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Abstract

The Virtual Interface (VI) architecture has become the industry standard for user-level network
interfaces. This paper presents the implementation and evaluation of Javia, a Java interface to the
VI architecture. Javia explores two points in the design space. The first approach manages buffers
in C and requires data copies between the Java heap and native buffers. The second approach relies
on a Java-level buffer abstraction that eliminates the copies in the first approach. Javia achieves an
effective bandwidth of 80Mbytes/s for 8Kbyte messages, which is within 1% of those achieved by
C programs. Performance evaluations of parallel matrix multiplication and of the Active Messages
communication protocol show that Javia can serve as an efficient building block for Java cluster
applications.
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1 Introduction

User-level network interfaces (UNIs) introduced over the last few years have reduced the overheads of
communication within clusters by removing the operating system from the critical path [PLC95, vEBB+95,
DBC+98]. Intel, Compaq, and Microsoft have taken input from the numerous academic projects to produce
an “industry standard” UNI called the Virtual Interface (VI) architecture [Via97]. At this point, commercial
hardware that implements the VI architecture is available for Windows NT/2000. Several studies
demonstrate the architecture’s potential for high performance [BGC98] as well as for supporting higher
level communication abstractions and clustered applications [SPS98, SSP99].

Recent advances in Java compilation technology and the growing interest in using Java for cluster
applications are making the performance of Java communication an interesting topic. Research in JITs,
static Java compilers, locking strategies, and garbage collectors [ACL+98, ADM+98, BKM+98, FKR+99,
MGG98] have delivered promising results, gradually reducing the performance gap between Java and C
programs. Thus, providing access to the VI architecture from Java may soon become an important building
block for Java cluster applications.

The important advances made by UNIs are (i) to enable the DMA engine to move data directly between the
network and buffers placed in the application address space, and to (ii) allow the application to manage
these buffers explicitly. The DMA access to application buffers eliminates the traditional path through the
kernel, which typically involves one or more copies. By managing buffers explicitly, the application can
often avoid copies and can use higher-level information to optimize their allocation. Unfortunately,
requiring applications to manage the buffers in this manner is ill matched to the foundations of Java. Java
prevents the programmer from exerting any control over the layout, location and lifetime of Java objects,
which is exactly what is required to take advantage of UNIs.

In this paper, we present a two-level Java interface to the VI architecture called Javia. The first level of
Javia (Javia-I) manages the buffers used by the VI architecture in native code (i.e. hides them from Java)
and adds a copy on the transmission and reception paths to move the data into and out of Java arrays. The
copy in the transmission path can be optimized away by pinning the array on the fly. Javia-I can be
implemented for any Java VM or system that supports a JNI-like native interface. Benchmarks show that
Javia-I achieves a peak bandwidth of 70Mbytes/s, which is 10% to 15% lower than those achieved by C
programs.
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The second level of Javia (Javia-II) introduces a special buffer class that, coupled with special features in
the garbage collector, eliminates the need for the extra copies. In Javia-II, the application can allocate
pinned regions of memory and use these regions as Java arrays. These arrays are genuine Java objects (i.e.
can be accessed directly) but are not affected by garbage collection as long as they need to remain
accessible by the network interface DMA engine. This allows Java applications to explicitly manage the
buffers used by the VI architecture and to transmit/receive Java arrays directly. Micro-benchmarks show
that programs using Javia-II can achieve bandwidths of over 80Mbytes/s for large messages (> 8Kbytes),
which are within 1% (error range) of those achieved by C programs.

Javia is intended as a building block for the construction of parallel Java applications as well as higher level
communication libraries entirely in Java. Javia has been used for an implementation of parallel matrix
multiplication (pMM) as well as an active messages library (Jam). Performance results of pMM on an 8-
node PC cluster show that the overall application performance can improve with faster communication
times. A point-to-point performance evaluation of Jam shows that high-level communication libraries can
be implemented efficiently in Java.

Section 2 provides background on the VI architecture and on the experimental setup used in the paper.
Sections 3 and 4 describe the Javia-I and Javia-II architectures, respectively. Section 5 presents the design
and evaluation of pMM and Jam over Javia. Section 6 relates Javia to other efforts in improving Java’s
communication performance and section 7 concludes.

2 Background

2.1 Virtual Interface Architecture

The VI architecture is connection-oriented. To access the network, an application opens a virtual interface
(VI), which forms the endpoint of the connection to a remote VI. In each VI, the main data structures are
user-level buffers, their corresponding descriptors, and a pair of message queues. User-level buffers are
located in the application’s virtual memory space and used to compose messages. Descriptors store
information about the message, such as its base virtual address and length, and can be linked to other
descriptors to form composite messages. The in-memory layout of the descriptors is completely exposed to
the application. Each VI has two associated queues—a send queue and a receive queue—that are thread-
safe. The implementation of enqueue and dequeue operations is not exposed to the application, and thus
must take place through API calls.

To send a message, an application composes the message in a buffer, builds a buffer descriptor, and adds it
to the end of the send queue. The network interface fetches the descriptor, transmits the message using
DMA, and sets a bit in the descriptor to signal completion. An application eventually checks the descriptors
for completion (e.g. by polling) and dequeues them. Similarly, for reception, an application adds
descriptors for free buffers to the end of the receive queue, and checks (polls) the descriptors for
completion. The network interface fills these buffers as messages arrive and sets completion bits. Incoming
packets that arrive at an empty receive queue are discarded. An application is permitted to poll at multiple
receive queues at a time using VI completion queues. Apart from polling, the architecture also supports
interrupt-driven reception by posting notification handlers on completion queues.

Protection is enforced by the operating system and by the virtual memory system. All buffers and
descriptors used by an application are located in memory mapped into that application’s address space.
Other applications cannot interfere with communication because they do not have the buffers and
descriptors mapped into their address space.

A major difficulty in the design of user-level network interfaces is handling virtual to physical address
translations in the network interface. This is required because pointers (e.g. to descriptors or buffers) are
specified as virtual addresses by the applications yet the network interface must use physical addresses to
access main memory with DMA. In the VI architecture, this is handled by placing all buffers and
descriptors into memory regions that are registered with the network interface before they are used. A
memory region is a virtually contiguous memory segment that an application allocates and registers with
the VI architecture. The registration is performed by the operating system, which pins the pages underlying
the region and communicates the physical addresses to the network interface. The latter stores the
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translation in a table indexed by a region number. While all addresses in descriptors are virtual, the
application is required to indicate the number of the region with each address (in effect all addresses are 64
bits consisting of a 32-bit region number and a 32-bit virtual address) so that the network interface can
translate the addresses using its mapping table.

2.2 Experimental Setup

2.2.1 Giganet cLANTM Cluster

The network interface used throughout this paper is the commercially available GNN-1000 from Giganet
[Gig98] for Windows 2000 beta 3. The network adapter is accompanied by the following software: (i) a
custom firmware that implements the packet multiplexing and address translation in hardware, (ii) a device
driver that implements VI setup and tear-down, page pinning and unpinning routines that coordinate with
the TLB in the adapter, among other things, (iii) and a user-level library (Win32 dll) that implements the VI
Architecture API.

The GNN-1000 can have up to 1024 virtual interfaces opened at a given time and a maximum of 1023
descriptors per send/receive queue. The virtual/physical translation table can hold over 229,000 entries. The
maximum amount of pinned memory at any given time is over 930Mbytes. The maximum transfer unit is
64Kbytes. The GNN-1000 does not support interrupt-driven message reception.

The cluster used consists of eight 450Mhz Pentium Pro PCs with 128Mbytes of RAM, 512Kbytes second
level cache (data and instruction) and running Windows2000 beta 3. A Giganet GNX-5000 (version A)
switch connects all the nodes in a star-like formation. The network has a bi-directional bandwidth of
1.25Gbytes/s and interfaces with the nodes through the GNN-1000 adapter. Basic end-to-end round-trip
latency is around 14µs (16µs without the switch) and the effective bandwidth is 82Mbytes/s (100Mbytes/s
without the switch) for 4Kbyte messages.

2.2.2 Marmot

Marmot [FKR+99] is a Java system developed at Microsoft Research. It consists of a static, optimizing,
byte-code to x86 compiler and a runtime system. The compiler applies standard optimizations (e.g. array
bounds check elimination, common sub-expression elimination, and constant folding), object-oriented
optimizations (e.g. method inlining and type cast elimination), and Java-specific optimizations such as
array-store-check elimination. Marmot does not rely on any external compiler or back-end and currently
runs on P-II based PCs with Windows NT/2000. Java programs compiled by Marmot run roughly 1.5x to
5x faster than using Microsoft’s JVM (build 3168). Because it relies solely on a static compiler, Marmot
does not support dynamic loading of classes.

Most of Marmot’s runtime support is implemented in Java, including casts, instanceof, array store
checks, thread synchronization, and interface call lookup. Synchronization monitors are implemented as
Java objects, which are updated in critical sections written in C. Threads are also Java objects that are
mapped onto Win32 threads. Marmot supports most of JDK1.1: java.lang, java.util, java.io, and
java.awt. Support for object serialization (in the java.io package) and reflection
(java.lang.reflect) have also been added. Marmot is configured to use a semi-space copying collector
based on the Cheney scanning algorithm. All objects are allocated in the garbage-collected heap.

Marmot’s interaction with native code is very efficient. It translates Java classes and methods into their
C++ counterparts and uses the same alignment and the “fast-call” calling convention as native x86 C++
compilers. C++ class declarations corresponding to Java classes that have native methods must be manually
generated. All native methods are implemented in C++, and Java objects are passed by reference to native
code, where they can be accessed as C++ structures. A call of a null Java-to-native method costs about
0.3µs on a 450Mhz Pentium-II.

Garbage collection is automatically disabled when any thread is running in native, but can be explicitly
enabled by the native code. In case the native code must block, it can stash up to two (32-bit) Java
references into the thread object so they can be tracked by the garbage collector. During Java-native
crossings, Marmot marks the stack so the copying garbage collector knows where the native stack starts
and ends.
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3 Javia-I

3.1 Basic Architecture

The general Javia-I architecture consists of a set of Java classes and a native library. The Java classes are
used by applications and interface with a commercial VI architecture implementation through the native
library. The core Javia-I classes are shown below:

1 public class Vi { /* connection to a remote VI */
2 
3   public Vi(ViAddress mach, ViAttributes attr) { … }
4 
5   /* async send */
6   public void sendPost(ViBATicket t);
7   public ViBATicket sendWait(int millisecs);
8 
9   /* async recv */
10    public void recvPost(ViBATicket t);
11    public ViBATicket recvWait(int millisecs);
12  
13    /* sync send */
14    public void send(byte[] b,int len,int off,int tag);
15  
16    /* sync recv */
17    public ViBATicket recv(int millisecs);
18  }
19  
20  public class ViBATicket {
21    private byte[] data; private int len, off, tag;
22    private boolean status;
23    /* public methods to access fields ommited */
24  }

The class Vi  represents a connection to a remote VI and borrows the connection set-up model from the
JDK sockets API. When an instance of Vi  is created a connection request is sent to the remote machine
(specified by ViAddress ) with a tag. A call to ViServer.accept  (not shown) accepts the connection and
returns a new Vi  on the remote end. If there is no matching accept, the Vi  constructor throws an exception.

Javia-I contains methods to send and receive Java byte arrays1. The asynchronous calls (lines 6-11) use a
Java-level descriptor (ViBATicket ) to hold a reference to the byte array being sent or received and other
information such as the completion status, the transmission length, offset, and a 32-bit tag. Figure 1 shows
the Java and native data structures involved during asynchronous send and receive. Buffers and descriptors
are managed (pre-allocated and pre-pinned) in native code and a pair of send and receive ticket rings is
maintained in Java and used to mirror the VI queues.

To post a Java byte array transmission, Javia-I gets a free ticket from the ring, copies the data from the byte
array into a buffer and enqueues that on the VI send queue. sendWait  polls the queue and updates the ring
upon completion. To receive into a byte array, Javia-I obtains the ticket that corresponds to the head of the
VI receive queue, and copies the data from the buffer into the byte array. This requires two additional
Java/native crossings: upon message arrival, an upcall is made in order to dequeue the ticket from the ring,
followed by a downcall to perform the actual copying. Synchronized accesses to the ticket rings and data
copying are the main overheads in the send/receive critical path.

Javia-I provides a blocking send call (line 14) because in virtually all cases the message is transmitted
instantaneously—the extra completion check in an asynchronous send is more expensive than blocking in
the native library. It also avoids accessing the ticket ring and enables two send variations. The first one

                                                          
1 The complete Javia-I interface provides send and receive calls for all primitive-typed arrays (double, float, etc)
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(send-copy) copies the data from the Java array to the buffer whereas the second (send-pin) pins the array
on the fly, avoiding the copy2.

The blocking receive call (line 17) polls the reception queue for a message, allocates a ticket and byte array
of the right size on-the-fly, copies data into it, and returns a ticket. Blocking receive not only eliminates the
need for a ticket ring, it also fits more naturally into the Java coding style. However, it requires an
allocation for every message received, which may cause garbage collection to be triggered more frequently.

Pinning the byte array for reception is unacceptable because it would require the garbage collector to be
disabled indefinitely.

3.2 Implementation Status

Javia-I consists of 1960 lines of Java and 2800 lines of C++. The C++ code performs native buffer and
descriptor management and provides wrapper calls to Giganet’s implementation of the VI library. A
significant fraction of that code is attributed to JNI support.

Most of the VI architecture is implemented, including query functions and completion queues.
Unimplemented functionality includes interrupt-driven message reception: the commercial network adapter
used in the implementation does not currently support the notification API in the VI architecture. This is
not a prime concern in this thesis: software interrupts are typically expensive (one order of magnitude
higher than send/receive overheads) and depend heavily on the machine load and on the host operating
system.

                                                          
2 The garbage collector must be disabled during the operation.
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Figure 1. Javia-I per-endpoint architecture. Solid arrow
indicates data copying.
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3.3 Performance

The round-trip latency achieved between two cluster nodes (450Mhz Pentium-II boxes) is measured by a
simple ping-pong benchmark that sends a byte array of size N back and forth. The effective bandwidth is
measured by transferring 15Mbytes of data using various packet sizes as fast as possible from one node to
another. A simple window-based, pipelined flow control scheme [CCH+96] is used. Both benchmarks
compare four different Vi configurations,

1. Send-copy with non-blocking receive (copy),

2. Send-copy with blocking receive (copy+alloc),

3. Send-pin with non-blocking receive (pin), and

4. Send-pin with blocking receive (pin+alloc),

with a corresponding C version that uses Giganet’s VI library directly (raw). Figures 2 and 3 show the
round-trip and the bandwidth plots respectively, and Table 1 shows the 4-byte latencies and the per-byte
costs. Numbers have been taken on both Marmot and Sun’s JVM running JDK1.2/JNI (only copy and
copy+alloc are reported here). Sun’s JVM numbers are annotated with the jdk label.

4-byte(us) per-byte(ns)
16.5 25
38.0 38
21.5 42
74.5 48
18.0 55
38.8 76

JDK copy

JDK copy+alloc
copy+alloc

raw
pin

copy

Table 1. 


