with members of the DOE Science Collaboratory to migrate these technologies. If desired, we will implement specialized Collaboratory HotPages for these grids. These services include a GSI compatible portal account system, secure, encrypted authentication based on GSI; Job, Batch, and Command execution; and data collection and file management. In addition, we will work with developers of CoG toolkits [66] to get them installed on these grids. In addition, we will migrate the Perl based CoG [64] that the SDSC team has been developing for the Gobus community [5]. This simple toolkit, which is easy to port and install will provide DoE users and developers with a simple library to program command line based applications or for integration into portal systems. One advantage of Perl is that most systems already have Perl libraries installed and the API is familiar to most C/C++ programmers. Other languages such as Java can be more powerful, but the installation of the software packages needed to support the Globus software can be complex.

4.1.2. Portal Research Activities

Once the initial portal system has been deployed onto the Fusion and DOE Science Grids, we will begin the research phase of our work, which will include investigations into portal and web services requirements for the collaboratories. This effort will include determining what are the best languages and software systems that should be used to develop the next generation of a comprehensive DOE Portal Web Services toolkit. As stated above, current portal and toolkit architectures such as GridPort [32], GPDK [65], Gateway [39-42], the Chemical Engineering Workbench [33], and GridSphere (ASC portal) [62] will be evaluated and matched to the specialized needs of the DOE SciDAC grids. In addition, we will examine languages and current web technologies to determine what choices of technologies will support a toolkit and portal system that will scale and be useful for the lifetime of the SciDAC projects that the DoE portal toolkit will be designed to support. The organization of this portal system will be based on database technologies and the virtual organization model being adopted by the GGF community [1,6].

A significant part of our research will include the integration of grid web services into the toolkit and portal systems. Although the commercial world has begun to develop and use web services, this has never been done before in the computational science/grid community and there will be several key emerging questions/issues that will need to be addressed. These include examining how smoothly web services can be coupled when connecting multiple services into an integrated task or application: what will the interfaces need to be? How and when does the web service ‘hand off’ the task to a grid service? What web services are atomic? How do we compose complex web services? Which web services need to be ‘singleton’ instances (i.e., which ones can be re-used, rather than duplicated). What is the effect of making multiple copies?

We will also examine the creation of grid application portals based on the application Grid Factory Service (GFS) model, which has the potential to enhance application portal development. The GFS model provides an interface that allows a client (portal or application) to specify application parameters and resource requirements for the application to run and the GFS creates a running instance of that application and returns a handle to it to the client. This model will generate interesting portal systems, and it will be critical to examine the effectiveness and efficiency of systems such as these. In addition, we will want to examine specialized web services mentioned above, such as the Grid Authorization Service, Grid Application Resource Broker, Grid co-Scheduling Service, and the Grid File Object Metadata Directory.

4.2. TASK 2: Data Collection Management

Initial infrastructure deployment: The SRB MCAT system will be installed at SDSC and LBNL to demonstrate distributed access to data managed by two independent systems. Note that the LBNL installation will be in support of both the Fusion and DOE Science Collaboratories.

Collection deployment: The SRB/MCAT system will be integrated with the MDS+ system. This will require development of interfaces for both data manipulation and attribute manipulation. Explicit services will be developed to support registration of digital objects into the collection, access to data sets stored within the MDS+ and SRB data handling systems, and access to attributes stored within the MDS+ and MCAT catalogs. The system will be deployed initially at General Atomics and LBNL. Deployment to all of the MDS+ sites will be pursued through development of web service interfaces.

Web Services development: A WSDL interface will be built on top of the SRB/MCAT system. The effort will include identification of the appropriate set of services to implement, identification of the parameters that will be needed for each service, and implementation of the web service on top of the SRB/MCAT system. Each associated web service parameter will have corresponding attributes in the data collection catalog. The mySRB.html web collection management interface will be integrated with the Grid Portal to provide the ability to manage multiple collections within the data grid.

4.2.1. SRB on top of MDSplus

 The integration of SRB collection management on top of MDSplus will be done in collaboration with the Fusion Research group at General Atomics. The integration effort will proceed in two steps:

· Registration of MDSplus attributes into an MCAT metadata catalog. This will provide direct access to the query, organization, and metadata manipulation capabilities of the MCAT system.

· Federation of attributes between the SRB catalog and the MDSplus system. This will make it possible to evolve each system independently, will still providing a uniform interface to the researchers. The uniform interface will be implemented as a Web service. Thus this effort depends upon the successful identification of those web services needed by the Fusion Researchers.

4.3. TASK 3: Web Services

For this proposal, we will focus on the primary web services needed for applications and portals to access the grid via these web services. This set is compatible with the set of proposed web services that are being developed by the Grid Portal Web Services Testbed being built by the Grid Computing Environments Research Group within the Global Grid Forum [2]. Some of the web services listed below are currently being developed by other research projects as part of DOE SciDAC projects, and those will be integrated into our systems. We address each web service “category” below.

4.3.1. Object Based Metadata

Critical to all aspects of Portal Web Services is the systematic use of XML Schema to define the structure of essentially all metadata for the Grid. This statement is simple but has profound implications as it implies pervasive use of relatively complex objects which need to be stored, discovered and accessed conveniently and efficiently. In particular, many existing LDAP, web and database systems will not be adequate to handle this task. This area is under intense investigation and we can highlight ab-initio XML databases and XML front-ends to existing databases as well as technologies like Castor [49] that provide XML Java linkage. We bring substantial expertise to this area from the SRB and MCAT projects at SDSC [27-29] and the Garnet infrastructure from Indiana [42]. SDSC and Indiana are exploring the new UDDI [15] registration and discovery service but this appears only to address one part of the problem – namely Web Services – whereas we also need to address Grid information systems, many different application subsystems and the XML event infrastructure. We see this as a critical research area where good deployable solutions can be expected during the course of this project.

4.3.2. Portal View of Job

We define a “portal job” in the following sense: it is an object that contains information needed to perform a particular task. The member data of this object are coupled with accessor methods for other interacting objects to discover and change the properties of the job object. These properties include, but are not limited to,

1. The location of the executable for a particular application on a particular machine.

2. The command line arguments the application has.

3. The way the application takes input and generates output.

4. The host where the job will run.

5. The email address of the user so that the queuing system can send information about the job (queued, running, finished, aborted, and so on).

The Globus Resource Specification Language (RSL) effectively defines these properties already, but for a specific job we must convert this into an object that can be placed as a component into the context of the running web portal so that other applications can interact with it: for instance, the portal must be able to query the object to learn how it is to be executed and then carry out those commands. We further note that the property list must be extensible: we cannot anticipate everything that must be included in the job object in future applications. We must therefore provide generic property setting and retrieving methods that will allow the job object to store arbitrary name-value pairs. These will be interfaced to wizards to allow user to inspect and set these properties.

4.3.3. Application Factory

One of the common difficulties with the current Grid programming model involves the deployment of applications that are to be shared by a group of users. While this is often dismissed as a simple management problem, it is often a great source of frustration when groups of Grid users attempt to collaborate. Grid frameworks like Globus provide a uniform mechanism for submitting jobs to batch queues on remote systems, but Globus does not currently provide a mechanism to deploy an application on that resource. Hence the deployment task (tracking down all needed libraries and installing and testing the application in that environment before it is made available to others) is left to a user (probably the application author) or a system administrator who is probably unfamiliar with the application. Unfortunately, a user-installed application is frequently difficult to invoke by another user. This is because environment variable settings in user environments differ greatly from one user to another. Also user applications tend to read and write local files and, unless the application designer has taken this into account, there will often be errors caused when user A invokes an application that attempts to write a temporary file in user B’s directory. Furthermore, if multiple users want to concurrently invoke the application provided by user B, then user B had better have managed the name space for temporary files correctly or there will be collisions when different instances of the application attempt to write to the same temporary files.

[image: image2.png]
Figure 5: The client supplies application specific parameters and special resource requirements and contacts the Grid Factory Service. The Factory service first (1) contacts an authorization service to verify that the user is authorized to execute this application. Next (2) it contacts a resource broker service to find a suitable execution host. It then (3) launches an application manager instance and returns a handle to that instance. This handle may be the name of the instance, which the client can use to discover it when it actually starts running. When the client does run it may publish an event stream and a WSDL service advertisement the client can use to contact it.
To illustrate how we can use the Web Services and the Grid technology together we can define an Application Grid Factory Service (GFS) as a Grid Web Service that exists solely to instantiate instances of a specific application for

an authorized set of users. A GFS provides an interface that allows a client to specify application parameters and resource requirements for the application to run and the GFS creates a running instance of that application and returns a handle to the client. For example, the client may submit a request of the form "take input parameters from the file identified by this URN and put the output on file system x and identified by this URN." and "run this with 4 gigabytes of memory and 132 processors." It is the responsibility of the GFS to negotiate with resource brokers and lower level services like Globus Gram to make this happen.

The GFS provides a level of abstraction to the client that is much higher than grid services like GRAM because it takes low level job submission details like environment variable and temporary file management out of the hands of the client. Most significantly, it takes on the task of negotiating with resource brokers and co-schedulers out the users problem space and into web services support infrastructure.

The application instance that is spawned by the GFS should be a transient web service object that encapsulates and manages the actual running application. The WSDL for this application manager instance should be returned to the client that invoked the service. The application instance should support a standard port that allows status and control queries and it should be capable of publishing a message stream informing the original client about its status.

4.3.4. Grid Messages and Events

A powerful infrastructure to support messaging between XML specified resources is a critical aspect [43] of Portal Web Services as discussed in section 3. We do not distinguish events and messaging as they have essentially identical infrastructure. We will initially use the straightforward SOAP over HTTP binding but will research three broad areas:

· Specifying the (XML) structure of messages (on top of the basic SOAP header and body) for this application. For instance, the split of features between body and header is important as for some SOAP bindings it will be substantially faster to access the header as opposed to the body attributes

· Different transport bindings for SOAP giving different efficiency/functionality tradeoffs. This will build on the Indiana work on integration of RMI and SOAP.
· As well as transport bindings, we will examine different messaging models where in particular the Community Grids Laboratory at Indiana has been developing publish subscribe metaphors to support collaborative web services. Here we will look at new peer-to-peer approaches and in particular JXTA. This could have substantially improved scaling compared to more centralized models
4.3.5. Performance

Grid based applications and portal tasks needing to move large amounts of data are examples of systems that require performance data. These applications will need web services for information such as network bandwidth or cluster I/O rates. These web services can be extremely simple, such as wrapping data from the Network Weather Service [67], or services providing predictive capability such as those provided by the CAIDA project [68]. Wherever possible, we will use provide DOE/SciDAC performance requirements to the development teams and use the web services developed by them where possible.

4.3.6. Accounts/Allocations

This area is of course part of the GGF activities and interesting capability in this area will be provided by the projects being conducted by members of this team as part of the IE Initiative [69] of the DoD HPCMO program. This web service requires precise linkage to the backend databases recording resource allocation and usage at each computational facility. We intend to bear this requirement in mind in designing our portal web services but detailed implementations are not planned in this project. We note that the XML (object based) information infrastructure underlying our architecture will be important for this web service.

4.3.7. Scheduling

This service deals with the life cycle management of the previously described job objects: they must be monitored by users desiring to know the status of their submitted applications, as well as by other applications coupled to the running job. These interested parties must have the ability to cancel scheduled jobs and delete running applications. The client-server operations required for this must be decoupled: users must be able to log out of the portal and return later to learn if the job has successfully been completed, so that job monitoring must use an event repository that allows the user to learn the ultimate fate of his or her job object at some unspecified date in the future. A very simple mechanism, email, exists for some of this information and is used by most queuing systems. More generally, one uses the Grid event or messaging service discussed above.

4.3.8. Security

A key feature of the web portal services that access grid services is that they must be secure in at least the three following ways:

· Users and servers must mutually authenticate to each other to prove identity.

· Access controls (authorization) must be in place to define and enforce users’ restrictions on access to resources.

· User privacy and data integrity for over-the-wire transmissions must be in place.

This is a critically important area as typical web security paradigms do not completely apply to computational web portals, although we can take advantage of some of these as partial solutions; i.e. privacy and message integrity can be obtained using standard SSL encryption and message digesting as supported by web servers and browsers.

The Globus GSI, together with a MyProxy for mobile users, can be used to support PKI-based secure authentication for a Grid application. The Akenti system provides authorization for web services [70]. Additional access control comes through the secure delegation capabilities of Globus combined with standard Unix file permission restrictions. In addition to PKI security features, we have experience building secure web portals based around the Kerberos mechanism combined with SecurID. Kerberos is primarily an authentication mechanism that provides a single sign-on capability to a distributed set of resources and in many ways mirrors the functionality of the GSI. We have experience building and deploying Kerberos-secured portal systems for the Department of Defense’s High Performance Computing Modernization Program [39-41].

The modular nature of the technologies we employ allows us to develop two additional features: pluggable security and coarse-grained bridging between security mechanisms. In the first, we may take authentication to be an object that can be plugged into a service or a web page. This object is opaque and hides the details of the implementation (i.e., the security mechanism, Kerberos or Globus-PKI) that is used. Thus the desired security mechanism can be plugged into the portal. In a similar fashion the security of different portions of the portal can thus be implemented with separate mechanisms, provided that one implements the security component in an object hierarchy, with subclasses for the particular mechanisms.

In addition to the efforts of this research project, we are aware that security associated with web services is being researched and developed by expert members of the GGF security working group and other SciDAC projects (e.g. the DOE Science Grid team at LBL is pursuing secure web services). It is our intent to work with these experts and to integrate their technologies where needed and appropriate.

4.3.9. Grid Application Workflow

One of the greatest challenges of grid programming is the construction of applications that require careful orchestration of workflow of a set of sub-computations, file-movements and other data management tasks that are widely distributed over grid resources. The conventional way that this is accomplished is by writing complex scripts, which interact directly with Grid resources such as schedulers, file systems and other system utilities. The problem with this solution is that these scripts are seldom portable; they are very brittle and difficult to maintain.

The basic problem of coordinating the workflow in a complex distributed application is analogous to the problem of coordinating multiple web services to produce a solution to complex business problems. IBM has proposed the Web Services Flow Language [56] as one solution to this problem. WSFL allows the user to write a very high level specification of how services should interact and how data received by one service should be transformed to be used by another. WSFL allows for independent operations to be carried out concurrently and it properly sequences operations that are dependent upon each other. Another approach is WSCL from HP [57] and the new CRADLE project at NASA Ames is very promising [71]. We will explore using WSFL-like high level control as a replacement for the traditional scripting style used in Grid environments. Our objective is to free the application programmer from the details of individual resource to focus on coupling Grid application services.

4.4. TASK 4: Fusion Applications

The National Fusion Collaboratory project is creating a Fusion Grid whose resources include both analysis and simulation codes and data repositories. The creation of this grid is focusing on the deployment of the basic software infrastructure with the assumption that grid access will be built into existing codes and the MDSplus data storage system. Simple GUI access to grid services are being built in IDL [use as ref http://www.rsinc.com] since the US Fusion community is familiar with this software and therefore represents the most rapid path to deployment. But from a practical standpoint, the usage of a commercial software tool to create simple GUI interfaces is cost ineffective. Instead, a simple web interface would be easier to construct, to distribute, and would eliminate the need for expensive commercial software that is better suited to interactive data analysis. This is why, for the Fusion Collaboratory, the use of web portal services will be so valuable.

The Fusion Collaboratory is initially deploying the TRANSP energy power balance code and the GS2 energy transport code on the SciDAC Fusion Grid. As described above, access to these codes will be available via a simple IDL GUI interface. As soon as possible, a web portal will replace this GUI. The real world experience from this deployment will provide an excellent test bed for the web portal technology. After user feedback, the portal will be extended to include the ability to retrieve information that will allow the user to monitor their code run. Finally, the portal technology will be extended to allow the user to perform simple data retrieval operations from the SRB. These capabilities will satisfy the first type of user, the end-user, as described in Section 3.1.2.

The Fusion Collaboratory is also examining mechanisms to assist in between pulse experimental data analysis. Web portal services and the browser interface should represent a very efficient method for rapidly disseminating a variety of information. This efficiency should be especially valuable to scientists who are not in the Tokamak control room but rather at their home institution, performing data analysis, and communicating information back to the experimental team. This usage of the web portal will include both the running of simulation codes as well as the status of varies data analyses, data availability, and a dynamic interface into the Fusion Electronic Logbook.

4.5. Technologies Employed

Grid Technologies: Wherever possible, we will base on research on commodity technologies (grid and commercial). The portal and web services system will use all key Grid technologies being employed on the SciDAC grids. This set includes the Globus/GRAM gatekeeper, which is used to run interactive jobs and tasks on remote resources [72]; Globus Grid Security Infrastructure (GSI) [73] and Myproxy are used for security and authentication [19]; the SDSC Storage Resource Broker (SRB) is used for distributed file collection and management [29]; and the Globus Grid Information/Grid Resource Information Services (GIS/GRIS) is used for information services [58].

Web Services: For our initial development and research, we will work with technologies that are compatible with the set that has been adopted for the GCE Web Services Testbed, which include the W3C standards [11,14,15,56] for XML, SOAP, WSDL, WSFL, etc. In addition, we will explore the use of commercial technologies such as Sun JXTA [16], IBM WebSphere [75], and Microsoft .NET [53]. In addition, we will investigate grid web service systems such as those being developed by Avaki (formerly Legion) [74].
Integration of SciDAC Infrastructure: The SciDAC program is funding several collaboratory projects that will be basing their technologies on those listed above. Where possible or appropriate, e will endeavor to integrate specialized software systems such as the Fusion MDSplus database, or the LBL Akenti authorization services into our portal and web service systems.

5. Synergistic Activities

The primary synergistic activity of this proposal will be to work in close collaboration with other DOE SciDAC projects that are developing grid web services. Based on conversations that we have had with researchers working on several collaboratory projects, the successful funding of this proposal coupled with their activities will ensure that all aspects of the required technologies and expertise required to enable both portals and grid web services for portals and grid technologies will be included.

5.1. DOE SciDAC Collaboratories

In addition to the Fusion Collaboratory project, other DOE collaboratory projects have expressed an interest in working with this project and using the portal and web services that we will develop (See attached letters of support). In particular, we will be interacting with the following projects [44-46]:

· "A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion" – General Atomics, MIT, Princeton Univ, Univ of Utah, PPPL, ANL, LBNL, (David Schissel, GA) schissel@fusion.gat.com (Principal PI)

· “DOE Science Grid: Enabling and Deploying the SciDAC Collaboratory Software Environment”-- ANL, LBNL, PNNL, ORNL, (Bill Johnston, LBNL)

· “Particle Physics Data Grid Collaborative Pilot” -- Univ of Wisc., UCSD, Cal Tech, BNL, FNAL, JLab, ANL, LBNL, SLAC (Miron Livny, UW) (jointly funded with HENP).

· “A High Performance Data Grid Toolkit: Enabling Technology for Wide Area Data-Intensive Applications,” -- ANL, Univ. of Wisc., USC (Ian Foster, ANL).

· "Collaboratory for Multi-Scale Chemical Science" – SNL, PNNL, ANL, LANL, LLNL, MIT, NIST, UCB, (Larry Rahn, SNL) rahn@sandia.gov.
· “CoG Kits: Enabling Middleware for Designing Science Applications, Web Portals and Problem Solving Environments”—ANL, LBNL (G. von Laszewski).
5.2. Other Synergies:

The PI’s on this project are funded by, collaborate with, and are involved in the research, development, and collaboration with variety of grid related projects including DOE, DoD and other research areas including:

· NSF: Partnership for Advanced Computational Infrastructure including the NPACI, Alliance, Distributed Terascale Facility programs.

· NASA Information Power Grid project.

· DoD: PET program of DoD High Performance Computing and Modernization Program.

· NSF: Grid Physics Network, National Virtual Observatory, international Virtual Data Grid Laboratory

· Universities: Univ. of Texas at Austin, Indinna Univ., University of California at San Diego

· Global Grid Forum, APGrid (Asian Pacific Grid), UK Grid.

· IBM Software Component Group. Indiana is working closely with the IBM group that developed WSDL and WSFL.

6. Management Plan

Thomas, University of Texas, will be the lead PI for this project and will oversee all aspects including research, development and deployment, as well as ensuring that meetings, workshops and papers are held and written in a timely manner. Ms. Thomas is a natural choice, since she not only has expertise in developing computational science portals, but has more than 10 years experience as a fusion researcher. Ms. Thomas will also be the technical lead for portal technology research, defining DOE SciDAC application and portal requirements, as well as the set of web services discussed above.

Fox and Gannon, Indiana, will oversee the research, development, deployment and integration of the the CCA and P2P based web services into the Fusion Collaboratory grid and will work with the DOE Sc grid project. Dr. Gannon brings experience with CCA, web services and portals and is currently working with SciDAC and NSF Grid application projects. Dr. Fox has extensive expertise in Object Grid and P2P technologies and their application to portals; his physics background gives him understanding of application requirements.

Rajasekear and Moore, SDSC, will lead our efforts in the area of data collection management (DCM) including migration of the SRB onto the Fusion and DOE Science collaboratories and development of DCM web services. In addition, staff at SDSC will be responsible for the deployment of GridPort software and a DOE HotPage, and will support efforts in the development of the servlet based DOE-GridPort Toolkit.

Schissel, General Atomics, will manage the development and deployment of fusion application portals based on the DOE Portals Toolkit and web services described above. As PI of the SciDAC funded National Fusion Collaboratory, he will be able to direct and focus these efforts in order to maximize impact.

Project participants will meet in-person at least one each year to discuss current research results and coordinate future research activities. In addition, participants will hold short meetings synchronized with other workshops and meetings such as SC01 and Global Grid Forum meetings. A key aspect of the project is that the different groups can largely work in parallel. The research process will be structured so that results of different strands of the research project, if available, can feed into each other at regular junctures. Telcon meetings will be held on a regular basis in between these biannual meetings to help ensure coordination of the different aspects of the project and that appropriate progress is being made.

6.1. Technology Transfer Activities

As part of our outreach programs, we will identify critical annual science meetings for the Fusion and DOE Science Grid community and hold BOF’s or other workshops in order to outreach to the communities. This will be beneficial starting in year 2. In addition, we will publish our activities in relevant meetings and journals. A project website will be established that includes project status information on each component of the projection. This site will also contain links to draft papers and presentation materials. In addition, we will use this site as a software download site for any software development kits or API’s developed. Project researchers plan on participating in Global Grid Forum efforts and using standards developed by its working groups. We expect that our work will contribute to the standards development efforts currently being undertaken by that Forum. We intend to present our work at professional meetings and to publish key results in peer-reviewed journals.

6.2. Tasks, Milestones and Deliverables

In the table below we show tasks, milestones, and deliverables in detail for year 1 while the tasks and scope for subsequent years are more general. Specifics will be addressed in detail in the project planning tasks that will take place in Q4 of the previous year. Years indicated are from the initiation of the project. Note that this plan overview is preliminary and subject to change of technical and deployment approach. Some items in this plan do not indicate task duration - many of the tasks and subtasks, once started, are ongoing. Some may diminish in workload as the project proceeds, replaced by tasks that will be identified in Year 2-3 project planning efforts.

Year 1 Deliverables:
Task 1: Portal Systems

1. Deploy HotPage & GridPort Toolkit onto Fusion and other grids

2. Deploy Globus CoG Toolkits

3. Define DoE Collaboratory Portal Requirements

Task 2: Data Collection Management

1. Deploy the SRB/MCAT system at LBL and GA

2. Identify Fusion community collection management requirements

3. Develop interface between the MDSPlus system and the MCAT collection management

Task 3: Web Services

1. Linkage of SRB/MCAT to Portal XML

2. Analysis of existing portals to define Web Service architecture

3. Prototype Job Web service

4. Prototype of Application Factory

5. Design of XML Messaging and event System

6. Integrated GSI/Kerberos security subsystem

7. Analysis of WSFL and other approaches to Workflow for SciDAC

Task 4: Fusion Applications

1. Deploy the TRANSP code as a web service

2. Deploy the GS2 code as a web service

3. Deploy initial code monitoring via the web portal

4. Allow simple data searching and interaction via the web portal

Year 2 Deliverables:

Task 1: Portal Systems

1. Develop DOE Portals Toolkit, initial deployment onto Fusion, DOE Sciences Grids

2. Continue web services integration

Task 2: Data Collection Management

1. Implement selected WSDL-based services for collection management

2. Support registration of MDSplus attributes into an MCAT metadata catalog

3. Support query, access, and manipulation of cataloged attributes, including import and export of attributes as XML files

Task 3: Web Services

1. Integration of UDDI (or equivalent) with SRB/MCAT for Web Service registry

2. Analysis of needs of Portals for Information services and identification of missing capabilities

3. Multiple (at least 3) portals sharing major Web Services

4. Analysis of fusion in terms of application Web Services

5. Prototype event system deployed

6. Light weight collaborative Web Services integrated into JXTA like environment

7. Prototype Web service based workflow system

Task 4: Fusion Applications

1. Modify TRANSP and GS2 infrastructure based on user feedback

2. Complete code monitoring capability

3. Deploy the NIMROD MHD code via the web portal

4. Deploy web portal capability for between tokamak pulse data analysis

5. Create web portal interface to Fusion Electronic Logbook

Year 3 Deliverables:

Task 1: Portal Systems

1. Deploy DOE Portals Toolkit onto other Collaboratories

2. Application Portal development based on DOE Portals Toolkit

3. Web services integration

Task 2: Data Collection Management

1. Federate the SRB catalog with the MDSplus system, based upon the WSDL defined collection management services

2. Support the integration of the federated catalog collection management services into the Grid Portal

3. Support interfaces on top of the federated catalog for the full suite of Web Services implemented within the Grid Portal

Task 3: Web Services

1. Full suite of Web Services available with analysis of functionality

2. Deployment of Peer to Peer Web Services including XML messaging

3. Application Web Services and Factories deployed with “wizard”

4. Second generation Workflow environment reflecting technology and SciDAC application requirements

Task 4: Fusion Applications
1. Deploy and evaluate full Web service environment

2. Extend between pulse analysis based on user feedback

3. Extend portal services by including new transport and MHD codes
Facilities and Resources

Texas Advanced Computing Center

The Texas Advanced Computing Center (TACC) develops and deploys advanced computing infrastructure to enhance the research and education activities of the faculty, staff, and students at the University of Texas at Austin. This infrastructure includes high performance computing (HPC), advanced scientific visualization (SciVis), and massive data storage/archival systems and software. Through its participation in the National Partnership for Advanced Computational Infrastructure (NPACI), TACC also provides these resources and services to the national academic community.

 TACC compute systems include the Cray T3E/272 and T3E/88 Scalable Parallel Systems, a 64 node IBM SP-2 Scalable Parallel System, and a Cray SV1 Parallel Vector system. Data systems include an SGI Origin 2000 Terascale Data Archive Server, and a Storage Technology Corporation 9710 Automated Cartridge System . The TACC Visualization Laboratory includes the Projection Display Room and the Editing Suite. The major visualization engines that drive the projection systems are the SGI Onyx 2 System.

TACC also conducts research and development activities to enhance research capabilities through new and improved advanced computing technologies. TACC research focuses on HPC, SciVis, and Grid Computing technologies, and TACC partners with researchers who are developing data-intensive and network technologies. TACC collaborates with researchers at UT, at other Texas universities, at NPACI partner sites, and at universities and government laboratories around the country. TACC staff possess expertise in diverse technology areas as well as science and engineering disciplines. TACC research projects focus on developing new computational technologies and techniques to enhance research capabilities in scientific fields and also in non-scientific fields.

TACC is a unit of the University of Texas at Austin and reports to the Office of the Vice President for Research. TACC also receives financial support from the National Science Foundation (NSF) through the Partnership for Advanced Computational Infrastructure (PACI) program, and for research and development activities from various funding agencies including NSF and the Department of Defense HPC Modernization Office (DoD HPCMO) Programming Environments & Training (PET) program.

Indiana University

Indiana University has an extensive high performance computing and research infrastructure. Our primary computing resources consist of a 1-Tflop, 616 processor IBM SP-2, and another half Tflop based on two new NSF funded, Linux/Itanium clusters and visualization servers now being deployed in a distributed Grid to support instrument-driven and data-intensive science. This Grid is currently based on a statewide gigabit network that will soon be upgraded to a 10 gigabit backbone. Mass storage facilities consist of about 200 Tbytes of geographically distributed HPSS mass storage facilities. Indiana University is also the network operations center for the Abaline/Internet-2 network and the NSF Transpac network which links US and Pacific Rim research institutions. The Indiana Pervasive Technology Laboratories has research groups working on advanced network management, community grids, open systems and scalable visualization systems. Indiana University is also a partner in the GriPhyn and iVDGL grid projects and they have been active in Grid research from the beginning.

UCSD/SDSC Facilities

The resources available through the National Partnership for Advanced Computational Infrastructure (NPACI) at the San Diego Supercomputer Center include supercomputers, archival storage systems, data handling platforms, and advanced visualization systems. The capabilities of the center are being upgraded as part of the NSF Teragrid project to include a peak4-teraflops computer, a 7.5-petabyte archive, 250-TBs of disk cache and high-performance data-handling systems that provide a robust testbed for information management research. Major hardware resources currently at SDSC include a 144-node IBM SP (with a peak execution rate of 1.7 TeraFlops), over 7 TB of disk, and a 500 TB tape storage capacity.

Associated data-intensive computing software includes a distributed data handling system developed at SDSC (Storage Resource Broker), collection management systems based upon the Extensible Metadata Catalog developed at SDSC, digital library technology developed in collaborations with UCSB and UCB, parallel object-relational database technology acquired in collaboration with IBM, and the High Performance Storage System (HPSS) archival storage software. SDSC has integrated these systems to provide support for the analysis of massive data collections.

SDSC’s data-management research focuses on developing data-handling systems that simplify the access, data movement, and manipulation of data sets. The systems are based upon the integration of data management, information management, and knowledge management in support of digital libraries, data grids, and persistent archives. Under the NPACI program, distributed application execution environments are being integrated with the data-handling and information discovery systems.

The NPACI program is supporting scientific data collections for disciplines including Neuroscience, Molecular Science, Earth Systems Science, and Astronomy. Access to these data collections is provided through the SDSC Storage Resource Broker. The combination of information management technology, scientific data collections, and the data handling platforms that support rapid access to the data provides an excellent testbed for evaluating new infrastructure for managing scientific data and applying scientific algorithms.

The SDSC visualization laboratory supports collaborative viewing of scientific data. The Vis Toolkit supports out-of-core rendering of 3-D images. A complete video and audio production suite is used to produce publication quality animations. The video lab is network accessible and can be used to render scientific images. A Laminated Object Manufacturing system is also available over the network for production of solid models of complex shapes.

General Atomics

General Atomics and its affiliated companies comprise one of the world's leading resources for high technology systems development and nuclear technology. GA specializes in diversified research and development in energy, defense, and other advanced technologies. For over 40 years, GA has been qualified by the U.S. Government and other organizations, including the Department of Defense, Department of Energy, and the National Science Foundation as a government contractor and facilities operator. The company's main facilities are located on a 120–acre site in San Diego, California, and contain nearly one million square feet of engineering and test facilities, and advanced technology laboratories. About half of the 1,400 employees have technical degrees, and about 30% have advanced degrees.

Project Management and Cost Control: Our history of good performance within budget on cost–reimbursement contracts is well established. GA performs multiyear R&D contracts in compliance with contractual requirements and in accordance concurrently with DOE–OAK financial plans. We will use GA's task management system, first establishing a Work Breakdown Structure (WBS) corresponding to the Statement of Work (SOW) tasks. Work scopes, budgets, and schedules will be established and approved at the lowest (subtask) level in accordance with GA's Task Authorization System and in support of program goals and milestones. The program milestones, contract WBS/SOW, budgets, and schedules will form the baseline. Technical and financial progress will be measured against the baseline and variances will be identified. As variances are identified, corrective action plans will be developed and reviewed, as appropriate, with the contracting office. Communication for project management of multi–institution SOW is supported by video conferencing equipment (Polycom ViewStatation) with additional equipment (ShowStation IP) that enables the simultaneous presentation of viewgraphs.

Advanced Scientific Research: In programs such as fission, fusion, advanced materials and unmanned airplanes, GA is renown for qualities which will lead to successful execution of the Portal Web Services Project: innovation in approach and excellence in performance of multi-institution projects. The GA fusion effort, which began over 40 years ago, is comprised of the largest ($50M/yr) magnetic fusion energy (MFE) program in private industry as well as the largest ($12M/yr) inertial confinement fusion program in private industry. The MFE program centers on the DIII–D National Fusion Center, operated for DOE. The DIII–D experimental fusion machine, an extremely versatile device conceived, designed, constructed, and operated by GA, is a principal site for U.S. efforts to explore improvements in reactor-grade fusion plasmas through magnetic shaping. The DIII–D National Team consists of about 120 operating staff and on–site research scientists drawn from 9 U.S. National laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. The Theory and Computational Science program at General Atomics supports the DIII–D and other tokamak experiments and, in conjunction with these experiments will advance the scientific basis for designing next-step option experiments leading towards a commercially attractive fusion reactor. The program also undertakes theoretical explorations of innovative magnetic confinement concepts that might offer promising alternatives to the tokamak path in the long term.
Computational Support: GA operates a diverse campus–wide computer facility that includes a Unix–based Hewlett–Packard four–processor RISC computer server, a load balanced cluster of Unix workstation from most of today's leading vendors, real time systems for data acquisition, several multi–node Linux clusters, and personal computers. Users of this facility include the on–site DIII–D research scientists as well as several hundred remote collaborators located throughout the world. Local storage is provided by a Network Attached Storage (NAS) system from Network Appliance, which allows users to have the same home area across various computer systems. Network connectivity is TCP/IP based over FastEthernet with Wide Area Network (WAN) services provided by the Energy Sciences Network (Esnet). Software expertise includes scientific visualization, high-resolution tiled display wall, human interface design, parallel computing, numerical methods, and computational physics. Additionally, GA is the lead institution on the SciDAC funded National Fusion Collaboratory (http://www.fusiongrid.org) Project that is creating and deploying collaborative software tools throughout the US magnetic fusion research community.

Bibliography

[1] The Grid Forum http://www.gridforum.org
[2] GridForum Grid Computing Environment working group(http://www.computingportals.org) and survey of existing grid portal projects. http:www.computingportals.org/cbp.html
[3] 27 Papers on Grid Computing Environments http://aspen.ucs.indiana.edu/gce/index.html
[4] “The Grid: Blueprint for a New Computing Infrastructure”, Ian Foster and Carl Kesselman (Eds.), Morgan-Kaufman, 1998. See especially D. Gannon, and A. Grimshaw, “Object-Based Approaches”, pp. 205-236, of this book.

[5] Globus Grid Project http://www.globus.org
[6] Ian Foster, Carl Kesselman, Steven Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual Organizations http://www.globus.org/research/papers/anatomy.pdf

[7] GriPhyN Particle Physics Grid Project Site, http://www.griphyn.org/
[8] International Virtual Data Grid Laboratory at http://www.ivdgl.org/

[9] NEES Earthquake Engineering Grid, http://www.neesgrid.org/

[10] GrADS Testbed: Grid application development software project. http://hipersoft.cs.rice.edu.
[11] Web Services Description Language (WSDL) 1.1 http://www.w3.org/TR/wsdl.

[12] Definition of Web Services and Components http://www.stencilgroup.com/ideas_scope_200106wsdefined.html#whatare
[13] Presentation on Web Services by Francesco Curbera of IBM at DoE Components Workshop July 23-25, 2001. Livermore, California. http://www.llnl.gov/CASC/workshops/ components_2001/viewgraphs/FranciscoCurbera.ppt
[14] XML based messaging and protocol specifications SOAP. http://www.w3.org/2000/xp/.

[15] Universal Description, Discovery and Integration Project UDDI, http://www.uddi.org/

[16] Sun Microsystems JXTA Peer to Peer technology. http://www.jxta.org.

[17] “Peer-To-Peer: Harnessing the Benefits of a Disruptive Technology”, edited by Andy Oram, O’Reilly Press March 2001.

[18] W. Johnston, D. Gannon, B. Nitzberg, A. Woo, B. Thigpen, L. Tanner, “Computing and Data Grids for Science and Engineering,” Proceedings of SC2000.

[19] J. Novotny, S. Tuecke, V. Welch. An Online Credential Repository for the Grid: MyProxy. To appear in Proc. 10th IEEE Symp. On High Performance Distributed Computing, 2001.

[20] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H. C. Hege, G. Lanfermann, A. Merzky, T. Radke, E. Seidel and J. Shalf Cactus Tools for Grid Applications. accepted for publication in Intl. Journal of Cluster Computing, http://www.cactuscode.org/Showcase/Publications.html.

[21] NCSA Alliance User Portal http://aup.ncsa.uiuc.edu

[22] V. Mann and M. Parashar, “Middleware Support for Global Access to Integrated Computational Collaboratories”, Proc. of the 10th IEEE symposium on High Performance Distributed Computing (HPDC-10), San Francisco, CA, August 2001.

[23] Tomasz Haupt, Purushotham Bangalore, Gregory Henley, “Mississippi Computational Web Portal”, to be published in Concurrency and Computation: Practice and Experience, Special Issue on Grid Computing Environments.

[24] R. Buyya, D. Abramson, and J. Giddy, Nimrod/G: An Architecture for a Resource Management and Scheduling System in a Global Computational Grid, HPC ASIA’2000, China, IEEE CS Press, USA, 2000.

[25] DOE Fusion Grid http://www.fusiongrid.org
[26] T. Fredian, J. Stillerman, "MDSplus Remote Collaboration Support–Internet and World Wide Web," Fusion Engineering and Design 43 (1999) 327.

[27] Baru, C., R, Moore, A. Rajasekar, M. Wan,"The SDSC Storage Resource Broker,” Proc. CASCON'98 Conference, Nov.30-Dec.3, 1998, Toronto, Canada.

[28] Moore R., and A. Rajasekar, "Data and Metadata Collections for Scientific Applications", High Performance Computing and Networking (HPCN 2001), Amsterdam, Holland, June 2001.

[29] “Storage Resource Broker”, San Diego Supercomputer Center, http://www.npaci.edu/DICE/SRB/.

[30] The NPACI HotPage User Portal at: https://hotpage.npaci.edu.

[31] M. Thomas, S. Mock, J. Boisseau, Development of Web Toolkits for Computational Science Portals: The NPACI HotPage. Proceedings of the Ninth IEEE International Symposium on High Performance Distributed Computing, August, 2000. Available at: http://gridport.npaci.edu.

[32] M. Thomas, S. Mock, M. Dahan, K. Mueller, D. Sutton, J. Boisseau. The GridPort Toolkit: a System for Building Grid Portals. Proceedings of the Tenth IEEE International Symposium on High Performance Distributed Computing, August, 2001.

[33] Indiana Active Notebook Project http://www.extreme.indiana.edu/an/index.html

[34] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi, B. Temko, M. Yechuri, "A Component Based Services Architecture for Building Distributed Applications," Proceedings of HPDC, 2000.

[35] S. Krishnan, R. Bramley, D. Gannon, M. Govindaraju, R. Indurkar, A. Slominski, B. Temko, R. Alkire, T. Drews, E. Webb, and J. Alameda, "The XCAT Science Portal," Proceedings of SC2001, 2001.

[36] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. Mcinnes, S. Parker, and B. Smolinski, “Toward a Common Component Architecture for High Performance Scientific Computing,” High Performance Distributed Computing Conference, 1999. See http://z.ca.sandia.gov/~cca-forum.

[37] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt and J. A. Kohl, "The CCA Core Specification In a Distributed Memory SPMD Framework," submitted to Concurrency : Practice and Experience
[38] Talk by CCA (Common Component architecture) lead Rob Armstrong of Sandia at LLNL July 23-25 2001 meeting on Software Components http://www.llnl.gov/CASC/workshops/components_2001/viewgraphs/RobArmstrong.ppt
[39] Gateway Computational Portal, http://www.gatewayportal.org;

[40] Marlon. E. Pierce, Choonhan Youn, Geoffrey C. Fox, The Gateway Computational Web Portal http://aspen.ucs.indiana.edu/gce/C543pierce/c543gateway.pdf, to be published in Concurrency and Computation: Practice and Experience in Grid Computing environments Special Issue 2002;

[41] Fox, G., Haupt, T., Akarsu E., Kalinichenko, A., Kim, K., Sheethalnath, P., and Youn, C. The Gateway System: Uniform Web Based Access to Remote Resources. 1999. ACM Java Grande Conference.

[42] Geoffrey Fox, Marlon Pierce et al., Grid Services for Earthquake Science, to be published in Concurrency and Computation: Practice and Experience in ACES Special Issue, Spring 2002. http://aspen.ucs.indiana.edu/gemmauisummer2001/resources/gemandit7.doc

[43] Geoffrey Fox and Shrideep Pallickara, An Event Service to Support Grid Computational Environments, to be published in Concurrency and Computation: Practice and Experience, Special Issue on Grid Computing Environments.

[44] SciDAC Project Summaries http://www-unix.mcs.anl.gov/discovery/projects-natcollabs.html

[45] ScIDAC Program http://www.science.doe.gov/scidac/

[46] DoE Science Grid http://www.doesciencegrid.org/

[47] W3C Resource Description Framework (RDF), http://www.w3.org/TR/REC-rdf-syntax/
[48] W3C Scalable Vector Graphics (SVG) http://www.w3.org/Graphics/SVG/Overview.htm8

[49] Castor Java XML Linkage http://castor.exolab.org/

[50] N. Mathias and V. Gopal, Small Worlds: How and why, Phys. Rev. E, 63, 021117 (2001).

[51] D.J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature, 393, 440 (1998).

[52] Anne Thomas, “Enterprise JavaBeans (EJB) Technology: Server Component Model for the Java Platform”, http://java.sun.com/products/ejb/white_paper.html, 1998.
[53] Jim Farley, .NET and EJB Comparison and References, http://java.oreilly.com/news/farley_0800.html
[54] OpenCCM – OMG Common Component Model http://openccm.exolab.org
[55] Peter Brittenham, An Overview of the Web Services Inspection Language (WSIL), http://www-106.ibm.com/developerworks/webservices/library/ws-wsilover/

[56] Frank Laymann (IBM), Web services Flow Language WSFL, http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[57] Harumi Kuno, Mike Lemon, Alan Karp and Dorothea Beringer, (WSCL – Web services Conversational Language), “Conversations + Interfaces == Business logic” , http://www.hpl.hp.com/techreports/2001/HPL-2001-127.html

[58] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, "Grid information services for distributed resource sharing", Proc. 10th IEEE HPDC, Aug 2001

[59] Object Management Group, The Common Object Request Broker: Architecture and Specification, February 1998. See http://www.omg.org/corba.

[60] Gregor von Laszewski, Jarek Gawor, Peter Lane, Nell Rehn, and Mike Russell, Features of the Java Commodity Grid Kit, to be published in Concurrency and Computation: Practice and Experience, Special Issue on Grid Computing Environments.

[61] Keith Jackson, pyGlobus: A Python interface to the Globus Toolkit, to be published in Concurrency and Computation: Practice and Experience, Special Issue on Grid Computing Environments.

[62] Gregor von Laszewski, Michael Russell, Ian Foster, John Shalf, Gabrielle Allen, Greg Daues, Jason Novotny, Edward Seidel, Community Software Development with the Astrophysics Simulation Collaboratory, to be published in Concurrency and Computation: Practice and Experience, Special Issue on Grid Computing Environments.

[63] William A. Watson III , Ian Bird, Jie Chen, Bryan Hess, Andy Kowalski, Ying Chen , A Web Services Data Analysis Grid, to be published in Concurrency and Computation: Practice and Experience, Special Issue on Grid Computing Environments.

[64] S. Mock, M. Dahan, M. Thomas, G. von Lazewski, The Perl Commodity Grid Toolkit, to be published in Concurrency and Computation: Practice and Experience, Special Issue on Grid Computing Environments.

[65] Jason Novotny, The Grid Portal Development Kit, to be published in Concurrency and Computation: Practice and Experience, Special Issue on Grid Computing Environments.

[66] Commodity Grid Kits. See http://www.globus.org/cog

[67] Rich Wolski. The Network Weather Service. See http://www.npaci.edu/NWS
[68] CAIDA, the Cooperative Association for Internet Data Analysis, http://www.caida.org/

[69] Information Environment project of HPCMO, http://www.hpcmo.hpc.mil/Htdocs/RFI/ie_rfp_sow.pdf

[70] Akenti Distributed Access Control from LBL, http://www-itg.lbl.gov/Akenti/

[71] IPG Group at NASA Ames, CRADLE Workflow project.

[72] The Globus Resource Allocation Manager (GRAM), http://www.globus.org/gram/
[73] The Grid Security Infrastructure, see http://www.globus.org/security

[74] Avaki Corporation, http://www.avaki.com

[75] IBM WebSphere, http://www-3.ibm.com/software/info1/websphere/index.jsp

Year 1 Deliverables:
Task 1: Portal Systems

4. Deploy HotPage & GridPort Toolkit onto Fusion and other grids

5. Deploy Globus CoG Toolkits

6. Define DoE Collaboratory Portal Requirements

3. Develop DOE Portals Toolkit, initial deployment onto Fusion, DOE Sciences Grids

4. Continue web services integration

4. Deploy DOE Portals Toolkit onto other Collaboratories

5. Application Portal development based on DOE Portals Toolkit

6. Web services integration

Task 2: Data Collection Management

4. Deploy the SRB/MCAT system at LBL and GA

5. Identify Fusion community collection management requirements

6. Develop interface between the MDSPlus system and the MCAT collection management
4. Implement selected WSDL-based services for collection management

5. Support registration of MDSplus attributes into an MCAT metadata catalog

6. Support query, access, and manipulation of cataloged attributes, including import and export of attributes as XML files

4. Federate the SRB catalog with the MDSplus system, based upon the WSDL defined collection management services

5. Support the integration of the federated catalog collection management services into the Grid Portal

6. Support interfaces on top of the federated catalog for the full suite of Web Services implemented within the Grid Portal

Task 3: Web Services

8. Linkage of SRB/MCAT to Portal XML

9. Analysis of existing portals to define Web Service architecture

10. Prototype Job Web service

11. Prototype of Application Factory

12. Design of XML Messaging and event System

13. Integrated GSI/Kerberos security subsystem

14. Analysis of WSFL and other approaches to Workflow for SciDAC

8. Integration of UDDI (or equivalent) with SRB/MCAT for Web Service registry

9. Analysis of needs of Portals for Information services and identification of missing capabilities

10. Multiple (at least 3) portals sharing major Web Services

11. Analysis of fusion in terms of application Web Services

12. Prototype event system deployed

13. Light weight collaborative Web Services integrated into JXTA like environment

14. Prototype Web service based workflow system

5. Full suite of Web Services available with analysis of functionality

6. Deployment of Peer to Peer Web Services including XML messaging

7. Application Web Services and Factories deployed with “wizard”

8. Second generation Workflow environment reflecting technology and SciDAC application requirements

Task 4: Fusion Applications

5. Deploy the TRANSP code as a web service

6. Deploy the GS2 code as a web service

7. Deploy initial code monitoring via the web portal

8. Allow simple data searching and interaction via the web portal

6. Modify TRANSP and GS2 infrastructure based on user feedback

7. Complete code monitoring capability

8. Deploy the NIMROD MHD code via the web portal

9. Deploy web portal capability for between tokamak pulse data analysis

10. Create web portal interface to Fusion Electronic Logbook

4. Deploy and evaluate full Web service environment

5. Extend between pulse analysis based on user feedback

Extend portal services by including

Figure 1: Communicating Resources defined by XML Interfaces and Metadata

� EMBED PowerPoint.Slide.8 ���

Figure 3: Grid Web Services

bServicesServicesAArchArchitecture

� EMBED PowerPoint.Slide.8 ���

Fig. 4: GridPort architecture diagram showing multiple portals installed on the same web server machine. In this design, each portal has its own filespace, and shares the same instance of the GridPort modules. All access to the Grid is done through functions provided by GridPort, and the functionality is represented by the5 layers.

PAGE
27

[image: image6.emf]Grid Layers

Resource layer

1000s of PCs ->massive supercomputers

Information/

Naming

Services

Information/

Naming

Services

(co-)scheduling

Service

(co-)scheduling

Service

Accounting

Service

Accounting

Service

Security

Service

Security

Service

Event/Mesg

Service

Event/Mesg

Service

Discovery

service

Discovery

service

User Help

Services

User Help

Services

Monitoring

Service

Monitoring

Service

Peer Creation

& resolution

Services

Peer Creation

& resolution

Services

Information

Routing

Information

Routing

P2P / Grid Services Layer

Grid Web Services Layer

User Portals/ Science Portals

Distributed Grid Application

Launch, configure

And control

[image: image7.png]_1069610757.ppt

f

Resource

XML

Skin

XML

Skin

Message

Or Event

Based

Inter

Connection

Data

base

Resource

Soft

ware

Soft

ware

UNKNOWN-0.bin

_1069619026.ppt

Grid Layers

Distributed Grid Application

Launch, configure

And control

Resource layer

1000s of PCs ->massive supercomputers

Information/

Naming

Services

(co-)scheduling

Service

Accounting

Service

Security

Service

Event/Mesg

Service

Discovery

service

User Help

Services

Monitoring

Service

Peer Creation

& resolution

Services

Information

Routing

P2P / Grid Services Layer

Grid Web Services Layer

User Portals/ Science Portals

