
Extending Java Virtual Machine with

Integer-Reference Conversion

Yutaka Oiwa, Kenjiro Taura, Akinori Yonezawa

University of Tokyo�

Abstract

Java virtual machine (JVM) is an architecture-independent code ex-
ecution environment. It is recently used not only for Java language but
also for other languages such as Scheme and ML. On JVM, however, all
values are statically-typed as either immediate or reference, and types are
checked before the execution of a program to prove that invalid memory
access will never occur. This property sometimes makes implementation
of other languages on JVM ineÆcient. In particular, implementation of
dynamically-typed language is very ineÆcient because all possible values
including frequently-used ones such as integers must be represented by
instances of a class.

In this paper, we introduce a new type into JVM, which is a super-
type of reference types and a tagged integer type. This allows a more
eÆcient implementation of dynamically-typed language on JVM. It does
not require any new instruction, maintains binary-compatibility of exist-
ing bytecode, and retains the safety of the original JVM. We modi�ed an
existing Scheme system running on JVM to exploit this extension and got
factor of 20 speedup for simple integer functions. Our extension imposes
little performance penalty on existing JVM code generated from Java; we
observed essentially no penalty for Spec JVM benchmarks.

1 Introduction

Java virtual machine (JVM) [9] is a widely-used, machine-independent code exe-
cution environment. Although JVM is originally designed for Java language, it is
increasingly used as a compilation target of other languages, such as Scheme [5]
and ML [2]. Those systems directly generates JVM bytecode without using Java
language source code.

Using JVM bytecode as compilation target has several advantages [6]. The
high availability of JVM makes the languages more portable. Advanced JIT
compilers can easily achieve high execution performance without constructing
a dedicated native compiler. A rich set of libraries for graphical user interface,
multi-threading, supporting distributed objects, etc., can be used from within
those languages.

JVM's static typing, however, prevents eÆcient implementation of some lan-
guages. In JVM, all values are statically-typed as either immediate or reference,

�email: foiwa, tau, yonezawag@is.s.u-tokyo.ac.jp



(a) Scheme program with dynamic type

1: (define a '(x . y)) ; de�ne variable and store a reference into it
2: (set! a 4) ; store integer into a

(b) invalid JVM program translated from (a)

0 new #3 <Class ConsCell>

3 dup

4 ldc #1 <String "x">

6 ldc #2 <String "y">

8 invokespecial #9 <Method ConsCell(java.lang.Object,java.lang.Object)>

11 putstatic #10 <Field java.lang.Object a>

14 iconst_4

15 putstatic #10 <Field java.lang.Object a> // invalid operation

(c) valid JVM program which expresses the operation of (a)

[instructions 0{11 are same as (b)]
14 new #4 <Class java.lang.Integer>

17 dup

18 iconst_4

19 invokespecial #8 <Method Integer(int)>

22 putstatic #10 <Field java.lang.Object a>

Figure 1: Expressing dynamic type on JVM bytecode

and types are checked before the execution of a program to prove that invalid
memory access will never occur. This property sometimes makes implementa-
tion of other languages on JVM ineÆcient, particularly of dynamically-typed or
polymorphic languages such as Scheme and Smalltalk.

Implementation of those languages (e.g. Scheme) on native CPUs generally
represent an immediate value (e.g. integers) in a single word (called unboxed
representation), so that they can be eÆciently manipulated. In Scheme, for
example, Program (a) shown in Figure 1 is a valid program. Variable a is used
twice, once for an reference to a cell and once for an integer value, and most
Scheme implementations represent both in a single word. Unfortunately, such
representation is not permitted on JVM, since it accepts only statically typed
programs. Program (b) in the same �gure, which is a direct translation of (a),
is not statically typed and rejected by JVM's bytecode veri�er. As a result, im-
plementations on the original JVM must represent all dynamically-typed values
as Java object|so called boxed representation. For example, Program (a) must
be translated to Program (c).

In this representation, numerical operation cannot be performed directly. A



Original program is: (set! c (+ a b)).

1: void function(Object a, Object b) {

2: int a_value = (Integer)a.intValue();

3: int b_value = (Integer)b.intValue();

4: c = new Integer(a_value + b_value);

5: }

Figure 2: Handling Scheme values with boxed object

single numerical operation is performed as follows:

1. \unbox" the object to get its value,

2. perform the numerical operation to get the result, and

3. allocate a new object and \box" the result value.

The example code for this operation is shown in Figure 2. Of the three steps,
the �nal step is the most problematic, as it causes huge numbers of objects to
be allocated throughout the execution of a typical program. Generally the exe-
cution cost of a memory allocation is signi�cantly larger than simple operations
such as integer additions. Furthermore, it creates many discarded objects which
have to be garbage collected, which results in frequent garbage collection. Both
of these e�ects signi�cantly slow down program execution.

To solve the above problem, we extend JVM with a new type which can
hold both references and unboxed integers and execute arithmetic on unboxed
integers without memory accesses. Our extension has the following advantages:

� It does not introduce any new instruction.

� It does not slow down existing code.

� It retains the same safety properties as the original JVM's.

� It can be implemented eÆciently thanks to JIT compiler.

� It is easy to implement based on existing JVMs.

We implemented those extensions based on Ka�e OpenVM 1.0.b3 [16]. We
also implemented a Scheme system that exploits our extension based on Kawa
Scheme [5], which is a Scheme on JVM. The original Kawa Scheme boxes all
values.

Our extension de�nes only unboxed representation for integer, as most native
implementation for dynamically-typed languages uses boxed representation for
oats and strings.1 Also, for representation for \symbol", we can eÆciently use
Java's reference to interned String. Consequently, we consider that providing
unboxed integer is suÆcient enough.

This paper is organized as follows: Section 2 describes the extension to JVM
speci�cation which we propose. Section 3 discusses the safety of this extension.

1This usually corresponds to Java's Stringbuffer, not to String.



Section 4 briey explains the implementation of this extension and Section 5
explains the implementation of Scheme language using this extension. Section 6
evaluates this extension by performance measurement. Section 7 compares this
extension with related works. We �nally state conclusions in Section 8.

2 Design of the extension

As discussed in the previous section, the main goal of our extension is to allow
eÆcient implementation of dynamically-typed languages on JVM. When we
extend JVM, we must pay close attention to three important goals.

� First, the extended VM must not introduce any security hole which does
not exist in the original JVM. To satisfy this goal, a naive extension that
introduces the casting operation in C language cannot be used. We utilize
type information to retain safety, just like the original JVM does.

� Second, the extended JVM must be compatible with the original JVM; it
must accept all bytecodes that are valid in the original JVM and retain
their semantics. This \backward compatibility" is, we think, the min-
imum requirement for extension proposals. We recognize that keeping
\forward" compatibility is very good idea, but is not absolutely required
for extensions. In fact, JDK1.2 is not forward compatible for JDK1.1.

� Finally, changes needed to extend existing JVMs must be small.

Our extension meets these requirements. In particular, we avoid adding new
instruction to JVM, as the instruction set is considered to be �xed by many
people.

The brief summary of this extension is as follows:

1. Introduce descriptor, the super-type of integer and object

2. Represent descriptor in class �le format.

3. Extend CHECKCAST instruction to allow the coercion from descriptor to an
Object or its subtype.

4. Extend bytecode veri�er to retain type safety.

2.1 Descriptor type

As previously stated in Section 1, in order to express dynamically-typed values,
we need a type which accepts both unboxed integer and reference of any type.
That is, it is the supertype of both integer type and Object type. As JVM does
not have such a type, we introduce a new type into JVM and integrate it into
existing statically-typed system.

The new type is called \descriptor" and is the disjoint union of integer and
Object. A variable of descriptor type can hold one of the following values:

1. non-referencing descriptor : 31bit-range signed integers.

2. referencing descriptor : any reference to an object.



java.lang.Object

java.lang.Descriptor

etc . . .VectorString

(integer)

Figure 3: Descriptor type in Java class tree

public static native java.lang.Descriptor makeDescriptor(int);

public static native int getDescriptor(java.lang.Descriptor);

Figure 4: Type coercing method between integers and descriptors

The internal representation for those values is implementation dependent, but
representations of those values must be disjoint, i.e. any non-referencing de-
scriptor must be distinguishable from any referencing descriptor. This property
can be easily maintained on most platforms, because references typically do not
fully utilize 32 bits. For example, if a reference is represented by the address of
the referenced object, it is typically 4 byte aligned, so an integer can be repre-
sented by setting its least signi�cant bit (LSB). For another example, a reference
might be represented by an index to an object table, which then locates the real
object. In this case, the index may not be a multiple of four, but are typically
small integers. In this case, a natural way to represent an integer would be to
set its most signi�cant bit (MSB). Our extension assumes almost nothing about
internal representation for references in original JVM implementation.

To use descriptors in JVM programs, it must be expressed in some way in
the bytecode .class �le. This representation should distinguish descriptors
from both integers and references, as it is important for type safety. For the
ease of using descriptor from existing Java tools, we should map the descriptor
type to something that already exists in current .class format.

For this purpose, we de�ne java.lang.Descriptor class as a superclass of
java.lang.Object for the representing descriptors (Figure 3). This class has
two static member functions in Figure 4 for converting from/to integer values.
Java.lang.Object becomes a subclass of java.lang.Descriptor. It means
that conversion from a reference to a descriptor needs no explicit instructions,
and that conversion from a descriptor to a reference needs explicit CHECKCAST.
It also means that semantics of programs that does not use descriptors is un-
changed, because Descriptor class stays completely outside the class tree in the
original JVM. Descriptor class should not be inherited by other than Object

class. System class archives, for example classes.zip, are modi�ed to reect



these changes.

2.2 Coercions among references, integers and descriptors

Rules regarding conversions between references and descriptors follow their sub-
type relationships.

� A reference is implicitly converted into a descriptor without runtime type
check. That is, a reference can be assigned into a variable of descriptor,
passed into a formal parameter of descriptor type, and so on.

� On the other hand, conversion from a descriptor to a reference needs
a runtime check. For this purpose, we extend CHECKCAST instruction,
which already exists in JVM, so that it can take a descriptor as its object
argument.

CHECKCAST in JVM takes two arguments, an object o and a class c and succeeds
if the runtime type of o is c or its subtype. We extend CHECKCAST instruction
so that o can be a descriptor. Given a descriptor, CHECKCAST �rst checks if it
is a referencing descriptor. If it is not, the conversion fails. Since the extension
requires non-referencing and referencing descriptors to be disjoint in represen-
tation, this check prevents any dangling reference from being generated.

We similarly extend INSTANCEOF instruction, which essentially checks if
CHECKCAST would succeed for given arguments. INSTANCEOF instruction in our
extended JVM can take a descriptor as its object argument. In particular,
INSTANCEOF java.lang.Object tests whether the descriptor is referencing or
non-referencing.

An integer value can be converted to a descriptor by makeDescriptormethod.
makeDescriptor(x)makes non-referencing descriptor from integer x. This con-
version discards the MSB (except for the sign bit) of the integer and tags the
value as non-referencing descriptor. A descriptor can be converted to an inte-
ger by using getDescriptor method. If the descriptor was converted from an
integer that �ts in 31 bits (including one sign bit), getDescriptor returns the
original integer. If the descriptor was converted from a reference, on the other
hand, the conversion still succeeds, but the return value is unde�ned. Note
that it is not an error to convert a referencing descriptor to an integer, because
pointer safety is still maintained. An advantage of this speci�cation is that
getDescriptor is maximized; it does not require any runtime checks to see if
the descriptor was generated from an integer.

Using a static method for conversion from/to integers might seem ineÆcient
because of the method call overhead. However, because dynamic dispatch is
not necessary for a static method call, inlining those methods should be fairly
easy. Once these methods are inlined, it can achieve the same performance as
builtin JVM instructions. This technique can be used universally to extend
JVM without altering its instruction set.

2.3 Bytecode veri�cation

Our extension needs some modi�cation to the bytecode veri�cation rules. The
operations allowed for descriptors are intersection of those allowed for integers
and those allowed for references. Speci�cally, we allow the following operations
to be applied to descriptors on the operand stack:



� duplicate on/discard from stack: DUP*, POP*

� store value into location: ASTORE, PUTFIELD, PUTSTATIC

� store it into array of descriptors: AASTORE

� pass it to another method as argument: INVOKE*

� return it to callee method: ARETURN

� check the type of the descriptor: CHECKCAST, INSTANCEOF

Fields, arrays, and local variables can be typed as descriptor and accessed
through GETSTATIC, GETFIELD, ALOAD, AALOAD, if corresponding location is typed
as a descriptor. All other operations are prohibited for descriptors. In particu-
lar, invoking instance methods on a descriptor is not allowed.

3 Safety

\Safe execution" is one of the JVM's important characteristics. To make our
extension upper-compatible to the original JVM, the safety properties must be
maintained. Although the formal proof is far beyond the scope of this paper,
we informally claim that our extension does not invalidate any of the original
Java safety properties.

JVM's safety properties can be summarized as follows:

Pointer Safety: Every value used as a pointer is in fact a valid pointer to a
Java object. The type of pointer must agree with the type of object.

Data Privacy: One can access an object only when it obtains the reference
to the object through the regular dataow de�ned by JVM (assignments,
parameter passing, etc.). In other words, one cannot access an arbitrary
address in the heap to �nd secret information.

Access Control: Accesses to system resources are properly controlled. (e.g.,
applets denied to access local �le.)

In this section, we assume that original JVM speci�cation satis�es those
properties. [11] has shown that a subset of JVM speci�cation meets those
properties.

Pointer safety is maintained by the following two properties.

1. If a value is statically typed as a descriptor at a program point, and it
happens to be a non-referencing descriptor at runtime, then it is not used
as a pointer at that point.

2. If a value is statically typed as reference at a program point, then the
value is in fact a valid pointer to a Java object.

We maintain the �rst property simply by disallowing all pointer-dereferencing
instructions (except for CHECKCAST and INSTANCEOF) to take a descriptor as
the argument; Speci�cally, our extension prohibits all instructions which access
instance, including PUTFIELD, GETFIELD, MONITORENTER, and INVOKEVIRTUAL,
to take a value statically typed as descriptor. Exceptions are CHECKCAST and



INSTANCEOF, which �rst check if the argument is a valid Java reference before
dereferencing the pointer.

The second property is maintained by a proper subtyping relationship; de-
scriptor type is a supertype of reference (java.lang.Object), therefore a vari-
able of reference type cannot hold a descriptor.

By \data privacy", we speci�cally mean that a program can obtain a ref-
erence to an object only through the regular dataow (assignments, parameter
passing, etc.) permitted by JVM; if a module wishes to make an object x in-
accessible from another module M , it can do so by making sure that x never
reaches M through method parameters, return values, or other objects' �elds.
Our extension clearly maintains data privacy because we did not add any op-
eration that produces a reference that has not been reached the same module.
In particular, if a CHECKCAST returns a reference r at runtime, r must have
previously been assigned to the descriptor argument of that instruction, which
means that r has already reached the module before. Therefore, one cannot
use CHECKCAST to \fabricate" a reference to an object that would otherwise be
inaccessible.

Note that pointer safety alone could be maintained without tagging descrip-
tors, but tagging is mandatory for data privacy. To maintain pointer safety,
we could insert runtime checks before every pointer dereference, or even better,
these runtime checks can be eliminated if CHECKCAST succeeds only when the
descriptor is a valid pointer; CHECKCAST could conservatively assume that every
data which appears to be a valid pointer is in fact a valid pointer, even if it may
originally be an integer. This is the same technique as conservative garbage
collectors [4, 3]. This tag-less descriptor might be bene�cial for applications
that need 32 bit integers. However, it would violate data privacy, because in
this scheme an arbitrary reference could be generated by converting an integer
to a descriptor and then CHECKCASTing it to a reference. A malicious program
might in this way access every object in the system.

The speci�cation of our extension allows converting a referencing descrip-
tor to an integer using getDescriptor method. An alternative speci�cation
would be to disallow this conversion by adding runtime check to getDescriptor.
However, converting a referencing descriptor to an integer does not introduce
any security problem because the converted value is not usable for memory
operations. Clearly, this conversion makes the behavior of bytecode program
implementation-dependent, but Java already has some implementation-dependent
methods (e.g., makeHash()). In short, we chose this unchecked conversion for
better performance.

4 Implementations

To evaluate the performance of our extension, we have made an experimental
implementation based on Ka�e OpenVM version 1.0.3.

In our implementation, descriptors have the same bit width as references,
which is the natural pointer width. Our implementation uses LSB as the tag
bit to distinguish referencing descriptors from non-referencing ones. Odd values
(LSB = 1) represent non-referencing descriptors, and even values (LSB = 0)
referencing descriptors. Because all objects are aligned to 4 bytes boundary,
converting a reference into a descriptor is no-op.



Our implementation inlines two type coercing methods described in Sec-
tion 2.1. We modi�ed the Just-In-Time compiler so that INVOKESPECIAL gen-
erates an inlined sequences for makeDescriptor and getDescriptor.

In our current implementation CHECKCAST instruction always check the LSB
even if the argument's static type is a reference. The e�ect of this change will
be evaluated later.

As of writing, our implementation is still a subset of this extension. Specif-
ically, it uses the type java.lang.Object, instead of java.lang.Descriptor,
for the representation of descriptor type. Therefore our implementation is still
not secure, although the speci�cation is. This does not a�ect performance.

5 Application: Kawa Scheme with unboxed in-

tegers

Kawa Scheme is the almost-full-featured Scheme implementation on the JVM.
For eÆciency, Kawa has internal compiler which compiles Scheme closures (func-
tions) into Java bytecode at de�nition time. Based on Kawa Scheme, we imple-
mented Scheme which uses unboxed descriptor representation for integers.

Original Kawa scheme gives boxed representations to all Scheme values by
de�ning its own class for integers and other numerics, and therefore it performs
unbox and box operation upon every arithmetic. Extended implementation uses
descriptor for small integers that �t in 31 bits (including one sign bit). We call
those integers �xnum. Range overow of �xnum is checked at every operation,
and overowed values are represented by boxed objects, just as in the original
Kawa Scheme.

Routines for numeric operation procedures are re-implemented with descrip-
tor extension to handle unboxed (descriptor) integer directly. Extended routines
inline operations on �xnum arguments directly into compiled code. Inlined code
�rst checks whether arguments are �xnum using INSTANCEOF instruction. If
both arguments for binary operator are �xnum, the operation is performed in-
line. Otherwise, it delegates it to an auxiliary routine which is written in Java
language. The auxiliary routine handles both �xnum and boxed arguments cor-
rectly but is slower. Example output of the compiler is shown in Appendix A.

6 Performance evaluation

In this section, We evaluate the performance of the descriptor extension. All ex-
periments are performed on Sun Ultra Enterprise 4000 (Ultra SPARC 168MHz)
with Solaris 2.6. In these tests, Ka�e's runtime stack overow detection is dis-
abled, which is expensive enough to mask the di�erences.

6.1 Performance of a dynamically typed language

First, we evaluate the performance gain on Scheme code. We use four simple
tests that perform many integer arithmetic operations and procedure calls.

1. the program which calculates the 25th element of Fibonacci sequence.
(Figure 5).



(define (fib x)

(if (< x 2)

1

(+ (fib (- x 1)) (fib (- x 2)))))

Figure 5: Fibonacci function used in evaluation

test program original modi�ed ratio
Fibonacci 53 2.0 26.5
Coins 94 3.0 31.3
Prime 148 9.0 16.4
Pi 1029 28 36.7

(unit: sec.)

20%

40%

60%

80%

100%

(orig.=100%)

53

2.0

Fibonacci

94

3.0

Coins

148

9.0

Prime

1029

28

Pi

: original

: modi�ed

Table 1: Performance improvement of Kawa Scheme with descriptor extension

2. the program which enumerates all possible way to pay 200 cents by the
combination of 5 coins (50, 25, 10, 5, 1)

3. the program which build the list of prime numbers up to 40 000.

4. the program which calculates the �rst 1 000 digits of � by explicit multiple-
precision arithmetic. This program is distributed with SCM[8] distribu-
tion.

Table 1 shows the result. Performance gain varies for each program, but the
extended Scheme with unboxed integers is about 15 to 30 times faster than the
original Kawa Scheme. This shows that unboxed integers are vitally important
for dynamically-typed languages.

6.2 Performance for integer arithmetic

Second, we compare the descriptor arithmetic with primitive integer arithmetic.
We wrote simple Fibonacci function in Java language with three styles. The
�rst version (a) is the simplest version that uses regular Java integers. The
second version (b) represents every integer by a descriptor. Every arithmetic
�rst converts a descriptor into an integer and then converts the result back to a



test program time ratio
(a) integer 658.048 1.000
(b) descriptor 950.795 1.445
(c) optimized 874.420 1.328

(unit: sec.)

200

400

600

800

1000
(unit: sec.)

658

(a)int

951

(b)desc.

874

(c)opt.

Table 2: Performance of descriptor handling

descriptor. This code is intended to show the performance of dynamically-typed
languages with a simple compiler that represents every value by a descriptor.
The third version (c) represents method arguments and return values by descrip-
tors and represents all intermediate values by the regular Java integer. This code
is, in contrast to (b), intended to show the performance of dynamically-typed
languages with a compiler that performs a local type inference to omit unneces-
sary conversions. Many compilers of dynamically typed languages perform such
an optimization.

Results are shown in Table 2. In this test, program (b) runs approximately
40% slower than Program (a). Also, optimized program (c) is about 10% faster
than non-optimized (b). 40% performance penalty in (b) seems to be large, but
the optimization decreased the penalty signi�cantly. Note that test program
is function-call dominant so that the e�ect of the optimization is limited. In
realistic programs, optimization with local type inference will be more e�ective
and make performance of programs which utilizes descriptors closer to that of
programs with native integer.

6.3 Performance of Java programs

Finally, we compare the execution speed of Java programs on the regular and our
extended JVM. We use �ve test programs from Spec JVM benchmark suite [14],2

specifying data set size to 10% (option -s 10).
Results are shown in Table 3. In this table, \original" shows the execution

time on the unmodi�ed Ka�e VM, and \extended" shows that on the VM with
descriptor extension. The values in the graph are the total execution time of
5 trials (i.e., lower value is better). No performance penalties are observed

2Unfortunately, only �ve SpecJVM programs runs correctly on Ka�e OpenVM 1.0.b3.
Other programs in the test-suite are therefore not used.



test program original modi�ed
201 compress 97.582 92.200
202 jess 66.012 62.007
213 javac 128.044 114.709
222 mpegaudio 155.363 155.889
228 jack 448.631 413.598

(unit: sec.)

100

200

300

400

500

(unit: sec.)

97.5 92.2

compress

66.0 62.0

jess

128.0 114.7

javac

155.4 155.8

mpegaudio

448.6
413.6

jack

: original

: extended

Table 3: Performance comparison with existing Java benchmark

with this experiments. We conjecture that the overhead posed by CHECKCAST is
overwhelmed by an optimization of AASTORE in our experimental VM, that has
to be implemented for using Object class as a representation of descriptors.3

7 Related work

Shivers' proposal [13] is closest to ours. He introduce DirectDescriptor class as
a subtype of java.lang.Object (Figure 6). A variable of type DirectDescriptor
can hold a tagged integer. That is, DirectDescriptor is very similar to our
non-referencing descriptor. The critical di�erence of these extensions is that
he introduces DirectDescriptor as a subtype of java.lang.Object, whereas
we introduces Descriptor as a supertype. As a consequence, in Shivers' pro-
posal, it is possible that an integer value held by a DirectDescriptor variable
is then assigned into a java.lang.Object variable, like Descriptor variable in
our extension. It implies that JVMs can no longer assume that every value of
java.lang.Object type is a valid pointer. Changes necessary for implementing
his extension will be signi�cant. Our subtype relationship is more natural and
does not break the assumption that every java.lang.Object value is a valid
pointer. It does not seem to have been implemented and its performance has
not been published.

Virtual machines that are closer to native machines than JVM, such as
Omniware [10, 1] and MIC [12], can be used as intermediate languages for
dynamically typed languages. These system perform a run-time check for every

3We plan to measure the performance of an original Ka�e VM with the same optimization.



java.lang.Object

DirectDescriptor etc . . .VectorString

(integer)

Figure 6: DirectDescriptor type in Shivers' extension

1: void example(void) {

2: DirectDescriptor desc

= hsome code to generate descriptori;
3: Object o = desc; // o does not refer any object

4: int i = o.makeHash(); // must be re-implemented

5: String s = String.valueOf(o); // must be re-implemented

6:
...

7: }

Figure 7: Problem on DirectDescriptor

memory access in order to ensure validity of the access (so called sandboxing).
Our system does not perform most of the runtime checks since the static type
system ensures validity of most memory accesses. Also, we can exploit many
existing JVM implementations and libraries for Java language.

Persimmon ML is a compiler of standard ML for JVM. ML is statically-
typed, but it has polymorphic types; for example, (fn x => x) is the identity
function which can be applied to values of any types. Generally, implemen-
tation of polymorphic types has the same problems as those of dynamic type.
Persimmon ML solves this problem by generating monomorphic functions from
a polymorphic functions. For example, when a static analysis determines that
a polymorphic function takes a string value or an integer value as its argument,
the compiler generates two Java methods for this function, one for string ar-
guments and the other for integer arguments. Since the analysis requires the
entire program, supporting separate compilation is hardly supported with this
optimization. With our extension, a more generic solution, which is used in
many ML compilers, can be implemented.

There is many attempt to improve the performance of bytecode program
through optimizations at JIT compiler stage. For example, escape analysis[15]
checks whether object can be alive beyond the current method's scope. If some
objects are known to be alive only inside the method, these can be allocated on
stack, not in heap storage, to eliminate garbage collection costs. Semantic ex-



pansion makes operations for some standard classes such as java.lang.Integer
inlined into native codes. With these optimizations, performance loss caused by
intra-method object handling could be reduced. However, inter-method over-
head, i.e. cost on passing an integer to some method or returning it from a
method to callee, cannot be eliminated. Figure 2 in the previous section indi-
rectly tells that inter-method overhead cannot be ignored.

In some cases inter-method optimization is also available [7], but it seems
diÆcult to perform such optimization for functions on dynamically-typed lan-
guage, because function's return value has generic type such as Object (or
Descriptor with our extention). In our extended Kawa Scheme, for exam-
ple, even simple integer arithmetic functions may return both �xnum unboxed
integer and "bignum" boxed integer, depending on the value's magnitude.

8 Conclusion

We extended JVM for supporting eÆcient implementation of dynamically-typed
languages by adding new type called descriptor, which are the union of integers
and references. It retains JVM's safety properties, including pointer safety and
data privacy. We implemented extended virtual machine with a Scheme system
running on top of it, and evaluated their performance. Scheme programs that
frequently use integer operations became twenty times faster, while regular Java
programs did not show any noticeable performance loss. These results show that
JVM can be a much more general execution platform than it is today, if a very
modest proposal would be considered.

Acknowledgement

We are grateful to Dr. Masahiro Yasugi at Kyoto University for his valuable
suggestion on this research.

References

[1] Ali-Reza Adl-Tabatabai, Geo� Langdale, Steven Lucco, and Robert Wahbe.
EÆcient and language-independent mobile programs. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI '96), pages 127{136, May 1996.

[2] Nick Benton, Andrew Kennedy, and George Russel. Compiling standard
ML to Java bytecodes. In Proceedings of the ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP '98), pages 129{140,
January 1999.

[3] Hans-Juergen Boehm. Space eÆcient conservative garbage collection. In
Proceedings of the ACM SIGPLAN'93 Conference on Programming Lan-
guage Design and Implementation, pages 197{206, 1993. See http://

reality.sgi.com/boehm_mti/gc.html.



[4] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an unco-
operative environment. Software Practice and Experience, 18(9):807{820,
1988.

[5] Per Bothner. Kawa: the Java-based Scheme system. In Lisp Users Con-
ference, January 1999. See http://www.cygnus.com/~bothner/kawa/.

[6] Jonathan C. Hardwick and Jay Sipelstein. Java as an intermediate lan-
guage. Technical Report CMU-CS-96-161, School of Computer Science,
Carnegie Mellon University, August 1996. See http://www.cs.cmu.edu/

~scandal/html-papers/javanesl/.

[7] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Mikio Takeuchi,
Takeshi Ogasawara, Toshio Suganuma, Tamiya Onodera, Hideaki Ko-
matsu, and Toshio Nakatani. Design, implementation, and evaluation of
optimizations in a just-in-time compiler. In Proceedings of the 1999 ACM
Javagrande Conference, June 1999.

[8] Aubrey Ja�er. Scm. Interpreter is available from http://www-swiss.ai.

mit.edu/~jaffer/SCM.html.

[9] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation.
Addison-Wesley, second edition, 1999.

[10] Steven Lucco, Oliver Sharp, and Robert Wahbe. Omniware: A universal
substrate for Web programming. In Proceedings of the 4th International
World Wide Web Conference, December 1995. See http://www.w3.org/

pub/Conferences/WWW4/Papers/165/.

[11] Tobias Nipkow and David von Oheimb. Java-light is type-safe|de�nitely.
In Proceedings of the 25th ACM Symposium on Principles of Programming
Languages (POPL '98), pages 161{170, 1998.

[12] Tatsuro Sekiguchi. MIC (machine independent code). Not yet published.
contact address: cocoa@is.s.u-toyo.ac.jp.

[13] Olin Shivers. Supporting dynamic languages on the java virtual machine,
April 1996. See http://www.ai.mit.edu/~shivers/javaScheme.html.

[14] Standard Performance Evaluation Corporation. SPEC JVM98 benchmarks,
1998. Information is available online from http://www.spec.org/osg/

jvm98/.

[15] John Whaley and Martin Rinard. Compositional pointer and escape anal-
ysis for Java programs. Presented at ACM 1999 Conference on Object-
Oriented Programming, Systems, Languages, and Applications, 1999.

[16] Tim Wilkinson. Ka�e|a free virtual machine to run Java code. Informa-
tion and implementation are available from http://www.transvirtual.

com/kaffe.html.



A Compiled code from descriptor-enabled Kawa

Scheme

Our descriptor-enable Kawa Scheme produces following bytecode for function
(define (f x y) (+ x y))). This code is for the full-set of descriptor exten-
sion. For subset implementation described in Section 4, change all Descriptor
to \Object".

Firstly, check whether both arguments are �xnum.

0: aload_1

1: aload_2

2: dup2

3: instanceof #16 <Class java.lang.Object>

6: ifne 42

9: instanceof #16 <Class java.lang.Object>

12: ifne 43

Get two integers from descriptor and add it.

15: invokestatic #20

<Method java.lang.Descriptor.getDescriptor(java.lang.Descriptor)>

18: swap

19: invokestatic #20

<Method java.lang.Descriptor.getDescriptor(java.lang.Descriptor)>

22: iadd

Check whether the result overows. If overow occurs, method which creates
boxed integer is called. otherwise, makeDescriptor creates unboxed integer.

23: dup

24: ldc #21 <Integer 1073741824>

26: iadd

27: iflt 36

30: invokestatic #25 <Method java.lang.Descriptor.makeDescriptor(int)>

33: goto 39

36: invokestatic #31 <Method gnu.math.IntNum.make(int)>

39: goto 46

Control reaches here from the branch at the �rst step. Call Java-written fall-
back routine.

42: pop

43: invokestatic #37 <Method kawa.standard.plus_oper.addTwo

(java.lang.Descriptor,java.lang.Descriptor)>

46: areturn


